mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
The XXOptUtils.h convention is already established and parallels the SIL/XXUtils convention. New: - InstOptUtils.h - CFGOptUtils.h - BasicBlockOptUtils.h - ValueLifetime.h Removed: - Local.h - Two conflicting CFG.h files This reorganization is helpful before I introduce more utilities for block cloning similar to SinkAddressProjections. Move the control flow utilies out of Local.h, which was an unreadable, unprincipled mess. Rename it to InstOptUtils.h, and confine it to small APIs for working with individual instructions. These are the optimizer's additions to /SIL/InstUtils.h. Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now there is only SIL/CFG.h, resolving the naming conflict within the swift project (this has always been a problem for source tools). Limit this header to low-level APIs for working with branches and CFG edges. Add BasicBlockOptUtils.h for block level transforms (it makes me sad that I can't use BBOptUtils.h, but SIL already has BasicBlockUtils.h). These are larger APIs for cloning or removing whole blocks.
409 lines
16 KiB
C++
409 lines
16 KiB
C++
//===--- Existential.cpp - Functions analyzing existentials. -------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SILOptimizer/Utils/Existential.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
|
|
using namespace swift;
|
|
|
|
/// Determine InitExistential from global_addr.
|
|
/// %3 = global_addr @$P : $*SomeP
|
|
/// %4 = init_existential_addr %3 : $*SomeP, $SomeC
|
|
/// %5 = alloc_ref $SomeC
|
|
/// store %5 to %4 : $*SomeC
|
|
/// %8 = alloc_stack $SomeP
|
|
/// copy_addr %3 to [initialization] %8 : $*SomeP
|
|
/// %10 = apply %9(%3) : $@convention(thin) (@in_guaranteed SomeP)
|
|
/// Assumptions: Insn is a direct user of GAI (e.g., copy_addr or
|
|
/// apply pattern shown above) and that a valid init_existential_addr
|
|
/// value is returned only if it can prove that the value it
|
|
/// initializes is the same value at the use point.
|
|
static InitExistentialAddrInst *
|
|
findInitExistentialFromGlobalAddr(GlobalAddrInst *GAI, SILInstruction *Insn) {
|
|
/// Check for a single InitExistential usage for GAI and
|
|
/// a simple dominance check: both InitExistential and Insn are in
|
|
/// the same basic block and only one InitExistential
|
|
/// occurs between GAI and Insn.
|
|
llvm::SmallPtrSet<SILInstruction *, 8> IEUses;
|
|
for (auto *Use : GAI->getUses()) {
|
|
if (auto *InitExistential =
|
|
dyn_cast<InitExistentialAddrInst>(Use->getUser())) {
|
|
IEUses.insert(InitExistential);
|
|
}
|
|
}
|
|
|
|
/// No InitExistential found in the basic block.
|
|
if (IEUses.empty())
|
|
return nullptr;
|
|
|
|
/// Walk backwards from Insn instruction till the begining of the basic block
|
|
/// looking for an InitExistential.
|
|
InitExistentialAddrInst *SingleIE = nullptr;
|
|
for (auto II = Insn->getIterator().getReverse(),
|
|
IE = Insn->getParent()->rend();
|
|
II != IE; ++II) {
|
|
if (!IEUses.count(&*II))
|
|
continue;
|
|
if (SingleIE)
|
|
return nullptr;
|
|
|
|
SingleIE = cast<InitExistentialAddrInst>(&*II);
|
|
}
|
|
return SingleIE;
|
|
}
|
|
|
|
/// Returns the instruction that initializes the given stack address. This is
|
|
/// currently either a init_existential_addr, unconditional_checked_cast_addr,
|
|
/// or copy_addr (if the instruction initializing the source of the copy cannot
|
|
/// be determined). Returns nullptr if the initializer does not dominate the
|
|
/// alloc_stack user \p ASIUser. If the value is copied from another stack
|
|
/// location, \p isCopied is set to true.
|
|
///
|
|
/// allocStackAddr may either itself be an AllocStackInst or an
|
|
/// InitEnumDataAddrInst that projects the value of an AllocStackInst.
