Files
swift-mirror/lib/Sema/BuilderTransform.cpp
Doug Gregor be73a9d641 [Function builders] Add one-way constraints when applying function builders
When we transform each expression or statement in a function builder,
introduce a one-way constraint so that type information does not flow
backwards from the context into that statement or expression. This
more closely mimics the behavior of normal code, where type inference
is per-statement, flowing from top to bottom.

This also allows us to isolate different expressions and statements
within a closure that's passed into a function builder parameter,
reducing the search space and (hopefully) improving compile times for
large function builder closures.

For now, put this functionality behind the compiler flag
`-enable-function-builder-one-way-constraints` for testing purposes;
we still have both optimization and correctness work to do to turn
this on by default.
2019-08-13 12:38:46 -07:00

679 lines
24 KiB
C++

//===--- BuilderTransform.cpp - Function-builder transformation -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines associated with the function-builder
// transformation.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
#include "TypeChecker.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <iterator>
#include <map>
#include <memory>
#include <utility>
#include <tuple>
using namespace swift;
using namespace constraints;
namespace {
/// Visitor to classify the contents of the given closure.
class BuilderClosureVisitor
: public StmtVisitor<BuilderClosureVisitor, Expr *> {
ConstraintSystem *cs;
ASTContext &ctx;
bool wantExpr;
Type builderType;
NominalTypeDecl *builder = nullptr;
llvm::SmallDenseMap<Identifier, bool> supportedOps;
public:
SkipUnhandledConstructInFunctionBuilder::UnhandledNode unhandledNode;
private:
/// Produce a builder call to the given named function with the given arguments.
Expr *buildCallIfWanted(SourceLoc loc,
Identifier fnName, ArrayRef<Expr *> args,
ArrayRef<Identifier> argLabels = {}) {
if (!wantExpr)
return nullptr;
// FIXME: Setting a TypeLoc on this expression is necessary in order
// to get diagnostics if something about this builder call fails,
// e.g. if there isn't a matching overload for `buildBlock`.
// But we can only do this if there isn't a type variable in the type.
TypeLoc typeLoc;
if (!builderType->hasTypeVariable()) {
typeLoc = TypeLoc(new (ctx) FixedTypeRepr(builderType, loc), builderType);
}
auto typeExpr = new (ctx) TypeExpr(typeLoc);
if (cs) {
cs->setType(typeExpr, MetatypeType::get(builderType));
cs->setType(&typeExpr->getTypeLoc(), builderType);
}
SmallVector<SourceLoc, 4> argLabelLocs;
for (auto i : indices(argLabels)) {
argLabelLocs.push_back(args[i]->getStartLoc());
}
typeExpr->setImplicit();
auto memberRef = new (ctx) UnresolvedDotExpr(
typeExpr, loc, fnName, DeclNameLoc(loc), /*implicit=*/true);
SourceLoc openLoc = args.empty() ? loc : args.front()->getStartLoc();
SourceLoc closeLoc = args.empty() ? loc : args.back()->getEndLoc();
Expr *result = CallExpr::create(ctx, memberRef, openLoc, args,
argLabels, argLabelLocs, closeLoc,
/*trailing closure*/ nullptr,
/*implicit*/true);
if (ctx.LangOpts.FunctionBuilderOneWayConstraints) {
// Form a one-way constraint to prevent backward propagation.
result = new (ctx) OneWayExpr(result);
}
return result;
}
/// Check whether the builder supports the given operation.
bool builderSupports(Identifier fnName,
ArrayRef<Identifier> argLabels = {}) {
auto known = supportedOps.find(fnName);
if (known != supportedOps.end()) {
return known->second;
}
bool found = false;
for (auto decl : builder->lookupDirect(fnName)) {
if (auto func = dyn_cast<FuncDecl>(decl)) {
// Function must be static.
if (!func->isStatic())
continue;
// Function must have the right argument labels, if provided.
if (!argLabels.empty()) {
auto funcLabels = func->getFullName().getArgumentNames();
if (argLabels.size() > funcLabels.size() ||
funcLabels.slice(0, argLabels.size()) != argLabels)
continue;
}
// Okay, it's a good-enough match.
