Files
swift-mirror/lib/SILGen/SILGenProlog.cpp
Holly Borla bd80342a4b [SILGen] Record local auxiliary decls when a parameter is emitted, and
emit those auxiliary decls inside the function body brace statement.

This generalizes the old code to work for parameters to any kind of
function (e.g. initializers).
2021-08-12 13:56:05 -07:00

831 lines
30 KiB
C++

//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "ExecutorBreadcrumb.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "Scope.h"
#include "ArgumentSource.h"
#include "swift/SIL/SILArgument.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PropertyWrappers.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = F.begin()->createFunctionArgument(selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
uint16_t ArgNo = 1; // Hardcoded for destructors.
B.createDebugValue(PrologueLoc, selfValue,
SILDebugVariable(selfDecl->isLet(), ArgNo));
return selfValue;
}
namespace {
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &SGF;
SILBasicBlock *parent;
SILLocation loc;
CanSILFunctionType fnTy;
ArrayRef<SILParameterInfo> &parameters;
EmitBBArguments(SILGenFunction &sgf, SILBasicBlock *parent, SILLocation l,
CanSILFunctionType fnTy,
ArrayRef<SILParameterInfo> &parameters)
: SGF(sgf), parent(parent), loc(l), fnTy(fnTy), parameters(parameters) {}
ManagedValue visitType(CanType t) {
return visitType(t, /*isInOut=*/false);
}
ManagedValue visitType(CanType t, bool isInOut) {
// The calling convention always uses minimal resilience expansion but
// inside the function we lower/expand types in context of the current
// function.
auto argType = SGF.SGM.Types.getLoweredType(t, SGF.getTypeExpansionContext());
auto argTypeConv =
SGF.SGM.Types.getLoweredType(t, TypeExpansionContext::minimal());
argType = argType.getCategoryType(argTypeConv.getCategory());
if (isInOut)
argType = SILType::getPrimitiveAddressType(argType.getASTType());
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
auto paramType =
SGF.F.mapTypeIntoContext(SGF.getSILType(parameterInfo, fnTy));
ManagedValue mv = SGF.B.createInputFunctionArgument(
paramType, loc.getAsASTNode<ValueDecl>());
if (argType != paramType) {
// This is a hack to deal with the fact that Self.Type comes in as a
// static metatype, but we have to downcast it to a dynamic Self
// metatype to get the right semantics.
assert(
cast<DynamicSelfType>(
argType.castTo<MetatypeType>().getInstanceType())
.getSelfType()
== paramType.castTo<MetatypeType>().getInstanceType());
mv = SGF.B.createUncheckedBitCast(loc, mv, argType);
}
if (isInOut)
return mv;
// This can happen if the value is resilient in the calling convention
// but not resilient locally.
if (argType.isLoadable(SGF.F) && argType.isAddress()) {
if (mv.isPlusOne(SGF))
mv = SGF.B.createLoadTake(loc, mv);
else
mv = SGF.B.createLoadBorrow(loc, mv);
}
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getOptionalObjectType())
objectType = theObjTy;
if (isa<FunctionType>(objectType) &&
cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = SGF.B.createCopyBlock(loc, mv.getValue());
mv = SGF.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = SGF.SGM.Types.getTypeLowering(t, SGF.getTypeExpansionContext());
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(SGF)
: element.copyUnmanaged(SGF, loc).forward(SGF);
elementValues.push_back(value);
}
}
auto tupleValue = SGF.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: SGF.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = SGF.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = SGF.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(SGF, loc, elementBuffer);
else
element.copyInto(SGF, loc, elementBuffer);
}
return SGF.emitManagedRValueWithCleanup(buffer);
}
}
};
} // end anonymous namespace
namespace {
/// A helper for creating SILArguments and binding variables to the argument
/// names.
struct ArgumentInitHelper {
SILGenFunction &SGF;
SILFunction &f;
SILGenBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
uint16_t ArgNo = 0;
ArgumentInitHelper(SILGenFunction &SGF, SILFunction &f)
: SGF(SGF), f(f), initB(SGF.B),
parameters(
f.getLoweredFunctionTypeInContext(SGF.B.getTypeExpansionContext())
->getParameters()) {}
unsigned getNumArgs() const { return ArgNo; }
ManagedValue makeArgument(Type ty, bool isInOut, SILBasicBlock *parent,
SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
EmitBBArguments argEmitter(SGF, parent, l,
f.getLoweredFunctionType(), parameters);
// Note: inouts of tuples are not exploded, so we bypass visit().
