Files
swift-mirror/stdlib/public/runtime/SwiftObject.mm
Pavel Yaskevich 10c385d1b7 [Mangling/ABI] Add special LabelList to store parameter labels
Instead of mangling parameter labels as part of the function type
move them to the end of the function name instead, to match the
language semantics.
2017-12-18 15:44:24 -08:00

1562 lines
49 KiB
Plaintext

//===--- SwiftObject.mm - Native Swift Object root class ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This implements the Objective-C root class that provides basic `id`-
// compatibility and `NSObject` protocol conformance for pure Swift classes.
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Config.h"
#if SWIFT_OBJC_INTEROP
#include <objc/NSObject.h>
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#endif
#include "llvm/ADT/StringRef.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/ObjCBridge.h"
#include "swift/Strings.h"
#include "../SwiftShims/RuntimeShims.h"
#include "Private.h"
#include "SwiftObject.h"
#include "WeakReference.h"
#include "swift/Runtime/Debug.h"
#if SWIFT_OBJC_INTEROP
#include <dlfcn.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unordered_map>
#if SWIFT_OBJC_INTEROP
# import <CoreFoundation/CFBase.h> // for CFTypeID
# import <Foundation/Foundation.h>
# include <malloc/malloc.h>
# include <dispatch/dispatch.h>
#endif
using namespace swift;
#if SWIFT_HAS_ISA_MASKING
OBJC_EXPORT __attribute__((__weak_import__))
const uintptr_t objc_debug_isa_class_mask;
static uintptr_t computeISAMask() {
// The versions of the Objective-C runtime which use non-pointer
// ISAs also export this symbol.
if (auto runtimeSymbol = &objc_debug_isa_class_mask)
return *runtimeSymbol;
return ~uintptr_t(0);
}
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
uintptr_t swift::swift_isaMask = computeISAMask();
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
#endif
const ClassMetadata *swift::_swift_getClass(const void *object) {
#if SWIFT_OBJC_INTEROP
if (!isObjCTaggedPointer(object))
return _swift_getClassOfAllocated(object);
return reinterpret_cast<const ClassMetadata*>(
object_getClass(id_const_cast(object)));
#else
return _swift_getClassOfAllocated(object);
#endif
}
#if SWIFT_OBJC_INTEROP
/// \brief Replacement for ObjC object_isClass(), which is unavailable on
/// deployment targets macOS 10.9 and iOS 7.
static bool objcObjectIsClass(id object) {
// same as object_isClass(object)
return class_isMetaClass(object_getClass(object));
}
/// Same as _swift_getClassOfAllocated() but returns type Class.
static Class _swift_getObjCClassOfAllocated(const void *object) {
return class_const_cast(_swift_getClassOfAllocated(object));
}
#endif
/// \brief Fetch the type metadata associated with the formal dynamic
/// type of the given (possibly Objective-C) object. The formal
/// dynamic type ignores dynamic subclasses such as those introduced
/// by KVO.
///
/// The object pointer may be a tagged pointer, but cannot be null.
const Metadata *swift::swift_getObjectType(HeapObject *object) {
auto classAsMetadata = _swift_getClass(object);
#if SWIFT_OBJC_INTEROP
// Walk up the superclass chain skipping over artifical Swift classes.
// If we find a non-Swift class use the result of [object class] instead.
while (classAsMetadata && classAsMetadata->isTypeMetadata()) {
if (!classAsMetadata->isArtificialSubclass())
return classAsMetadata;
classAsMetadata = classAsMetadata->SuperClass;
}
id objcObject = reinterpret_cast<id>(object);
Class objcClass = [objcObject class];
if (objcObjectIsClass(objcObject)) {
// Original object is a class. We want a
// metaclass but +class doesn't give that to us.
objcClass = object_getClass(objcClass);
}
classAsMetadata = reinterpret_cast<const ClassMetadata *>(objcClass);
return swift_getObjCClassMetadata(classAsMetadata);
#else
assert(classAsMetadata &&
classAsMetadata->isTypeMetadata() &&
!classAsMetadata->isArtificialSubclass());
return classAsMetadata;
#endif
}
#if SWIFT_OBJC_INTEROP
static SwiftObject *_allocHelper(Class cls) {
// XXX FIXME
// When we have layout information, do precise alignment rounding
// For now, assume someone is using hardware vector types
#if defined(__x86_64__) || defined(__i386__)
const size_t mask = 32 - 1;
#else
const size_t mask = 16 - 1;
#endif
return reinterpret_cast<SwiftObject *>(swift::swift_allocObject(
reinterpret_cast<HeapMetadata const *>(cls),
class_getInstanceSize(cls), mask));
}
NSString *swift::convertStringToNSString(String *swiftString) {
// public func _convertStringToNSString(_ string: String) -> NSString
typedef SWIFT_CC(swift) NSString *ConversionFn(void *sx, void *sy, void *sz);
auto convertStringToNSString = SWIFT_LAZY_CONSTANT(
reinterpret_cast<ConversionFn*>(dlsym(RTLD_DEFAULT,
MANGLE_AS_STRING(MANGLE_SYM(10Foundation24_convertStringToNSStringySo0E0CSSF)))));
// If Foundation hasn't loaded yet, fall back to returning the static string
// "SwiftObject". The likelihood of someone invoking -description without
// ObjC interop is low.
