Files
swift-mirror/lib/AST/RequirementMachine/RewriteSystem.cpp
Slava Pestov bcf5e9794b RequirementMachine: Take concrete substitutions into account when checking completion depth limit
We didn't look at the length of terms appearing in concrete substitutions,
so runaway recursion there was only caught by the completion step limit
which takes much longer.
2021-10-27 00:10:40 -04:00

491 lines
14 KiB
C++

//===--- RewriteSystem.cpp - Generics with term rewriting -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// If this is a rule of the form T.[p] => T where [p] is a property symbol,
/// returns the symbol. Otherwise, returns None.
///
/// Note that this is meant to be used with a simplified rewrite system,
/// where the right hand sides of rules are canonical, since this also means
/// that T is canonical.
Optional<Symbol> Rule::isPropertyRule() const {
auto property = LHS.back();
if (!property.isProperty())
return None;
if (LHS.size() - 1 != RHS.size())
return None;
if (!std::equal(RHS.begin(), RHS.end(), LHS.begin()))
return None;
// A same-type requirement of the form 'Self.Foo == Self' can induce a
// conformance rule [P].[P] => [P]. Don't consider this a property-like
// rule, since it messes up the generating conformances algorithm and
// doesn't mean anything useful anyway.
if (RHS.size() == 1 && RHS[0] == LHS[1])
return None;
return property;
}
/// If this is a rule of the form T.[p] => T where [p] is a protocol symbol,
/// return the protocol, otherwise return nullptr.
const ProtocolDecl *Rule::isProtocolConformanceRule() const {
if (auto property = isPropertyRule()) {
if (property->getKind() == Symbol::Kind::Protocol)
return property->getProtocol();
}
return nullptr;
}
/// If this is a rule of the form [P].[Q] => [P] where [P] and [Q] are
/// protocol symbols, return true, otherwise return false.
bool Rule::isProtocolRefinementRule() const {
return (LHS.size() == 2 &&
RHS.size() == 1 &&
LHS[0] == RHS[0] &&
LHS[0].getKind() == Symbol::Kind::Protocol &&
LHS[1].getKind() == Symbol::Kind::Protocol &&
LHS[0] != LHS[1]);
}
/// Returns the length of the left hand side.
unsigned Rule::getDepth() const {
auto result = LHS.size();
if (LHS.back().isSuperclassOrConcreteType()) {
for (auto substitution : LHS.back().getSubstitutions()) {
result = std::max(result, substitution.size());
}
}
return result;
}
/// Linear order on rules; compares LHS followed by RHS.
int Rule::compare(const Rule &other, RewriteContext &ctx) const {
int compare = LHS.compare(other.LHS, ctx);
if (compare != 0)
return compare;
return RHS.compare(other.RHS, ctx);
}
void Rule::dump(llvm::raw_ostream &out) const {
out << LHS << " => " << RHS;
if (Permanent)
out << " [permanent]";
if (Simplified)
out << " [simplified]";
if (Redundant)
out << " [redundant]";
}
RewriteSystem::RewriteSystem(RewriteContext &ctx)
: Context(ctx), Debug(ctx.getDebugOptions()) {
Initialized = 0;
Complete = 0;
Minimized = 0;
RecordHomotopyGenerators = 0;
}
RewriteSystem::~RewriteSystem() {
Trie.updateHistograms(Context.RuleTrieHistogram,
Context.RuleTrieRootHistogram);
}
void RewriteSystem::initialize(
bool recordHomotopyGenerators,
std::vector<std::pair<MutableTerm, MutableTerm>> &&associatedTypeRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules) {
assert(!Initialized);
Initialized = 1;
RecordHomotopyGenerators = recordHomotopyGenerators;
for (const auto &rule : associatedTypeRules) {
bool added = addRule(rule.first, rule.second);
if (added)
Rules.back().markPermanent();
}
for (const auto &rule : requirementRules)
addRule(rule.first, rule.second);
}
/// Adds a rewrite rule, returning true if the new rule was non-trivial.
///
/// If both sides simplify to the same term, the rule is trivial and discarded,
/// and this method returns false.