if (isInOut)
return argEmitter.visitType(canTy, /*isInOut=*/true);
return argEmitter.visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, ParamDecl *pd) {
SILLocation loc(pd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, pd->isInOut(), parent, loc);
if (pd->isInOut()) {
assert(argrv.getType().isAddress() && "expected inout to be address");
} else {
assert(pd->isImmutable() && "expected parameter to be immutable!");
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
}
SGF.VarLocs[pd] = SILGenFunction::VarLoc::get(argrv.getValue());
SILValue value = argrv.getValue();
SILDebugVariable varinfo(pd->isImmutable(), ArgNo);
if (!argrv.getType().isAddress()) {
SGF.B.createDebugValue(loc, value, varinfo);
} else {
if (auto AllocStack = dyn_cast<AllocStackInst>(value))
AllocStack->setArgNo(ArgNo);
else
SGF.B.createDebugValueAddr(loc, value, varinfo);
}
}
void emitParam(ParamDecl *PD) {
PD->visitAuxiliaryDecls([&](VarDecl *localVar) {
SGF.LocalAuxiliaryDecls.push_back(localVar);
});
if (PD->hasExternalPropertyWrapper()) {
PD = cast<ParamDecl>(PD->getPropertyWrapperBackingProperty());
}
auto type = PD->getType();
assert(type->isMaterializable());
++ArgNo;
if (PD->hasName()) {
makeArgumentIntoBinding(type, &*f.begin(), PD);
return;
}
emitAnonymousParam(type, PD, PD);
}
void emitAnonymousParam(Type type, SILLocation paramLoc, ParamDecl *PD) {
// A value bound to _ is unused and can be immediately released.
Scope discardScope(SGF.Cleanups, CleanupLocation(PD));
// Manage the parameter.
auto argrv = makeArgument(type, PD->isInOut(), &*f.begin(), paramLoc);
// Emit debug information for the argument.
SILLocation loc(PD);
loc.markAsPrologue();
if (argrv.getType().isAddress())
SGF.B.createDebugValueAddr(loc, argrv.getValue(),
SILDebugVariable(PD->isLet(), ArgNo));
else
SGF.B.createDebugValue(loc, argrv.getValue(),
SILDebugVariable(PD->isLet(), ArgNo));
}
};
} // end anonymous namespace
static void makeArgument(Type ty, ParamDecl *decl,
SmallVectorImpl<SILValue> &args, SILGenFunction &SGF) {
assert(ty && "no type?!");
// Destructure tuple value arguments.
if (TupleType *tupleTy = decl->isInOut() ? nullptr : ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, decl, args, SGF);
} else {
auto loweredTy = SGF.getLoweredTypeForFunctionArgument(ty);
if (decl->isInOut())
loweredTy = SILType::getPrimitiveAddressType(loweredTy.getASTType());
auto arg = SGF.F.begin()->createFunctionArgument(loweredTy, decl);
args.push_back(arg);
}
}
void SILGenFunction::bindParameterForForwarding(ParamDecl *param,
SmallVectorImpl<SILValue> &parameters) {
makeArgument(param->getType(), param, parameters, *this);
}
void SILGenFunction::bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> &parameters) {
for (auto param : *params)
bindParameterForForwarding(param, parameters);
}
static void emitCaptureArguments(SILGenFunction &SGF,
GenericSignature origGenericSig,
CapturedValue capture,
uint16_t ArgNo) {
auto *VD = cast<VarDecl>(capture.getDecl());
SILLocation Loc(VD);
Loc.markAsPrologue();
// Local function to get the captured variable type within the capturing
// context.
auto getVarTypeInCaptureContext = [&]() -> Type {
auto interfaceType = VD->getInterfaceType()->getCanonicalType(
origGenericSig);
return SGF.F.mapTypeIntoContext(interfaceType);
};
auto expansion = SGF.getTypeExpansionContext();
switch (SGF.SGM.Types.getDeclCaptureKind(capture, expansion)) {
case CaptureKind::Constant: {
auto type = getVarTypeInCaptureContext();
auto &lowering = SGF.getTypeLowering(type);
// Constant decls are captured by value.