if (!convertStringToNSString)
return @"SwiftObject";
return convertStringToNSString(swiftString->x,
swiftString->y,
swiftString->z);
}
static NSString *_getDescription(SwiftObject *obj) {
String tmp;
swift_retain((HeapObject*)obj);
swift_getSummary(&tmp, (OpaqueValue*)&obj, _swift_getClassOfAllocated(obj));
return [convertStringToNSString(&tmp) autorelease];
}
static NSString *_getClassDescription(Class cls) {
return NSStringFromClass(cls);
}
@implementation SwiftObject
+ (void)initialize {}
+ (instancetype)allocWithZone:(struct _NSZone *)zone {
assert(zone == nullptr);
return _allocHelper(self);
}
+ (instancetype)alloc {
// we do not support "placement new" or zones,
// so there is no need to call allocWithZone
return _allocHelper(self);
}
+ (Class)class {
return self;
}
- (Class)class {
return _swift_getObjCClassOfAllocated(self);
}
+ (Class)superclass {
return (Class)((const ClassMetadata*) self)->SuperClass;
}
- (Class)superclass {
return (Class)_swift_getClassOfAllocated(self)->SuperClass;
}
+ (BOOL)isMemberOfClass:(Class)cls {
return cls == _swift_getObjCClassOfAllocated(self);
}
- (BOOL)isMemberOfClass:(Class)cls {
return cls == _swift_getObjCClassOfAllocated(self);
}
- (instancetype)self {
return self;
}
- (BOOL)isProxy {
return NO;
}
- (struct _NSZone *)zone {
auto zone = malloc_zone_from_ptr(self);
return (struct _NSZone *)(zone ? zone : malloc_default_zone());
}
- (void)doesNotRecognizeSelector: (SEL) sel {
Class cls = _swift_getObjCClassOfAllocated(self);
fatalError(/* flags = */ 0,
"Unrecognized selector %c[%s %s]\n",
class_isMetaClass(cls) ? '+' : '-',
class_getName(cls), sel_getName(sel));
}
- (id)retain {
auto SELF = reinterpret_cast<HeapObject *>(self);
swift_retain(SELF);
return self;
}
- (void)release {
auto SELF = reinterpret_cast<HeapObject *>(self);
swift_release(SELF);
}
- (id)autorelease {
return _objc_rootAutorelease(self);
}
- (NSUInteger)retainCount {
return swift::swift_retainCount(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)_isDeallocating {
return swift_isDeallocating(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)_tryRetain {
return swift_tryRetain(reinterpret_cast<HeapObject*>(self)) != nullptr;
}
- (BOOL)allowsWeakReference {
return !swift_isDeallocating(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)retainWeakReference {
return swift_tryRetain(reinterpret_cast<HeapObject*>(self)) != nullptr;
}
// Retaining the class object itself is a no-op.
+ (id)retain {
return self;
}
+ (void)release {
/* empty */
}
+ (id)autorelease {
return self;
}
+ (NSUInteger)retainCount {
return ULONG_MAX;
}
+ (BOOL)_isDeallocating {
return NO;
}
+ (BOOL)_tryRetain {
return YES;
}
+ (BOOL)allowsWeakReference {
return YES;
}
+ (BOOL)retainWeakReference {
return YES;
}
- (void)dealloc {
swift_rootObjCDealloc(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)isKindOfClass:(Class)someClass {
for (auto cls = _swift_getClassOfAllocated(self); cls != nullptr;
cls = cls->SuperClass)
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)isSubclassOfClass:(Class)someClass {
for (auto cls = (const ClassMetadata*) self; cls != nullptr;
cls = cls->SuperClass)
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(_swift_getObjCClassOfAllocated(self), sel);
}
- (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(_swift_getObjCClassOfAllocated(self), sel);
}
+ (BOOL)instancesRespondToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(self, sel);
}
+ (IMP)methodForSelector:(SEL)sel {
return class_getMethodImplementation(object_getClass((id)self), sel);
}
- (IMP)methodForSelector:(SEL)sel {
return class_getMethodImplementation(object_getClass(self), sel);
}
+ (IMP)instanceMethodForSelector:(SEL)sel {
return class_getMethodImplementation(self, sel);
}
- (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
auto selfClass = _swift_getObjCClassOfAllocated(self);
// Walk the superclass chain.
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
+ (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
// Walk the superclass chain.
