mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md - Add NULL as an extra inhabitant of Builtin.RawPointer (currently hardcoded to 0 rather than being target-dependent). - Import non-object pointers as Optional/IUO when nullable/null_unspecified (like everything else). - Change the type checker's *-to-pointer conversions to handle a layer of optional. - Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error parameters exported to Objective-C. - Drop NilLiteralConvertible conformance for all pointer types. - Update the standard library and then all the tests. I've decided to leave this commit only updating existing tests; any new tests will come in the following commits. (That may mean some additional implementation work to follow.) The other major piece that's missing here is migration. I'm hoping we get a lot of that with Swift 1.1's work for optional object references, but I still need to investigate.
786 lines
25 KiB
Swift
786 lines
25 KiB
Swift
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A type that provides subscript access to its elements.
|
|
///
|
|
/// - Important: In most cases, it's best to ignore this protocol and use
|
|
/// `CollectionType` instead, as it has a more complete interface.
|
|
public protocol Indexable {
|
|
// This protocol is almost an implementation detail of the standard
|
|
// library; it is used to deduce things like the `SubSequence` and
|
|
// `Iterator` type from a minimal collection, but it is also used in
|
|
// exposed places like as a constraint on `IndexingIterator`.
|
|
|
|
/// A type that represents a valid position in the collection.
|
|
///
|
|
/// Valid indices consist of the position of every element and a
|
|
/// "past the end" position that's not valid for use as a subscript.
|
|
associatedtype Index : ForwardIndex
|
|
|
|
/// The position of the first element in a non-empty collection.
|
|
///
|
|
/// In an empty collection, `startIndex == endIndex`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
var startIndex: Index { get }
|
|
|
|
/// The collection's "past the end" position.
|
|
///
|
|
/// `endIndex` is not a valid argument to `subscript`, and is always
|
|
/// reachable from `startIndex` by zero or more applications of
|
|
/// `successor()`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
var endIndex: Index { get }
|
|
|
|
// The declaration of _Element and subscript here is a trick used to
|
|
// break a cyclic conformance/deduction that Swift can't handle. We
|
|
// need something other than a Collection.Iterator.Element that can
|
|
// be used as IndexingIterator<T>'s Element. Here we arrange for
|
|
// the Collection itself to have an Element type that's deducible from
|
|
// its subscript. Ideally we'd like to constrain this Element to be the same
|
|
// as Collection.Iterator.Element (see below), but we have no way of
|
|
// expressing it today.
|
|
associatedtype _Element
|
|
|
|
/// Returns the element at the given `position`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
subscript(position: Index) -> _Element { get }
|
|
}
|
|
|
|
/// A type that supports subscript assignment to a mutable collection.
|
|
public protocol MutableIndexable {
|
|
associatedtype Index : ForwardIndex
|
|
|
|
var startIndex: Index { get }
|
|
var endIndex: Index { get }
|
|
|
|
associatedtype _Element
|
|
|
|
subscript(position: Index) -> _Element { get set }
|
|
}
|
|
|
|
/// The iterator used for collections that don't specify one.
|
|
public struct IndexingIterator<Elements : Indexable>
|
|
: IteratorProtocol, Sequence {
|
|
|
|
/// Create an *iterator* over the given collection.
|
|
public /// @testable
|
|
init(_elements: Elements) {
|
|
self._elements = _elements
|
|
self._position = _elements.startIndex
|
|
}
|
|
|
|
/// Advance to the next element and return it, or `nil` if no next
|
|
/// element exists.
|
|
///
|
|
/// - Precondition: No preceding call to `self.next()` has returned `nil`.
|
|
public mutating func next() -> Elements._Element? {
|
|
if _position == _elements.endIndex { return nil }
|
|
let element = _elements[_position]
|
|
_position._successorInPlace()
|
|
return element
|
|
}
|
|
|
|
internal let _elements: Elements
|
|
internal var _position: Elements.Index
|
|
}
|
|
|
|
/// A multi-pass sequence with addressable positions.
|
|
///
|
|
/// Positions are represented by an associated `Index` type. Whereas
|
|
/// an arbitrary sequence may be consumed as it is traversed, a
|
|
/// collection is multi-pass: any element may be revisited merely by
|
|
/// saving its index.