///
/// If \p path is non-null, the new rule is derived from existing rules in the
/// rewrite system; the path records a series of rewrite steps which transform
/// \p lhs to \p rhs.
bool RewriteSystem::addRule(MutableTerm lhs, MutableTerm rhs,
const RewritePath *path) {
// FIXME:
// assert(!Complete || path != nullptr &&
// "Rules added by completion must have a path");
assert(!lhs.empty());
assert(!rhs.empty());
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "# Adding rule " << lhs << " == " << rhs << "\n\n";
}
// Now simplify both sides as much as possible with the rules we have so far.
//
// This avoids unnecessary work in the completion algorithm.
RewritePath lhsPath;
RewritePath rhsPath;
simplify(lhs, &lhsPath);
simplify(rhs, &rhsPath);
RewritePath loop;
if (path) {
// Produce a path from the simplified lhs to the simplified rhs.
// (1) First, apply lhsPath in reverse to produce the original lhs.
lhsPath.invert();
loop.append(lhsPath);
// (2) Now, apply the path from the original lhs to the original rhs
// given to us by the completion procedure.
loop.append(*path);
// (3) Finally, apply rhsPath to produce the simplified rhs, which
// is the same as the simplified lhs.
loop.append(rhsPath);
}
// If the left hand side and right hand side are already equivalent, we're
// done.
int result = lhs.compare(rhs, Context);
if (result == 0) {
// If this rule is a consequence of existing rules, add a homotopy
// generator.
if (path) {
// We already have a loop, since the simplified lhs is identical to the
// simplified rhs.
recordHomotopyGenerator(lhs, loop);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Recorded trivial loop at " << lhs << ": ";
loop.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
return false;
}
// Orient the two terms so that the left hand side is greater than the
// right hand side.
if (result < 0) {
std::swap(lhs, rhs);
loop.invert();
}
assert(lhs.compare(rhs, Context) > 0);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Simplified and oriented rule " << lhs << " => " << rhs << "\n\n";
}
unsigned newRuleID = Rules.size();
auto uniquedLHS = Term::get(lhs, Context);
auto uniquedRHS = Term::get(rhs, Context);
Rules.emplace_back(uniquedLHS, uniquedRHS);
if (path) {
// We have a rewrite path from the simplified lhs to the simplified rhs;
// add a rewrite step applying the new rule in reverse to close the loop.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
newRuleID, /*inverse=*/true));
recordHomotopyGenerator(lhs, loop);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Recorded non-trivial loop at " << lhs << ": ";
loop.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
if (oldRuleID) {
llvm::errs() << "Duplicate rewrite rule!\n";
const auto &oldRule = getRule(*oldRuleID);
llvm::errs() << "Old rule #" << *oldRuleID << ": ";
oldRule.dump(llvm::errs());
llvm::errs() << "\nTrying to replay what happened when I simplified this term:\n";
Debug |= DebugFlags::Simplify;
MutableTerm term = lhs;
simplify(lhs);
abort();
}
checkMergedAssociatedType(uniquedLHS, uniquedRHS);
// Tell the caller that we added a new rule.
return true;
}
/// Reduce a term by applying all rewrite rules until fixed point.
///
/// If \p path is non-null, records the series of rewrite steps taken.
bool RewriteSystem::simplify(MutableTerm &term, RewritePath *path) const {
bool changed = false;
MutableTerm original;
RewritePath forDebug;
if (Debug.contains(DebugFlags::Simplify)) {
original = term;
if (!path)
path = &forDebug;
}
while (true) {
bool tryAgain = false;
auto from = term.begin();
auto end = term.end();
while (from < end) {
auto ruleID = Trie.find(from, end);
if (ruleID) {
const auto &rule = getRule(*ruleID);
if (!rule.isSimplified()) {
auto to = from + rule.getLHS().size();
assert(std::equal(from, to, rule.getLHS().begin()));
unsigned startOffset = (unsigned)(from - term.begin());
unsigned endOffset = term.size() - rule.getLHS().size() - startOffset;
term.rewriteSubTerm(from, to, rule.getRHS());
if (path) {
path->add(RewriteStep::forRewriteRule(startOffset, endOffset, *ruleID,
/*inverse=*/false));
}
changed = true;
tryAgain = true;
break;
}
}
++from;
}
if (!tryAgain)
break;
}
if (Debug.contains(DebugFlags::Simplify)) {
if (changed) {
llvm::dbgs() << "= Simplified " << original << " to " << term << " via ";
(path == nullptr ? &forDebug : path)->dump(llvm::dbgs(), original, *this);
llvm::dbgs() << "\n";
} else {
llvm::dbgs() << "= Irreducible term: " << term << "\n";
}
}
assert(path == nullptr || changed != path->empty());
return changed;
}
/// Delete any rules whose left hand sides can be reduced by other rules,
/// and reduce the right hand sides of all remaining rules as much as
/// possible.