Class selfClass = self;
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
- (NSUInteger)hash {
return (NSUInteger)self;
}
- (BOOL)isEqual:(id)object {
return self == object;
}
- (id)performSelector:(SEL)aSelector {
return ((id(*)(id, SEL))objc_msgSend)(self, aSelector);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object {
return ((id(*)(id, SEL, id))objc_msgSend)(self, aSelector, object);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object1
withObject:(id)object2 {
return ((id(*)(id, SEL, id, id))objc_msgSend)(self, aSelector, object1,
object2);
}
- (NSString *)description {
return _getDescription(self);
}
- (NSString *)debugDescription {
return _getDescription(self);
}
+ (NSString *)description {
return _getClassDescription(self);
}
+ (NSString *)debugDescription {
return _getClassDescription(self);
}
- (NSString *)_copyDescription {
// The NSObject version of this pushes an autoreleasepool in case -description
// autoreleases, but we're OK with leaking things if we're at the top level
// of the main thread with no autorelease pool.
return [[self description] retain];
}
- (CFTypeID)_cfTypeID {
// Adopt the same CFTypeID as NSObject.
static CFTypeID result;
static dispatch_once_t predicate;
dispatch_once_f(&predicate, &result, [](void *resultAddr) {
id obj = [[NSObject alloc] init];
*(CFTypeID*)resultAddr = [obj _cfTypeID];
[obj release];
});
return result;
}
// Foundation collections expect these to be implemented.
- (BOOL)isNSArray__ { return NO; }
- (BOOL)isNSCFConstantString__ { return NO; }
- (BOOL)isNSData__ { return NO; }
- (BOOL)isNSDate__ { return NO; }
- (BOOL)isNSDictionary__ { return NO; }
- (BOOL)isNSObject__ { return NO; }
- (BOOL)isNSOrderedSet__ { return NO; }
- (BOOL)isNSNumber__ { return NO; }
- (BOOL)isNSSet__ { return NO; }
- (BOOL)isNSString__ { return NO; }
- (BOOL)isNSTimeZone__ { return NO; }
- (BOOL)isNSValue__ { return NO; }
@end
#endif
/// Decide dynamically whether the given class uses native Swift
/// reference-counting.
bool swift::usesNativeSwiftReferenceCounting(const ClassMetadata *theClass) {
#if SWIFT_OBJC_INTEROP
if (!theClass->isTypeMetadata()) return false;
return (theClass->getFlags() & ClassFlags::UsesSwift1Refcounting);
#else
return true;
#endif
}
/// Decide dynamically whether the given type metadata uses native Swift
/// reference-counting. The metadata is known to correspond to a class
/// type, but note that does not imply being known to be a ClassMetadata
/// due to the existence of ObjCClassWrapper.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
bool
_objcClassUsesNativeSwiftReferenceCounting(const Metadata *theClass) {
#if SWIFT_OBJC_INTEROP
// If this is ObjC wrapper metadata, the class is definitely not using
// Swift ref-counting.
if (isa<ObjCClassWrapperMetadata>(theClass)) return false;
// Otherwise, it's class metadata.
return usesNativeSwiftReferenceCounting(cast<ClassMetadata>(theClass));
#else
return true;
#endif
}
// The non-pointer bits, excluding the ObjC tag bits.
static auto const unTaggedNonNativeBridgeObjectBits
= heap_object_abi::SwiftSpareBitsMask
& ~heap_object_abi::ObjCReservedBitsMask;
#if SWIFT_OBJC_INTEROP
#if defined(__x86_64__)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#elif defined(__arm64__)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#else
static uintptr_t const objectPointerIsObjCBit = 0x00000002U;
#endif
void *swift::swift_unknownRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_retain_n(static_cast<HeapObject *>(object), n);
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
return object;
}
void swift::swift_unknownRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void *swift::swift_unknownRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_retain(static_cast<HeapObject *>(object));
}
return objc_retain(static_cast<id>(object));
}
void swift::swift_unknownRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return SWIFT_RT_ENTRY_CALL(swift_release)(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
void *swift::swift_nonatomic_unknownRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_nonatomic_retain_n(static_cast<HeapObject *>(object), n);
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
return object;
}
void swift::swift_nonatomic_unknownRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void *swift::swift_nonatomic_unknownRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_nonatomic_retain(static_cast<HeapObject *>(object));
}
return objc_retain(static_cast<id>(object));
}
void swift::swift_nonatomic_unknownRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return SWIFT_RT_ENTRY_CALL(swift_release)(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
/// Return true iff the given BridgeObject is not known to use native
/// reference-counting.
///
/// Precondition: object does not encode a tagged pointer
static bool isNonNative_unTagged_bridgeObject(void *object) {
static_assert((heap_object_abi::SwiftSpareBitsMask & objectPointerIsObjCBit) ==
objectPointerIsObjCBit,
"isObjC bit not within spare bits");
return (uintptr_t(object) & objectPointerIsObjCBit) != 0;
}
#endif
// Mask out the spare bits in a bridgeObject, returning the object it
// encodes.