SILType ty = lowering.getLoweredType();
SILValue val = SGF.F.begin()->createFunctionArgument(ty, VD);
bool NeedToDestroyValueAtExit = false;
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = SGF.emitTemporaryAllocation(VD, ty);
// We have created a copy that needs to be destroyed.
val = SGF.B.emitCopyValueOperation(Loc, val);
NeedToDestroyValueAtExit = true;
lowering.emitStore(SGF.B, VD, val, addr, StoreOwnershipQualifier::Init);
val = addr;
}
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (auto *AllocStack = dyn_cast<AllocStackInst>(val))
AllocStack->setArgNo(ArgNo);
else {
SILDebugVariable DbgVar(/*Constant*/ true, ArgNo);
SGF.B.createDebugValue(Loc, val, DbgVar);
}
// TODO: Closure contexts should always be guaranteed.
if (NeedToDestroyValueAtExit && !lowering.isTrivial())
SGF.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as a retained @box that owns
// the captured value.
auto type = getVarTypeInCaptureContext();
// Get the content for the box in the minimal resilience domain because we
// are declaring a type.
auto boxTy = SGF.SGM.Types.getContextBoxTypeForCapture(
VD,
SGF.SGM.Types.getLoweredRValueType(TypeExpansionContext::minimal(),
type),
SGF.F.getGenericEnvironment(), /*mutable*/ true);
SILValue box = SGF.F.begin()->createFunctionArgument(
SILType::getPrimitiveObjectType(boxTy), VD);
SILValue addr = SGF.B.createProjectBox(VD, box, 0);
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
SILDebugVariable DbgVar(/*Constant*/ false, ArgNo);
SGF.B.createDebugValueAddr(Loc, addr, DbgVar);
break;
}
case CaptureKind::Immutable:
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
auto type = getVarTypeInCaptureContext();
SILType ty = SGF.getLoweredType(type).getAddressType();
SILValue addr = SGF.F.begin()->createFunctionArgument(ty, VD);
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
SILDebugVariable DbgVar(/*Constant*/ true, ArgNo);
SGF.B.createDebugValueAddr(Loc, addr, DbgVar);
break;
}
}
}
void SILGenFunction::emitProlog(CaptureInfo captureInfo,
ParameterList *paramList,
ParamDecl *selfParam,
DeclContext *DC,
Type resultType,
bool throws,
SourceLoc throwsLoc) {
uint16_t ArgNo = emitBasicProlog(paramList, selfParam, resultType,
DC, throws, throwsLoc);
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
assert(captureInfo.hasBeenComputed() &&
"can't emit prolog of function with uncomputed captures");
for (auto capture : captureInfo.getCaptures()) {
if (capture.isDynamicSelfMetadata()) {
auto selfMetatype = MetatypeType::get(
captureInfo.getDynamicSelfType());
SILType ty = getLoweredType(selfMetatype);
SILValue val = F.begin()->createFunctionArgument(ty);
(void) val;
continue;
}
if (capture.isOpaqueValue()) {
OpaqueValueExpr *opaqueValue = capture.getOpaqueValue();
Type type = opaqueValue->getType()->mapTypeOutOfContext();
type = F.mapTypeIntoContext(type);
auto &lowering = getTypeLowering(type);
SILType ty = lowering.getLoweredType();
SILValue val = F.begin()->createFunctionArgument(ty);
OpaqueValues[opaqueValue] = ManagedValue::forUnmanaged(val);
// Opaque values are always passed 'owned', so add a clean up if needed.
if (!lowering.isTrivial())
enterDestroyCleanup(val);
continue;
}
emitCaptureArguments(*this, DC->getGenericSignatureOfContext(),
capture, ++ArgNo);
}
// Emit an unreachable instruction if a parameter type is
// uninhabited
if (paramList) {
for (auto *param : *paramList) {
if (param->getType()->isStructurallyUninhabited()) {
SILLocation unreachableLoc(param);
unreachableLoc.markAsPrologue();
B.createUnreachable(unreachableLoc);
break;
}
}
}
// Whether the given declaration context is nested within an actor's
// destructor.
auto isInActorDestructor = [](DeclContext *dc) {
while (!dc->isModuleScopeContext() && !dc->isTypeContext()) {
if (auto destructor = dyn_cast<DestructorDecl>(dc)) {
switch (getActorIsolation(destructor)) {
case ActorIsolation::ActorInstance:
case ActorIsolation::DistributedActorInstance:
return true;
case ActorIsolation::GlobalActor:
case ActorIsolation::GlobalActorUnsafe:
// Global-actor-isolated types should likely have deinits that
// are not themselves actor-isolated, yet still have access to
// the instance properties of the class.
