mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The XXOptUtils.h convention is already established and parallels the SIL/XXUtils convention. New: - InstOptUtils.h - CFGOptUtils.h - BasicBlockOptUtils.h - ValueLifetime.h Removed: - Local.h - Two conflicting CFG.h files This reorganization is helpful before I introduce more utilities for block cloning similar to SinkAddressProjections. Move the control flow utilies out of Local.h, which was an unreadable, unprincipled mess. Rename it to InstOptUtils.h, and confine it to small APIs for working with individual instructions. These are the optimizer's additions to /SIL/InstUtils.h. Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now there is only SIL/CFG.h, resolving the naming conflict within the swift project (this has always been a problem for source tools). Limit this header to low-level APIs for working with branches and CFG edges. Add BasicBlockOptUtils.h for block level transforms (it makes me sad that I can't use BBOptUtils.h, but SIL already has BasicBlockUtils.h). These are larger APIs for cloning or removing whole blocks.
1936 lines
69 KiB
C++
1936 lines
69 KiB
C++
//===--- COWArrayOpt.cpp - Optimize Copy-On-Write Array Checks ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "cowarray-opts"
|
|
#include "swift/SIL/CFG.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILCloner.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
|
|
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace swift;
|
|
|
|
/// \return a sequence of integers representing the access path of this element
|
|
/// within a Struct/Ref/Tuple.
|
|
///
|
|
/// Do not form a path with an IndexAddrInst because we have no way to
|
|
/// distinguish between indexing and subelement access. The same index could
|
|
/// either refer to the next element (indexed) or a subelement.
|
|
static SILValue getAccessPath(SILValue V, SmallVectorImpl<unsigned>& Path) {
|
|
V = stripCasts(V);
|
|
if (auto *IA = dyn_cast<IndexAddrInst>(V)) {
|
|
// Don't include index_addr projections in the access path. We could if
|
|
// the index is constant. For simplicity we just ignore them.
|
|
V = stripCasts(IA->getBase());
|
|
}
|
|
ProjectionIndex PI(V);
|
|
if (!PI.isValid())
|
|
return V;
|
|
|
|
SILValue UnderlyingObject = getAccessPath(PI.Aggregate, Path);
|
|
Path.push_back(PI.Index);
|
|
return UnderlyingObject;
|
|
}
|
|
|
|
namespace {
|
|
/// Collect all uses of a struct given an aggregate value that contains the
|
|
/// struct and access path describing the projection of the aggregate
|
|
/// that accesses the struct.
|
|
///
|
|
/// AggregateAddressUsers records uses of the aggregate value's address. These
|
|
/// may indirectly access the struct's elements.
|
|
///
|
|
/// Projections over the aggregate that do not access the struct are ignored.
|
|
///
|
|
/// StructLoads records loads of the struct value.
|
|
/// StructAddressUsers records other uses of the struct address.
|
|
/// StructValueUsers records direct uses of the loaded struct.
|
|
///
|
|
/// Projections of the struct over its elements are all similarly recorded in
|
|
/// ElementAddressUsers, ElementLoads, and ElementValueUsers.
|
|
///
|
|
/// bb0(%arg : $*S)
|
|
/// apply %f(%arg) // <--- Aggregate Address User
|
|
/// %struct_addr = struct_element_addr %arg : $*S, #S.element
|
|
/// apply %g(%struct_addr) // <--- Struct Address User
|
|
/// %val = load %struct_addr // <--- Struct Load
|
|
/// apply %h(%val) // <--- Struct Value User
|
|
/// %elt_addr = struct_element_addr %struct_addr : $*A, #A.element
|
|
/// apply %i(%elt_addr) // <--- Element Address User
|
|
/// %elt = load %elt_addr // <--- Element Load
|
|
/// apply %j(%elt) // <--- Element Value User
|
|
class StructUseCollector {
|
|
public:
|
|
typedef SmallPtrSet<Operand*, 16> VisitedSet;
|
|
typedef SmallVector<SILInstruction*, 16> UserList;
|
|
|
|
/// Record the users of a value or an element within that value along with the
|
|
/// operand that directly uses the value. Multiple levels of struct_extract
|
|
/// may exist between the operand and the user instruction.
|
|
typedef SmallVector<std::pair<SILInstruction*, Operand*>, 16> UserOperList;
|
|
|
|
UserList AggregateAddressUsers;
|
|
UserList StructAddressUsers;
|
|
SmallVector<LoadInst*, 16> StructLoads;
|
|
UserList StructValueUsers;
|
|
UserOperList ElementAddressUsers;
|
|
SmallVector<std::pair<LoadInst*, Operand*>, 16> ElementLoads;
|
|
UserOperList ElementValueUsers;
|
|
VisitedSet Visited;
|
|
|
|
/// Collect all uses of the value at the given address.
|
|
void collectUses(ValueBase *V, ArrayRef<unsigned> AccessPath) {
|
|
// Save our old indent and increment.
|
|
// Collect all users of the address and loads.
|
|
collectAddressUses(V, AccessPath, nullptr);
|
|
|
|
// Collect all uses of the Struct value.
|
|
for (auto *DefInst : StructLoads) {
|
|
for (auto *DefUI : DefInst->getUses()) {
|
|
if (!Visited.insert(&*DefUI).second) {
|
|
continue;
|
|
}
|
|
|
|
StructValueUsers.push_back(DefUI->getUser());
|
|
}
|
|
}
|
|
|
|
// Collect all users of element values.
|
|
for (auto &Pair : ElementLoads) {
|
|
for (auto *DefUI : Pair.first->getUses()) {
|
|
if (!Visited.insert(&*DefUI).second) {
|
|
continue;
|
|
}
|
|
|
|
ElementValueUsers.push_back(
|
|
std::make_pair(DefUI->getUser(), Pair.second));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if there is a single address user of the value.
|
|
bool hasSingleAddressUse(SILInstruction *SingleAddressUser) {
|
|
if (!AggregateAddressUsers.empty())
|
|
return false;
|
|
if (!ElementAddressUsers.empty())
|
|
return false;
|
|
if (StructAddressUsers.size() != 1)
|
|
return false;
|
|
return StructAddressUsers[0] == SingleAddressUser;
|
|
}
|
|
|
|
protected:
|
|
|
|
static bool definesSingleObjectType(ValueBase *V) {
|
|
return V->getType().isObject();
|
|
}
|
|
|
|
/// If AccessPathSuffix is non-empty, then the value is the address of an
|
|
/// aggregate containing the Struct. If AccessPathSuffix is empty and
|
|
/// StructVal is invalid, then the value is the address of the Struct. If
|
|
/// StructVal is valid, the value is the address of an element within the
|
|
/// Struct.
|
|
void collectAddressUses(ValueBase *V, ArrayRef<unsigned> AccessPathSuffix,
|
|
Operand *StructVal) {
|
|
for (auto *UI : V->getUses()) {
|
|
// Keep the operand, not the instruction in the visited set. The same
|
|
// instruction may theoretically have different types of uses.
|
|
if (!Visited.insert(&*UI).second) {
|
|
continue;
|
|
}
|
|
|
|
SILInstruction *UseInst = UI->getUser();
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
continue;
|
|
|
|
if (StructVal) {
|
|
// Found a use of an element.
|
|
assert(AccessPathSuffix.empty() && "should have accessed struct");
|
|
if (auto *LoadI = dyn_cast<LoadInst>(UseInst)) {
|
|
ElementLoads.push_back(std::make_pair(LoadI, StructVal));
|
|
continue;
|
|
}
|
|
|
|
if (auto proj = dyn_cast<StructElementAddrInst>(UseInst)) {
|
|
collectAddressUses(proj, AccessPathSuffix, StructVal);
|
|
continue;
|
|
}
|
|
|
|
ElementAddressUsers.push_back(std::make_pair(UseInst,StructVal));
|
|
continue;
|
|
}
|
|
|
|
if (isa<UncheckedRefCastInst>(UseInst) || isa<IndexAddrInst>(UseInst)) {
|
|
// Skip over unchecked_ref_cast and index_addr.
|
|
collectAddressUses(cast<SingleValueInstruction>(UseInst),
|
|
AccessPathSuffix, nullptr);
|
|
continue;
|
|
}
|
|
|
|
if (AccessPathSuffix.empty()) {
|
|
// Found a use of the struct at the given access path.
|
|
if (auto *LoadI = dyn_cast<LoadInst>(UseInst)) {
|
|
StructLoads.push_back(LoadI);
|
|
continue;
|
|
}
|
|
|
|
if (auto proj = dyn_cast<StructElementAddrInst>(UseInst)) {
|
|
collectAddressUses(proj, AccessPathSuffix, &*UI);
|
|
continue;
|
|
}
|
|
|
|
// Value users - this happens if we start with a value object in V.
|
|
if (definesSingleObjectType(V)) {
|
|
StructValueUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
|
|
StructAddressUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
|
|
// Check for uses of projections.
|
|
|
|
// These are all single-value instructions.
|
|
auto *ProjInst = dyn_cast<SingleValueInstruction>(UseInst);
|
|
if (!ProjInst) {
|
|
AggregateAddressUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
ProjectionIndex PI(ProjInst);
|
|
// Do not form a path from an IndexAddrInst without otherwise
|
|
// distinguishing it from subelement addressing.
|
|
if (!PI.isValid()) {
|
|
// Found a use of an aggregate containing the given element.
|
|
AggregateAddressUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
|
|
if (PI.Index != AccessPathSuffix[0]) {
|
|
// Ignore uses of disjoint elements.
|
|
continue;
|
|
}
|
|
|
|
// An alloc_box returns its address as the second value.
|
|
assert(PI.Aggregate && "Expected unary element addr inst.");
|
|
|
|
// Recursively check for users after stripping this component from the
|
|
// access path.