|
|
static SILInstruction *getStackInitInst(SILValue allocStackAddr,
|
|
SILInstruction *ASIUser,
|
|
bool &isCopied) {
|
|
SILInstruction *SingleWrite = nullptr;
|
|
// Check that this alloc_stack is initialized only once.
|
|
for (auto Use : allocStackAddr->getUses()) {
|
|
auto *User = Use->getUser();
|
|
|
|
// Ignore instructions which don't write to the stack location.
|
|
// Also ignore ASIUser (only kicks in if ASIUser is the original apply).
|
|
if (isa<DeallocStackInst>(User) || isa<DebugValueAddrInst>(User) ||
|
|
isa<DestroyAddrInst>(User) || isa<WitnessMethodInst>(User) ||
|
|
isa<DeinitExistentialAddrInst>(User) ||
|
|
isa<OpenExistentialAddrInst>(User) || User == ASIUser) {
|
|
continue;
|
|
}
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(User)) {
|
|
if (CAI->getDest() == allocStackAddr) {
|
|
if (SingleWrite)
|
|
return nullptr;
|
|
SingleWrite = CAI;
|
|
isCopied = true;
|
|
}
|
|
continue;
|
|
}
|
|
// An unconditional_checked_cast_addr also copies a value into this addr.
|
|
if (auto *UCCAI = dyn_cast<UnconditionalCheckedCastAddrInst>(User)) {
|
|
if (UCCAI->getDest() == allocStackAddr) {
|
|
if (SingleWrite)
|
|
return nullptr;
|
|
SingleWrite = UCCAI;
|
|
isCopied = true;
|
|
}
|
|
continue;
|
|
}
|
|
if (isa<InitExistentialAddrInst>(User)) {
|
|
if (SingleWrite)
|
|
return nullptr;
|
|
SingleWrite = User;
|
|
continue;
|
|
}
|
|
if (isa<ApplyInst>(User) || isa<TryApplyInst>(User)) {
|
|
// Ignore function calls which do not write to the stack location.
|
|
auto Conv = FullApplySite(User).getArgumentConvention(*Use);
|
|
if (Conv != SILArgumentConvention::Indirect_In &&
|
|
Conv != SILArgumentConvention::Indirect_In_Guaranteed)
|
|
return nullptr;
|
|
continue;
|
|
}
|
|
// Bail if there is any unknown (and potentially writing) instruction.
|
|
return nullptr;
|
|
}
|
|
if (!SingleWrite)
|
|
return nullptr;
|
|
|
|
// A very simple dominance check. As ASI is an operand of ASIUser,
|
|
// SingleWrite dominates ASIUser if it is in the same block as ASI or
|
|
// ASIUser. (SingleWrite can't occur after ASIUser because the address would
|
|
// be uninitialized on use).
|
|
//
|
|
// If allocStack holds an Optional, then ASI is an InitEnumDataAddrInst
|
|
// projection and not strictly an operand of ASIUser. We rely on the guarantee
|
|
// that this InitEnumDataAddrInst must occur before the InjectEnumAddrInst
|
|
// that was the source of the existential address.
|
|
SILBasicBlock *BB = SingleWrite->getParent();
|
|
if (BB != allocStackAddr->getParentBlock() && BB != ASIUser->getParent())
|
|
return nullptr;
|
|
|
|
if (auto *IE = dyn_cast<InitExistentialAddrInst>(SingleWrite))
|
|
return IE;
|
|
|
|
if (auto *UCCA = dyn_cast<UnconditionalCheckedCastAddrInst>(SingleWrite)) {
|
|
assert(isCopied && "isCopied not set for a unconditional_checked_cast_addr");
|
|
return UCCA;
|
|
}
|
|
auto *CAI = cast<CopyAddrInst>(SingleWrite);
|
|
assert(isCopied && "isCopied not set for a copy_addr");
|
|
// Attempt to recurse to find a concrete type.
