Files
swift-mirror/lib/SILOptimizer/Mandatory/MoveOnlyAddressCheckerUtils.cpp
Michael Gottesman be7667b6e5 [move-only] Teach the move checker how to correctly check an address only type used by escaping closures.
When we have a loadable type, SILGen always eagerly loads the value, so the move
checker handled checking those cases by just looking for loads and emitting the
error based off of a load. Of course for address only types, the codegen looks
slightly different (we consume the value directly rather than load it). So this
change just teaches the checker how to do that.

rdar://105106470
2023-05-02 16:30:33 -07:00

2549 lines
99 KiB
C++

//===--- MoveOnlyAddressCheckerUtils.cpp ----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Move Only Checking of Addresses
/// -------------------------------
///
/// In this file, we implement move checking of addresses. This allows for the
/// compiler to perform move checking of address only lets, vars, inout args,
/// and mutating self.
///
/// Move Address Checking in Swift
/// ------------------------------
///
/// In order to not have to rewrite all of SILGen to avoid copies, Swift has
/// taken an approach where SILGen marks moveonly addresses with a special
/// marker instruction and emits copies when it attempts to access move only
/// addresses. Then this algorithm fixed up SILGen's output by analyzing the
/// memory uses of a marked memory root location recursively using AccessPath
/// based analyses and then attempting to transform those uses based off of the
/// marked kind into one of a few variants of "simple move only address form"
/// (see below for more information). If the pass is unable to reason that it
/// can safely transform the uses into said form, we emit a diagnostic stating
/// the error to the user. If we emit said diagnostic, we then bail early. If we
/// do not emit a diagnostic, we then transform the IR so that the move only
/// address uses are in said form. This then guarantees that despite SILGen
/// emitting move only types with copies, in the end, our move only types are
/// never copied. As an additional check, once the pass has run we emit an extra
/// diagnostic if we find any copies of move only types so that the user can be
/// sure that any accepted program does not copy move only types.
///
/// Simple Move Only Address Form
/// -----------------------------
///
/// We define a memory location to be in "simple move only address" form (SMOA
/// form for ease of typing) to mean that along any path from an init of the
/// address to a consume of the address, all uses are guaranteed to be semantic
/// "borrow uses" instead of semantic "copy uses". Additionally, SMOA does not
/// consider destroy_addr to be a true consuming use since it will rewrite
/// destroy_addr as necessary so the consuming uses are defined by consuming
/// uses modulo destroy_addr.
///
/// An example of a memory location in "simple move only address form" is the
/// following:
///
/// ```
/// // Memory is defined
/// %0 = alloc_stack $Type
///
/// // Initial initialization.
/// store %input to [init] %0 : $Type
///
/// // Sequence of borrow uses.
/// %1 = load_borrow %0 : $Type
/// apply %f(%1) : $@convention(thin) (@guaranteed Type) -> ()
/// end_borrow %1
/// apply %f2(%0) : $@convention(thin) (@in_guaranteed Type) -> ()
///
/// // Assign is ok since we are just consuming the value.
/// store %input2 to [assign] %0 : $*Type
///
/// // More borrow uses.
/// %3 = load_borrow %0 : $*Type
/// apply %f(%3) : $@convention(thin) (@guaranteed Type) -> ()
/// end_borrow %1
/// apply %f2(%0) : $@convention(thin) (@in_guaranteed Type) -> ()
///
/// // Final destroy
/// destroy_addr %0 : $Type
/// ```
///
/// An example of an instruction not in SMOA form is:
///
/// ```
/// // Memory is defined
/// %0 = alloc_stack $Type
///
/// // Initial initialization.
/// store %input to [init] %0 : $*Type
///
/// // Perform a load + copy of %0 to pass as an argument to %f.
/// %1 = load [copy] %0 : $*Type
/// apply %f(%1) : $@convention(thin) (@guaranteed Type) -> ()
/// destroy_value %1 : $Type
///
/// // Initialize other variable.
/// %otherVar = alloc_stack $Type
/// copy_addr %0 to [initialization] %otherVar : $*Type
/// ...
///
/// // Final destroy that is not part of the use set.
/// destroy_addr %0 : $*Type
/// ```
///
/// The variants of SMOA form can be classified by the specific mark_must_check
/// kind put on the the checker mark instruction and are as follows:
///
/// 1. no_consume_or_assign. This means that the address can only be consumed by
/// destroy_addr and otherwise is only read from. This simulates guaranteed
/// semantics.
///
/// 2. consumable_and_assignable. This means that the address can be consumed
/// (e.x.: take/pass to a +1 function) or assigned to. Additionally, the value
/// is supposed to have its lifetime end along all program paths locally in the
/// function. This simulates a local var's semantics.
///
/// 3. assignable_but_not_consumable. This means that the address can be
/// assigned over, but cannot be taken from. It additionally must have a valid
/// value in it and the end of its lifetime. This simulates accesses to class
/// fields, globals, and escaping mutable captures where we want the user to be
/// able to update the value, but allowing for escapes of the value would break
/// memory safety. In all cases where this is used, the mark_must_check is used
/// as the initial def of the value lifetime. Example:
///
/// 4. initable_but_not_consumable. This means that the address can only be
/// initialized once but cannot be taken from or assigned over. It is assumed
/// that the initial def will always be the mark_must_check and that the value
/// will be uninitialized at that point. Example:
///
/// Algorithm Stages In Detail
/// --------------------------
///
/// To implement this, our algorithm works in 4 stages: a use classification
/// stage, a dataflow stage, and then depending on success/failure one of two
/// transform stages.
///
/// Use Classification Stage
/// ~~~~~~~~~~~~~~~~~~~~~~~~
///
/// Here we use an AccessPath based analysis to transitively visit all uses of
/// our marked address and classify a use as one of the following kinds of uses:
///
/// * init - store [init], copy_addr [init] %dest.
/// * destroy - destroy_addr.
/// * pureTake - load [take], copy_addr [take] %src.
/// * copyTransformableToTake - certain load [copy], certain copy_addr ![take]
/// %src of a temporary %dest.
/// * reinit - store [assign], copy_addr ![init] %dest
/// * borrow - load_borror, a load [copy] without consuming uses.
/// * livenessOnly - a read only use of the address.
///
/// We classify these by adding them to several disjoint SetVectors which track
/// membership.
///
/// When we classify an instruction as copyTransformableToTake, we perform some
/// extra preprocessing to determine if we can actually transform this copy to a
/// take. This means that we:
///
/// 1. For loads, we perform object move only checking. If we find a need for
/// multiple copies, we emit an error. If we find no extra copies needed, we
/// classify the load [copy] as a take if it has any last consuming uses and a
/// borrow if it only has destroy_addr consuming uses.