///
/// Precondition: object does not encode a tagged pointer
static void* toPlainObject_unTagged_bridgeObject(void *object) {
return (void*)(uintptr_t(object) & ~unTaggedNonNativeBridgeObjectBits);
}
void *swift::swift_bridgeObjectRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
}
return objc_retain(static_cast<id>(objectRef));
#else
swift_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
#endif
}
SWIFT_RUNTIME_EXPORT
void *swift::swift_nonatomic_bridgeObjectRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
}
return objc_retain(static_cast<id>(objectRef));
#else
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
#endif
}
SWIFT_RUNTIME_EXPORT
void swift::swift_bridgeObjectRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_release(static_cast<HeapObject *>(objectRef));
#endif
}
void swift::swift_nonatomic_bridgeObjectRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
#endif
}
void *swift::swift_bridgeObjectRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
void *objc_ret = nullptr;
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
}
for (int i = 0;i < n; ++i)
objc_ret = objc_retain(static_cast<id>(objectRef));
return objc_ret;
#else
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
#endif
}
void swift::swift_bridgeObjectRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
void *swift::swift_nonatomic_bridgeObjectRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
void *objc_ret = nullptr;
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
}
for (int i = 0;i < n; ++i)
objc_ret = objc_retain(static_cast<id>(objectRef));
return objc_ret;
#else
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
#endif
}
void swift::swift_nonatomic_bridgeObjectRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
#if SWIFT_OBJC_INTEROP
/*****************************************************************************/
/************************ UNKNOWN UNOWNED REFERENCES *************************/
/*****************************************************************************/
// Swift's native unowned references are implemented purely with
// reference-counting: as long as an unowned reference is held to an object,
// it can be destroyed but never deallocated, being that it remains fully safe
// to pass around a pointer and perform further reference-counting operations.
//
// For imported class types (meaning ObjC, for now, but in principle any
// type which supports ObjC-style weak references but not directly Swift-style
// unowned references), we have to implement this on top of the weak-reference
// support, at least for now. But we'd like to be able to statically take
// advantage of Swift's representational advantages when we know that all the
// objects involved are Swift-native. That means that whatever scheme we use
// for unowned references needs to interoperate with code just doing naive
// loads and stores, at least when the ObjC case isn't triggered.
//
// We have to be sensitive about making unreasonable assumptions about the
// implementation of ObjC weak references, and we definitely cannot modify
// memory owned by the ObjC runtime. In the long run, direct support from
// the ObjC runtime can allow an efficient implementation that doesn't violate
// those requirements, both by allowing us to directly check whether a weak
// reference was cleared by deallocation vs. just initialized to nil and by
// guaranteeing a bit pattern that distinguishes Swift references. In the
// meantime, out-of-band allocation is inefficient but not ridiculously so.
//
// Note that unowned references need not provide guaranteed behavior in
// the presence of read/write or write/write races on the reference itself.
// Furthermore, and unlike weak references, they also do not need to be
// safe against races with the deallocation of the object. It is the user's
// responsibility to ensure that the reference remains valid at the time
// that the unowned reference is read.
namespace {
/// An Objective-C unowned reference. Given an unknown unowned reference
/// in memory, it is an ObjC unowned reference if the IsObjCFlag bit
/// is set; if so, the pointer stored in the reference actually points
/// to out-of-line storage containing an ObjC weak reference.
///
/// It is an invariant that this out-of-line storage is only ever
/// allocated and constructed for non-null object references, so if the
/// weak load yields null, it can only be because the object was deallocated.
struct ObjCUnownedReference : UnownedReference {
// Pretending that there's a subclass relationship here means that
// accesses to objects formally constructed as UnownedReferences will
// technically be aliasing violations. However, the language runtime
// will generally not see any such objects.
enum : uintptr_t { IsObjCMask = 0x1, IsObjCFlag = 0x1 };
/// The out-of-line storage of an ObjC unowned reference.
struct Storage {
/// A weak reference registered with the ObjC runtime.
mutable id WeakRef;
Storage(id ref) {
assert(ref && "creating storage for null reference?");
objc_initWeak(&WeakRef, ref);
}
Storage(const Storage &other) {
objc_copyWeak(&WeakRef, &other.WeakRef);
}
Storage &operator=(const Storage &other) = delete;
Storage &operator=(id ref) {
objc_storeWeak(&WeakRef, ref);
return *this;
}
~Storage() {
objc_destroyWeak(&WeakRef);
}
// Don't use the C++ allocator.