|
|
if (auto *ASI = dyn_cast<AllocStackInst>(CAI->getSrc()))
|
|
return getStackInitInst(ASI, CAI, isCopied);
|
|
|
|
// Peek through a stack location holding an Enum.
|
|
// %stack_adr = alloc_stack
|
|
// %data_adr = init_enum_data_addr %stk_adr
|
|
// %enum_adr = inject_enum_addr %stack_adr
|
|
// %copy_src = unchecked_take_enum_data_addr %enum_adr
|
|
// Replace %copy_src with %data_adr and recurse.
|
|
//
|
|
// TODO: a general Optional elimination sil-combine could
|
|
// supersede this check.
|
|
if (auto *UTEDAI = dyn_cast<UncheckedTakeEnumDataAddrInst>(CAI->getSrc())) {
|
|
if (InitEnumDataAddrInst *IEDAI = findInitAddressForTrivialEnum(UTEDAI))
|
|
return getStackInitInst(IEDAI, CAI, isCopied);
|
|
}
|
|
|
|
// Check if the CAISrc is a global_addr.
|
|
if (auto *GAI = dyn_cast<GlobalAddrInst>(CAI->getSrc()))
|
|
return findInitExistentialFromGlobalAddr(GAI, CAI);
|
|
|
|
// If the source of the copy cannot be determined, return the copy itself
|
|
// because the caller may have special handling for the source address.
|
|
return CAI;
|
|
}
|
|
|
|
/// Return the address of the value used to initialize the given stack location.
|
|
/// If the value originates from init_existential_addr, then it will be a
|
|
/// different type than \p allocStackAddr.
|
|
static SILValue getAddressOfStackInit(SILValue allocStackAddr,
|
|
SILInstruction *ASIUser, bool &isCopied) {
|
|
SILInstruction *initI = getStackInitInst(allocStackAddr, ASIUser, isCopied);
|
|
if (!initI)
|
|
return SILValue();
|
|
|
|
if (auto *IEA = dyn_cast<InitExistentialAddrInst>(initI))
|
|
return IEA;
|
|
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(initI))
|
|
return CAI->getSrc();
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
/// Check if the given operand originates from a recognized OpenArchetype
|
|
/// instruction. If so, return the Opened, otherwise return nullptr.
|
|
OpenedArchetypeInfo::OpenedArchetypeInfo(Operand &use) {
|
|
SILValue openedVal = use.get();
|
|
SILInstruction *user = use.getUser();
|
|
if (auto *instance = dyn_cast<AllocStackInst>(openedVal)) {
|
|
// Handle:
|
|
// %opened = open_existential_addr
|
|
// %instance = alloc $opened
|
|
// copy_addr %opened to %stack
|
|
// <opened_use> %instance
|
|
if (auto stackInitVal =
|
|
getAddressOfStackInit(instance, user, isOpenedValueCopied)) {
|
|
openedVal = stackInitVal;
|
|
}
|
|
}
|
|
if (auto *Open = dyn_cast<OpenExistentialAddrInst>(openedVal)) {
|
|
OpenedArchetype = Open->getType().castTo<ArchetypeType>();
|
|
OpenedArchetypeValue = Open;
|
|
ExistentialValue = Open->getOperand();
|
|
return;
|
|
}
|
|
if (auto *Open = dyn_cast<OpenExistentialRefInst>(openedVal)) {
|
|
OpenedArchetype = Open->getType().castTo<ArchetypeType>();
|
|
OpenedArchetypeValue = Open;
|
|
ExistentialValue = Open->getOperand();
|
|
return;
|
|
}
|
|
if (auto *Open = dyn_cast<OpenExistentialMetatypeInst>(openedVal)) {
|
|
auto Ty = Open->getType().getASTType();
|
|
while (auto Metatype = dyn_cast<MetatypeType>(Ty))
|
|
Ty = Metatype.getInstanceType();
|
|
OpenedArchetype = cast<ArchetypeType>(Ty);
|
|
OpenedArchetypeValue = Open;
|
|
ExistentialValue = Open->getOperand();
|
|
}
|
|
}
|
|
|
|
/// Initialize ExistentialSubs from the given conformance list, using the
|
|
/// already initialized ExistentialType and ConcreteType.