///
/// 2. For copy_addr, we pattern match if a copy_addr is initializing a "simple
/// temporary" (an alloc_stack with only one use that initializes it, a
/// copy_addr [init] in the same block). In this case, if the copy_addr only has
/// destroy_addr consuming uses, we treat it as a borrow... otherwise, we treat
/// it as a take. If we find any extra initializations, we fail the visitor so
/// we emit a "I don't understand this error" so that users report this case and
/// we can extend it as appropriate.
///
/// If we fail in either case, if we emit an error, we bail early with success
/// so we can assume invariants later in the dataflow stages that make the
/// dataflow easier.
///
/// Dataflow Stage
/// ~~~~~~~~~~~~~~
///
/// To perform our dataflow, we take our classified uses and initialize field
/// sensitive pruned liveness with the data. We then use field sensitive pruned
/// liveness and our check kinds to determine if all of our copy uses that could
/// not be changed into borrows are on the liveness boundary of the memory. If
/// they are within the liveness boundary, then we know a copy is needed and we
/// emit an error to the user. Otherwise, we know that we can change them
/// semantically into a take.
///
/// Success Transformation
/// ~~~~~~~~~~~~~~~~~~~~~~
///
/// Now that we know that we can change our address into "simple move only
/// address form", we transform the IR in the following way:
///
/// 1. Any load [copy] that are classified as borrows are changed to
/// load_borrow.
/// 2. Any load [copy] that are classified as takes are changed to load [take].
/// 3. Any copy_addr [init] temporary allocation are eliminated with their
/// destroy_addr. All uses are placed on the source address.
/// 4. Any destroy_addr that is paired with a copyTransformableToTake is
/// eliminated.
///
/// Fail Transformation
/// ~~~~~~~~~~~~~~~~~~~
///
/// If we emit any diagnostics, we loop through the function one last time after
/// we are done processing and convert all load [copy]/copy_addr of move only
/// types into their explicit forms. We take a little more compile time, but we
/// are going to fail anyways at this point, so it is ok to do so since we will
/// fail before attempting to codegen into LLVM IR.
///
/// Final Black Box Checks on Success
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
///
/// Finally since we want to be able to guarantee to users 100% that the
/// compiler will reject programs even if the checker gives a false success for
/// some reason due to human compiler writer error, we do a last pass over the
/// IR and emit an error diagnostic on any copies of move only types that we
/// see. The error states to the user that this is a compiler bug and to file a
/// bug report. Since it is a completely separate, simple implementation, this
/// gives the user of our implementation the confidence to know that the
/// compiler even in the face of complexity in the checker will emit correct
/// code.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-move-only-checker"
#include "swift/AST/AccessScope.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Basic/Debug.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/Basic/SmallBitVector.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockData.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/Consumption.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/FieldSensitivePrunedLiveness.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILArgumentConvention.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/ClosureScope.h"
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/NonLocalAccessBlockAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "MoveOnlyAddressCheckerUtils.h"
#include "MoveOnlyBorrowToDestructureUtils.h"
#include "MoveOnlyDiagnostics.h"
#include "MoveOnlyObjectCheckerUtils.h"
#include "MoveOnlyTypeUtils.h"
#include "MoveOnlyUtils.h"
#include <utility>
using namespace swift;
using namespace swift::siloptimizer;
//===----------------------------------------------------------------------===//
// MARK: Memory Utilities
//===----------------------------------------------------------------------===//
static bool memInstMustInitialize(Operand *memOper) {
SILValue address = memOper->get();
SILInstruction *memInst = memOper->getUser();
switch (memInst->getKind()) {
default:
return false;
case SILInstructionKind::CopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(memInst);
return CAI->getDest() == address && CAI->isInitializationOfDest();
}
case SILInstructionKind::ExplicitCopyAddrInst: {
auto *CAI = cast<ExplicitCopyAddrInst>(memInst);
return CAI->getDest() == address && CAI->isInitializationOfDest();
}
case SILInstructionKind::MarkUnresolvedMoveAddrInst: {
return cast<MarkUnresolvedMoveAddrInst>(memInst)->getDest() == address;
}
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitEnumDataAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
return true;
case SILInstructionKind::BeginApplyInst:
case SILInstructionKind::TryApplyInst:
case SILInstructionKind::ApplyInst: {
FullApplySite applySite(memInst);
return applySite.isIndirectResultOperand(*memOper);
}
case SILInstructionKind::StoreInst: {
auto qual = cast<StoreInst>(memInst)->getOwnershipQualifier();
return qual == StoreOwnershipQualifier::Init ||
qual == StoreOwnershipQualifier::Trivial;
}
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
return cast<Store##Name##Inst>(memInst)->isInitializationOfDest();
#include "swift/AST/ReferenceStorage.def"
}
}
static bool memInstMustReinitialize(Operand *memOper) {
SILValue address = memOper->get();
SILInstruction *memInst = memOper->getUser();
switch (memInst->getKind()) {
default:
return false;
case SILInstructionKind::CopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(memInst);
return CAI->getDest() == address && !CAI->isInitializationOfDest();
}
case SILInstructionKind::ExplicitCopyAddrInst: {
auto *CAI = cast<ExplicitCopyAddrInst>(memInst);
return CAI->getDest() == address && !CAI->isInitializationOfDest();
}
case SILInstructionKind::YieldInst: {
auto *yield = cast<YieldInst>(memInst);
return yield->getYieldInfoForOperand(*memOper).isIndirectInOut();
}
case SILInstructionKind::BeginApplyInst:
case SILInstructionKind::TryApplyInst:
case SILInstructionKind::ApplyInst: {
FullApplySite applySite(memInst);
return applySite.getArgumentOperandConvention(*memOper).isInoutConvention();
}
case SILInstructionKind::StoreInst:
return cast<StoreInst>(memInst)->getOwnershipQualifier() ==
StoreOwnershipQualifier::Assign;
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
return !cast<Store##Name##Inst>(memInst)->isInitializationOfDest();
#include "swift/AST/ReferenceStorage.def"
}
}
/// Is this a reinit instruction that we know how to convert into its init form.