return false;
case ActorIsolation::Independent:
case ActorIsolation::Unspecified:
return false;
}
}
dc = dc->getParent();
}
return false;
};
// Initialize ExpectedExecutor if the function is an actor-isolated
// function or closure.
bool wantDataRaceChecks = getOptions().EnableActorDataRaceChecks &&
!F.isAsync() &&
!isInActorDestructor(FunctionDC);
if (auto *funcDecl =
dyn_cast_or_null<AbstractFunctionDecl>(FunctionDC->getAsDecl())) {
auto actorIsolation = getActorIsolation(funcDecl);
switch (actorIsolation.getKind()) {
case ActorIsolation::Unspecified:
case ActorIsolation::Independent:
// If this is an async function that has an isolated parameter, hop
// to it.
if (F.isAsync()) {
for (auto param : *funcDecl->getParameters()) {
if (param->isIsolated()) {
auto loc = RegularLocation::getAutoGeneratedLocation(F.getLocation());
Type actorType = param->getType();
RValue actorInstanceRV = emitRValueForDecl(
loc, param, actorType, AccessSemantics::Ordinary);
ManagedValue actorInstance =
std::move(actorInstanceRV).getScalarValue();
ExpectedExecutor = emitLoadActorExecutor(loc, actorInstance);
break;
}
}
}
break;
case ActorIsolation::GlobalActorUnsafe:
break;
case ActorIsolation::DistributedActorInstance: {
// TODO: perhaps here we can emit our special handling to make a message?
LLVM_FALLTHROUGH;
}
case ActorIsolation::ActorInstance: {
assert(selfParam && "no self parameter for ActorInstance isolation");
// Only produce an executor for actor-isolated functions that are async
// or are local functions. The former require a hop, while the latter
// are prone to dynamic data races in code that does not enforce Sendable
// completely.
if (F.isAsync() ||
(wantDataRaceChecks && funcDecl->isLocalCapture())) {
auto loc = RegularLocation::getAutoGeneratedLocation(F.getLocation());
ManagedValue selfArg = ManagedValue::forUnmanaged(F.getSelfArgument());
ExpectedExecutor = emitLoadActorExecutor(loc, selfArg);
}
break;
}
case ActorIsolation::GlobalActor:
if (F.isAsync() || wantDataRaceChecks) {
ExpectedExecutor =
emitLoadGlobalActorExecutor(actorIsolation.getGlobalActor());
}
break;
}
} else if (auto *closureExpr = dyn_cast<AbstractClosureExpr>(FunctionDC)) {
bool wantExecutor = F.isAsync() ||
(wantDataRaceChecks &&
!(isa<ClosureExpr>(closureExpr) &&
cast<ClosureExpr>(closureExpr)->isUnsafeMainActor()));
auto actorIsolation = closureExpr->getActorIsolation();
switch (actorIsolation.getKind()) {
case ClosureActorIsolation::Independent:
break;
case ClosureActorIsolation::ActorInstance: {
if (wantExecutor) {
auto loc = RegularLocation::getAutoGeneratedLocation(F.getLocation());
auto actorDecl = actorIsolation.getActorInstance();
Type actorType = actorDecl->getType();
RValue actorInstanceRV = emitRValueForDecl(loc,
actorDecl, actorType, AccessSemantics::Ordinary);
ManagedValue actorInstance =
std::move(actorInstanceRV).getScalarValue();
ExpectedExecutor = emitLoadActorExecutor(loc, actorInstance);
}
break;
}
case ClosureActorIsolation::GlobalActor:
if (wantExecutor) {
ExpectedExecutor =
emitLoadGlobalActorExecutor(actorIsolation.getGlobalActor());
break;
}
}
}
// Jump to the expected executor.
if (ExpectedExecutor) {
if (F.isAsync()) {
// For an async function, hop to the executor.
B.createHopToExecutor(
RegularLocation::getAutoGeneratedLocation(F.getLocation()),
ExpectedExecutor, /*mandatory*/ false);
} else {
// For a synchronous function, check that we're on the same executor.