|
|
collectAddressUses(ProjInst, AccessPathSuffix.slice(1), nullptr);
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// Do the two values \p A and \p B reference the same 'array' after potentially
|
|
// looking through a load. To identify a common array address this functions
|
|
// strips struct projections until it hits \p ArrayAddress.
|
|
bool areArraysEqual(RCIdentityFunctionInfo *RCIA, SILValue A, SILValue B,
|
|
SILValue ArrayAddress) {
|
|
A = RCIA->getRCIdentityRoot(A);
|
|
B = RCIA->getRCIdentityRoot(B);
|
|
if (A == B)
|
|
return true;
|
|
// We have stripped off struct_extracts. Remove the load to look at the
|
|
// address we are loading from.
|
|
if (auto *ALoad = dyn_cast<LoadInst>(A))
|
|
A = ALoad->getOperand();
|
|
if (auto *BLoad = dyn_cast<LoadInst>(B))
|
|
B = BLoad->getOperand();
|
|
// Strip off struct_extract_refs until we hit array address.
|
|
if (ArrayAddress) {
|
|
StructElementAddrInst *SEAI = nullptr;
|
|
while (A != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(A)))
|
|
A = SEAI->getOperand();
|
|
while (B != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(B)))
|
|
B = SEAI->getOperand();
|
|
}
|
|
return A == B;
|
|
}
|
|
|
|
/// \return true if the given instruction releases the given value.
|
|
static bool isRelease(SILInstruction *Inst, SILValue RetainedValue,
|
|
SILValue ArrayAddress, RCIdentityFunctionInfo *RCIA,
|
|
SmallPtrSetImpl<Operand *> &MatchedReleases) {
|
|
|
|
// Before we can match a release with a retain we need to check that we have
|
|
// not already matched the release with a retain we processed earlier.
|
|
// We don't want to match the release with both retains in the example below.
|
|
//
|
|
// retain %a <--|
|
|
// retain %a | Match. <-| Don't match.
|
|
// release %a <--| <-|
|
|
//
|
|
if (auto *R = dyn_cast<ReleaseValueInst>(Inst))
|
|
if (!MatchedReleases.count(&R->getOperandRef()))
|
|
if (areArraysEqual(RCIA, Inst->getOperand(0), RetainedValue,
|
|
ArrayAddress)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *Inst);
|
|
MatchedReleases.insert(&R->getOperandRef());
|
|
return true;
|
|
}
|
|
|
|
if (auto *R = dyn_cast<StrongReleaseInst>(Inst))
|
|
if (!MatchedReleases.count(&R->getOperandRef()))
|
|
if (areArraysEqual(RCIA, Inst->getOperand(0), RetainedValue,
|
|
ArrayAddress)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *Inst);
|
|
MatchedReleases.insert(&R->getOperandRef());
|
|
return true;
|
|
}
|
|
|
|
if (auto *AI = dyn_cast<ApplyInst>(Inst)) {
|
|
if (auto *F = AI->getReferencedFunctionOrNull()) {
|
|
auto Params = F->getLoweredFunctionType()->getParameters();
|
|
auto Args = AI->getArguments();
|
|
for (unsigned ArgIdx = 0, ArgEnd = Params.size(); ArgIdx != ArgEnd;
|
|
++ArgIdx) {
|
|
if (MatchedReleases.count(&AI->getArgumentRef(ArgIdx)))
|
|
continue;
|
|
if (!areArraysEqual(RCIA, Args[ArgIdx], RetainedValue, ArrayAddress))
|
|
continue;
|
|
ParameterConvention P = Params[ArgIdx].getConvention();
|
|
if (P == ParameterConvention::Direct_Owned) {
|
|
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *Inst);
|
|
MatchedReleases.insert(&AI->getArgumentRef(ArgIdx));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " not a matching release " << *Inst);
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Optimize Copy-On-Write array checks based on high-level semantics.
|
|
///
|
|
/// Performs an analysis on all Array users to ensure they do not interfere
|
|
/// with make_mutable hoisting. Ultimately, the only thing that can interfere
|
|
/// with make_mutable is a retain of the array. To ensure no retains occur
|
|
/// within the loop, it is necessary to check that the array does not escape on
|
|
/// any path reaching the loop, and that it is not directly retained within the
|
|
/// loop itself.
|
|
///
|
|
/// In some cases, a retain does exist within the loop, but is balanced by a
|
|
/// release or call to @owned. The analysis must determine whether any array
|
|
/// mutation can occur between the retain and release. To accomplish this it
|
|
/// relies on knowledge of all array operations within the loop. If the array
|
|
/// escapes in some way that cannot be tracked, the analysis must fail.
|
|
///
|
|
/// TODO: Handle this pattern:
|
|
/// retain(array)
|
|
/// call(array)
|
|
/// release(array)
|
|
/// Whenever the call is readonly, has balanced retain/release for the array,
|
|
/// and does not capture the array. Under these conditions, the call can neither
|
|
/// mutate the array nor save an alias for later mutation.
|
|
///
|
|
/// TODO: Completely eliminate make_mutable calls if all operations that the
|
|
/// guard are already guarded by either "init" or "mutate_unknown".
|
|
class COWArrayOpt {
|
|
typedef StructUseCollector::UserList UserList;
|
|
typedef StructUseCollector::UserOperList UserOperList;
|
|
|
|
RCIdentityFunctionInfo *RCIA;
|
|
SILFunction *Function;
|
|
SILLoop *Loop;
|
|
SILBasicBlock *Preheader;
|
|
DominanceInfo *DomTree;
|
|
bool HasChanged = false;
|
|
|
|
// Keep track of cold blocks.
|
|
ColdBlockInfo ColdBlocks;
|
|
|
|
// Cache of the analysis whether a loop is safe wrt. make_unique hoisting by
|
|
// looking at the operations (no uniquely identified objects).
|
|
std::pair<bool, bool> CachedSafeLoop;
|
|
|
|
// Set of all blocks that may reach the loop, not including loop blocks.
|
|
llvm::SmallPtrSet<SILBasicBlock*,32> ReachingBlocks;
|
|
|
|
/// Transient per-Array user set.
|
|
///
|
|
/// Track all known array users with the exception of struct_extract users
|
|
/// (checkSafeArrayElementUse prohibits struct_extract users from mutating the
|
|
/// array). During analysis of retains/releases within the loop body, the
|
|
/// users in this set are assumed to cover all possible mutating operations on
|
|
/// the array. If the array escaped through an unknown use, the analysis must
|
|
/// abort earlier.
|
|
SmallPtrSet<SILInstruction*, 8> ArrayUserSet;
|
|
|
|
/// Array loads which can be hoisted because a make_mutable of that array
|
|
/// was hoisted previously.
|
|
/// This is important to handle the two dimensional array case.
|
|
SmallPtrSet<LoadInst *, 4> HoistableLoads;
|
|
|
|
// When matching retains to releases we must not match the same release twice.
|
|
//
|
|
// For example we could have:
|
|
// retain %a // id %1
|
|
// retain %a // id %2
|
|
// release %a // id %3
|
|
// When we match %1 with %3, we can't match %3 again when we look for a
|
|
// matching release for %2.
|
|
// The set refers to operands instead of instructions because an apply could
|
|
// have several operands with release semantics.
|
|
SmallPtrSet<Operand*, 8> MatchedReleases;
|
|
|
|
// The address of the array passed to the current make_mutable we are
|
|
// analyzing.
|
|
SILValue CurrentArrayAddr;
|
|
public:
|
|
COWArrayOpt(RCIdentityFunctionInfo *RCIA, SILLoop *L, DominanceAnalysis *DA)
|
|
: RCIA(RCIA), Function(L->getHeader()->getParent()), Loop(L),
|
|
Preheader(L->getLoopPreheader()), DomTree(DA->get(Function)),
|
|
ColdBlocks(DA), CachedSafeLoop(false, false) {}
|
|
|
|
bool run();
|
|
|
|
protected:
|
|
bool checkUniqueArrayContainer(SILValue ArrayContainer);
|
|
SmallPtrSetImpl<SILBasicBlock*> &getReachingBlocks();
|
|
bool isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
|
|
bool IsUniquelyIdentifiedArray = true);
|
|
bool checkSafeArrayAddressUses(UserList &AddressUsers);
|
|
bool checkSafeArrayValueUses(UserList &ArrayValueUsers);
|
|
bool checkSafeArrayElementUse(SILInstruction *UseInst, SILValue ArrayVal);
|
|
bool checkSafeElementValueUses(UserOperList &ElementValueUsers);
|
|
bool hoistMakeMutable(ArraySemanticsCall MakeMutable, bool dominatesExits);
|
|
bool dominatesExitingBlocks(SILBasicBlock *BB);
|
|
void hoistAddressProjections(Operand &ArrayOp);
|
|
bool hasLoopOnlyDestructorSafeArrayOperations();
|
|
SILValue getArrayAddressBase(SILValue V);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// \return true of the given container is known to be a unique copy of the
|
|
/// array with no aliases. Cases we check:
|
|
///
|
|
/// (1) An @inout argument.
|
|
///
|
|
/// (2) A local variable, which may be copied from a by-val argument,
|
|
/// initialized directly, or copied from a function return value. We don't
|
|
/// need to check how it is initialized here, because that will show up as a
|
|
/// store to the local's address. checkSafeArrayAddressUses will check that the
|
|
/// store is a simple initialization outside the loop.
|
|
bool COWArrayOpt::checkUniqueArrayContainer(SILValue ArrayContainer) {
|
|
if (auto *Arg = dyn_cast<SILArgument>(ArrayContainer)) {
|
|
// Check that the argument is passed as an inout type. This means there are
|
|
// no aliases accessible within this function scope.
|
|
auto Params = Function->getLoweredFunctionType()->getParameters();
|
|
ArrayRef<SILArgument *> FunctionArgs = Function->begin()->getArguments();
|
|
for (unsigned ArgIdx = 0, ArgEnd = Params.size();
|
|
ArgIdx != ArgEnd; ++ArgIdx) {
|
|
if (FunctionArgs[ArgIdx] != Arg)
|
|
continue;
|
|
|
|
if (!Params[ArgIdx].isIndirectInOut()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not an inout argument!\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
else if (isa<AllocStackInst>(ArrayContainer))
|
|
return true;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(ArrayContainer)) {
|
|
// A load of another array, which follows a make_mutable, also guarantees
|
|
// a unique container. This is the case if the current array is an element
|
|
// of the outer array in nested arrays.
|
|
if (HoistableLoads.count(LI) != 0)
|
|
return true;
|
|
}
|
|
|
|
// TODO: we should also take advantage of access markers to identify
|
|
// unique arrays.