static bool isReinitToInitConvertibleInst(SILInstruction *memInst) {
switch (memInst->getKind()) {
default:
return false;
case SILInstructionKind::CopyAddrInst: {
auto *cai = cast<CopyAddrInst>(memInst);
return !cai->isInitializationOfDest();
}
case SILInstructionKind::StoreInst: {
auto *si = cast<StoreInst>(memInst);
return si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign;
}
}
}
static void convertMemoryReinitToInitForm(SILInstruction *memInst) {
switch (memInst->getKind()) {
default:
llvm_unreachable("unsupported?!");
case SILInstructionKind::CopyAddrInst: {
auto *cai = cast<CopyAddrInst>(memInst);
cai->setIsInitializationOfDest(IsInitialization_t::IsInitialization);
return;
}
case SILInstructionKind::StoreInst: {
auto *si = cast<StoreInst>(memInst);
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
return;
}
}
}
static bool memInstMustConsume(Operand *memOper) {
SILValue address = memOper->get();
SILInstruction *memInst = memOper->getUser();
switch (memInst->getKind()) {
default:
return false;
case SILInstructionKind::CopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(memInst);
return (CAI->getSrc() == address && CAI->isTakeOfSrc()) ||
(CAI->getDest() == address && !CAI->isInitializationOfDest());
}
case SILInstructionKind::ExplicitCopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(memInst);
return (CAI->getSrc() == address && CAI->isTakeOfSrc()) ||
(CAI->getDest() == address && !CAI->isInitializationOfDest());
}
case SILInstructionKind::BeginApplyInst:
case SILInstructionKind::TryApplyInst:
case SILInstructionKind::ApplyInst: {
FullApplySite applySite(memInst);
return applySite.getArgumentOperandConvention(*memOper).isOwnedConvention();
}
case SILInstructionKind::PartialApplyInst: {
// If we are on the stack or have an inout convention, we do not
// consume. Otherwise, we do.
auto *pai = cast<PartialApplyInst>(memInst);
if (pai->isOnStack())
return false;
ApplySite applySite(pai);
auto convention = applySite.getArgumentConvention(*memOper);
return convention.isInoutConvention();
}
case SILInstructionKind::DestroyAddrInst:
return true;
case SILInstructionKind::LoadInst:
return cast<LoadInst>(memInst)->getOwnershipQualifier() ==
LoadOwnershipQualifier::Take;
}
}
/// Returns true if \p value a function argument from an inout argument or a
/// value extracted from a closure captured box that we did not convert to an
/// address.
///
/// These are cases where we want to treat the end of the function as a liveness
/// use to ensure that we reinitialize \p value before the end of the function
/// if we consume \p value in the function body.
static bool isInOutDefThatNeedsEndOfFunctionLiveness(MarkMustCheckInst *markedAddr) {
SILValue operand = markedAddr->getOperand();
// Check for inout types of arguments that are marked with consumable and
// assignable.
if (markedAddr->getCheckKind() ==
MarkMustCheckInst::CheckKind::ConsumableAndAssignable) {
if (auto *fArg = dyn_cast<SILFunctionArgument>(operand)) {
switch (fArg->getArgumentConvention()) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_Out:
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Direct_Guaranteed:
case SILArgumentConvention::Direct_Owned:
case SILArgumentConvention::Direct_Unowned:
case SILArgumentConvention::Pack_Guaranteed:
case SILArgumentConvention::Pack_Owned:
case SILArgumentConvention::Pack_Out:
return false;
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Pack_Inout:
LLVM_DEBUG(llvm::dbgs() << "Found inout arg: " << *fArg);
return true;
}
}
}
// See if we have an assignable_but_not_consumable from a formal access.
// In this case, the value must be live at the end of the
// access, similar to an inout parameter.
if (markedAddr->getCheckKind() ==
MarkMustCheckInst::CheckKind::AssignableButNotConsumable) {
if (isa<BeginAccessInst>(operand)) {
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// MARK: Find Candidate Mark Must Checks
//===----------------------------------------------------------------------===//
void swift::siloptimizer::searchForCandidateAddressMarkMustChecks(
SILFunction *fn,
llvm::SmallSetVector<MarkMustCheckInst *, 32> &moveIntroducersToProcess,
DiagnosticEmitter &diagnosticEmitter) {
for (auto &block : *fn) {
for (auto ii = block.begin(), ie = block.end(); ii != ie;) {
auto *mmci = dyn_cast<MarkMustCheckInst>(&*ii);
++ii;
if (!mmci || !mmci->hasMoveCheckerKind() || !mmci->getType().isAddress())
continue;
moveIntroducersToProcess.insert(mmci);
}
}
}
//===----------------------------------------------------------------------===//
// MARK: Use State
//===----------------------------------------------------------------------===//
namespace {
struct UseState {
MarkMustCheckInst *address;
/// A map from destroy_addr to the part of the type that it destroys.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> destroys;
/// A map from a liveness requiring use to the part of the type that it
/// requires liveness for.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> livenessUses;
/// A map from a load [copy] or load [take] that we determined must be
/// converted to a load_borrow to the part of the type tree that it needs to
/// borrow.
///
/// NOTE: This does not include actual load_borrow which are treated
/// just as liveness uses.
///
/// NOTE: load_borrow that we actually copy, we canonicalize early to a load
/// [copy] + begin_borrow so that we do not need to convert load_borrow to a
/// normal load when rewriting.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> borrows;
/// A copy_addr, load [copy], or load [take] that we determine is semantically
/// truly a take mapped to the part of the type tree that it needs to use.
///
/// DISCUSSION: A copy_addr [init] or load [copy] are considered actually
/// takes if they are not destroyed with a destroy_addr/destroy_value. We
/// consider them to be takes since after the transform they must be a take.
///
/// Importantly, these we know are never copied and are only consumed once.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> takeInsts;
/// A map from a copy_addr, load [copy], or load [take] that we determine
/// semantically are true copies to the part of the type tree they must copy.
///
/// DISCUSSION: One of these instructions being a true copy means that their
/// result or destination is used in a way that some sort of extra copy is
/// needed. Example:
///
/// %0 = load [take] %addr
/// %1 = copy_value %0
/// consume(%0)
/// consume(%1)
///
/// Notice how the load [take] above semantically requires a copy since it was
/// consumed twice even though SILGen emitted it as a load [take].
///
/// We represent these separately from \p takeInsts since:
///
/// 1.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> copyInsts;
/// A map from an instruction that initializes memory to the description of
/// the part of the type tree that it initializes.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> initInsts;
/// memInstMustReinitialize insts. Contains both insts like copy_addr/store
/// [assign] that are reinits that we will convert to inits and true reinits.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> reinitInsts;
/// A "inout terminator use" is an implicit liveness use of the entire value
/// placed on a terminator. We use this both so we add liveness for the
/// terminator user and so that we can use the set to quickly identify later
/// while emitting diagnostics that a liveness use is a terminator user and
/// emit a specific diagnostic message.
SmallSetVector<SILInstruction *, 2> inoutTermUsers;
/// We add debug_values to liveness late after we diagnose, but before we
/// hoist destroys to ensure that we do not hoist destroys out of access
/// scopes.