void *operator new(size_t size) { return malloc(size); }
void operator delete(void *ptr) { free(ptr); }
};
Storage *storage() {
assert(isa<ObjCUnownedReference>(this));
return reinterpret_cast<Storage*>(
reinterpret_cast<uintptr_t>(Value) & ~IsObjCMask);
}
static void initialize(UnownedReference *dest, id value) {
initializeWithStorage(dest, new Storage(value));
}
static void initializeWithCopy(UnownedReference *dest, Storage *src) {
initializeWithStorage(dest, new Storage(*src));
}
static void initializeWithStorage(UnownedReference *dest,
Storage *storage) {
dest->Value = (HeapObject*) (uintptr_t(storage) | IsObjCFlag);
}
static bool classof(const UnownedReference *ref) {
return (uintptr_t(ref->Value) & IsObjCMask) == IsObjCFlag;
}
};
}
static bool isObjCForUnownedReference(void *value) {
return (isObjCTaggedPointer(value) ||
!objectUsesNativeSwiftReferenceCounting(value));
}
UnownedReference *swift::swift_unknownUnownedInit(UnownedReference *dest,
void *value) {
if (!value) {
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
ObjCUnownedReference::initialize(dest, (id) value);
} else {
swift_unownedInit(dest, (HeapObject*) value);
}
return dest;
}
UnownedReference *swift::swift_unknownUnownedAssign(UnownedReference *dest,
void *value) {
if (!value) {
swift_unknownUnownedDestroy(dest);
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
objc_storeWeak(&objcDest->storage()->WeakRef, (id) value);
} else {
swift_unownedDestroy(dest);
ObjCUnownedReference::initialize(dest, (id) value);
}
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedInit(dest, (HeapObject*) value);
} else {
swift_unownedAssign(dest, (HeapObject*) value);
}
}
return dest;
}
void *swift::swift_unknownUnownedLoadStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
swift::swift_abortRetainUnowned(nullptr);
}
return result;
} else {
return swift_unownedLoadStrong(ref);
}
}
void *swift::swift_unknownUnownedTakeStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto storage = objcRef->storage();
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
swift::swift_abortRetainUnowned(nullptr);
}
delete storage;
return result;
} else {
return swift_unownedTakeStrong(ref);
}
}
void swift::swift_unknownUnownedDestroy(UnownedReference *ref) {
if (!ref->Value) {
// Nothing to do.
return;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
delete objcRef->storage();
} else {
swift_unownedDestroy(ref);
}
}
UnownedReference *swift::swift_unknownUnownedCopyInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
if (!src->Value) {
dest->Value = nullptr;
} else if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
swift_unownedCopyInit(dest, src);
}
return dest;
}
UnownedReference *swift::swift_unknownUnownedTakeInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
dest->Value = src->Value;
return dest;
}
UnownedReference *swift::swift_unknownUnownedCopyAssign(UnownedReference *dest,
UnownedReference *src) {
if (dest == src) return dest;
if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
// ObjC unfortunately doesn't expose a copy-assign operation.
objc_destroyWeak(&objcDest->storage()->WeakRef);
objc_copyWeak(&objcDest->storage()->WeakRef,
&objcSrc->storage()->WeakRef);
return dest;
}
swift_unownedDestroy(dest);
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedCopyInit(dest, src);
} else {
swift_unownedCopyAssign(dest, src);
}
}
return dest;
}
UnownedReference *swift::swift_unknownUnownedTakeAssign(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
// There's not really anything more efficient to do here than this.
swift_unknownUnownedDestroy(dest);
dest->Value = src->Value;
return dest;
}
bool swift::swift_unknownUnownedIsEqual(UnownedReference *ref, void *value) {
if (!ref->Value) {
return value == nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
id refValue = objc_loadWeakRetained(&objcRef->storage()->WeakRef);
bool isEqual = (void*)refValue == value;
// This ObjC case has no deliberate unowned check here,
// unlike the Swift case.
[refValue release];
return isEqual;
} else {
return swift_unownedIsEqual(ref, (HeapObject *)value);
}
}
/*****************************************************************************/
/************************** UNKNOWN WEAK REFERENCES **************************/
/*****************************************************************************/
WeakReference *swift::swift_unknownWeakInit(WeakReference *ref, void *value) {
ref->unknownInit(value);
return ref;
}
WeakReference *swift::swift_unknownWeakAssign(WeakReference *ref, void *value) {
ref->unknownAssign(value);
return ref;
}
void *swift::swift_unknownWeakLoadStrong(WeakReference *ref) {
return ref->unknownLoadStrong();
}
void *swift::swift_unknownWeakTakeStrong(WeakReference *ref) {
return ref->unknownTakeStrong();
}
void swift::swift_unknownWeakDestroy(WeakReference *ref) {
ref->unknownDestroy();
}
WeakReference *swift::swift_unknownWeakCopyInit(WeakReference *dest,
WeakReference *src) {
dest->unknownCopyInit(src);
return dest;
}
WeakReference *swift::swift_unknownWeakTakeInit(WeakReference *dest,
WeakReference *src) {
dest->unknownTakeInit(src);
return dest;
}
WeakReference *swift::swift_unknownWeakCopyAssign(WeakReference *dest,
WeakReference *src) {
dest->unknownCopyAssign(src);
return dest;
}
WeakReference *swift::swift_unknownWeakTakeAssign(WeakReference *dest,
WeakReference *src) {
dest->unknownTakeAssign(src);
return dest;
}
// SWIFT_OBJC_INTEROP
#endif
/*****************************************************************************/
/******************************* DYNAMIC CASTS *******************************/
/*****************************************************************************/
#if SWIFT_OBJC_INTEROP
const void *
swift::swift_dynamicCastObjCClass(const void *object,
const ClassMetadata *targetType) {
// FIXME: We need to decide if this is really how we want to treat 'nil'.