|
|
void ConcreteExistentialInfo::initializeSubstitutionMap(
|
|
ArrayRef<ProtocolConformanceRef> ExistentialConformances, SILModule *M) {
|
|
|
|
// Construct a single-generic-parameter substitution map directly to the
|
|
// ConcreteType with this existential's full list of conformances.
|
|
CanGenericSignature ExistentialSig =
|
|
M->getASTContext().getExistentialSignature(ExistentialType,
|
|
M->getSwiftModule());
|
|
ExistentialSubs = SubstitutionMap::get(ExistentialSig, {ConcreteType},
|
|
ExistentialConformances);
|
|
assert(isValid());
|
|
}
|
|
|
|
/// If the ConcreteType is an opened existential, also initialize
|
|
/// ConcreteTypeDef to the definition of that type.
|
|
void ConcreteExistentialInfo::initializeConcreteTypeDef(
|
|
SILInstruction *typeConversionInst) {
|
|
if (!ConcreteType->isOpenedExistential())
|
|
return;
|
|
|
|
assert(isValid());
|
|
|
|
// If the concrete type is another existential, we're "forwarding" an
|
|
// opened existential type, so we must keep track of the original
|
|
// defining instruction.
|
|
if (!typeConversionInst->getTypeDependentOperands().empty()) {
|
|
ConcreteTypeDef = cast<SingleValueInstruction>(
|
|
typeConversionInst->getTypeDependentOperands()[0].get());
|
|
return;
|
|
}
|
|
|
|
auto typeOperand =
|
|
cast<InitExistentialMetatypeInst>(typeConversionInst)->getOperand();
|
|
assert(typeOperand->getType().hasOpenedExistential()
|
|
&& "init_existential is supposed to have a typedef operand");
|
|
ConcreteTypeDef = cast<SingleValueInstruction>(typeOperand);
|
|
}
|
|
|
|
/// Construct this ConcreteExistentialInfo based on the given existential use.
|
|
///
|
|
/// Finds the init_existential, or an address with concrete type used to
|
|
/// initialize the given \p openedUse. If the value is copied
|
|
/// from another stack location, \p isCopied is set to true.
|
|
///
|
|
/// If successful, ConcreteExistentialInfo will be valid upon return, with the
|
|
/// following fields assigned:
|
|
/// - ExistentialType
|
|
/// - isCopied
|
|
/// - ConcreteType
|
|
/// - ConcreteValue
|
|
/// - ConcreteTypeDef
|
|
/// - ExistentialSubs
|
|
ConcreteExistentialInfo::ConcreteExistentialInfo(SILValue existential,
|
|
SILInstruction *user) {
|
|
if (existential->getType().isAddress()) {
|
|
auto *ASI = dyn_cast<AllocStackInst>(existential);
|
|
if (!ASI)
|
|
return;
|
|
|
|
SILInstruction *stackInit =
|
|
getStackInitInst(ASI, user, isConcreteValueCopied);
|
|
if (!stackInit)
|
|
return;
|
|
|
|
if (auto *IE = dyn_cast<InitExistentialAddrInst>(stackInit)) {
|
|
ExistentialType = IE->getOperand()->getType().getASTType();
|
|
ConcreteType = IE->getFormalConcreteType();
|
|
ConcreteValue = IE;
|
|
initializeSubstitutionMap(IE->getConformances(), &IE->getModule());
|
|
initializeConcreteTypeDef(IE);
|
|
return;
|
|
}
|
|
// TODO: Once we have a way to introduce more constrained archetypes, handle
|
|
// any unconditional_checked_cast that wasn't already statically eliminated.
|
|
//
|
|
// Unexpected stack write.