DebugValueInst *debugValue = nullptr;
SILFunction *getFunction() const { return address->getFunction(); }
/// Returns true if this is a terminator instruction that although it doesn't
/// use our inout argument directly is used by the pass to ensure that we
/// reinit said argument if we consumed it in the body of the function.
bool isInOutTermUser(SILInstruction *inst) const {
return inoutTermUsers.count(inst);
}
void clear() {
address = nullptr;
destroys.clear();
livenessUses.clear();
borrows.clear();
copyInsts.clear();
takeInsts.clear();
initInsts.clear();
reinitInsts.clear();
inoutTermUsers.clear();
debugValue = nullptr;
}
void dump() {
llvm::dbgs() << "AddressUseState!\n";
llvm::dbgs() << "Destroys:\n";
for (auto pair : destroys) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "LivenessUses:\n";
for (auto pair : livenessUses) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Borrows:\n";
for (auto pair : borrows) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Takes:\n";
for (auto pair : takeInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Copies:\n";
for (auto pair : copyInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Inits:\n";
for (auto pair : initInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Reinits:\n";
for (auto pair : reinitInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "InOut Term Users:\n";
for (auto *inst : inoutTermUsers) {
llvm::dbgs() << *inst;
}
llvm::dbgs() << "Debug Value User:\n";
if (debugValue) {
llvm::dbgs() << *debugValue;
}
}
void
initializeLiveness(FieldSensitiveMultiDefPrunedLiveRange &prunedLiveness);
void initializeInOutTermUsers() {
if (!isInOutDefThatNeedsEndOfFunctionLiveness(address))
return;
SmallVector<SILBasicBlock *, 8> exitBlocks;
address->getFunction()->findExitingBlocks(exitBlocks);
for (auto *block : exitBlocks) {
LLVM_DEBUG(llvm::dbgs() << " Adding term as liveness user: "
<< *block->getTerminator());
inoutTermUsers.insert(block->getTerminator());
}
}
bool isConsume(SILInstruction *inst, TypeTreeLeafTypeRange span) const {
{
auto iter = takeInsts.find(inst);
if (iter != takeInsts.end()) {
if (span.setIntersection(iter->second))
return true;
}
}
{
auto iter = copyInsts.find(inst);
if (iter != copyInsts.end()) {
if (span.setIntersection(iter->second))
return true;
}
}
return false;
}
bool isCopy(SILInstruction *inst, const SmallBitVector &bv) const {
auto iter = copyInsts.find(inst);
if (iter != copyInsts.end()) {
for (unsigned index : iter->second.getRange()) {
if (bv[index])
return true;
}
}
return false;
}
bool isLivenessUse(SILInstruction *inst, TypeTreeLeafTypeRange span) const {
{
auto iter = livenessUses.find(inst);
if (iter != livenessUses.end()) {
if (span.setIntersection(iter->second))
return true;
}
}
{
auto iter = borrows.find(inst);
if (iter != borrows.end()) {
if (span.setIntersection(iter->second))
return true;
}
}
if (!isReinitToInitConvertibleInst(inst)) {
auto iter = reinitInsts.find(inst);
if (iter != reinitInsts.end()) {
if (span.setIntersection(iter->second))
return true;
}
}
// An "inout terminator use" is an implicit liveness use of the entire
// value. This is because we need to ensure that our inout value is
// reinitialized along exit paths.
if (inoutTermUsers.count(inst))
return true;
return false;
}
bool isInitUse(SILInstruction *inst, TypeTreeLeafTypeRange span) const {
{
auto iter = initInsts.find(inst);
if (iter != initInsts.end()) {
if (span.setIntersection(iter->second))
return true;
}
}
if (isReinitToInitConvertibleInst(inst)) {
auto iter = reinitInsts.find(inst);
if (iter != reinitInsts.end()) {
if (span.setIntersection(iter->second))
return true;
}
}
return false;
}
};
} // namespace
void UseState::initializeLiveness(
FieldSensitiveMultiDefPrunedLiveRange &liveness) {
// We begin by initializing all of our init uses.
for (auto initInstAndValue : initInsts) {
LLVM_DEBUG(llvm::dbgs() << "Found def: " << *initInstAndValue.first);
liveness.initializeDef(initInstAndValue.first, initInstAndValue.second);
}
// If we have a reinitInstAndValue that we are going to be able to convert
// into a simple init, add it as an init. We are going to consider the rest of
// our reinit uses to be liveness uses.
for (auto reinitInstAndValue : reinitInsts) {
if (isReinitToInitConvertibleInst(reinitInstAndValue.first)) {
LLVM_DEBUG(llvm::dbgs() << "Found def: " << *reinitInstAndValue.first);
liveness.initializeDef(reinitInstAndValue.first,
reinitInstAndValue.second);
}
}
// Then check if our markedValue is from an argument that is in,
// in_guaranteed, inout, or inout_aliasable, consider the marked address to be
// the initialization point.
if (auto *fArg = dyn_cast<SILFunctionArgument>(address->getOperand())) {
switch (fArg->getArgumentConvention()) {
case swift::SILArgumentConvention::Indirect_In:
case swift::SILArgumentConvention::Indirect_In_Guaranteed:
case swift::SILArgumentConvention::Indirect_Inout:
case swift::SILArgumentConvention::Indirect_InoutAliasable:
// We need to add our address to the initInst array to make sure that
// later invariants that we assert upon remain true.
LLVM_DEBUG(llvm::dbgs()
<< "Found in/in_guaranteed/inout/inout_aliasable argument as "
"an init... adding mark_must_check as init!\n");
initInsts.insert({address, liveness.getTopLevelSpan()});
liveness.initializeDef(address, liveness.getTopLevelSpan());
break;
case swift::SILArgumentConvention::Indirect_Out:
llvm_unreachable("Should never have out addresses here");
case swift::SILArgumentConvention::Direct_Owned:
case swift::SILArgumentConvention::Direct_Unowned:
case swift::SILArgumentConvention::Direct_Guaranteed:
case swift::SILArgumentConvention::Pack_Inout:
case swift::SILArgumentConvention::Pack_Guaranteed:
case swift::SILArgumentConvention::Pack_Owned:
case swift::SILArgumentConvention::Pack_Out:
llvm_unreachable("Working with addresses");
}
}
// See if our address is from a closure guaranteed box that we did not promote
// to an address. In such a case, just treat our mark_must_check as the init
// of our value.
if (auto *projectBox = dyn_cast<ProjectBoxInst>(stripAccessMarkers(address->getOperand()))) {
if (auto *fArg = dyn_cast<SILFunctionArgument>(projectBox->getOperand())) {
if (fArg->isClosureCapture()) {
assert(fArg->getArgumentConvention() ==
SILArgumentConvention::Direct_Guaranteed &&
"Just a paranoid assert check to make sure this code is thought "
"about if we change the convention in some way");
// We need to add our address to the initInst array to make sure that
// later invariants that we assert upon remain true.