///
/// Must be run after the completion procedure, since the deletion of
/// rules is only valid to perform if the rewrite system is confluent.
void RewriteSystem::simplifyRewriteSystem() {
assert(Complete);
for (unsigned ruleID = 0, e = Rules.size(); ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isSimplified())
continue;
// First, see if the left hand side of this rule can be reduced using
// some other rule.
auto lhs = rule.getLHS();
auto begin = lhs.begin();
auto end = lhs.end();
while (begin < end) {
if (auto otherRuleID = Trie.find(begin++, end)) {
// A rule does not obsolete itself.
if (*otherRuleID == ruleID)
continue;
// Ignore other deleted rules.
if (getRule(*otherRuleID).isSimplified())
continue;
if (Debug.contains(DebugFlags::Completion)) {
const auto &otherRule = getRule(*otherRuleID);
llvm::dbgs() << "$ Deleting rule " << rule << " because "
<< "its left hand side contains " << otherRule
<< "\n";
}
rule.markSimplified();
break;
}
}
// If the rule was deleted above, skip the rest.
if (rule.isSimplified())
continue;
// Now, try to reduce the right hand side.
RewritePath rhsPath;
MutableTerm rhs(rule.getRHS());
if (!simplify(rhs, &rhsPath))
continue;
// We're adding a new rule, so the old rule won't apply anymore.
rule.markSimplified();
unsigned newRuleID = Rules.size();
// Add a new rule with the simplified right hand side.
Rules.emplace_back(lhs, Term::get(rhs, Context));
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
assert(oldRuleID == ruleID);
(void) oldRuleID;
// Produce a loop at the original lhs.
RewritePath loop;
// (1) First, apply the original rule to produce the original rhs.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
ruleID, /*inverse=*/false));
// (2) Next, apply rhsPath to produce the simplified rhs.
loop.append(rhsPath);
// (3) Finally, apply the new rule in reverse to produce the original lhs.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
newRuleID, /*inverse=*/true));
recordHomotopyGenerator(MutableTerm(lhs), loop);
if (Debug.contains(DebugFlags::Completion)) {
llvm::dbgs() << "$ Right hand side simplification recorded a loop: ";
HomotopyGenerators.back().dump(llvm::dbgs(), *this);
}
}
}
void RewriteSystem::verifyRewriteRules(ValidityPolicy policy) const {
#ifndef NDEBUG
#define ASSERT_RULE(expr) \
if (!(expr)) { \
llvm::errs() << "&&& Malformed rewrite rule: " << rule << "\n"; \
llvm::errs() << "&&& " << #expr << "\n\n"; \
dump(llvm::errs()); \
assert(expr); \
}
for (const auto &rule : Rules) {
if (rule.isSimplified())
continue;
const auto &lhs = rule.getLHS();
const auto &rhs = rule.getRHS();
for (unsigned index : indices(lhs)) {
auto symbol = lhs[index];
if (index != lhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
ASSERT_RULE(!symbol.isSuperclassOrConcreteType());
}
if (index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
}
if (index != 0 && index != lhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
}
}
for (unsigned index : indices(rhs)) {
auto symbol = rhs[index];
// This is only true if the input requirements were valid.
if (policy == DisallowInvalidRequirements) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
} else {
// FIXME: Assert that we diagnosed an error
}
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
ASSERT_RULE(!symbol.isSuperclassOrConcreteType());
if (index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
}
}
auto lhsDomain = lhs.getRootProtocols();
auto rhsDomain = rhs.getRootProtocols();
ASSERT_RULE(lhsDomain == rhsDomain);
}
#undef ASSERT_RULE
#endif
}
void RewriteSystem::dump(llvm::raw_ostream &out) const {
out << "Rewrite system: {\n";
for (const auto &rule : Rules) {
out << "- " << rule << "\n";
}
out << "}\n";
out << "Homotopy generators: {\n";
for (const auto &loop : HomotopyGenerators) {
if (loop.isDeleted())
continue;
out << "- ";
loop.dump(out, *this);
out << "\n";
}
out << "}\n";
}