|
|
///
|
|
/// The sequence view of the elements is identical to the collection
|
|
/// view. In other words, the following code binds the same series of
|
|
/// values to `x` as does `for x in self {}`:
|
|
///
|
|
/// for i in startIndex..<endIndex {
|
|
/// let x = self[i]
|
|
/// }
|
|
public protocol Collection : Indexable, Sequence {
|
|
/// A type that provides the sequence's iteration interface and
|
|
/// encapsulates its iteration state.
|
|
///
|
|
/// By default, a `Collection` satisfies `Sequence` by
|
|
/// supplying a `IndexingIterator` as its associated `Iterator`
|
|
/// type.
|
|
associatedtype Iterator : IteratorProtocol = IndexingIterator<Self>
|
|
|
|
// FIXME: Needed here so that the `Iterator` is properly deduced from
|
|
// a custom `makeIterator()` function. Otherwise we get an
|
|
// `IndexingIterator`. <rdar://problem/21539115>
|
|
func makeIterator() -> Iterator
|
|
|
|
// FIXME: should be constrained to Collection
|
|
// (<rdar://problem/20715009> Implement recursive protocol
|
|
// constraints)
|
|
|
|
/// A `Sequence` that can represent a contiguous subrange of `self`'s
|
|
/// elements.
|
|
///
|
|
/// - Note: This associated type appears as a requirement in
|
|
/// `Sequence`, but is restated here with stricter
|
|
/// constraints: in a `Collection`, the `SubSequence` should
|
|
/// also be a `Collection`.
|
|
associatedtype SubSequence : Indexable, Sequence = Slice<Self>
|
|
|
|
/// Returns the element at the given `position`.
|
|
subscript(position: Index) -> Iterator.Element { get }
|
|
|
|
/// Returns a collection representing a contiguous sub-range of
|
|
/// `self`'s elements.
|
|
///
|
|
/// - Complexity: O(1)
|
|
subscript(bounds: Range<Index>) -> SubSequence { get }
|
|
|
|
/// Returns `self[startIndex..<end]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
func prefix(upTo end: Index) -> SubSequence
|
|
|
|
/// Returns `self[start..<endIndex]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
func suffix(from start: Index) -> SubSequence
|
|
|
|
/// Returns `prefix(upTo: position.successor())`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
func prefix(through position: Index) -> SubSequence
|
|
|
|
/// Returns `true` iff `self` is empty.
|
|
var isEmpty: Bool { get }
|
|
|
|
/// Returns the number of elements.
|
|
///
|
|
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndex`;
|
|
/// O(N) otherwise.
|
|
var count: Index.Distance { get }
|
|
|
|
// The following requirement enables dispatching for indexOf when
|
|
// the element type is Equatable.
|
|
|
|
/// Returns `Optional(Optional(index))` if an element was found;
|
|
/// `nil` otherwise.
|
|
///
|
|
/// - Complexity: O(N).
|
|
@warn_unused_result
|
|
func _customIndexOfEquatableElement(_ element: Iterator.Element) -> Index??
|
|
|
|
/// Returns the first element of `self`, or `nil` if `self` is empty.
|
|
var first: Iterator.Element? { get }
|
|
}
|
|
|
|
/// Supply the default `makeIterator()` method for `Collection` models
|
|
/// that accept the default associated `Iterator`,
|
|
/// `IndexingIterator<Self>`.
|
|
extension Collection where Iterator == IndexingIterator<Self> {
|
|
public func makeIterator() -> IndexingIterator<Self> {
|
|
return IndexingIterator(_elements: self)
|
|
}
|
|
}
|
|
|
|
/// Supply the default "slicing" `subscript` for `Collection` models
|
|
/// that accept the default associated `SubSequence`, `Slice<Self>`.
|
|
extension Collection where SubSequence == Slice<Self> {
|
|
public subscript(bounds: Range<Index>) -> Slice<Self> {
|
|
Index._failEarlyRangeCheck2(
|
|
rangeStart: bounds.startIndex,
|
|
rangeEnd: bounds.endIndex,
|
|
boundsStart: startIndex,
|
|
boundsEnd: endIndex)
|
|
return Slice(_base: self, bounds: bounds)
|
|
}
|
|
}
|
|
|
|
extension Collection where SubSequence == Self {
|
|
/// If `!self.isEmpty`, remove the first element and return it, otherwise
|
|
/// return `nil`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public mutating func popFirst() -> Iterator.Element? {
|
|
guard !isEmpty else { return nil }
|
|
let element = first!