// Note: if we "know" that the code is completely Sendable-safe, this
// is unnecessary. The type checker will need to make this determination.
emitPreconditionCheckExpectedExecutor(
RegularLocation::getAutoGeneratedLocation(F.getLocation()),
ExpectedExecutor);
}
}
}
SILValue SILGenFunction::emitLoadGlobalActorExecutor(Type globalActor) {
CanType actorType = CanType(globalActor);
NominalTypeDecl *nominal = actorType->getNominalOrBoundGenericNominal();
VarDecl *sharedInstanceDecl = nominal->getGlobalActorInstance();
assert(sharedInstanceDecl && "no shared actor field in global actor");
SubstitutionMap subs =
actorType->getContextSubstitutionMap(SGM.SwiftModule, nominal);
SILLocation loc = RegularLocation::getAutoGeneratedLocation(F.getLocation());
Type instanceType =
actorType->getTypeOfMember(SGM.SwiftModule, sharedInstanceDecl);
auto metaRepr =
nominal->isResilient(SGM.SwiftModule, ResilienceExpansion::Maximal)
? MetatypeRepresentation::Thick
: MetatypeRepresentation::Thin;
ManagedValue actorMetaType =
ManagedValue::forUnmanaged(B.createMetatype(loc,
SILType::getPrimitiveObjectType(
CanMetatypeType::get(actorType, metaRepr))));
RValue actorInstanceRV = emitRValueForStorageLoad(loc, actorMetaType,
actorType, /*isSuper*/ false, sharedInstanceDecl, PreparedArguments(),
subs, AccessSemantics::Ordinary, instanceType, SGFContext());
ManagedValue actorInstance = std::move(actorInstanceRV).getScalarValue();
return emitLoadActorExecutor(loc, actorInstance);
}
SILValue SILGenFunction::emitLoadActorExecutor(SILLocation loc,
ManagedValue actor) {
SILValue actorV;
if (isInFormalEvaluationScope())
actorV = actor.formalAccessBorrow(*this, loc).getValue();
else
actorV = actor.borrow(*this, loc).getValue();
// For now, we just want to emit a hop_to_executor directly to the
// actor; LowerHopToActor will add the emission logic necessary later.
return actorV;
}
ExecutorBreadcrumb SILGenFunction::emitHopToTargetActor(SILLocation loc,
Optional<ActorIsolation> maybeIso,
Optional<ManagedValue> maybeSelf) {
if (!maybeIso)
return ExecutorBreadcrumb();
if (auto executor = emitExecutor(loc, *maybeIso, maybeSelf)) {
return emitHopToTargetExecutor(loc, *executor);
} else {
return ExecutorBreadcrumb();
}
}
ExecutorBreadcrumb SILGenFunction::emitHopToTargetExecutor(
SILLocation loc, SILValue executor) {
// Record the previous executor to hop back to when we no longer need to
// be isolated to the target actor.
//
// If we're calling from an actor method ourselves, then we'll want to hop
// back to our own actor.
auto breadcrumb = ExecutorBreadcrumb(emitGetCurrentExecutor(loc));
B.createHopToExecutor(loc, executor, /*mandatory*/ false);
return breadcrumb;
}
Optional<SILValue> SILGenFunction::emitExecutor(
SILLocation loc, ActorIsolation isolation,
Optional<ManagedValue> maybeSelf) {
switch (isolation.getKind()) {
case ActorIsolation::Unspecified:
case ActorIsolation::Independent:
return None;
case ActorIsolation::ActorInstance:
case ActorIsolation::DistributedActorInstance: {
// "self" here means the actor instance's "self" value.
assert(maybeSelf.hasValue() && "actor-instance but no self provided?");
auto self = maybeSelf.getValue();
return emitLoadActorExecutor(loc, self);
}
case ActorIsolation::GlobalActor:
case ActorIsolation::GlobalActorUnsafe:
return emitLoadGlobalActorExecutor(isolation.getGlobalActor());
}
llvm_unreachable("covered switch");
}
void SILGenFunction::emitHopToActorValue(SILLocation loc, ManagedValue actor) {
// TODO: can the type system enforce this async requirement?
if (!F.isAsync()) {
llvm::report_fatal_error("Builtin.hopToActor must be in an async function");
}
auto isolation = getActorIsolationOfContext(FunctionDC);
if (isolation != ActorIsolation::Independent
&& isolation != ActorIsolation::Unspecified) {
// TODO: Explicit hop with no hop-back should only be allowed in independent
// async functions. But it needs work for any closure passed to
// Task.detached, which currently has unspecified isolation.
llvm::report_fatal_error(
"Builtin.hopToActor must be in an actor-independent function");
}
SILValue executor = emitLoadActorExecutor(loc, actor);
B.createHopToExecutor(loc, executor, /*mandatory*/ true);
}
void SILGenFunction::emitPreconditionCheckExpectedExecutor(
SILLocation loc, SILValue executorOrActor) {
auto checkExecutor = SGM.getCheckExpectedExecutor();
if (!checkExecutor)
return;
// We don't want the debugger to step into these.
loc.markAutoGenerated();
// Get the executor.