found = true;
break;
}
}
return supportedOps[fnName] = found;
}
public:
BuilderClosureVisitor(ASTContext &ctx, ConstraintSystem *cs,
bool wantExpr, Type builderType)
: cs(cs), ctx(ctx), wantExpr(wantExpr), builderType(builderType) {
assert((cs || !builderType->hasTypeVariable()) &&
"cannot handle builder type with type variables without "
"constraint system");
builder = builderType->getAnyNominal();
}
#define CONTROL_FLOW_STMT(StmtClass) \
Expr *visit##StmtClass##Stmt(StmtClass##Stmt *stmt) { \
if (!unhandledNode) \
unhandledNode = stmt; \
\
return nullptr; \
}
Expr *visitBraceStmt(BraceStmt *braceStmt) {
SmallVector<Expr *, 4> expressions;
for (const auto &node : braceStmt->getElements()) {
if (auto stmt = node.dyn_cast<Stmt *>()) {
auto expr = visit(stmt);
if (expr)
expressions.push_back(expr);
continue;
}
if (auto decl = node.dyn_cast<Decl *>()) {
// Just ignore #if; the chosen children should appear in the
// surrounding context. This isn't good for source tools but it
// at least works.
if (isa<IfConfigDecl>(decl))
continue;
if (!unhandledNode)
unhandledNode = decl;
continue;
}
auto expr = node.get<Expr *>();
if (wantExpr && ctx.LangOpts.FunctionBuilderOneWayConstraints)
expr = new (ctx) OneWayExpr(expr);
expressions.push_back(expr);
}
// Call Builder.buildBlock(... args ...)
return buildCallIfWanted(braceStmt->getStartLoc(),
ctx.Id_buildBlock, expressions);
}
Expr *visitReturnStmt(ReturnStmt *stmt) {
// Allow implicit returns due to 'return' elision.
if (!stmt->isImplicit() || !stmt->hasResult()) {
if (!unhandledNode)
unhandledNode = stmt;
return nullptr;
}
return stmt->getResult();
}
Expr *visitDoStmt(DoStmt *doStmt) {
if (!builderSupports(ctx.Id_buildDo)) {
if (!unhandledNode)
unhandledNode = doStmt;
return nullptr;
}
auto arg = visit(doStmt->getBody());
if (!arg)
return nullptr;
return buildCallIfWanted(doStmt->getStartLoc(), ctx.Id_buildDo, arg);
}
CONTROL_FLOW_STMT(Yield)
CONTROL_FLOW_STMT(Defer)
static Expr *getTrivialBooleanCondition(StmtCondition condition) {
if (condition.size() != 1)
return nullptr;
return condition.front().getBooleanOrNull();
}
static bool isBuildableIfChainRecursive(IfStmt *ifStmt,
unsigned &numPayloads,
bool &isOptional) {
// The conditional must be trivial.
if (!getTrivialBooleanCondition(ifStmt->getCond()))
return false;
// The 'then' clause contributes a payload.
numPayloads++;
// If there's an 'else' clause, it contributes payloads:
if (auto elseStmt = ifStmt->getElseStmt()) {
// If it's 'else if', it contributes payloads recursively.
if (auto elseIfStmt = dyn_cast<IfStmt>(elseStmt)) {
return isBuildableIfChainRecursive(elseIfStmt, numPayloads,
isOptional);
// Otherwise it's just the one.
} else {
numPayloads++;
}
// If not, the chain result is at least optional.
} else {
isOptional = true;
}
return true;
}
bool isBuildableIfChain(IfStmt *ifStmt, unsigned &numPayloads,
bool &isOptional) {
if (!isBuildableIfChainRecursive(ifStmt, numPayloads, isOptional))
return false;
// If there's a missing 'else', we need 'buildIf' to exist.
if (isOptional && !builderSupports(ctx.Id_buildIf))
return false;
// If there are multiple clauses, we need 'buildEither(first:)' and
// 'buildEither(second:)' to both exist.
if (numPayloads > 1) {
if (!builderSupports(ctx.Id_buildEither, {ctx.Id_first}) ||
!builderSupports(ctx.Id_buildEither, {ctx.Id_second}))
return false;
}
return true;
}
Expr *visitIfStmt(IfStmt *ifStmt) {
// Check whether the chain is buildable and whether it terminates
// without an `else`.
bool isOptional = false;
unsigned numPayloads = 0;
if (!isBuildableIfChain(ifStmt, numPayloads, isOptional)) {
if (!unhandledNode)
unhandledNode = ifStmt;
return nullptr;
}
// Attempt to build the chain, propagating short-circuits, which
// might arise either do to error or not wanting an expression.
auto chainExpr =
buildIfChainRecursive(ifStmt, 0, numPayloads, isOptional);
if (!chainExpr)
return nullptr;
assert(wantExpr);
// The operand should have optional type if we had optional results,
// so we just need to call `buildIf` now, since we're at the top level.
if (isOptional) {
chainExpr = buildCallIfWanted(ifStmt->getStartLoc(),
ctx.Id_buildIf, chainExpr);
}
return chainExpr;
}
/// Recursively build an if-chain: build an expression which will have
/// a value of the chain result type before any call to `buildIf`.