if (object == nullptr)
return nullptr;
if ([id_const_cast(object) isKindOfClass:class_const_cast(targetType)]) {
return object;
}
return nullptr;
}
const void *
swift::swift_dynamicCastObjCClassUnconditional(const void *object,
const ClassMetadata *targetType) {
// FIXME: We need to decide if this is really how we want to treat 'nil'.
if (object == nullptr)
return nullptr;
if ([id_const_cast(object) isKindOfClass:class_const_cast(targetType)]) {
return object;
}
Class sourceType = object_getClass(id_const_cast(object));
swift_dynamicCastFailure(reinterpret_cast<const Metadata *>(sourceType),
targetType);
}
const void *
swift::swift_dynamicCastForeignClass(const void *object,
const ForeignClassMetadata *targetType) {
// FIXME: Actually compare CFTypeIDs, once they are available in the metadata.
return object;
}
const void *
swift::swift_dynamicCastForeignClassUnconditional(
const void *object,
const ForeignClassMetadata *targetType) {
// FIXME: Actual compare CFTypeIDs, once they are available in the metadata.
return object;
}
bool swift::objectConformsToObjCProtocol(const void *theObject,
const ProtocolDescriptor *protocol) {
return [id_const_cast(theObject)
conformsToProtocol: protocol_const_cast(protocol)];
}
bool swift::classConformsToObjCProtocol(const void *theClass,
const ProtocolDescriptor *protocol) {
return [class_const_cast(theClass)
conformsToProtocol: protocol_const_cast(protocol)];
}
SWIFT_RUNTIME_EXPORT
const Metadata *swift_dynamicCastTypeToObjCProtocolUnconditional(
const Metadata *type,
size_t numProtocols,
Protocol * const *protocols) {
Class classObject;
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
// Native class metadata is also the class object.
// ObjC class wrappers get unwrapped.
classObject = type->getObjCClassObject();
break;
// Other kinds of type can never conform to ObjC protocols.
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::ForeignClass:
swift_dynamicCastFailure(type, nameForMetadata(type).c_str(),
protocols[0], protocol_getName(protocols[0]));
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
assert(false && "not type metadata");
break;
}
for (size_t i = 0; i < numProtocols; ++i) {
if (![classObject conformsToProtocol:protocols[i]]) {
swift_dynamicCastFailure(type, nameForMetadata(type).c_str(),
protocols[i], protocol_getName(protocols[i]));
}
}
return type;
}
SWIFT_RUNTIME_EXPORT
const Metadata *swift_dynamicCastTypeToObjCProtocolConditional(
const Metadata *type,
size_t numProtocols,
Protocol * const *protocols) {
Class classObject;
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
// Native class metadata is also the class object.
// ObjC class wrappers get unwrapped.
classObject = type->getObjCClassObject();
break;
// Other kinds of type can never conform to ObjC protocols.
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::ForeignClass:
return nullptr;
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
assert(false && "not type metadata");
break;
}
for (size_t i = 0; i < numProtocols; ++i) {
if (![classObject conformsToProtocol:protocols[i]]) {
return nullptr;
}
}
return type;
}
SWIFT_RUNTIME_EXPORT
id swift_dynamicCastObjCProtocolUnconditional(id object,
size_t numProtocols,
Protocol * const *protocols) {
for (size_t i = 0; i < numProtocols; ++i) {
if (![object conformsToProtocol:protocols[i]]) {
Class sourceType = object_getClass(object);
swift_dynamicCastFailure(sourceType, class_getName(sourceType),
protocols[i], protocol_getName(protocols[i]));
}
}
return object;
}
SWIFT_RUNTIME_EXPORT
id swift_dynamicCastObjCProtocolConditional(id object,
size_t numProtocols,
Protocol * const *protocols) {
for (size_t i = 0; i < numProtocols; ++i) {
if (![object conformsToProtocol:protocols[i]]) {
return nil;
}
}
return object;
}
void swift::swift_instantiateObjCClass(const ClassMetadata *_c) {
static const objc_image_info ImageInfo = {0, 0};
// Ensure the superclass is realized.
Class c = class_const_cast(_c);
[class_getSuperclass(c) class];
// Register the class.