|
|
self = self[startIndex.successor()..<endIndex]
|
|
return element
|
|
}
|
|
}
|
|
|
|
extension Collection where
|
|
SubSequence == Self, Index : BidirectionalIndex {
|
|
/// If `!self.isEmpty`, remove the last element and return it, otherwise
|
|
/// return `nil`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public mutating func popLast() -> Iterator.Element? {
|
|
guard !isEmpty else { return nil }
|
|
let element = last!
|
|
self = self[startIndex..<endIndex.predecessor()]
|
|
return element
|
|
}
|
|
}
|
|
|
|
/// Default implementations of core requirements
|
|
extension Collection {
|
|
/// Returns `true` iff `self` is empty.
|
|
///
|
|
/// - Complexity: O(1)
|
|
public var isEmpty: Bool {
|
|
return startIndex == endIndex
|
|
}
|
|
|
|
/// Returns the first element of `self`, or `nil` if `self` is empty.
|
|
///
|
|
/// - Complexity: O(1)
|
|
public var first: Iterator.Element? {
|
|
// NB: Accessing `startIndex` may not be O(1) for some lazy collections,
|
|
// so instead of testing `isEmpty` and then returning the first element,
|
|
// we'll just rely on the fact that the iterator always yields the
|
|
// first element first.
|
|
var i = makeIterator()
|
|
return i.next()
|
|
}
|
|
|
|
/// Returns a value less than or equal to the number of elements in
|
|
/// `self`, *nondestructively*.
|
|
///
|
|
/// - Complexity: O(`count`).
|
|
public var underestimatedCount: Int {
|
|
return numericCast(count)
|
|
}
|
|
|
|
/// Returns the number of elements.
|
|
///
|
|
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndex`;
|
|
/// O(N) otherwise.
|
|
public var count: Index.Distance {
|
|
return startIndex.distance(to: endIndex)
|
|
}
|
|
|
|
/// Customization point for `Sequence.index(of:)`.
|
|
///
|
|
/// Define this method if the collection can find an element in less than
|
|
/// O(N) by exploiting collection-specific knowledge.
|
|
///
|
|
/// - Returns: `nil` if a linear search should be attempted instead,
|
|
/// `Optional(nil)` if the element was not found, or
|
|
/// `Optional(Optional(index))` if an element was found.
|
|
///
|
|
/// - Complexity: O(`count`).
|
|
@warn_unused_result
|
|
public // dispatching
|
|
func _customIndexOfEquatableElement(_: Iterator.Element) -> Index?? {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Default implementations for Collection
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
extension Collection {
|
|
/// Returns an `Array` containing the results of mapping `transform`
|
|
/// over `self`.
|
|
///
|
|
/// - Complexity: O(N).
|
|
@warn_unused_result
|
|
public func map<T>(
|
|
@noescape _ transform: (Iterator.Element) throws -> T
|
|
) rethrows -> [T] {
|
|
let count: Int = numericCast(self.count)
|
|
if count == 0 {
|
|
return []
|
|
}
|
|
|
|
var result = ContiguousArray<T>()
|
|
result.reserveCapacity(count)
|
|
|
|
var i = self.startIndex
|
|
|
|
for _ in 0..<count {
|
|
result.append(try transform(self[i]))
|
|
i = i.successor()
|
|
}
|
|
|
|
_expectEnd(i, self)
|
|
return Array(result)
|
|
}
|
|
|
|
/// Returns a subsequence containing all but the first `n` elements.
|
|
///
|
|
/// - Precondition: `n >= 0`
|
|
/// - Complexity: O(`n`)
|
|
@warn_unused_result
|
|
public func dropFirst(_ n: Int) -> SubSequence {
|
|
_precondition(n >= 0, "Can't drop a negative number of elements from a collection")
|
|
let start = startIndex.advanced(by: numericCast(n), limit: endIndex)
|
|
return self[start..<endIndex]
|
|
}
|
|
|
|
/// Returns a subsequence containing all but the last `n` elements.
|
|
///
|
|
/// - Precondition: `n >= 0`
|
|
/// - Complexity: O(`self.count`)
|
|
@warn_unused_result
|
|
public func dropLast(_ n: Int) -> SubSequence {
|
|
_precondition(
|
|
n >= 0, "Can't drop a negative number of elements from a collection")
|
|
let amount = Swift.max(0, numericCast(count) - n)
|
|
let end = startIndex.advanced(by: numericCast(amount), limit: endIndex)
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns a subsequence, up to `maxLength` in length, containing the
|
|
/// initial elements.