/// The expression will perform any necessary calls to `buildEither`,
/// and the result will have optional type if `isOptional` is true.
Expr *buildIfChainRecursive(IfStmt *ifStmt, unsigned payloadIndex,
unsigned numPayloads, bool isOptional) {
assert(payloadIndex < numPayloads);
// Make sure we recursively visit both sides even if we're not
// building expressions.
// Build the then clause. This will have the corresponding payload
// type (i.e. not wrapped in any way).
Expr *thenArg = visit(ifStmt->getThenStmt());
// Build the else clause, if present. If this is from an else-if,
// this will be fully wrapped; otherwise it will have the corresponding
// payload type (at index `payloadIndex + 1`).
assert(ifStmt->getElseStmt() || isOptional);
bool isElseIf = false;
Optional<Expr *> elseChain;
if (auto elseStmt = ifStmt->getElseStmt()) {
if (auto elseIfStmt = dyn_cast<IfStmt>(elseStmt)) {
isElseIf = true;
elseChain = buildIfChainRecursive(elseIfStmt, payloadIndex + 1,
numPayloads, isOptional);
} else {
elseChain = visit(elseStmt);
}
}
// Short-circuit if appropriate.
if (!wantExpr || !thenArg || (elseChain && !*elseChain))
return nullptr;
// Okay, build the conditional expression.
// Prepare the `then` operand by wrapping it to produce a chain result.
SourceLoc thenLoc = ifStmt->getThenStmt()->getStartLoc();
Expr *thenExpr = buildWrappedChainPayload(thenArg, payloadIndex,
numPayloads, isOptional);
// Prepare the `else operand:
Expr *elseExpr;
SourceLoc elseLoc;
// - If there's no `else` clause, use `Optional.none`.
if (!elseChain) {
assert(isOptional);
elseLoc = ifStmt->getEndLoc();
elseExpr = buildNoneExpr(elseLoc);
// - If there's an `else if`, the chain expression from that
// should already be producing a chain result.
} else if (isElseIf) {
elseExpr = *elseChain;
elseLoc = ifStmt->getElseLoc();
// - Otherwise, wrap it to produce a chain result.
} else {
elseLoc = ifStmt->getElseLoc();
elseExpr = buildWrappedChainPayload(*elseChain,
payloadIndex + 1, numPayloads,
isOptional);
}
Expr *condition = getTrivialBooleanCondition(ifStmt->getCond());
assert(condition && "checked by isBuildableIfChain");
auto ifExpr = new (ctx) IfExpr(condition, thenLoc, thenExpr,
elseLoc, elseExpr);
ifExpr->setImplicit();
return ifExpr;
}
/// Wrap a payload value in an expression which will produce a chain
/// result (without `buildIf`).
Expr *buildWrappedChainPayload(Expr *operand, unsigned payloadIndex,
unsigned numPayloads, bool isOptional) {
assert(payloadIndex < numPayloads);
// Inject into the appropriate chain position.
//
// We produce a (left-biased) balanced binary tree of Eithers in order
// to prevent requiring a linear number of injections in the worst case.
// That is, if we have 13 clauses, we want to produce:
//
// /------------------Either------------\
// /-------Either-------\ /--Either--\
// /--Either--\ /--Either--\ /--Either--\ \
// /-E-\ /-E-\ /-E-\ /-E-\ /-E-\ /-E-\ \
// 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100
//
// Note that a prefix of length D of the payload index acts as a path
// through the tree to the node at depth D. On the rightmost path
// through the tree (when this prefix is equal to the corresponding
// prefix of the maximum payload index), the bits of the index mark
// where Eithers are required.
//
// Since we naturally want to build from the innermost Either out, and
// therefore work with progressively shorter prefixes, we can do it all
// with right-shifts.
for (auto path = payloadIndex, maxPath = numPayloads - 1;
maxPath != 0; path >>= 1, maxPath >>= 1) {
// Skip making Eithers on the rightmost path where they aren't required.