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not an argument or local variable!\n");
|
|
return false;
|
|
}
|
|
|
|
/// Lazily compute blocks that may reach the loop.
|
|
SmallPtrSetImpl<SILBasicBlock*> &COWArrayOpt::getReachingBlocks() {
|
|
if (ReachingBlocks.empty()) {
|
|
SmallVector<SILBasicBlock*, 8> Worklist;
|
|
ReachingBlocks.insert(Preheader);
|
|
Worklist.push_back(Preheader);
|
|
while (!Worklist.empty()) {
|
|
SILBasicBlock *BB = Worklist.pop_back_val();
|
|
for (auto PI = BB->pred_begin(), PE = BB->pred_end(); PI != PE; ++PI) {
|
|
if (ReachingBlocks.insert(*PI).second)
|
|
Worklist.push_back(*PI);
|
|
}
|
|
}
|
|
}
|
|
return ReachingBlocks;
|
|
}
|
|
|
|
|
|
/// \return true if the instruction is a call to a non-mutating array semantic
|
|
/// function.
|
|
static bool isNonMutatingArraySemanticCall(SILInstruction *Inst) {
|
|
ArraySemanticsCall Call(Inst);
|
|
if (!Call)
|
|
return false;
|
|
|
|
switch (Call.getKind()) {
|
|
case ArrayCallKind::kNone:
|
|
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
|
|
case ArrayCallKind::kCheckSubscript:
|
|
case ArrayCallKind::kCheckIndex:
|
|
case ArrayCallKind::kGetCount:
|
|
case ArrayCallKind::kGetCapacity:
|
|
case ArrayCallKind::kGetElement:
|
|
case ArrayCallKind::kGetElementAddress:
|
|
return true;
|
|
case ArrayCallKind::kMakeMutable:
|
|
case ArrayCallKind::kMutateUnknown:
|
|
case ArrayCallKind::kReserveCapacityForAppend:
|
|
case ArrayCallKind::kWithUnsafeMutableBufferPointer:
|
|
case ArrayCallKind::kArrayInit:
|
|
case ArrayCallKind::kArrayUninitialized:
|
|
case ArrayCallKind::kAppendContentsOf:
|
|
case ArrayCallKind::kAppendElement:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ArrayCallKind in switch.");
|
|
}
|
|
|
|
/// \return true if the given retain instruction is followed by a release on the
|
|
/// same object prior to any potential mutating operation.
|
|
bool COWArrayOpt::isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
|
|
bool IsUniquelyIdentifiedArray) {
|
|
// If a retain is found outside the loop ignore it. Otherwise, it must
|
|
// have a matching @owned call.
|
|
if (!Loop->contains(RetainInst))
|
|
return true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Looking at retain " << *RetainInst);
|
|
|
|
// Walk forward looking for a release of ArrayLoad or element of
|
|
// ArrayUserSet. Note that ArrayUserSet does not included uses of elements
|
|
// within the Array. Consequently, checkSafeArrayElementUse must prove that
|
|
// no uses of the Array value, or projections of it can lead to mutation
|
|
// (element uses may only be retained/released).
|
|
for (auto II = std::next(SILBasicBlock::iterator(RetainInst)),
|
|
IE = RetainInst->getParent()->end(); II != IE; ++II) {
|
|
if (isRelease(&*II, RetainInst->getOperand(0), CurrentArrayAddr, RCIA,
|
|
MatchedReleases))
|
|
return true;
|
|
|
|
if (isa<RetainValueInst>(II) || isa<StrongRetainInst>(II))
|
|
continue;
|
|
|
|
// A side effect free instruction cannot mutate the array.
|
|
if (!II->mayHaveSideEffects())
|
|
continue;
|
|
|
|
// Non mutating array calls are safe.
|
|
if (isNonMutatingArraySemanticCall(&*II))
|
|
continue;
|
|
|
|
if (IsUniquelyIdentifiedArray) {
|
|
// It is okay for an identified loop to have releases in between a retain
|
|
// and a release. We can end up here if we have two retains in a row and
|
|
// then a release. The second retain cannot be matched with the release
|
|
// but must be matched by a follow up instruction.
|
|
// retain %ptr
|
|
// retain %ptr
|
|
// release %ptr
|
|
// array_operation(..., @owned %ptr)
|
|
//
|
|
// This is not the case for a potentially aliased array because a release
|
|
// can cause a destructor to run. The destructor in turn can cause
|
|
// arbitrary side effects.
|
|
if (isa<ReleaseValueInst>(II) || isa<StrongReleaseInst>(II))
|
|
continue;
|
|
|
|
if (ArrayUserSet.count(&*II)) // May be an array mutation.
|
|
break;
|
|
} else {
|
|
// Not safe.
|
|
break;
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: retained in loop!\n"
|
|
<< " " << *RetainInst);
|
|
return false;
|
|
}
|
|
|
|
/// \return true if all given users of an array address are safe to hoist
|
|
/// make_mutable across.
|
|
///
|
|
/// General calls are unsafe because they may copy the array struct which in
|
|
/// turn bumps the reference count of the array storage.
|
|
///
|
|
/// The same logic currently applies to both uses of the array struct itself and
|
|
/// uses of an aggregate containing the array.
|
|
///
|
|
/// This does not apply to addresses of elements within the array. e.g. it is
|
|
/// not safe to store to an element in the array because we may be storing an
|
|
/// alias to the array storage.
|
|
bool COWArrayOpt::checkSafeArrayAddressUses(UserList &AddressUsers) {
|
|
|
|
for (auto *UseInst : AddressUsers) {
|
|
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Check of this escape can reach the current loop.
|
|
if (!Loop->contains(UseInst->getParent()) &&
|
|
!getReachingBlocks().count(UseInst->getParent())) {
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
|
|
"through call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (auto *StInst = dyn_cast<StoreInst>(UseInst)) {
|
|
// Allow a local array to be initialized outside the loop via a by-value
|
|
// argument or return value. The array value may be returned by its
|
|
// initializer or some other factory function.
|
|
if (Loop->contains(StInst->getParent())) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: store inside loop!\n"
|
|
<< " " << *StInst);
|
|
return false;
|
|
}
|
|
|
|
SILValue InitArray = StInst->getSrc();
|
|
if (isa<SILArgument>(InitArray) || isa<ApplyInst>(InitArray))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
|
|
"through store!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (isa<DeallocStackInst>(UseInst)) {
|
|
// Handle destruction of a local array.
|
|
continue;
|
|
}
|
|
|
|
if (isa<MarkDependenceInst>(UseInst)) {
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Array use!\n"
|
|
<< " " << *UseInst);
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if this instruction is a safe array use if all of its users are
|
|
/// also safe array users.
|
|
static SILValue isTransitiveSafeUser(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
case SILInstructionKind::StructExtractInst:
|
|
case SILInstructionKind::TupleExtractInst:
|
|
case SILInstructionKind::UncheckedEnumDataInst:
|
|
case SILInstructionKind::StructInst:
|
|
case SILInstructionKind::TupleInst:
|
|
case SILInstructionKind::EnumInst:
|
|
case SILInstructionKind::UncheckedRefCastInst:
|
|
case SILInstructionKind::UncheckedBitwiseCastInst:
|
|
return cast<SingleValueInstruction>(I);
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Check that the use of an Array value, the value of an aggregate containing
|
|
/// an array, or the value of an element within the array, is safe w.r.t
|
|
/// make_mutable hoisting. Retains are safe as long as they are not inside the
|
|
/// Loop.
|
|
bool COWArrayOpt::checkSafeArrayValueUses(UserList &ArrayValueUsers) {
|
|
for (auto *UseInst : ArrayValueUsers) {
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
/// Is this a unary transitive safe user instruction. This means that the
|
|
/// instruction is safe only if all of its users are safe. Check this
|
|
/// recursively.
|
|
if (auto inst = isTransitiveSafeUser(UseInst)) {
|
|
if (std::all_of(inst->use_begin(), inst->use_end(),
|
|
[this](Operand *Op) -> bool {
|
|
return checkSafeArrayElementUse(Op->getUser(),
|
|
Op->get());
|
|
}))
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
if (isa<RetainValueInst>(UseInst)) {
|
|
if (isRetainReleasedBeforeMutate(UseInst))
|
|
continue;
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: found unmatched retain "
|
|
"value!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (isa<ReleaseValueInst>(UseInst)) {
|
|
// Releases are always safe. This case handles the release of an array
|
|
// buffer that is loaded from a local array struct.
|
|
continue;
|
|
}
|
|
|
|
if (isa<MarkDependenceInst>(UseInst))
|
|
continue;
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
continue;
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe Array value use!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Given an array value, recursively check that uses of elements within the
|
|
/// array are safe.
|
|
///
|
|
/// Consider any potentially mutating operation unsafe. Mutation would not
|
|
/// prevent make_mutable hoisting, but it would interfere with
|
|
/// isRetainReleasedBeforeMutate. Since struct_extract users are not visited by
|
|
/// StructUseCollector, they are never added to ArrayUserSet. Thus we check here
|
|
/// that no mutating struct_extract users exist.