LLVM_DEBUG(llvm::dbgs() << "Found move only arg closure box use... "
"adding mark_must_check as init!\n");
initInsts.insert({address, liveness.getTopLevelSpan()});
liveness.initializeDef(address, liveness.getTopLevelSpan());
}
} else if (auto *box = dyn_cast<AllocBoxInst>(
lookThroughOwnershipInsts(projectBox->getOperand()))) {
LLVM_DEBUG(llvm::dbgs() << "Found move only var allocbox use... "
"adding mark_must_check as init!\n");
initInsts.insert({address, liveness.getTopLevelSpan()});
liveness.initializeDef(address, liveness.getTopLevelSpan());
}
}
// Check if our address is from a ref_element_addr. In such a case, we treat
// the mark_must_check as the initialization.
if (auto *refEltAddr = dyn_cast<RefElementAddrInst>(
stripAccessMarkers(address->getOperand()))) {
LLVM_DEBUG(llvm::dbgs() << "Found ref_element_addr use... "
"adding mark_must_check as init!\n");
initInsts.insert({address, liveness.getTopLevelSpan()});
liveness.initializeDef(address, liveness.getTopLevelSpan());
}
// Check if our address is from a global_addr. In such a case, we treat the
// mark_must_check as the initialization.
if (auto *globalAddr =
dyn_cast<GlobalAddrInst>(stripAccessMarkers(address->getOperand()))) {
LLVM_DEBUG(llvm::dbgs() << "Found global_addr use... "
"adding mark_must_check as init!\n");
initInsts.insert({address, liveness.getTopLevelSpan()});
liveness.initializeDef(address, liveness.getTopLevelSpan());
}
// Now that we have finished initialization of defs, change our multi-maps
// from their array form to their map form.
liveness.finishedInitializationOfDefs();
LLVM_DEBUG(llvm::dbgs() << "Liveness with just inits:\n";
liveness.print(llvm::dbgs()));
// Now at this point, we have defined all of our defs so we can start adding
// uses to the liveness.
for (auto reinitInstAndValue : reinitInsts) {
if (!isReinitToInitConvertibleInst(reinitInstAndValue.first)) {
liveness.updateForUse(reinitInstAndValue.first, reinitInstAndValue.second,
false /*lifetime ending*/);
LLVM_DEBUG(llvm::dbgs() << "Added liveness for reinit: "
<< *reinitInstAndValue.first;
liveness.print(llvm::dbgs()));
}
}
// Then add all of the takes that we saw propagated up to the top of our
// block. Since we have done this for all of our defs
for (auto takeInstAndValue : takeInsts) {
liveness.updateForUse(takeInstAndValue.first, takeInstAndValue.second,
true /*lifetime ending*/);
LLVM_DEBUG(llvm::dbgs()
<< "Added liveness for take: " << *takeInstAndValue.first;
liveness.print(llvm::dbgs()));
}
for (auto copyInstAndValue : copyInsts) {
liveness.updateForUse(copyInstAndValue.first, copyInstAndValue.second,
true /*lifetime ending*/);
LLVM_DEBUG(llvm::dbgs()
<< "Added liveness for copy: " << *copyInstAndValue.first;
liveness.print(llvm::dbgs()));
}
// Do the same for our borrow and liveness insts.
for (auto livenessInstAndValue : borrows) {
liveness.updateForUse(livenessInstAndValue.first,
livenessInstAndValue.second,
false /*lifetime ending*/);
auto *li = cast<LoadInst>(livenessInstAndValue.first);
auto accessPathWithBase =
AccessPathWithBase::computeInScope(li->getOperand());
if (auto *beginAccess =
dyn_cast<BeginAccessInst>(accessPathWithBase.base)) {
for (auto *endAccess : beginAccess->getEndAccesses()) {
liveness.updateForUse(endAccess, livenessInstAndValue.second,
false /*lifetime ending*/);
}
}
// NOTE: We used to add the destroy_value of our loads here to liveness. We
// instead add them to the livenessUses array so that we can successfully
// find them later when performing a forward traversal to find them for
// error purposes.
LLVM_DEBUG(llvm::dbgs() << "Added liveness for borrow: "
<< *livenessInstAndValue.first;
liveness.print(llvm::dbgs()));
}
for (auto livenessInstAndValue : livenessUses) {
if (auto *lbi = dyn_cast<LoadBorrowInst>(livenessInstAndValue.first)) {
auto accessPathWithBase =
AccessPathWithBase::computeInScope(lbi->getOperand());
if (auto *beginAccess =
dyn_cast<BeginAccessInst>(accessPathWithBase.base)) {
for (auto *endAccess : beginAccess->getEndAccesses()) {
liveness.updateForUse(endAccess, livenessInstAndValue.second,
false /*lifetime ending*/);
}
} else {
for (auto *ebi : lbi->getEndBorrows()) {
liveness.updateForUse(ebi, livenessInstAndValue.second,
false /*lifetime ending*/);
}
}
} else {
liveness.updateForUse(livenessInstAndValue.first,
livenessInstAndValue.second,
false /*lifetime ending*/);
}
LLVM_DEBUG(llvm::dbgs() << "Added liveness for livenessInst: "
<< *livenessInstAndValue.first;
liveness.print(llvm::dbgs()));
}
// Finally, if we have an inout argument, add a liveness use of the entire
// value on terminators in blocks that are exits from the function. This
// ensures that along all paths, if our inout is not reinitialized before we
// exit the function, we will get an error. We also stash these users into
// inoutTermUser so we can quickly recognize them later and emit a better
// error msg.
for (auto *inst : inoutTermUsers) {
liveness.updateForUse(inst, TypeTreeLeafTypeRange(address),
false /*lifetime ending*/);
LLVM_DEBUG(llvm::dbgs() << "Added liveness for inoutTermUser: " << *inst;
liveness.print(llvm::dbgs()));
}
LLVM_DEBUG(llvm::dbgs() << "Final Liveness:\n"; liveness.print(llvm::dbgs()));
}
//===----------------------------------------------------------------------===//
// MARK: Global Block State
//===----------------------------------------------------------------------===//
namespace {
struct BlockState {
using Map = llvm::DenseMap<SILBasicBlock *, BlockState>;
/// This is either the liveness up or take up inst that projects
/// up. We set this state according to the following rules:
///
/// 1. If we are tracking a takeUp, we always take it even if we have a
/// livenessUp.
///
/// 2. If we have a livenessUp and do not have a take up, we track that
/// instead.
///
/// The reason why we do this is that we want to catch use after frees when
/// non-consuming uses are later than a consuming use.