// This isn't just an optimization: adding spurious Eithers could
// leave us with unresolvable type variables if `buildEither` has
// a signature like:
// static func buildEither<T,U>(first value: T) -> Either<T,U>
// which relies on unification to work.
if (path == maxPath && !(maxPath & 1)) continue;
bool isSecond = (path & 1);
operand = buildCallIfWanted(operand->getStartLoc(),
ctx.Id_buildEither, operand,
{isSecond ? ctx.Id_second : ctx.Id_first});
}
// Inject into Optional if required. We'll be adding the call to
// `buildIf` after all the recursive calls are complete.
if (isOptional) {
operand = buildSomeExpr(operand);
}
return operand;
}
Expr *buildSomeExpr(Expr *arg) {
auto optionalDecl = ctx.getOptionalDecl();
auto optionalType = optionalDecl->getDeclaredType();
auto loc = arg->getStartLoc();
auto optionalTypeExpr =
TypeExpr::createImplicitHack(loc, optionalType, ctx);
auto someRef = new (ctx) UnresolvedDotExpr(
optionalTypeExpr, loc, ctx.getIdentifier("some"),
DeclNameLoc(loc), /*implicit=*/true);
return CallExpr::createImplicit(ctx, someRef, arg, { });
}
Expr *buildNoneExpr(SourceLoc endLoc) {
auto optionalDecl = ctx.getOptionalDecl();
auto optionalType = optionalDecl->getDeclaredType();
auto optionalTypeExpr =
TypeExpr::createImplicitHack(endLoc, optionalType, ctx);
return new (ctx) UnresolvedDotExpr(
optionalTypeExpr, endLoc, ctx.getIdentifier("none"),
DeclNameLoc(endLoc), /*implicit=*/true);
}
CONTROL_FLOW_STMT(Guard)
CONTROL_FLOW_STMT(While)
CONTROL_FLOW_STMT(DoCatch)
CONTROL_FLOW_STMT(RepeatWhile)
CONTROL_FLOW_STMT(ForEach)
CONTROL_FLOW_STMT(Switch)
CONTROL_FLOW_STMT(Case)
CONTROL_FLOW_STMT(Catch)
CONTROL_FLOW_STMT(Break)
CONTROL_FLOW_STMT(Continue)
CONTROL_FLOW_STMT(Fallthrough)
CONTROL_FLOW_STMT(Fail)
CONTROL_FLOW_STMT(Throw)
CONTROL_FLOW_STMT(PoundAssert)
#undef CONTROL_FLOW_STMT
};
} // end anonymous namespace
BraceStmt *
TypeChecker::applyFunctionBuilderBodyTransform(FuncDecl *FD,
BraceStmt *body,
Type builderType) {
// Try to build a single result expression.
BuilderClosureVisitor visitor(Context, nullptr,
/*wantExpr=*/true, builderType);
Expr *returnExpr = visitor.visit(body);
if (!returnExpr)
return nullptr;
// Make sure we have a usable result type for the body.
Type returnType = AnyFunctionRef(FD).getBodyResultType();
if (!returnType || returnType->hasError())
return nullptr;
auto loc = returnExpr->getStartLoc();
auto returnStmt =
new (Context) ReturnStmt(loc, returnExpr, /*implicit*/ true);
return BraceStmt::create(Context, body->getLBraceLoc(), { returnStmt },
body->getRBraceLoc());
}
ConstraintSystem::TypeMatchResult ConstraintSystem::applyFunctionBuilder(
ClosureExpr *closure, Type builderType, ConstraintLocator *calleeLocator,
ConstraintLocatorBuilder locator) {
auto builder = builderType->getAnyNominal();
assert(builder && "Bad function builder type");
assert(builder->getAttrs().hasAttribute<FunctionBuilderAttr>());
// FIXME: Right now, single-expression closures suppress the function
// builder translation.
if (closure->hasSingleExpressionBody())
return getTypeMatchSuccess();
// Pre-check the closure body: pre-check any expressions in it and look
// for return statements.
switch (TC.preCheckFunctionBuilderClosureBody(closure)) {
case FunctionBuilderClosurePreCheck::Okay:
// If the pre-check was okay, apply the function-builder transform.
break;
case FunctionBuilderClosurePreCheck::Error:
// If the pre-check had an error, flag that.
return getTypeMatchFailure(locator);
case FunctionBuilderClosurePreCheck::HasReturnStmt:
// If the closure has a return statement, suppress the transform but
// continue solving the constraint system.
return getTypeMatchSuccess();
}
// Check the form of this closure to see if we can apply the
// function-builder translation at all.
{
// Check whether we can apply this specific function builder.