|
|
///
|
|
/// If `maxLength` exceeds `self.count`, the result contains all
|
|
/// the elements of `self`.
|
|
///
|
|
/// - Precondition: `maxLength >= 0`
|
|
/// - Complexity: O(`maxLength`)
|
|
@warn_unused_result
|
|
public func prefix(_ maxLength: Int) -> SubSequence {
|
|
_precondition(
|
|
maxLength >= 0,
|
|
"Can't take a prefix of negative length from a collection")
|
|
let end = startIndex.advanced(by: numericCast(maxLength), limit: endIndex)
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns a slice, up to `maxLength` in length, containing the
|
|
/// final elements of `self`.
|
|
///
|
|
/// If `maxLength` exceeds `s.count`, the result contains all
|
|
/// the elements of `self`.
|
|
///
|
|
/// - Precondition: `maxLength >= 0`
|
|
/// - Complexity: O(`self.count`)
|
|
@warn_unused_result
|
|
public func suffix(_ maxLength: Int) -> SubSequence {
|
|
_precondition(
|
|
maxLength >= 0,
|
|
"Can't take a suffix of negative length from a collection")
|
|
let amount = Swift.max(0, numericCast(count) - maxLength)
|
|
let start = startIndex.advanced(by: numericCast(amount), limit: endIndex)
|
|
return self[start..<endIndex]
|
|
}
|
|
|
|
/// Returns `self[startIndex..<end]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public func prefix(upTo end: Index) -> SubSequence {
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns `self[start..<endIndex]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public func suffix(from start: Index) -> SubSequence {
|
|
return self[start..<endIndex]
|
|
}
|
|
|
|
/// Returns `prefix(upTo: position.successor())`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public func prefix(through position: Index) -> SubSequence {
|
|
return prefix(upTo: position.successor())
|
|
}
|
|
|
|
/// Returns the maximal `SubSequence`s of `self`, in order, that
|
|
/// don't contain elements satisfying the predicate `isSeparator`.
|
|
///
|
|
/// - Parameter maxSplits: The maximum number of `SubSequence`s to
|
|
/// return, minus 1.
|
|
/// If `maxSplits + 1` `SubSequence`s are returned, the last one is
|
|
/// a suffix of `self` containing *all* the elements of `self` following the
|
|
/// last split point.
|
|
/// The default value is `Int.max`.
|
|
///
|
|
/// - Parameter omittingEmptySubsequences: If `false`, an empty `SubSequence`
|
|
/// is produced in the result for each pair of consecutive elements
|
|
/// satisfying `isSeparator`.
|
|
/// The default value is `true`.
|
|
///
|
|
/// - Precondition: `maxSplits >= 0`
|
|
@warn_unused_result
|
|
public func split(
|
|
maxSplits: Int = Int.max,
|
|
omittingEmptySubsequences: Bool = true,
|
|
@noescape isSeparator: (Iterator.Element) throws -> Bool
|
|
) rethrows -> [SubSequence] {
|
|
_precondition(maxSplits >= 0, "Must take zero or more splits")
|
|
|
|
var result: [SubSequence] = []
|
|
var subSequenceStart: Index = startIndex
|
|
|
|
func appendSubsequence(end: Index) -> Bool {
|
|
if subSequenceStart == end && omittingEmptySubsequences {
|
|
return false
|
|
}
|
|
result.append(self[subSequenceStart..<end])
|
|
return true
|
|
}
|
|
|
|
if maxSplits == 0 || isEmpty {
|
|
appendSubsequence(end: endIndex)
|
|
return result
|
|
}
|
|
|
|
var subSequenceEnd = subSequenceStart
|
|
let cachedEndIndex = endIndex
|
|
while subSequenceEnd != cachedEndIndex {
|
|
if try isSeparator(self[subSequenceEnd]) {
|
|
let didAppend = appendSubsequence(end: subSequenceEnd)
|
|
subSequenceEnd._successorInPlace()
|
|
subSequenceStart = subSequenceEnd
|
|
if didAppend && result.count == maxSplits {
|
|
break
|
|
}
|
|
continue
|
|
}
|
|
subSequenceEnd._successorInPlace()
|
|
}
|
|
|
|
if subSequenceStart != cachedEndIndex || !omittingEmptySubsequences {
|
|
result.append(self[subSequenceStart..<cachedEndIndex])
|
|
}
|
|
|
|
return result
|
|
}
|
|
}
|
|
|
|
extension Collection where Iterator.Element : Equatable {
|
|
/// Returns the maximal `SubSequence`s of `self`, in order, around a
|
|
/// `separator` element.