|
|
///
|
|
/// After the lower aggregates pass, SIL contains chains of struct_extract and
|
|
/// retain_value instructions. e.g.
|
|
/// %a = load %0 : $*Array<Int>
|
|
/// %b = struct_extract %a : $Array<Int>, #Array._buffer
|
|
/// %s = struct_extract %b : $_ArrayBuffer<Int>, #_ArrayBuffer.storage
|
|
/// retain_value %s : $Optional<Builtin.NativeObject>
|
|
///
|
|
/// SILCombine typically simplifies this by bypassing the
|
|
/// struct_extract. However, for completeness this analysis has the ability to
|
|
/// follow struct_extract users.
|
|
///
|
|
/// Since this does not recurse through multi-operand instructions, no visited
|
|
/// set is necessary.
|
|
bool COWArrayOpt::checkSafeArrayElementUse(SILInstruction *UseInst,
|
|
SILValue ArrayVal) {
|
|
if ((isa<RetainValueInst>(UseInst) || isa<StrongRetainInst>(UseInst)) &&
|
|
isRetainReleasedBeforeMutate(UseInst))
|
|
return true;
|
|
|
|
if (isa<ReleaseValueInst>(UseInst) || isa<StrongReleaseInst>(UseInst))
|
|
// Releases are always safe. This case handles the release of an array
|
|
// buffer that is loaded from a local array struct.
|
|
return true;
|
|
|
|
if (isa<RefTailAddrInst>(UseInst)) {
|
|
return true;
|
|
}
|
|
|
|
// Look for a safe mark_dependence instruction use.
|
|
//
|
|
// This use looks something like:
|
|
//
|
|
// %57 = load %56 : $*Builtin.BridgeObject from Array<Int>
|
|
// %58 = unchecked_ref_cast %57 : $Builtin.BridgeObject to
|
|
// $_ContiguousArray
|
|
// %59 = unchecked_ref_cast %58 : $__ContiguousArrayStorageBase to
|
|
// $Builtin.NativeObject
|
|
// %60 = struct_extract %53 : $UnsafeMutablePointer<Int>,
|
|
// #UnsafeMutablePointer
|
|
// %61 = pointer_to_address %60 : $Builtin.RawPointer to strict $*Int
|
|
// %62 = mark_dependence %61 : $*Int on %59 : $Builtin.NativeObject
|
|
//
|
|
// The struct_extract, unchecked_ref_cast is handled below in the
|
|
// "Transitive SafeArrayElementUse" code.
|
|
if (isa<MarkDependenceInst>(UseInst))
|
|
return true;
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
return true;
|
|
|
|
// If this is an instruction which is a safe array element use if and only if
|
|
// all of its users are safe array element uses, recursively check its uses
|
|
// and return false if any of them are not transitive escape array element
|
|
// uses.
|
|
if (auto result = isTransitiveSafeUser(UseInst)) {
|
|
return std::all_of(result->use_begin(), result->use_end(),
|
|
[this, &ArrayVal](Operand *UI) -> bool {
|
|
return checkSafeArrayElementUse(UI->getUser(),
|
|
ArrayVal);
|
|
});
|
|
}
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Element use!\n"
|
|
<< *UseInst);
|
|
return false;
|
|
}
|
|
|
|
/// Check that the use of an Array element is safe w.r.t. make_mutable hoisting.
|
|
///
|
|
/// This logic should be similar to checkSafeArrayElementUse
|
|
bool COWArrayOpt::checkSafeElementValueUses(UserOperList &ElementValueUsers) {
|
|
for (auto &Pair : ElementValueUsers) {
|
|
SILInstruction *UseInst = Pair.first;
|
|
Operand *ArrayValOper = Pair.second;
|
|
if (!checkSafeArrayElementUse(UseInst, ArrayValOper->get()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check if a loop has only 'safe' array operations such that we can hoist the
|
|
/// uniqueness check even without having an 'identified' object.
|
|
///
|
|
/// 'Safe' array operations are:
|
|
/// * all array semantic functions
|
|
/// * stores to array elements
|
|
/// * any instruction that does not have side effects.
|
|
/// * any retain must be matched by a release before we hit a make_unique.
|
|
///
|
|
/// Note, that a release in this modus (we don't have a uniquely identified
|
|
/// object) is not safe because the destructor of what we are releasing might
|
|
/// be unsafe (creating a reference).
|
|
///
|
|
bool COWArrayOpt::hasLoopOnlyDestructorSafeArrayOperations() {
|
|
if (CachedSafeLoop.first)
|
|
return CachedSafeLoop.second;
|
|
|
|
assert(!CachedSafeLoop.second &&
|
|
"We only move to a true state below");
|
|
|
|
// We will compute the state of this loop now.
|
|
CachedSafeLoop.first = true;
|
|
|
|
// We need to cleanup the MatchedRelease on return.
|
|
auto ReturnWithCleanup = [&] (bool LoopHasSafeOperations) {
|
|
MatchedReleases.clear();
|
|
return LoopHasSafeOperations;
|
|
};
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " checking whether loop only has safe array "
|
|
"operations ...\n");
|
|
CanType SameTy;
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
for (auto &It : *BB) {
|
|
auto *Inst = &It;
|
|
LLVM_DEBUG(llvm::dbgs() << " visiting: " << *Inst);
|
|
|
|
// Semantic calls are safe.
|
|
ArraySemanticsCall Sem(Inst);
|
|
if (Sem) {
|
|
auto Kind = Sem.getKind();
|
|
// Safe because they create new arrays.
|
|
if (Kind == ArrayCallKind::kArrayInit ||
|
|
Kind == ArrayCallKind::kArrayUninitialized)
|
|
continue;
|
|
// All array types must be the same. This is a stronger guaranteed than
|
|
// we actually need. The requirement is that we can't create another
|
|
// reference to the array by performing an array operation: for example,
|
|
// storing or appending one array into a two-dimensional array.
|
|
// Checking
|
|
// that all types are the same make guarantees that this cannot happen.
|
|
if (SameTy.isNull()) {
|
|
SameTy = Sem.getSelf()->getType().getASTType();
|
|
continue;
|
|
}
|
|
|
|
if (Sem.getSelf()->getType().getASTType() != SameTy) {
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) mismatching array types\n");
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
|
|
// Safe array semantics operation.
|
|
continue;
|
|
}
|
|
|
|
// Stores to array elements.
|
|
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
|
|
if (isAddressOfArrayElement(SI->getDest()))
|
|
continue;
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown store " << *SI);
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
|
|
// Instructions without side effects are safe.
|
|
if (!Inst->mayHaveSideEffects())
|
|
continue;
|
|
if (isa<CondFailInst>(Inst))
|
|
continue;
|
|
if (isa<AllocationInst>(Inst) || isa<DeallocStackInst>(Inst))
|
|
continue;
|
|
|
|
if (isa<RetainValueInst>(Inst) || isa<StrongRetainInst>(Inst))
|
|
if (isRetainReleasedBeforeMutate(Inst, false))
|
|
continue;
|
|
|
|
// If the instruction is a matched release we can ignore it.
|
|
if (auto SRI = dyn_cast<StrongReleaseInst>(Inst))
|
|
if (MatchedReleases.count(&SRI->getOperandRef()))
|
|
continue;
|
|
if (auto RVI = dyn_cast<ReleaseValueInst>(Inst))
|
|
if (MatchedReleases.count(&RVI->getOperandRef()))
|
|
continue;
|
|
|
|
// Ignore fix_lifetime. It cannot increment ref counts.
|
|
if (isa<FixLifetimeInst>(Inst))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown operation " << *Inst);
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " (YES)\n");
|
|
CachedSafeLoop.second = true;
|
|
return ReturnWithCleanup(true);
|
|
}
|
|
|
|
/// Return the underlying Array address after stripping off all address
|
|
/// projections. Returns an invalid SILValue if the array base does not dominate
|
|
/// the loop.
|
|
SILValue COWArrayOpt::getArrayAddressBase(SILValue V) {
|
|
while (true) {
|
|
V = stripSinglePredecessorArgs(V);
|
|
if (auto *RefCast = dyn_cast<UncheckedRefCastInst>(V)) {
|
|
V = RefCast->getOperand();
|
|
continue;
|
|
}
|
|
if (auto *SE = dyn_cast<StructExtractInst>(V)) {
|
|
V = SE->getOperand();
|
|
continue;
|
|
}
|
|
if (auto *IA = dyn_cast<IndexAddrInst>(V)) {
|
|
// index_addr is the only projection which has a second operand: the index.
|
|
// Check if the index is loop invariant.
|
|
SILBasicBlock *IndexBlock = IA->getIndex()->getParentBlock();
|
|
if (IndexBlock && !DomTree->dominates(IndexBlock, Preheader))
|
|
return SILValue();
|
|
V = IA->getBase();
|
|
continue;
|
|
}
|
|
if (!Projection::isAddressProjection(V))
|
|
break;
|
|
auto *Inst = cast<SingleValueInstruction>(V);
|
|
if (Inst->getNumOperands() > 1)
|
|
break;
|
|
V = Inst->getOperand(0);
|
|
}
|
|
if (auto *LI = dyn_cast<LoadInst>(V)) {
|
|
if (HoistableLoads.count(LI) != 0)
|
|
return V;
|
|
}
|
|
SILBasicBlock *ArrayAddrBaseBB = V->getParentBlock();
|
|
if (ArrayAddrBaseBB && !DomTree->dominates(ArrayAddrBaseBB, Preheader))
|
|
return SILValue();
|
|
|
|
return V;
|
|
}
|
|
|
|
/// Hoist the address projection rooted in \p Op to \p InsertBefore.
|
|
/// Requires the projected value to dominate the insertion point.
|
|
///
|
|
/// Will look through single basic block predecessor arguments.