SILInstruction *userUp;
/// If we are init down, then we know that we can not transfer our take
/// through this block and should stop traversing.
bool isInitDown;
BlockState() : userUp(nullptr) {}
BlockState(SILInstruction *userUp, bool isInitDown)
: userUp(userUp), isInitDown(isInitDown) {}
};
} // namespace
//===----------------------------------------------------------------------===//
// MARK: Forward Declaration of Main Checker
//===----------------------------------------------------------------------===//
namespace {
struct ConsumeInfo {
/// Map blocks on the lifetime boundary to the last consuming instruction.
llvm::MapVector<
SILBasicBlock *,
SmallVector<std::pair<SILInstruction *, TypeTreeLeafTypeRange>, 1>>
finalBlockConsumes;
bool isFrozen = false;
public:
void print(llvm::raw_ostream &os) const {
for (auto &blockInstRangePairVector : finalBlockConsumes) {
os << "Dumping state for block bb"
<< blockInstRangePairVector.first->getDebugID() << '\n';
for (auto &instRangePairVector : blockInstRangePairVector.second) {
auto *inst = instRangePairVector.first;
if (!inst)
continue;
os << "Inst: " << *inst;
os << "Range: ";
instRangePairVector.second.dump();
os << '\n';
}
}
}
void clear() {
finalBlockConsumes.clear();
isFrozen = false;
}
/// This is expensive! Only use it in debug mode!
bool hasUnclaimedConsumes() const {
assert(isFrozen);
bool foundAny = false;
for (auto range : finalBlockConsumes) {
for (auto elt : range.second) {
foundAny |= bool(elt.first);
}
}
return foundAny;
}
void recordFinalConsume(SILInstruction *inst, TypeTreeLeafTypeRange span) {
assert(!isFrozen);
auto iter = finalBlockConsumes.insert({inst->getParent(), {{inst, span}}});
if (iter.second)
return;
LLVM_DEBUG(llvm::dbgs() << "Recorded Final Consume: " << *inst);
iter.first->second.emplace_back(inst, span);
}
void finishRecordingFinalConsumes() {
assert(!isFrozen);
for (auto &pair : finalBlockConsumes) {
llvm::stable_sort(
pair.second,
[](const std::pair<SILInstruction *, TypeTreeLeafTypeRange> &lhs,
const std::pair<SILInstruction *, TypeTreeLeafTypeRange> &rhs) {
return lhs.first < rhs.first;
});
}
isFrozen = true;
LLVM_DEBUG(llvm::dbgs() << "Final recorded consumes!\n";
print(llvm::dbgs()));
}
// Return true if this instruction is marked as a final consume point of the
// current def's live range. A consuming instruction can only be claimed once
// because instructions like `tuple` can consume the same value via multiple
// operands.
//
// Can only be used once frozen.
bool claimConsume(SILInstruction *inst, TypeTreeLeafTypeRange range) {
assert(isFrozen);
bool claimedConsume = false;
auto &iter = finalBlockConsumes[inst->getParent()];
for (unsigned i : indices(iter)) {
auto &instRangePair = iter[i];
if (instRangePair.first == inst && instRangePair.second == range) {
instRangePair.first = nullptr;
claimedConsume = true;
LLVM_DEBUG(llvm::dbgs() << "Claimed consume: " << *inst);
}
}
return claimedConsume;
}
ConsumeInfo() {}
ConsumeInfo(CanonicalOSSAConsumeInfo const &) = delete;
ConsumeInfo &operator=(ConsumeInfo const &) = delete;
};
struct MoveOnlyAddressCheckerPImpl {
bool changed = false;
SILFunction *fn;
DominanceInfo *domTree;
/// A set of mark_must_check that we are actually going to process.
SmallSetVector<MarkMustCheckInst *, 32> moveIntroducersToProcess;
/// The instruction deleter used by \p canonicalizer.
InstructionDeleter deleter;
/// State to run CanonicalizeOSSALifetime.
OSSACanonicalizer canonicalizer;
/// Per mark must check address use state.
UseState addressUseState;
/// Diagnostic emission routines wrapped around a consuming use cache. This
/// ensures that we only emit a single error per use per marked value.
DiagnosticEmitter &diagnosticEmitter;
/// Information about destroys that we use when inserting destroys.
ConsumeInfo consumes;
/// PostOrderAnalysis used by the BorrowToDestructureTransform.
PostOrderAnalysis *poa;
/// Allocator used by the BorrowToDestructureTransform.
borrowtodestructure::IntervalMapAllocator &allocator;
MoveOnlyAddressCheckerPImpl(
SILFunction *fn, DiagnosticEmitter &diagnosticEmitter,
DominanceInfo *domTree, PostOrderAnalysis *poa,
borrowtodestructure::IntervalMapAllocator &allocator)
: fn(fn), domTree(domTree), deleter(),
canonicalizer(fn, domTree, deleter),
diagnosticEmitter(diagnosticEmitter), poa(poa), allocator(allocator) {
deleter.setCallbacks(std::move(
InstModCallbacks().onDelete([&](SILInstruction *instToDelete) {
if (auto *mvi = dyn_cast<MarkMustCheckInst>(instToDelete))
moveIntroducersToProcess.remove(mvi);
instToDelete->eraseFromParent();
})));
diagnosticEmitter.initCanonicalizer(&canonicalizer);
}
/// Search through the current function for candidate mark_must_check
/// [noimplicitcopy]. If we find one that does not fit a pattern that we
/// understand, emit an error diagnostic telling the programmer that the move
/// checker did not know how to recognize this code pattern.
///
/// Returns true if we emitted a diagnostic. Returns false otherwise.
bool searchForCandidateMarkMustChecks();
/// Emits an error diagnostic for \p markedValue.
void performObjectCheck(MarkMustCheckInst *markedValue);
bool performSingleCheck(MarkMustCheckInst *markedValue);
void insertDestroysOnBoundary(MarkMustCheckInst *markedValue,
FieldSensitiveMultiDefPrunedLiveRange &liveness,
FieldSensitivePrunedLivenessBoundary &boundary);
void rewriteUses(FieldSensitiveMultiDefPrunedLiveRange &liveness,
const FieldSensitivePrunedLivenessBoundary &boundary);
void handleSingleBlockDestroy(SILInstruction *destroy, bool isReinit);
};
} // namespace
//===----------------------------------------------------------------------===//
// MARK: CopiedLoadBorrowElimination
//===----------------------------------------------------------------------===//
namespace {
/// An early transform that we run to convert any load_borrow that are copied
/// directly or that have any subelement that is copied to a load [copy]. This
/// lets the rest of the optimization handle these as appropriate.
struct CopiedLoadBorrowEliminationVisitor final
: public TransitiveAddressWalker {
SILFunction *fn;
StackList<LoadBorrowInst *> targets;
CopiedLoadBorrowEliminationVisitor(SILFunction *fn) : fn(fn), targets(fn) {}
bool visitUse(Operand *op) override {
LLVM_DEBUG(llvm::dbgs() << "CopiedLBElim visiting ";
llvm::dbgs() << " User: " << *op->getUser());
auto *lbi = dyn_cast<LoadBorrowInst>(op->getUser());
if (!lbi)
return true;
LLVM_DEBUG(llvm::dbgs() << "Found load_borrow: " << *lbi);
StackList<Operand *> useWorklist(lbi->getFunction());
for (auto *use : lbi->getUses())
useWorklist.push_back(use);
bool shouldConvertToLoadCopy = false;
while (!useWorklist.empty()) {
auto *nextUse = useWorklist.pop_back_val();
switch (nextUse->getOperandOwnership()) {
case OperandOwnership::NonUse:
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
continue;
// These might be uses that we need to perform a destructure or insert
// struct_extracts for.