BuilderClosureVisitor visitor(getASTContext(), this,
/*wantExpr=*/false, builderType);
(void)visitor.visit(closure->getBody());
// If we saw a control-flow statement or declaration that the builder
// cannot handle, we don't have a well-formed function builder application.
if (visitor.unhandledNode) {
// If we aren't supposed to attempt fixes, fail.
if (!shouldAttemptFixes()) {
return getTypeMatchFailure(locator);
}
// Record the first unhandled construct as a fix.
if (recordFix(
SkipUnhandledConstructInFunctionBuilder::create(
*this, visitor.unhandledNode, builder,
getConstraintLocator(locator)))) {
return getTypeMatchFailure(locator);
}
}
}
// If the builder type has a type parameter, substitute in the type
// variables.
if (builderType->hasTypeParameter()) {
// Find the opened type for this callee and substitute in the type
// parametes.
for (const auto &opened : OpenedTypes) {
if (opened.first == calleeLocator) {
OpenedTypeMap replacements(opened.second.begin(),
opened.second.end());
builderType = openType(builderType, replacements);
break;
}
}
assert(!builderType->hasTypeParameter());
}
// If we are performing code-completion inside the closure body, supress
// diagnostics to workaround typechecking performance problems.
if (getASTContext().SourceMgr.rangeContainsCodeCompletionLoc(
closure->getSourceRange()))
Options |= ConstraintSystemFlags::SuppressDiagnostics;
BuilderClosureVisitor visitor(getASTContext(), this,
/*wantExpr=*/true, builderType);
Expr *singleExpr = visitor.visit(closure->getBody());
// We've already pre-checked all the original expressions, but do the
// pre-check to the generated expression just to set up any preconditions
// that CSGen might have.
//
// TODO: just build the AST the way we want it in the first place.
if (TC.preCheckExpression(singleExpr, closure))
return getTypeMatchFailure(locator);
singleExpr = generateConstraints(singleExpr, closure);
if (!singleExpr)
return getTypeMatchFailure(locator);
Type transformedType = getType(singleExpr);
assert(transformedType && "Missing type");
// Record the transformation.
assert(std::find_if(builderTransformedClosures.begin(),
builderTransformedClosures.end(),
[&](const std::tuple<ClosureExpr *, Type, Expr *> &elt) {
return std::get<0>(elt) == closure;
}) == builderTransformedClosures.end() &&
"already transformed this closure along this path!?!");
builderTransformedClosures.push_back(
std::make_tuple(closure, builderType, singleExpr));
// Bind the result type of the closure to the type of the transformed
// expression.
Type closureType = getType(closure);
auto fnType = closureType->castTo<FunctionType>();
addConstraint(ConstraintKind::Equal, fnType->getResult(), transformedType,
locator);
return getTypeMatchSuccess();
}
namespace {
/// Pre-check all the expressions in the closure body.
class PreCheckFunctionBuilderClosure : public ASTWalker {
TypeChecker &TC;
ClosureExpr *Closure;
bool HasReturnStmt = false;
bool HasError = false;
public:
PreCheckFunctionBuilderClosure(TypeChecker &tc, ClosureExpr *closure)
: TC(tc), Closure(closure) {}
FunctionBuilderClosurePreCheck run() {
Stmt *oldBody = Closure->getBody();
Stmt *newBody = oldBody->walk(*this);
// If the walk was aborted, it was because we had a problem of some kind.
assert((newBody == nullptr) == (HasError || HasReturnStmt) &&
"unexpected short-circuit while walking closure body");
if (!newBody) {
if (HasError)
return FunctionBuilderClosurePreCheck::Error;
return FunctionBuilderClosurePreCheck::HasReturnStmt;
}
assert(oldBody == newBody && "pre-check walk wasn't in-place?");
return FunctionBuilderClosurePreCheck::Okay;
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// Pre-check the expression. If this fails, abort the walk immediately.
// Otherwise, replace the expression with the result of pre-checking.
// In either case, don't recurse into the expression.
if (TC.preCheckExpression(E, /*DC*/ Closure)) {
HasError = true;
return std::make_pair(false, nullptr);
}
return std::make_pair(false, E);
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
// If we see a return statement, abort the walk immediately.
if (isa<ReturnStmt>(S)) {
HasReturnStmt = true;
return std::make_pair(false, nullptr);
}
// Otherwise, recurse into the statement normally.
return std::make_pair(true, S);
}
};
}
FunctionBuilderClosurePreCheck
TypeChecker::preCheckFunctionBuilderClosureBody(ClosureExpr *closure) {
// Single-expression closures should already have been pre-checked.
if (closure->hasSingleExpressionBody())
return FunctionBuilderClosurePreCheck::Okay;
// Check whether we've already done this analysis.
auto it = precheckedFunctionBuilderClosures.find(closure);
if (it != precheckedFunctionBuilderClosures.end())
return it->second;
auto result = PreCheckFunctionBuilderClosure(*this, closure).run();
// Cache the result.
precheckedFunctionBuilderClosures.insert(std::make_pair(closure, result));
return result;
}