SILValue executor = B.createExtractExecutor(loc, executorOrActor);
// Call the library function that performs the checking.
auto args = emitSourceLocationArgs(loc.getSourceLoc(), loc);
emitApplyOfLibraryIntrinsic(loc, checkExecutor, SubstitutionMap(),
{
args.filenameStartPointer,
args.filenameLength,
args.filenameIsAscii,
args.line,
ManagedValue::forUnmanaged(executor)
},
SGFContext());
}
void ExecutorBreadcrumb::emit(SILGenFunction &SGF, SILLocation loc) {
if (Executor)
SGF.B.createHopToExecutor(loc, Executor, /*mandatory*/ false);
}
SILValue SILGenFunction::emitGetCurrentExecutor(SILLocation loc) {
// If this is an actor method, then the actor is the only executor we should
// be running on (if we aren't setting up for a cross-actor call).
if (ExpectedExecutor)
return ExpectedExecutor;
// Otherwise, we'll have to ask the current task what executor it's running
// on.
auto &ctx = getASTContext();
return B.createBuiltin(
loc,
ctx.getIdentifier(getBuiltinName(BuiltinValueKind::GetCurrentExecutor)),
getLoweredType(OptionalType::get(ctx.TheExecutorType)),
SubstitutionMap(), { });
}
static void emitIndirectResultParameters(SILGenFunction &SGF, Type resultType,
DeclContext *DC) {
// Expand tuples.
if (auto tupleType = resultType->getAs<TupleType>()) {
for (auto eltType : tupleType->getElementTypes()) {
emitIndirectResultParameters(SGF, eltType, DC);
}
return;
}
// If the return type is address-only, emit the indirect return argument.
// The calling convention always uses minimal resilience expansion.
auto &resultTI =
SGF.SGM.Types.getTypeLowering(DC->mapTypeIntoContext(resultType),
SGF.getTypeExpansionContext());
auto &resultTIConv = SGF.SGM.Types.getTypeLowering(
DC->mapTypeIntoContext(resultType), TypeExpansionContext::minimal());
if (!SILModuleConventions::isReturnedIndirectlyInSIL(
resultTIConv.getLoweredType(), SGF.SGM.M)) {
return;
}
auto &ctx = SGF.getASTContext();
auto var = new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
ctx.getIdentifier("$return_value"), SourceLoc(),
ctx.getIdentifier("$return_value"),
DC);
var->setSpecifier(ParamSpecifier::InOut);
var->setInterfaceType(resultType);
auto *arg = SGF.F.begin()->createFunctionArgument(
resultTI.getLoweredType().getAddressType(), var);
(void)arg;
}
uint16_t SILGenFunction::emitBasicProlog(ParameterList *paramList,
ParamDecl *selfParam,
Type resultType,
DeclContext *DC,
bool throws,
SourceLoc throwsLoc) {
// Create the indirect result parameters.
auto genericSig = DC->getGenericSignatureOfContext();
resultType = resultType->getCanonicalType(genericSig);
emitIndirectResultParameters(*this, resultType, DC);
// Emit the argument variables in calling convention order.
ArgumentInitHelper emitter(*this, F);
// Add the SILArguments and use them to initialize the local argument
// values.
if (paramList)
for (auto *param : *paramList)
emitter.emitParam(param);
if (selfParam)
emitter.emitParam(selfParam);
// Record the ArgNo of the artificial $error inout argument.
unsigned ArgNo = emitter.getNumArgs();
if (throws) {
auto NativeErrorTy = SILType::getExceptionType(getASTContext());
ManagedValue Undef = emitUndef(NativeErrorTy);
SILDebugVariable DbgVar("$error", /*Constant*/ false, ++ArgNo);
RegularLocation loc = RegularLocation::getAutoGeneratedLocation();
if (throwsLoc.isValid())
loc = throwsLoc;
B.createDebugValue(loc, Undef.getValue(), DbgVar);
}
return ArgNo;
}