|
|
///
|
|
/// - Parameter maxSplits: The maximum number of `SubSequence`s to
|
|
/// return, minus 1.
|
|
/// If `maxSplits + 1` `SubSequence`s are returned, the last one is
|
|
/// a suffix of `self` containing *all* the elements of `self` following the
|
|
/// last split point.
|
|
/// The default value is `Int.max`.
|
|
///
|
|
/// - Parameter omittingEmptySubsequences: If `false`, an empty `SubSequence`
|
|
/// is produced in the result for each pair of consecutive elements
|
|
/// equal to `separator`.
|
|
/// The default value is `true`.
|
|
///
|
|
/// - Precondition: `maxSplits >= 0`
|
|
@warn_unused_result
|
|
public func split(
|
|
separator: Iterator.Element,
|
|
maxSplits: Int = Int.max,
|
|
omittingEmptySubsequences: Bool = true
|
|
) -> [SubSequence] {
|
|
return split(
|
|
maxSplits: maxSplits,
|
|
omittingEmptySubsequences: omittingEmptySubsequences,
|
|
isSeparator: { $0 == separator })
|
|
}
|
|
}
|
|
|
|
extension Collection where Index : BidirectionalIndex {
|
|
/// Returns a subsequence containing all but the last `n` elements.
|
|
///
|
|
/// - Precondition: `n >= 0`
|
|
/// - Complexity: O(`n`)
|
|
@warn_unused_result
|
|
public func dropLast(_ n: Int) -> SubSequence {
|
|
_precondition(
|
|
n >= 0, "Can't drop a negative number of elements from a collection")
|
|
let end = endIndex.advanced(by: numericCast(-n), limit: startIndex)
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns a slice, up to `maxLength` in length, containing the
|
|
/// final elements of `self`.
|
|
///
|
|
/// If `maxLength` exceeds `s.count`, the result contains all
|
|
/// the elements of `self`.
|
|
///
|
|
/// - Precondition: `maxLength >= 0`
|
|
/// - Complexity: O(`maxLength`)
|
|
@warn_unused_result
|
|
public func suffix(_ maxLength: Int) -> SubSequence {
|
|
_precondition(
|
|
maxLength >= 0,
|
|
"Can't take a suffix of negative length from a collection")
|
|
let start = endIndex.advanced(by: numericCast(-maxLength), limit: startIndex)
|
|
return self[start..<endIndex]
|
|
}
|
|
}
|
|
|
|
extension Collection where SubSequence == Self {
|
|
/// Remove the element at `startIndex` and return it.
|
|
///
|
|
/// - Complexity: O(1)
|
|
/// - Precondition: `!self.isEmpty`.
|
|
@discardableResult
|
|
public mutating func removeFirst() -> Iterator.Element {
|
|
_precondition(!isEmpty, "can't remove items from an empty collection")
|
|
let element = first!
|
|
self = self[startIndex.successor()..<endIndex]
|
|
return element
|
|
}
|
|
|
|
/// Remove the first `n` elements.
|
|
///
|
|
/// - Complexity:
|
|
/// - O(1) if `Index` conforms to `RandomAccessIndex`
|
|
/// - O(n) otherwise
|
|
/// - Precondition: `n >= 0 && self.count >= n`.
|
|
public mutating func removeFirst(_ n: Int) {
|
|
if n == 0 { return }
|
|
_precondition(n >= 0, "number of elements to remove should be non-negative")
|
|
_precondition(count >= numericCast(n),
|
|
"can't remove more items from a collection than it contains")
|
|
self = self[startIndex.advanced(by: numericCast(n))..<endIndex]
|
|
}
|
|
}
|
|
|
|
extension Collection
|
|
where
|
|
SubSequence == Self,
|
|
Index : BidirectionalIndex {
|
|
|
|
/// Remove an element from the end.
|
|
///
|
|
/// - Complexity: O(1)
|
|
/// - Precondition: `!self.isEmpty`
|
|
@discardableResult
|
|
public mutating func removeLast() -> Iterator.Element {
|
|
let element = last!