|
|
void COWArrayOpt::hoistAddressProjections(Operand &ArrayOp) {
|
|
SILValue V = ArrayOp.get();
|
|
SILInstruction *Prev = nullptr;
|
|
SILInstruction *InsertPt = Preheader->getTerminator();
|
|
while (true) {
|
|
SILValue Incoming = stripSinglePredecessorArgs(V);
|
|
|
|
// Forward the incoming arg from a single predecessor.
|
|
if (V != Incoming) {
|
|
if (V == ArrayOp.get()) {
|
|
// If we are the operand itself set the operand to the incoming
|
|
// argument.
|
|
ArrayOp.set(Incoming);
|
|
V = Incoming;
|
|
} else {
|
|
// Otherwise, set the previous projections operand to the incoming
|
|
// argument.
|
|
assert(Prev && "Must have seen a projection");
|
|
Prev->setOperand(0, Incoming);
|
|
V = Incoming;
|
|
}
|
|
}
|
|
|
|
switch (V->getKind()) {
|
|
case ValueKind::LoadInst:
|
|
case ValueKind::StructElementAddrInst:
|
|
case ValueKind::TupleElementAddrInst:
|
|
case ValueKind::RefElementAddrInst:
|
|
case ValueKind::RefTailAddrInst:
|
|
case ValueKind::UncheckedRefCastInst:
|
|
case ValueKind::StructExtractInst:
|
|
case ValueKind::IndexAddrInst:
|
|
case ValueKind::UncheckedTakeEnumDataAddrInst: {
|
|
auto *Inst = cast<SingleValueInstruction>(V);
|
|
// We are done once the current projection dominates the insert point.
|
|
if (DomTree->dominates(Inst->getParent(), Preheader))
|
|
return;
|
|
|
|
assert(!isa<LoadInst>(V) || HoistableLoads.count(cast<LoadInst>(V)) != 0);
|
|
|
|
// Move the current projection and memorize it for the next iteration.
|
|
Prev = Inst;
|
|
Inst->moveBefore(InsertPt);
|
|
InsertPt = Inst;
|
|
V = Inst->getOperand(0);
|
|
continue;
|
|
}
|
|
default:
|
|
assert(DomTree->dominates(V->getParentBlock(), Preheader) &&
|
|
"The projected value must dominate the insertion point");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check if this call to "make_mutable" is hoistable, and move it, or delete it
|
|
/// if it's already hoisted.
|
|
bool COWArrayOpt::hoistMakeMutable(ArraySemanticsCall MakeMutable,
|
|
bool dominatesExits) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Checking mutable array: " <<CurrentArrayAddr);
|
|
|
|
// We can hoist address projections (even if they are only conditionally
|
|
// executed).
|
|
SILValue ArrayAddrBase = getArrayAddressBase(CurrentArrayAddr);
|
|
if (!ArrayAddrBase) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: does not dominate loop!\n");
|
|
return false;
|
|
}
|
|
|
|
SmallVector<unsigned, 4> AccessPath;
|
|
SILValue ArrayContainer = getAccessPath(CurrentArrayAddr, AccessPath);
|
|
bool arrayContainerIsUnique = checkUniqueArrayContainer(ArrayContainer);
|
|
|
|
StructUseCollector StructUses;
|
|
|
|
// Check whether we can hoist make_mutable based on the operations that are
|
|
// in the loop.
|
|
// Note that in this case we don't verify that the array buffer is not aliased
|
|
// and therefore we must be conservative if the make_mutable is executed
|
|
// conditionally (i.e. doesn't dominate all exit blocks).
|
|
// The test SILOptimizer/cowarray_opt.sil: dont_hoist_if_executed_conditionally
|
|
// shows the problem.
|
|
if (hasLoopOnlyDestructorSafeArrayOperations() && dominatesExits) {
|
|
// Done. We can hoist the make_mutable.
|
|
// We still need the array uses later to check if we can add loads to
|
|
// HoistableLoads.
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
} else {
|
|
// There are some unsafe operations in the loop. If the array is uniquely
|
|
// identifyable and not escaping, then we are good if all the array uses
|
|
// are safe.
|
|
if (!arrayContainerIsUnique) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: is not unique!\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the Array is not retained with this loop and it's address does
|
|
// not escape within this function.
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
for (auto *Oper : StructUses.Visited)
|
|
ArrayUserSet.insert(Oper->getUser());
|
|
|
|
if (!checkSafeArrayAddressUses(StructUses.AggregateAddressUsers) ||
|
|
!checkSafeArrayAddressUses(StructUses.StructAddressUsers) ||
|
|
!checkSafeArrayValueUses(StructUses.StructValueUsers) ||
|
|
!checkSafeElementValueUses(StructUses.ElementValueUsers) ||
|
|
!StructUses.ElementAddressUsers.empty())
|
|
return false;
|
|
}
|
|
|
|
// Hoist the make_mutable.
|
|
LLVM_DEBUG(llvm::dbgs() << " Hoisting make_mutable: " << *MakeMutable);
|
|
|
|
hoistAddressProjections(MakeMutable.getSelfOperand());
|
|
|
|
assert(MakeMutable.canHoist(Preheader->getTerminator(), DomTree) &&
|
|
"Should be able to hoist make_mutable");
|
|
|
|
MakeMutable.hoist(Preheader->getTerminator(), DomTree);
|
|
|
|
// Register array loads. This is needed for hoisting make_mutable calls of
|
|
// inner arrays in the two-dimensional case.
|
|
if (arrayContainerIsUnique &&
|
|
StructUses.hasSingleAddressUse((ApplyInst *)MakeMutable)) {
|
|
for (auto use : MakeMutable.getSelf()->getUses()) {
|
|
if (auto *LI = dyn_cast<LoadInst>(use->getUser()))
|
|
HoistableLoads.insert(LI);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool COWArrayOpt::dominatesExitingBlocks(SILBasicBlock *BB) {
|
|
llvm::SmallVector<SILBasicBlock *, 8> ExitingBlocks;
|
|
Loop->getExitingBlocks(ExitingBlocks);
|
|
for (SILBasicBlock *Exiting : ExitingBlocks) {
|
|
if (!DomTree->dominates(BB, Exiting))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool COWArrayOpt::run() {
|
|
LLVM_DEBUG(llvm::dbgs() << " Array Opts in Loop " << *Loop);
|
|
|
|
Preheader = Loop->getLoopPreheader();
|
|
if (!Preheader) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Loop: No Preheader!\n");
|
|
return false;
|
|
}
|
|
|
|
// Map an array to a hoisted make_mutable call for the current loop. An array
|
|
// is only mapped to a call once the analysis has determined that no
|
|
// make_mutable calls are required within the loop body for that array.
|
|
llvm::SmallDenseMap<SILValue, ApplyInst*> ArrayMakeMutableMap;
|
|
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
if (ColdBlocks.isCold(BB))
|
|
continue;
|
|
bool dominatesExits = dominatesExitingBlocks(BB);
|
|
for (auto II = BB->begin(), IE = BB->end(); II != IE;) {
|
|
// Inst may be moved by hoistMakeMutable.
|
|
SILInstruction *Inst = &*II;
|
|
++II;
|
|
ArraySemanticsCall MakeMutableCall(Inst, "array.make_mutable");
|
|
if (!MakeMutableCall)
|
|
continue;
|
|
|
|
CurrentArrayAddr = MakeMutableCall.getSelf();
|
|
auto HoistedCallEntry = ArrayMakeMutableMap.find(CurrentArrayAddr);
|
|
if (HoistedCallEntry == ArrayMakeMutableMap.end()) {
|
|
if (!hoistMakeMutable(MakeMutableCall, dominatesExits)) {
|
|
ArrayMakeMutableMap[CurrentArrayAddr] = nullptr;
|
|
continue;
|
|
}
|
|
|
|
ArrayMakeMutableMap[CurrentArrayAddr] = MakeMutableCall;
|
|
HasChanged = true;
|
|
continue;
|
|
}
|
|
|
|
if (!HoistedCallEntry->second)
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing make_mutable call: "
|
|
<< *MakeMutableCall);
|
|
MakeMutableCall.removeCall();
|
|
HasChanged = true;
|
|
}
|
|
}
|
|
return HasChanged;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class COWArrayOptPass : public SILFunctionTransform {
|
|
void run() override {
|
|
// FIXME: Update for ownership.
|
|
if (getFunction()->hasOwnership())
|
|
return;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "COW Array Opts in Func "
|
|
<< getFunction()->getName() << "\n");
|
|
|
|
auto *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
auto *LA = PM->getAnalysis<SILLoopAnalysis>();
|
|
auto *RCIA =
|
|
PM->getAnalysis<RCIdentityAnalysis>()->get(getFunction());
|
|
SILLoopInfo *LI = LA->get(getFunction());
|
|
if (LI->empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Function: No loops.\n");
|
|
return;
|
|
}
|
|
|
|
// Create a flat list of loops in loop-tree postorder (bottom-up).
|
|
llvm::SmallVector<SILLoop *, 16> Loops;
|
|
std::function<void (SILLoop*)> pushChildren = [&](SILLoop *L) {
|
|
for (auto *SubLoop : *L)
|
|
pushChildren(SubLoop);
|
|
Loops.push_back(L);
|
|
};
|
|
for (auto *L : *LI)
|
|
pushChildren(L);
|
|
|
|
bool HasChanged = false;
|
|
for (auto *L : Loops)
|
|
HasChanged |= COWArrayOpt(RCIA, L, DA).run();
|
|
|
|
if (HasChanged)
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createCOWArrayOpts() {
|
|
return new COWArrayOptPass();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This optimization specializes loops with calls to
|
|
/// "array.props.isNative/needsElementTypeCheck".