Class registered = objc_readClassPair(c, &ImageInfo);
assert(registered == c
&& "objc_readClassPair failed to instantiate the class in-place");
(void)registered;
}
SWIFT_RT_ENTRY_VISIBILITY
Class swift_getInitializedObjCClass(Class c)
SWIFT_CC(RegisterPreservingCC_IMPL) {
// Used when we have class metadata and we want to ensure a class has been
// initialized by the Objective-C runtime. We need to do this because the
// class "c" might be valid metadata, but it hasn't been initialized yet.
return [c class];
}
const ClassMetadata *
swift::swift_dynamicCastObjCClassMetatype(const ClassMetadata *source,
const ClassMetadata *dest) {
if ([class_const_cast(source) isSubclassOfClass:class_const_cast(dest)])
return source;
return nil;
}
const ClassMetadata *
swift::swift_dynamicCastObjCClassMetatypeUnconditional(
const ClassMetadata *source,
const ClassMetadata *dest) {
if ([class_const_cast(source) isSubclassOfClass:class_const_cast(dest)])
return source;
swift_dynamicCastFailure(source, dest);
}
#endif
const ClassMetadata *
swift::swift_dynamicCastForeignClassMetatype(const ClassMetadata *sourceType,
const ClassMetadata *targetType) {
// FIXME: Actually compare CFTypeIDs, once they are available in
// the metadata.
return sourceType;
}
const ClassMetadata *
swift::swift_dynamicCastForeignClassMetatypeUnconditional(
const ClassMetadata *sourceType,
const ClassMetadata *targetType)
{
// FIXME: Actually compare CFTypeIDs, once they arae available in
// the metadata.
return sourceType;
}
#if SWIFT_OBJC_INTEROP
// Given a non-nil object reference, return true iff the object uses
// native swift reference counting.
static bool usesNativeSwiftReferenceCounting_nonNull(
const void* object
) {
assert(object != nullptr);
return !isObjCTaggedPointer(object) &&
objectUsesNativeSwiftReferenceCounting(object);
}
#endif
bool swift::swift_isUniquelyReferenced_nonNull_native(const HeapObject *object)
SWIFT_CC(RegisterPreservingCC_IMPL) {
assert(object != nullptr);
assert(!object->refCounts.isDeiniting());
return object->refCounts.isUniquelyReferenced();
}
bool swift::swift_isUniquelyReferenced_native(const HeapObject* object) {
return object != nullptr
&& swift::SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)(object);
}
bool swift::swift_isUniquelyReferencedNonObjC_nonNull(const void* object) {
assert(object != nullptr);
return
#if SWIFT_OBJC_INTEROP
usesNativeSwiftReferenceCounting_nonNull(object) &&
#endif
SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)(
(const HeapObject*)object);
}
// Given an object reference, return true iff it is non-nil and refers
// to a native swift object with strong reference count of 1.
bool swift::swift_isUniquelyReferencedNonObjC(
const void* object
) {
return object != nullptr
&& swift_isUniquelyReferencedNonObjC_nonNull(object);
}
/// Return true if the given bits of a Builtin.BridgeObject refer to a
/// native swift object whose strong reference count is 1.
bool swift::swift_isUniquelyReferencedNonObjC_nonNull_bridgeObject(
uintptr_t bits
) {
auto bridgeObject = (void*)bits;
if (isObjCTaggedPointer(bridgeObject))
return false;
const auto object = toPlainObject_unTagged_bridgeObject(bridgeObject);
// Note: we could just return false if all spare bits are set,
// but in that case the cost of a deeper check for a unique native
// object is going to be a negligible cost for a possible big win.
#if SWIFT_OBJC_INTEROP
return !isNonNative_unTagged_bridgeObject(bridgeObject)
? SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)(
(const HeapObject *)object)
: swift_isUniquelyReferencedNonObjC_nonNull(object);
#else
return SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)(
(const HeapObject *)object);
#endif
}
/// Return true if the given bits of a Builtin.BridgeObject refer to a
/// native swift object whose strong reference count is 1.
bool swift::swift_isUniquelyReferencedOrPinnedNonObjC_nonNull_bridgeObject(
uintptr_t bits
) {
auto bridgeObject = (void*)bits;
if (isObjCTaggedPointer(bridgeObject))
return false;
const auto object = toPlainObject_unTagged_bridgeObject(bridgeObject);
// Note: we could just return false if all spare bits are set,
// but in that case the cost of a deeper check for a unique native
// object is going to be a negligible cost for a possible big win.
#if SWIFT_OBJC_INTEROP
if (isNonNative_unTagged_bridgeObject(bridgeObject))
return swift_isUniquelyReferencedOrPinnedNonObjC_nonNull(object);
#endif
return swift_isUniquelyReferencedOrPinned_nonNull_native(
(const HeapObject *)object);
}
/// Given a non-nil object reference, return true if the object is a
/// native swift object and either its strong reference count is 1 or
/// its pinned flag is set.
bool swift::swift_isUniquelyReferencedOrPinnedNonObjC_nonNull(
const void *object) {
assert(object != nullptr);
return
#if SWIFT_OBJC_INTEROP
usesNativeSwiftReferenceCounting_nonNull(object) &&
#endif
swift_isUniquelyReferencedOrPinned_nonNull_native(
(const HeapObject*)object);
}
// Given a non-@objc object reference, return true iff the
// object is non-nil and either has a strong reference count of 1
// or is pinned.