|
|
return;
|
|
}
|
|
|
|
if (auto *IER = dyn_cast<InitExistentialRefInst>(existential)) {
|
|
ExistentialType = IER->getType().getASTType();
|
|
ConcreteType = IER->getFormalConcreteType();
|
|
ConcreteValue = IER->getOperand();
|
|
initializeSubstitutionMap(IER->getConformances(), &IER->getModule());
|
|
initializeConcreteTypeDef(IER);
|
|
return;
|
|
}
|
|
|
|
if (auto *IEM = dyn_cast<InitExistentialMetatypeInst>(existential)) {
|
|
ExistentialType = IEM->getType().getASTType();
|
|
ConcreteValue = IEM->getOperand();
|
|
ConcreteType = ConcreteValue->getType().getASTType();
|
|
while (auto InstanceType =
|
|
dyn_cast<ExistentialMetatypeType>(ExistentialType)) {
|
|
ExistentialType = InstanceType.getInstanceType();
|
|
ConcreteType = cast<MetatypeType>(ConcreteType).getInstanceType();
|
|
}
|
|
initializeSubstitutionMap(IEM->getConformances(), &IEM->getModule());
|
|
initializeConcreteTypeDef(IEM);
|
|
return;
|
|
}
|
|
// Unrecognized opened existential producer.
|
|
return;
|
|
}
|
|
|
|
/// Initialize a ConcreteExistentialInfo based on a concrete type and protocol
|
|
/// declaration that has already been computed via whole module type
|
|
/// inference. A cast instruction will be introduced to produce the concrete
|
|
/// value from the opened value.
|
|
///
|
|
/// The simpler constructor taking only the existential value is preferred
|
|
/// because it generates simpler SIL and does not require an extra
|
|
/// cast. However, if that constructor fails to produce a valid
|
|
/// ConcreteExistentialInfo, this constructor may succeed because it doesn't
|
|
/// needs to rediscover the whole-module inferred ConcreteTypeCandidate.
|
|
ConcreteExistentialInfo::ConcreteExistentialInfo(SILValue existential,
|
|
SILInstruction *user,
|
|
CanType ConcreteTypeCandidate,
|
|
ProtocolDecl *Protocol) {
|
|
SILModule *M = existential->getModule();
|
|
|
|
// We have the open_existential; we still need the conformance.
|
|
auto ConformanceRef =
|
|
M->getSwiftModule()->conformsToProtocol(ConcreteTypeCandidate, Protocol);
|
|
if (!ConformanceRef)
|
|
return;
|
|
|
|
// Assert that the conformance is complete.
|
|
auto *ConcreteConformance = ConformanceRef.getValue().getConcrete();
|
|
assert(ConcreteConformance->isComplete());
|
|
|
|
ConcreteType = ConcreteTypeCandidate;
|
|
// There is no ConcreteValue in this case.
|
|
|
|
/// Determine the ExistentialConformances and SubstitutionMap.
|
|
ExistentialType = Protocol->getDeclaredType()->getCanonicalType();
|
|
initializeSubstitutionMap(ProtocolConformanceRef(ConcreteConformance), M);
|
|
|
|
assert(isValid());
|
|
}
|
|
|
|
ConcreteOpenedExistentialInfo::ConcreteOpenedExistentialInfo(Operand &use)
|
|
: OAI(use) {
|
|
if (!OAI.isValid())
|
|
return;
|
|
|
|
CEI.emplace(OAI.ExistentialValue, OAI.OpenedArchetypeValue);
|
|
if (!CEI->isValid()) {
|
|
CEI.reset();
|
|
return;
|
|
}
|
|
CEI->isConcreteValueCopied |= OAI.isOpenedValueCopied;
|
|
}
|
|
|
|
ConcreteOpenedExistentialInfo::ConcreteOpenedExistentialInfo(
|
|
Operand &use, CanType concreteType, ProtocolDecl *protocol)
|
|
: OAI(use) {
|
|
if (!OAI.isValid())
|
|
return;
|
|
|
|
CEI.emplace(OAI.ExistentialValue, OAI.OpenedArchetypeValue, concreteType,
|
|
protocol);
|
|
if (!CEI->isValid()) {
|
|
CEI.reset();
|
|
return;
|
|
}
|
|
CEI->isConcreteValueCopied |= OAI.isOpenedValueCopied;
|
|
}
|