|
|
///
|
|
/// The "array.props.isNative/needsElementTypeCheck" predicate has the property
|
|
/// that if it is true/false respectively for the array struct it is true/false
|
|
/// respectively until somebody writes a new array struct over the memory
|
|
/// location. Less abstractly, a fast native swift array does not transition to
|
|
/// a slow array (be it a cocoa array, or be it an array that needs type
|
|
/// checking) except if we store a new array to the variable that holds it.
|
|
///
|
|
/// Using this property we can hoist the predicate above a region where no such
|
|
/// store can take place.
|
|
///
|
|
/// func f(a : A[AClass]) {
|
|
/// for i in 0..a.count {
|
|
/// let b = a.props.isNative()
|
|
/// .. += _getElement(i, b)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// ==>
|
|
///
|
|
/// func f(a : A[AClass]) {
|
|
/// let b = a.props.isNative
|
|
/// if (b) {
|
|
/// for i in 0..a.count {
|
|
/// .. += _getElement(i, false)
|
|
/// }
|
|
/// } else {
|
|
/// for i in 0..a.count {
|
|
/// let a = a.props.isNative
|
|
/// .. += _getElement(i, a)
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
static llvm::cl::opt<bool> ShouldSpecializeArrayProps("sil-array-props",
|
|
llvm::cl::init(true));
|
|
|
|
/// Analysis whether it is safe to specialize this loop nest based on the
|
|
/// array.props function calls it contains. It is safe to hoist array.props
|
|
/// calls if the array does not escape such that the array container could be
|
|
/// overwritten in the hoisted region.
|
|
/// This analysis also checks if we can clone the instructions in the loop nest.
|
|
class ArrayPropertiesAnalysis {
|
|
using UserList = StructUseCollector::UserList;
|
|
using UserOperList = StructUseCollector::UserOperList;
|
|
|
|
SILFunction *Fun;
|
|
SILLoop *Loop;
|
|
SILBasicBlock *Preheader;
|
|
DominanceInfo *DomTree;
|
|
|
|
llvm::SmallSet<SILValue, 16> HoistableArray;
|
|
|
|
SmallPtrSet<SILBasicBlock *, 16> ReachingBlocks;
|
|
SmallPtrSet<SILBasicBlock *, 16> CachedExitingBlocks;
|
|
public:
|
|
ArrayPropertiesAnalysis(SILLoop *L, DominanceAnalysis *DA)
|
|
: Fun(L->getHeader()->getParent()), Loop(L), Preheader(nullptr),
|
|
DomTree(DA->get(Fun)) {}
|
|
|
|
bool run() {
|
|
Preheader = Loop->getLoopPreheader();
|
|
if (!Preheader) {
|
|
LLVM_DEBUG(llvm::dbgs() << "ArrayPropertiesAnalysis: "
|
|
"Missing preheader for "
|
|
<< *Loop);
|
|
return false;
|
|
}
|
|
|
|
// Check whether this is a 'array.props' instruction and whether we
|
|
// can hoist it. Heuristic: We only want to hoist array.props instructions
|
|
// if we can hoist all of them - only then can we get rid of all the
|
|
// control-flow if we specialize. Hoisting some but not others is not as
|
|
// beneficial. This heuristic also simplifies which regions we want to
|
|
// specialize on. We will specialize the outermost loopnest that has
|
|
// 'array.props' instructions in its preheader.
|
|
bool FoundHoistable = false;
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
for (auto &Inst : *BB) {
|
|
|
|
// Can't clone alloc_stack instructions whose dealloc_stack is outside
|
|
// the loop.
|
|
if (!Loop->canDuplicate(&Inst))
|
|
return false;
|
|
|
|
ArraySemanticsCall ArrayPropsInst(&Inst, "array.props", true);
|
|
if (!ArrayPropsInst)
|
|
continue;
|
|
|
|
if (!canHoistArrayPropsInst(ArrayPropsInst))
|
|
return false;
|
|
FoundHoistable = true;
|
|
}
|
|
}
|
|
|
|
return FoundHoistable;
|
|
}
|
|
|
|
private:
|
|
|
|
/// Strip the struct load and the address projection to the location
|
|
/// holding the array struct.
|
|
SILValue stripArrayStructLoad(SILValue V) {
|
|
if (auto LI = dyn_cast<LoadInst>(V)) {
|
|
auto Val = LI->getOperand();
|
|
// We could have two arrays in a surrounding container so we can only
|
|
// strip off the 'array struct' project.
|
|
// struct Container {
|
|
// var a1 : [ClassA]
|
|
// var a2 : [ClassA]
|
|
// }
|
|
// 'a1' and 'a2' are different arrays.
|
|
if (auto SEAI = dyn_cast<StructElementAddrInst>(Val))
|
|
Val = SEAI->getOperand();
|
|
return Val;
|
|
}
|
|
return V;
|
|
}
|
|
|
|
SmallPtrSetImpl<SILBasicBlock *> &getReachingBlocks() {
|
|
if (ReachingBlocks.empty()) {
|
|
SmallVector<SILBasicBlock *, 8> Worklist;
|
|
ReachingBlocks.insert(Preheader);
|
|
Worklist.push_back(Preheader);
|
|
while (!Worklist.empty()) {
|
|
SILBasicBlock *BB = Worklist.pop_back_val();
|
|
for (auto PI = BB->pred_begin(), PE = BB->pred_end(); PI != PE; ++PI) {
|
|
if (ReachingBlocks.insert(*PI).second)
|
|
Worklist.push_back(*PI);
|
|
}
|
|
}
|
|
}
|
|
return ReachingBlocks;
|
|
}
|
|
|
|
/// Array address uses are safe if they don't store to the array struct. We
|
|
/// could for example store an NSArray array struct on top of the array. For
|
|
/// example, an opaque function that uses the array's address could store a
|
|
/// new array onto it.
|
|
bool checkSafeArrayAddressUses(UserList &AddressUsers) {
|
|
for (auto *UseInst : AddressUsers) {
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
continue;
|
|
|
|
if (isa<DeallocStackInst>(UseInst)) {
|
|
// Handle destruction of a local array.
|
|
continue;
|
|
}
|
|
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Check if this escape can reach the current loop.
|
|
if (!Loop->contains(UseInst->getParent()) &&
|
|
!getReachingBlocks().count(UseInst->getParent())) {
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: may escape through call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (auto *StInst = dyn_cast<StoreInst>(UseInst)) {
|
|
// Allow a local array to be initialized outside the loop via a by-value
|
|
// argument or return value. The array value may be returned by its
|
|
// initializer or some other factory function.
|
|
if (Loop->contains(StInst->getParent())) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: store inside loop!\n"
|
|
<< " " << *StInst);
|
|
return false;
|
|
}
|
|
SILValue InitArray = StInst->getSrc();
|
|
if (isa<SILArgument>(InitArray) || isa<ApplyInst>(InitArray))
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Array use!\n"
|
|
<< " " << *UseInst);
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, all of our users are sane. The array does not escape.
|
|
return true;
|
|
}
|
|
|
|
/// Value uses are generally safe. We can't change the state of an array
|
|
/// through a value use.
|
|
bool checkSafeArrayValueUses(UserList &ValueUsers) {
|
|
return true;
|
|
}
|
|
bool checkSafeElementValueUses(UserOperList &ElementValueUsers) {
|
|
return true;
|
|
}
|
|
|
|
// We have a safe container if the array container is passed as a function
|
|
// argument by-value or by inout reference. In either case there can't be an
|
|
// alias of the container. Alternatively, we can have a local variable. We
|
|
// will check in checkSafeArrayAddressUses that all initialization stores to
|
|
// this variable are safe (i.e the store dominates the loop etc).
|
|
bool isSafeArrayContainer(SILValue V) {
|
|
if (auto *Arg = dyn_cast<SILArgument>(V)) {
|
|
// Check that the argument is passed as an inout or by value type. This
|
|
// means there are no aliases accessible within this function scope.
|
|
auto Params = Fun->getLoweredFunctionType()->getParameters();
|
|
ArrayRef<SILArgument *> FunctionArgs = Fun->begin()->getArguments();
|
|
for (unsigned ArgIdx = 0, ArgEnd = Params.size(); ArgIdx != ArgEnd;
|
|
++ArgIdx) {
|
|
if (FunctionArgs[ArgIdx] != Arg)
|
|
continue;
|
|
|
|
if (!Params[ArgIdx].isIndirectInOut()
|
|
&& Params[ArgIdx].isFormalIndirect()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: Not an inout or "
|
|
"by val argument!\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} else if (isa<AllocStackInst>(V))
|
|
return true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not a know array container type!\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
SmallPtrSetImpl<SILBasicBlock *> &getLoopExitingBlocks() {
|
|
if (!CachedExitingBlocks.empty())
|
|
return CachedExitingBlocks;
|
|
SmallVector<SILBasicBlock *, 16> ExitingBlocks;
|
|
Loop->getExitingBlocks(ExitingBlocks);
|
|
CachedExitingBlocks.insert(ExitingBlocks.begin(), ExitingBlocks.end());
|
|
return CachedExitingBlocks;
|
|
}
|
|
|
|
bool isConditionallyExecuted(ArraySemanticsCall Call) {
|
|
auto CallBB = (*Call).getParent();
|
|
for (auto *ExitingBlk : getLoopExitingBlocks())
|
|
if (!DomTree->dominates(CallBB, ExitingBlk))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool isClassElementTypeArray(SILValue Arr) {
|
|
auto Ty = Arr->getType();
|
|
if (auto BGT = Ty.getAs<BoundGenericStructType>()) {
|
|
// Check the array element type parameter.
|
|
bool isClass = false;
|
|
for (auto EltTy : BGT->getGenericArgs()) {
|
|
if (!EltTy->hasReferenceSemantics())
|
|
return false;
|
|
isClass = true;
|
|
}
|
|
return isClass;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool canHoistArrayPropsInst(ArraySemanticsCall Call) {
|
|
// TODO: This is way conservative. If there is an unconditionally
|
|
// executed call to the same array we can still hoist it.