|
|
self = self[startIndex..<endIndex.predecessor()]
|
|
return element
|
|
}
|
|
|
|
/// Remove the last `n` elements.
|
|
///
|
|
/// - Complexity:
|
|
/// - O(1) if `Index` conforms to `RandomAccessIndex`
|
|
/// - O(n) otherwise
|
|
/// - Precondition: `n >= 0 && self.count >= n`.
|
|
public mutating func removeLast(_ n: Int) {
|
|
if n == 0 { return }
|
|
_precondition(n >= 0, "number of elements to remove should be non-negative")
|
|
_precondition(count >= numericCast(n),
|
|
"can't remove more items from a collection than it contains")
|
|
self = self[startIndex..<endIndex.advanced(by: numericCast(-n))]
|
|
}
|
|
}
|
|
|
|
extension Sequence
|
|
where Self : _ArrayProtocol, Self.Element == Self.Iterator.Element {
|
|
// A fast implementation for when you are backed by a contiguous array.
|
|
public func _copyContents(
|
|
initializing ptr: UnsafeMutablePointer<Iterator.Element>
|
|
) -> UnsafeMutablePointer<Iterator.Element> {
|
|
if let s = self._baseAddressIfContiguous {
|
|
let count = self.count
|
|
ptr.initializeFrom(s, count: count)
|
|
_fixLifetime(self._owner)
|
|
return ptr + count
|
|
} else {
|
|
var p = ptr
|
|
for x in self {
|
|
p.initialize(with: x)
|
|
p += 1
|
|
}
|
|
return p
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Collection {
|
|
public func _preprocessingPass<R>(@noescape _ preprocess: () -> R) -> R? {
|
|
return preprocess()
|
|
}
|
|
}
|
|
|
|
/// A *collection* that supports subscript assignment.
|
|
///
|
|
/// For any instance `a` of a type conforming to
|
|
/// `MutableCollection`, :
|
|
///
|
|
/// a[i] = x
|
|
/// let y = a[i]
|
|
///
|
|
/// is equivalent to:
|
|
///
|
|
/// a[i] = x
|
|
/// let y = x
|
|
///
|
|
public protocol MutableCollection : MutableIndexable, Collection {
|
|
// FIXME: should be constrained to MutableCollection
|
|
// (<rdar://problem/20715009> Implement recursive protocol
|
|
// constraints)
|
|
associatedtype SubSequence : Collection /*: MutableCollection*/
|
|
= MutableSlice<Self>
|
|
|
|
/// Access the element at `position`.
|
|
///
|
|
/// - Precondition: `position` indicates a valid position in `self` and
|
|
/// `position != endIndex`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
subscript(position: Index) -> Iterator.Element {get set}
|
|
|
|
/// Returns a collection representing a contiguous sub-range of
|
|
/// `self`'s elements.
|
|
///
|
|
/// - Complexity: O(1) for the getter, O(`bounds.count`) for the setter.
|
|
subscript(bounds: Range<Index>) -> SubSequence {get set}
|
|
|
|
/// Call `body(p)`, where `p` is a pointer to the collection's
|
|
/// mutable contiguous storage. If no such storage exists, it is
|
|
/// first created. If the collection does not support an internal
|
|
/// representation in a form of mutable contiguous storage, `body` is not
|
|
/// called and `nil` is returned.
|
|
///
|
|
/// Often, the optimizer can eliminate bounds- and uniqueness-checks
|
|
/// within an algorithm, but when that fails, invoking the
|
|
/// same algorithm on `body`\ 's argument lets you trade safety for
|
|
/// speed.
|
|
mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
|
|
@noescape _ body: (UnsafeMutablePointer<Iterator.Element>, Int) throws -> R
|
|
) rethrows -> R?
|
|
// FIXME: the signature should use UnsafeMutableBufferPointer, but the
|
|
// compiler can't handle that.