bool swift::swift_isUniquelyReferencedOrPinned_native(const HeapObject *object)
SWIFT_CC(RegisterPreservingCC_IMPL) {
return object != nullptr &&
swift_isUniquelyReferencedOrPinned_nonNull_native(object);
}
/// Given a non-nil native swift object reference, return true if
/// either the object has a strong reference count of 1 or its
/// pinned flag is set.
bool swift::swift_isUniquelyReferencedOrPinned_nonNull_native(
const HeapObject *object) SWIFT_CC(RegisterPreservingCC_IMPL) {
assert(object != nullptr);
assert(!object->refCounts.isDeiniting());
return object->refCounts.isUniquelyReferencedOrPinned();
}
struct ClassExtents {
size_t negative;
size_t positive;
};
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
ClassExtents
_getSwiftClassInstanceExtents(const Metadata *c) {
assert(c && c->isClassObject());
auto metaData = c->getClassObject();
return ClassExtents{
metaData->getInstanceAddressPoint(),
metaData->getInstanceSize() - metaData->getInstanceAddressPoint()
};
}
#if SWIFT_OBJC_INTEROP
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
ClassExtents
_getObjCClassInstanceExtents(const ClassMetadata* c) {
// Pure ObjC classes never have negative extents.
if (c->isPureObjC())
return ClassExtents{0, class_getInstanceSize(class_const_cast(c))};
return _getSwiftClassInstanceExtents(c);
}
SWIFT_CC(swift)
SWIFT_RUNTIME_EXPORT
void swift_objc_swift3ImplicitObjCEntrypoint(id self, SEL selector,
const char *filename,
size_t filenameLength,
size_t line, size_t column,
std::atomic<bool> *didLog) {
// Only log once. We should have been given a unique zero-initialized
// atomic flag for each entry point.
if (didLog->exchange(true))
return;
// Figure out how much reporting we want by querying the environment
// variable SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT. We have four meaningful
// levels:
//
// 0: Don't report anything
// 1: Complain about uses of implicit @objc entrypoints.
// 2: Complain about uses of implicit @objc entrypoints, with backtraces
// if possible.
// 3: Complain about uses of implicit @objc entrypoints, then abort().
//
// The actual reportLevel is stored as the above values +1, so that
// 0 indicates we have not yet checked. It's fine to race through here.
//
// The default, if SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT is not set, is 2.
static int storedReportLevel = 0;
if (storedReportLevel == 0) {
auto reportLevelStr = getenv("SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT");
if (reportLevelStr &&
reportLevelStr[0] >= '0' && reportLevelStr[0] <= '3' &&
reportLevelStr[1] == 0)
storedReportLevel = (reportLevelStr[0] - '0') + 1;
else
storedReportLevel = 3;
}
int reportLevel = storedReportLevel - 1;
if (reportLevel < 1) return;
// Report the error.
uint32_t flags = 0;
if (reportLevel >= 2)
flags |= 1 << 0; // Backtrace
bool isInstanceMethod = !class_isMetaClass(object_getClass(self));
void (*reporter)(uint32_t, const char *, ...) =
reportLevel > 2 ? swift::fatalError : swift::warning;
if (filenameLength > INT_MAX)
filenameLength = INT_MAX;
char *message, *nullTerminatedFilename;
asprintf(&message,
"implicit Objective-C entrypoint %c[%s %s] is deprecated and will "
"be removed in Swift 4",
isInstanceMethod ? '-' : '+',
class_getName([self class]),
sel_getName(selector));
asprintf(&nullTerminatedFilename, "%*s", (int)filenameLength, filename);
RuntimeErrorDetails::FixIt fixit = {
.filename = nullTerminatedFilename,
.startLine = line,
.endLine = line,
.startColumn = column,
.endColumn = column,
.replacementText = "@objc "
};
RuntimeErrorDetails::Note note = {
.description = "add '@objc' to expose this Swift declaration to Objective-C",
.numFixIts = 1,
.fixIts = &fixit
};
RuntimeErrorDetails details = {
.version = RuntimeErrorDetails::currentVersion,
.errorType = "implicit-objc-entrypoint",
.framesToSkip = 1,
.numNotes = 1,
.notes = &note
};
uintptr_t runtime_error_flags = RuntimeErrorFlagNone;
if (reporter == swift::fatalError)
runtime_error_flags = RuntimeErrorFlagFatal;
_swift_reportToDebugger(runtime_error_flags, message, &details);
reporter(flags,
"*** %s:%zu:%zu: %s; add explicit '@objc' to the declaration to "
"emit the Objective-C entrypoint in Swift 4 and suppress this "
"message\n",
nullTerminatedFilename, line, column, message);
free(message);
free(nullTerminatedFilename);
}
#endif
const ClassMetadata *swift::getRootSuperclass() {
#if SWIFT_OBJC_INTEROP
static Lazy<const ClassMetadata *> SwiftObjectClass;
return SwiftObjectClass.get([](void *ptr) {
*((const ClassMetadata **) ptr) =
(const ClassMetadata *)[SwiftObject class];
});
#else
return nullptr;
#endif
}