|
|
if (isConditionallyExecuted(Call))
|
|
return false;
|
|
|
|
SILValue Arr = Call.getSelf();
|
|
|
|
// We don't attempt to hoist non-class element type arrays.
|
|
if (!isClassElementTypeArray(Arr))
|
|
return false;
|
|
|
|
// We can strip the load that might even occur in the loop because we make
|
|
// sure that no unsafe store to the array's address takes place.
|
|
Arr = stripArrayStructLoad(Arr);
|
|
|
|
// Have we already seen this array and deemed it safe?
|
|
if (HoistableArray.count(Arr))
|
|
return true;
|
|
|
|
// Do we know how to hoist the arguments of this call.
|
|
if (!Call.canHoist(Preheader->getTerminator(), DomTree))
|
|
return false;
|
|
|
|
SmallVector<unsigned, 4> AccessPath;
|
|
SILValue ArrayContainer = getAccessPath(Arr, AccessPath);
|
|
|
|
if (!isSafeArrayContainer(ArrayContainer))
|
|
return false;
|
|
|
|
StructUseCollector StructUses;
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
|
|
if (!checkSafeArrayAddressUses(StructUses.AggregateAddressUsers) ||
|
|
!checkSafeArrayAddressUses(StructUses.StructAddressUsers) ||
|
|
!checkSafeArrayValueUses(StructUses.StructValueUsers) ||
|
|
!checkSafeElementValueUses(StructUses.ElementValueUsers) ||
|
|
!StructUses.ElementAddressUsers.empty())
|
|
return false;
|
|
|
|
HoistableArray.insert(Arr);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// Clone a single exit multiple exit region starting at basic block and ending
|
|
/// in a set of basic blocks. Updates the dominator tree with the cloned blocks.
|
|
/// However, the client needs to update the dominator of the exit blocks.
|
|
///
|
|
/// FIXME: SILCloner is used to cloned CFG regions by multiple clients. All
|
|
/// functionality for generating valid SIL (including the DomTree) should be
|
|
/// handled by the common SILCloner.
|
|
class RegionCloner : public SILCloner<RegionCloner> {
|
|
DominanceInfo &DomTree;
|
|
SILBasicBlock *StartBB;
|
|
|
|
friend class SILInstructionVisitor<RegionCloner>;
|
|
friend class SILCloner<RegionCloner>;
|
|
|
|
public:
|
|
RegionCloner(SILBasicBlock *EntryBB, DominanceInfo &DT)
|
|
: SILCloner<RegionCloner>(*EntryBB->getParent()), DomTree(DT),
|
|
StartBB(EntryBB) {}
|
|
|
|
SILBasicBlock *cloneRegion(ArrayRef<SILBasicBlock *> exitBBs) {
|
|
assert (DomTree.getNode(StartBB) != nullptr && "Can't cloned dead code");
|
|
|
|
// We need to split any edge from a non cond_br basic block leading to a
|
|
// exit block. After cloning this edge will become critical if it came from
|
|
// inside the cloned region. The SSAUpdater can't handle critical non
|
|
// cond_br edges.
|
|
//
|
|
// FIXME: remove this in the next commit. The SILCloner will always do it.
|
|
for (auto *BB : exitBBs) {
|
|
SmallVector<SILBasicBlock *, 8> Preds(BB->getPredecessorBlocks());
|
|
for (auto *Pred : Preds)
|
|
if (!isa<CondBranchInst>(Pred->getTerminator()) &&
|
|
!isa<BranchInst>(Pred->getTerminator()))
|
|
splitEdgesFromTo(Pred, BB, &DomTree, nullptr);
|
|
}
|
|
|
|
cloneReachableBlocks(StartBB, exitBBs);
|
|
|
|
// Add dominator tree nodes for the new basic blocks.
|
|
fixDomTree();
|
|
|
|
// Update SSA form for values used outside of the copied region.
|
|
updateSSAForm();
|
|
return getOpBasicBlock(StartBB);
|
|
}
|
|
|
|
protected:
|
|
/// Clone the dominator tree from the original region to the cloned region.
|
|
void fixDomTree() {
|
|
for (auto *BB : originalPreorderBlocks()) {
|
|
auto *ClonedBB = getOpBasicBlock(BB);
|
|
auto *OrigDomBB = DomTree.getNode(BB)->getIDom()->getBlock();
|
|
if (BB == StartBB) {
|
|
// The cloned start node shares the same dominator as the original node.
|
|
auto *ClonedNode = DomTree.addNewBlock(ClonedBB, OrigDomBB);
|
|
(void)ClonedNode;
|
|
assert(ClonedNode);
|
|
continue;
|
|
}
|
|
// Otherwise, map the dominator structure using the mapped block.
|
|
DomTree.addNewBlock(ClonedBB, getOpBasicBlock(OrigDomBB));
|
|
}
|
|
}
|
|
|
|
SILValue getMappedValue(SILValue V) {
|
|
if (auto *BB = V->getParentBlock()) {
|
|
if (!DomTree.dominates(StartBB, BB)) {
|
|
// Must be a value that dominates the start basic block.
|
|
assert(DomTree.dominates(BB, StartBB) &&
|
|
"Must dominated the start of the cloned region");
|
|
return V;
|
|
}
|
|
}
|
|
return SILCloner<RegionCloner>::getMappedValue(V);
|
|
}
|
|
|
|
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
|
|
SILCloner<RegionCloner>::postProcess(Orig, Cloned);
|
|
}
|
|
|
|
/// Update SSA form for values that are used outside the region.
|
|
void updateSSAForValue(SILBasicBlock *OrigBB, SILValue V,
|
|
SILSSAUpdater &SSAUp) {
|
|
// Collect outside uses.
|
|
SmallVector<UseWrapper, 16> UseList;
|
|
for (auto Use : V->getUses())
|
|
if (!isBlockCloned(Use->getUser()->getParent())) {
|
|
UseList.push_back(UseWrapper(Use));
|
|
}
|
|
if (UseList.empty())
|
|
return;
|
|
|
|
// Update SSA form.
|
|
SSAUp.Initialize(V->getType());
|
|
SSAUp.AddAvailableValue(OrigBB, V);
|
|
SILValue NewVal = getMappedValue(V);
|
|
SSAUp.AddAvailableValue(getOpBasicBlock(OrigBB), NewVal);
|
|
for (auto U : UseList) {
|
|
Operand *Use = U;
|
|
SSAUp.RewriteUse(*Use);
|
|
}
|
|
}
|
|
|
|
void updateSSAForm() {
|
|
SILSSAUpdater SSAUp;
|
|
for (auto *origBB : originalPreorderBlocks()) {
|
|
// Update outside used phi values.
|
|
for (auto *arg : origBB->getArguments())
|
|
updateSSAForValue(origBB, arg, SSAUp);
|
|
|
|
// Update outside used instruction values.
|
|
for (auto &inst : *origBB) {
|
|
for (auto result : inst.getResults())
|
|
updateSSAForValue(origBB, result, SSAUp);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// This class transforms a hoistable loop nest into a speculatively specialized
|
|
/// loop based on array.props calls.
|
|
class ArrayPropertiesSpecializer {
|
|
DominanceInfo *DomTree;
|
|
SILLoopAnalysis *LoopAnalysis;
|
|
SILBasicBlock *HoistableLoopPreheader;
|
|
|
|
public:
|
|
ArrayPropertiesSpecializer(DominanceInfo *DT, SILLoopAnalysis *LA,
|
|
SILBasicBlock *Hoistable)
|
|
: DomTree(DT), LoopAnalysis(LA), HoistableLoopPreheader(Hoistable) {}
|
|
|
|
void run() {
|
|
specializeLoopNest();
|
|
}
|
|
|
|
SILLoop *getLoop() {
|
|
auto *LoopInfo = LoopAnalysis->get(HoistableLoopPreheader->getParent());
|
|
return LoopInfo->getLoopFor(
|
|
HoistableLoopPreheader->getSingleSuccessorBlock());
|
|
}
|
|
|
|
protected:
|
|
void specializeLoopNest();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static SILValue createStructExtract(SILBuilder &B, SILLocation Loc,
|
|
SILValue Opd, unsigned FieldNo) {
|
|
SILType Ty = Opd->getType();
|
|
auto SD = Ty.getStructOrBoundGenericStruct();
|
|
auto Properties = SD->getStoredProperties();
|
|
unsigned Counter = 0;
|
|
for (auto *D : Properties)
|
|
if (Counter++ == FieldNo)
|
|
return B.createStructExtract(Loc, Opd, D);
|
|
llvm_unreachable("Wrong field number");
|
|
}
|
|
|
|
static Identifier getBinaryFunction(StringRef Name, SILType IntSILTy,
|
|
ASTContext &C) {
|
|
auto IntTy = IntSILTy.castTo<BuiltinIntegerType>();
|
|
unsigned NumBits = IntTy->getWidth().getFixedWidth();
|
|
// Name is something like: add_Int64
|
|
std::string NameStr = Name;
|
|
NameStr += "_Int" + llvm::utostr(NumBits);
|
|
return C.getIdentifier(NameStr);
|
|
}
|
|
|
|
/// Create a binary and function.
|
|
static SILValue createAnd(SILBuilder &B, SILLocation Loc, SILValue Opd1,
|
|
SILValue Opd2) {
|
|
auto AndFn = getBinaryFunction("and", Opd1->getType(), B.getASTContext());
|
|
SILValue Args[] = {Opd1, Opd2};
|
|
return B.createBuiltin(Loc, AndFn, Opd1->getType(), {}, Args);
|
|
}
|
|
|
|
/// Create a check over all array.props calls that they have the 'fast native
|
|
/// swift' array value: isNative && !needsElementTypeCheck must be true.