case OperandOwnership::TrivialUse:
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::InteriorPointer:
case OperandOwnership::BitwiseEscape: {
// Look through copy_value of a move only value. We treat copy_value of
// copyable values as normal uses.
if (auto *cvi = dyn_cast<CopyValueInst>(nextUse->getUser())) {
if (cvi->getOperand()->getType().isMoveOnly()) {
shouldConvertToLoadCopy = true;
break;
}
}
continue;
}
case OperandOwnership::ForwardingConsume:
case OperandOwnership::DestroyingConsume:
// We can only hit this if our load_borrow was copied.
llvm_unreachable("We should never hit this");
case OperandOwnership::GuaranteedForwarding:
// If we have a switch_enum, we always need to convert it to a load
// [copy] since we need to destructure through it.
shouldConvertToLoadCopy |= isa<SwitchEnumInst>(nextUse->getUser());
ForwardingOperand(nextUse).visitForwardedValues([&](SILValue value) {
for (auto *use : value->getUses()) {
useWorklist.push_back(use);
}
return true;
});
continue;
case OperandOwnership::Borrow:
LLVM_DEBUG(llvm::dbgs() << " Found recursive borrow!\n");
// Look through borrows.
for (auto value : nextUse->getUser()->getResults()) {
for (auto *use : value->getUses()) {
useWorklist.push_back(use);
}
}
continue;
case OperandOwnership::EndBorrow:
LLVM_DEBUG(llvm::dbgs() << " Found end borrow!\n");
continue;
case OperandOwnership::Reborrow:
llvm_unreachable("Unsupported for now?!");
}
if (shouldConvertToLoadCopy)
break;
}
LLVM_DEBUG(llvm::dbgs()
<< "Load Borrow was copied: "
<< (shouldConvertToLoadCopy ? "true" : "false") << '\n');
if (!shouldConvertToLoadCopy)
return true;
targets.push_back(lbi);
return true;
}
void process() {
if (targets.empty())
return;
while (!targets.empty()) {
auto *lbi = targets.pop_back_val();
SILBuilderWithScope builder(lbi);
SILValue li = builder.emitLoadValueOperation(
lbi->getLoc(), lbi->getOperand(), LoadOwnershipQualifier::Copy);
SILValue borrow = builder.createBeginBorrow(lbi->getLoc(), li);
for (auto *ebi : lbi->getEndBorrows()) {
auto *next = ebi->getNextInstruction();
SILBuilderWithScope builder(next);
auto loc = RegularLocation::getAutoGeneratedLocation();
builder.emitDestroyValueOperation(loc, li);
}
lbi->replaceAllUsesWith(borrow);
lbi->eraseFromParent();
}
LLVM_DEBUG(llvm::dbgs() << "After Load Borrow Elim. Func Dump Start! ";
fn->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "After Load Borrow Elim. Func Dump End!\n");
}
};
} // namespace
//===----------------------------------------------------------------------===//
// MARK: DestructureThroughDeinit Checking
//===----------------------------------------------------------------------===//
static void
checkForDestructureThroughDeinit(MarkMustCheckInst *rootAddress, Operand *use,
TypeTreeLeafTypeRange usedBits,
DiagnosticEmitter &diagnosticEmitter) {
LLVM_DEBUG(llvm::dbgs() << " DestructureNeedingUse: " << *use->getUser());
SILFunction *fn = rootAddress->getFunction();
// We walk down from our ancestor to our projection, emitting an error if any
// of our types have a deinit.
TypeOffsetSizePair pair(usedBits);
auto targetType = use->get()->getType();
auto iterType = rootAddress->getType();
TypeOffsetSizePair iterPair(iterType, fn);
while (iterType != targetType) {
// If we have a nominal type as our parent type, see if it has a
// deinit. We know that it must be non-copyable since copyable types
// cannot contain non-copyable types and that our parent root type must be
// an enum, tuple, or struct.
if (auto *nom = iterType.getNominalOrBoundGenericNominal()) {
if (nom->getValueTypeDestructor()) {
// If we find one, emit an error since we are going to have to extract
// through the deinit. Emit a nice error saying what it is. Since we
// are emitting an error, we do a bit more work and construct the
// actual projection string.
SmallString<128> pathString;
auto rootType = rootAddress->getType();
if (iterType != rootType) {
llvm::raw_svector_ostream os(pathString);
pair.constructPathString(iterType, {rootType, fn}, rootType, fn, os);
}
diagnosticEmitter.emitCannotDestructureDeinitNominalError(
rootAddress, pathString, nom, use->getUser());
break;
}
}
// Otherwise, walk one level towards our child type. We unconditionally
// unwrap since we should never fail here due to earlier checking.
std::tie(iterPair, iterType) =
*pair.walkOneLevelTowardsChild(iterPair, iterType, fn);
}
}
//===----------------------------------------------------------------------===//
// MARK: GatherLexicalLifetimeUseVisitor
//===----------------------------------------------------------------------===//
namespace {
/// Visit all of the uses of value in preparation for running our algorithm.
struct GatherUsesVisitor final : public TransitiveAddressWalker {
MoveOnlyAddressCheckerPImpl &moveChecker;
UseState &useState;
MarkMustCheckInst *markedValue;
bool emittedEarlyDiagnostic = false;
DiagnosticEmitter &diagnosticEmitter;
// Pruned liveness used to validate that load [take]/load [copy] can be
// converted to load_borrow without violating exclusivity.
BitfieldRef<SSAPrunedLiveness> liveness;
GatherUsesVisitor(MoveOnlyAddressCheckerPImpl &moveChecker,
UseState &useState, MarkMustCheckInst *markedValue,
DiagnosticEmitter &diagnosticEmitter)
: moveChecker(moveChecker), useState(useState), markedValue(markedValue),
diagnosticEmitter(diagnosticEmitter) {}
bool visitUse(Operand *op) override;
void reset(MarkMustCheckInst *address) { useState.address = address; }
void clear() { useState.clear(); }
/// For now always markedValue. If we start using this for move address
/// checking, we need to check against the operand of the markedValue. This is
/// because for move checking, our marker is placed along the variables
/// initialization so we are always going to have all later uses from the
/// marked value. For the move operator though we will want this to be the
/// base address that we are checking which should be the operand of the mark
/// must check value.