|
|
//
|
|
// <rdar://problem/21933004> Restore the signature of
|
|
// _withUnsafeMutableBufferPointerIfSupported() that mentions
|
|
// UnsafeMutableBufferPointer
|
|
}
|
|
|
|
extension MutableCollection {
|
|
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
|
|
@noescape _ body: (UnsafeMutablePointer<Iterator.Element>, Int) throws -> R
|
|
) rethrows -> R? {
|
|
return nil
|
|
}
|
|
|
|
public subscript(bounds: Range<Index>) -> MutableSlice<Self> {
|
|
get {
|
|
Index._failEarlyRangeCheck2(
|
|
rangeStart: bounds.startIndex,
|
|
rangeEnd: bounds.endIndex,
|
|
boundsStart: startIndex,
|
|
boundsEnd: endIndex)
|
|
return MutableSlice(_base: self, bounds: bounds)
|
|
}
|
|
set {
|
|
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
|
|
}
|
|
}
|
|
}
|
|
|
|
internal func _writeBackMutableSlice<
|
|
C : MutableCollection,
|
|
Slice_ : Collection
|
|
where
|
|
C._Element == Slice_.Iterator.Element,
|
|
C.Index == Slice_.Index
|
|
>(_ self_: inout C, bounds: Range<C.Index>, slice: Slice_) {
|
|
C.Index._failEarlyRangeCheck2(
|
|
rangeStart: bounds.startIndex,
|
|
rangeEnd: bounds.endIndex,
|
|
boundsStart: self_.startIndex,
|
|
boundsEnd: self_.endIndex)
|
|
// FIXME(performance): can we use
|
|
// _withUnsafeMutableBufferPointerIfSupported? Would that create inout
|
|
// aliasing violations if the newValue points to the same buffer?
|
|
|
|
var selfElementIndex = bounds.startIndex
|
|
let selfElementsEndIndex = bounds.endIndex
|
|
var newElementIndex = slice.startIndex
|
|
let newElementsEndIndex = slice.endIndex
|
|
|
|
while selfElementIndex != selfElementsEndIndex &&
|
|
newElementIndex != newElementsEndIndex {
|
|
|
|
self_[selfElementIndex] = slice[newElementIndex]
|
|
selfElementIndex._successorInPlace()
|
|
newElementIndex._successorInPlace()
|
|
}
|
|
|
|
_precondition(
|
|
selfElementIndex == selfElementsEndIndex,
|
|
"Cannot replace a slice of a MutableCollection with a slice of a smaller size")
|
|
_precondition(
|
|
newElementIndex == newElementsEndIndex,
|
|
"Cannot replace a slice of a MutableCollection with a slice of a larger size")
|
|
}
|
|
|
|
@available(*, unavailable, message: "Bit enum has been deprecated. Please use Int instead.")
|
|
public enum Bit {}
|
|
|
|
@available(*, unavailable, renamed: "IndexingIterator")
|
|
public struct IndexingGenerator<Elements : Indexable> {}
|
|
|
|
@available(*, unavailable, renamed: "Collection")
|
|
public typealias CollectionType = Collection
|
|
|
|
extension Collection {
|
|
@available(*, unavailable, renamed: "Iterator")
|
|
public typealias Generator = Iterator
|
|
|
|
@available(*, unavailable, renamed: "makeIterator")
|
|
public func generate() -> Iterator {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
|
|
@available(*, unavailable, message: "Removed in Swift 3. Please use underestimatedCount property.")
|
|
public func underestimateCount() -> Int {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
|
|
@available(*, unavailable, message: "Please use split(maxSplits:omittingEmptySubsequences:isSeparator:) instead")
|
|
public func split(
|
|
_ maxSplit: Int = Int.max,
|
|
allowEmptySlices: Bool = false,
|
|
@noescape isSeparator: (Iterator.Element) throws -> Bool
|
|
) rethrows -> [SubSequence] {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
}
|
|
|
|
extension Collection where Iterator.Element : Equatable {
|
|
@available(*, unavailable, message: "Please use split(separator:maxSplits:omittingEmptySubsequences:) instead")
|
|
public func split(
|
|
_ separator: Iterator.Element,
|
|
maxSplit: Int = Int.max,
|
|
allowEmptySlices: Bool = false
|
|
) -> [SubSequence] {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
}
|
|
@available(*, unavailable, renamed: "MutableCollection")
|
|
public typealias MutableCollectionType = MutableCollection
|
|
|
|
@available(*, unavailable, message: "PermutationGenerator has been removed in Swift 3")
|
|
public struct PermutationGenerator<C : Collection, Indices : Sequence> {}
|
|
|
|
@available(*, unavailable, message: "Please use 'Collection where SubSequence : MutableCollection'")
|
|
public typealias MutableSliceable = Collection
|