|
|
static SILValue
|
|
createFastNativeArraysCheck(SmallVectorImpl<ArraySemanticsCall> &ArrayProps,
|
|
SILBuilder &B) {
|
|
assert(!ArrayProps.empty() && "Must have array.pros calls");
|
|
|
|
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
|
|
SILValue Result =
|
|
B.createIntegerLiteral((*ArrayProps[0]).getLoc(), IntBoolTy, 1);
|
|
|
|
for (auto Call : ArrayProps) {
|
|
auto Loc = (*Call).getLoc();
|
|
auto CallKind = Call.getKind();
|
|
if (CallKind == ArrayCallKind::kArrayPropsIsNativeTypeChecked) {
|
|
auto Val = createStructExtract(B, Loc, SILValue(Call), 0);
|
|
Result = createAnd(B, Loc, Result, Val);
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// Collect all array.props calls in the cloned basic blocks stored in the map,
|
|
/// asserting that we found at least one.
|
|
static void collectArrayPropsCalls(RegionCloner &Cloner,
|
|
SmallVectorImpl<SILBasicBlock *> &ExitBlocks,
|
|
SmallVectorImpl<ArraySemanticsCall> &Calls) {
|
|
for (auto *origBB : Cloner.originalPreorderBlocks()) {
|
|
auto clonedBB = Cloner.getOpBasicBlock(origBB);
|
|
for (auto &Inst : *clonedBB) {
|
|
ArraySemanticsCall ArrayProps(&Inst, "array.props", true);
|
|
if (!ArrayProps)
|
|
continue;
|
|
Calls.push_back(ArrayProps);
|
|
}
|
|
}
|
|
assert(!Calls.empty() && "Should have a least one array.props call");
|
|
}
|
|
|
|
/// Replace an array.props call by the 'fast swift array' value.
|
|
///
|
|
/// This is true for array.props.isNative and false for
|
|
/// array.props.needsElementTypeCheck.
|
|
static void replaceArrayPropsCall(SILBuilder &B, ArraySemanticsCall C) {
|
|
assert(C.getKind() == ArrayCallKind::kArrayPropsIsNativeTypeChecked);
|
|
ApplyInst *AI = C;
|
|
|
|
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
|
|
|
|
auto BoolTy = AI->getType();
|
|
auto C0 = B.createIntegerLiteral(AI->getLoc(), IntBoolTy, 1);
|
|
auto BoolVal = B.createStruct(AI->getLoc(), BoolTy, {C0});
|
|
|
|
(*C).replaceAllUsesWith(BoolVal);
|
|
// Remove call to array.props.read/write.
|
|
C.removeCall();
|
|
}
|
|
|
|
/// Collects all loop dominated blocks outside the loop that are immediately
|
|
/// dominated by the loop.
|
|
static void
|
|
collectImmediateLoopDominatedBlocks(const SILLoop *Lp, DominanceInfoNode *Node,
|
|
SmallVectorImpl<SILBasicBlock *> &Blocks) {
|
|
SILBasicBlock *BB = Node->getBlock();
|
|
|
|
// Base case: First loop dominated block outside of loop.
|
|
if (!Lp->contains(BB)) {
|
|
Blocks.push_back(BB);
|
|
return;
|
|
}
|
|
|
|
// Loop contains the basic block. Look at immediately dominated nodes.
|
|
for (auto *Child : *Node)
|
|
collectImmediateLoopDominatedBlocks(Lp, Child, Blocks);
|
|
}
|
|
|
|
void ArrayPropertiesSpecializer::specializeLoopNest() {
|
|
auto *Lp = getLoop();
|
|
assert(Lp);
|
|
|
|
// Split of a new empty preheader. We don't want to duplicate the whole
|
|
// original preheader it might contain instructions that we can't clone.
|
|
// This will be block that will contain the check whether to execute the
|
|
// 'native swift array' loop or the original loop.
|
|
SILBuilder B(HoistableLoopPreheader);
|
|
auto *CheckBlock = splitBasicBlockAndBranch(B,
|
|
HoistableLoopPreheader->getTerminator(), DomTree, nullptr);
|
|
|
|
auto *Header = CheckBlock->getSingleSuccessorBlock();
|
|
assert(Header);
|
|
|
|
// Collect all loop dominated blocks (e.g exit blocks could be among them). We
|
|
// need to update their dominator.
|
|
SmallVector<SILBasicBlock *, 16> LoopDominatedBlocks;
|
|
collectImmediateLoopDominatedBlocks(Lp, DomTree->getNode(Header),
|
|
LoopDominatedBlocks);
|
|
|
|
// Collect all exit blocks.
|
|
SmallVector<SILBasicBlock *, 16> ExitBlocks;
|
|
Lp->getExitBlocks(ExitBlocks);
|
|
|
|
// Split the preheader before the first instruction.
|
|
SILBasicBlock *NewPreheader =
|
|
splitBasicBlockAndBranch(B, &*CheckBlock->begin(), DomTree, nullptr);
|
|
|
|
// Clone the region from the new preheader up to (not including) the exit
|
|
// blocks. This creates a second loop nest.
|
|
RegionCloner Cloner(NewPreheader, *DomTree);
|
|
auto *ClonedPreheader = Cloner.cloneRegion(ExitBlocks);
|
|
|
|
// Collect the array.props call that we will specialize on that we have
|
|
// cloned in the cloned loop.
|
|
SmallVector<ArraySemanticsCall, 16> ArrayPropCalls;
|
|
collectArrayPropsCalls(Cloner, ExitBlocks, ArrayPropCalls);
|
|
|
|
// Move them to the check block.
|
|
SmallVector<ArraySemanticsCall, 16> HoistedArrayPropCalls;
|
|
for (auto C: ArrayPropCalls)
|
|
HoistedArrayPropCalls.push_back(
|
|
ArraySemanticsCall(C.copyTo(CheckBlock->getTerminator(), DomTree)));
|
|
|
|
// Create a conditional branch on the fast condition being true.
|
|
B.setInsertionPoint(CheckBlock->getTerminator());
|
|
auto IsFastNativeArray =
|
|
createFastNativeArraysCheck(HoistedArrayPropCalls, B);
|
|
B.createCondBranch(CheckBlock->getTerminator()->getLoc(),
|
|
IsFastNativeArray, ClonedPreheader, NewPreheader);
|
|
CheckBlock->getTerminator()->eraseFromParent();
|
|
|
|
// Fixup the loop dominated blocks. They are now dominated by the check block.
|
|
for (auto *BB : LoopDominatedBlocks)
|
|
DomTree->changeImmediateDominator(DomTree->getNode(BB),
|
|
DomTree->getNode(CheckBlock));
|
|
|
|
// Replace the array.props calls uses in the cloned loop by their 'fast'
|
|
// value.
|
|
SILBuilder B2(ClonedPreheader->getTerminator());
|
|
for (auto C : ArrayPropCalls)
|
|
replaceArrayPropsCall(B2, C);
|
|
|
|
// We have potentially cloned a loop - invalidate loop info.
|
|
LoopAnalysis->invalidate(Header->getParent(),
|
|
SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
|
|
namespace {
|
|
class SwiftArrayOptPass : public SILFunctionTransform {
|
|
|
|
void run() override {
|
|
if (!ShouldSpecializeArrayProps)
|
|
return;
|
|
|
|
auto *Fn = getFunction();
|
|
|
|
// FIXME: Add support for ownership.
|
|
if (Fn->hasOwnership())
|
|
return;
|
|
|
|
// Don't hoist array property calls at Osize.
|
|
if (Fn->optimizeForSize())
|
|
return;
|
|
|
|
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
|
|
SILLoopInfo *LI = LA->get(Fn);
|
|
|
|
bool HasChanged = false;
|
|
|
|
// Check whether we can hoist 'array.props' calls out of loops, collecting
|
|
// the preheader we can hoist to. We only hoist out of loops if 'all'
|
|
// array.props call can be hoisted for a given loop nest.
|
|
// We process the loop tree preorder (top-down) to hoist over the biggest
|
|
// possible loop-nest.
|
|
SmallVector<SILBasicBlock *, 16> HoistableLoopNests;
|
|
std::function<void(SILLoop *)> processChildren = [&](SILLoop *L) {
|
|
ArrayPropertiesAnalysis Analysis(L, DA);
|
|
if (Analysis.run()) {
|
|
// Hoist in the current loop nest.
|
|
HasChanged = true;
|
|
HoistableLoopNests.push_back(L->getLoopPreheader());
|
|
} else {
|
|
// Otherwise, try hoisting sub-loops.
|
|
for (auto *SubLoop : *L)
|
|
processChildren(SubLoop);
|
|
}
|
|
};
|
|
for (auto *L : *LI)
|
|
processChildren(L);
|
|
|
|
// Specialize the identified loop nest based on the 'array.props' calls.
|
|
if (HasChanged) {
|
|
LLVM_DEBUG(getFunction()->viewCFG());
|
|
DominanceInfo *DT = DA->get(getFunction());
|
|
|
|
// Process specialized loop-nests in loop-tree post-order (bottom-up).
|
|
std::reverse(HoistableLoopNests.begin(), HoistableLoopNests.end());
|
|
|
|
// Hoist the loop nests.
|
|
for (auto &HoistableLoopNest : HoistableLoopNests)
|
|
ArrayPropertiesSpecializer(DT, LA, HoistableLoopNest).run();
|
|
|
|
// Verify that no illegal critical edges were created.
|
|
getFunction()->verifyCriticalEdges();
|
|
|
|
LLVM_DEBUG(getFunction()->viewCFG());
|
|
|
|
// We preserve the dominator tree. Let's invalidate everything
|
|
// else.
|
|
DA->lockInvalidation();
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
DA->unlockInvalidation();
|
|
}
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createSwiftArrayOpts() {
|
|
return new SwiftArrayOptPass();
|
|
}
|