SILValue getRootAddress() const { return markedValue; }
/// Returns true if we emitted an error.
bool checkForExclusivityHazards(LoadInst *li) {
BitfieldRef<SSAPrunedLiveness>::StackState state(liveness,
li->getFunction());
LLVM_DEBUG(llvm::dbgs() << "Checking for exclusivity hazards for: " << *li);
// Grab our access path with in scope. We want to find the inner most access
// scope.
auto accessPathWithBase =
AccessPathWithBase::computeInScope(li->getOperand());
auto accessPath = accessPathWithBase.accessPath;
// TODO: Make this a we don't understand error.
assert(accessPath.isValid() && "Invalid access path?!");
auto *bai = dyn_cast<BeginAccessInst>(accessPathWithBase.base);
if (!bai) {
LLVM_DEBUG(llvm::dbgs()
<< " No begin access... so no exclusivity violation!\n");
return false;
}
bool emittedError = false;
liveness->initializeDef(bai);
liveness->computeSimple();
for (auto *consumingUse : li->getConsumingUses()) {
if (!liveness->isWithinBoundary(consumingUse->getUser())) {
diagnosticEmitter.emitAddressExclusivityHazardDiagnostic(
markedValue, consumingUse->getUser());
emittedError = true;
}
}
return emittedError;
}
};
} // end anonymous namespace
// Filter out recognized uses that do not write to memory.
//
// TODO: Ensure that all of the conditional-write logic below is encapsulated in
// mayWriteToMemory and just call that instead. Possibly add additional
// verification that visitAccessPathUses recognizes all instructions that may
// propagate pointers (even though they don't write).
bool GatherUsesVisitor::visitUse(Operand *op) {
// If this operand is for a dependent type, then it does not actually access
// the operand's address value. It only uses the metatype defined by the
// operation (e.g. open_existential).
if (op->isTypeDependent()) {
return true;
}
// For convenience, grab the user of op.
auto *user = op->getUser();
LLVM_DEBUG(llvm::dbgs() << "Visiting user: " << *user;);
// First check if we have init/reinit. These are quick/simple.
if (::memInstMustInitialize(op)) {
LLVM_DEBUG(llvm::dbgs() << "Found init: " << *user);
// TODO: What about copy_addr of itself. We really should just pre-process
// those maybe.
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
assert(!useState.initInsts.count(user));
useState.initInsts.insert({user, *leafRange});
return true;
}
if (::memInstMustReinitialize(op)) {
LLVM_DEBUG(llvm::dbgs() << "Found reinit: " << *user);
assert(!useState.reinitInsts.count(user));
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
useState.reinitInsts.insert({user, *leafRange});
return true;
}
// Then handle destroy_addr specially. We want to as part of our dataflow to
// ignore destroy_addr, so we need to track it separately from other uses.
if (auto *dvi = dyn_cast<DestroyAddrInst>(user)) {
// If we see a destroy_addr not on our base address, bail! Just error and
// say that we do not understand the code.
if (dvi->getOperand() != useState.address) {
LLVM_DEBUG(llvm::dbgs()
<< "!!! Error! Found destroy_addr no on base address: "
<< *useState.address << "destroy: " << *dvi);
return false;
}
LLVM_DEBUG(llvm::dbgs() << "Found destroy_addr: " << *dvi);
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
useState.destroys.insert({dvi, *leafRange});
return true;
}
// Ignore dealloc_stack.
if (isa<DeallocStackInst>(user))
return true;
// Ignore end_access.
if (isa<EndAccessInst>(user))
return true;
if (auto *di = dyn_cast<DebugValueInst>(user)) {
// Save the debug_value if it is attached directly to this mark_must_check.
// If the underlying storage we're checking is immutable, then the access
// being checked is not confined to an explicit access, but every other
// use of the storage must also be immutable, so it is fine if we see
// debug_values or other uses that aren't directly related to the current
// marked use; they will have to behave compatibly anyway.
if (di->getOperand() == getRootAddress()) {
useState.debugValue = di;
}
return true;
}
// At this point, we have handled all of the non-loadTakeOrCopy/consuming
// uses.
if (auto *copyAddr = dyn_cast<CopyAddrInst>(user)) {
assert(op->getOperandNumber() == CopyAddrInst::Src &&
"Should have dest above in memInstMust{Rei,I}nitialize");
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
// If we have a non-move only type, just treat this as a liveness use.
if (!copyAddr->getSrc()->getType().isMoveOnly()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found copy of copyable type. Treating as liveness use! "
<< *user);
useState.livenessUses.insert({user, *leafRange});
return true;
}
if (markedValue->getCheckKind() ==
MarkMustCheckInst::CheckKind::NoConsumeOrAssign) {
LLVM_DEBUG(llvm::dbgs()
<< "Found mark must check [nocopy] error: " << *user);
diagnosticEmitter.emitAddressDiagnosticNoCopy(markedValue, copyAddr);
emittedEarlyDiagnostic = true;
return true;
}
// TODO: Add borrow checking here like below.
// TODO: Add destructure deinit checking here once address only checking is
// completely brought up.
if (copyAddr->isTakeOfSrc()) {
LLVM_DEBUG(llvm::dbgs() << "Found take: " << *user);
useState.takeInsts.insert({user, *leafRange});
} else {
LLVM_DEBUG(llvm::dbgs() << "Found copy: " << *user);
useState.copyInsts.insert({user, *leafRange});
}
return true;
}
// Then find load [copy], load [take] that are really takes since we need
// copies for the loaded value. If we find that we need copies at that level
// (due to e.x.: multiple consuming uses), we emit an error and bail. This
// ensures that later on, we can assume that all of our load [take], load
// [copy] actually follow move semantics at the object level and thus are
// viewed as a consume requiring a copy. This is important since SILGen often
// emits code of this form and we need to recognize it as a copy of the
// underlying var.
if (auto *li = dyn_cast<LoadInst>(user)) {
// Before we do anything, see if this load is of a copyable field or is a
// trivial load. If it is, then we just treat this as a liveness requiring
// use.
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Trivial ||
!li->getType().isMoveOnly()) {
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
useState.livenessUses.insert({user, *leafRange});
return true;
}
// We must have a load [take] or load [copy] here since we are in OSSA.
OSSACanonicalizer::LivenessState livenessState(moveChecker.canonicalizer,
li);
// Before we do anything, run the borrow to destructure transform in case
// we have a switch_enum user.
unsigned numDiagnostics =
moveChecker.diagnosticEmitter.getDiagnosticCount();
BorrowToDestructureTransform borrowToDestructure(
moveChecker.allocator, markedValue, li, moveChecker.diagnosticEmitter,
moveChecker.poa);
if (!borrowToDestructure.transform()) {
assert(moveChecker.diagnosticEmitter
.didEmitCheckerDoesntUnderstandDiagnostic());
LLVM_DEBUG(llvm::dbgs()
<< "Failed to perform borrow to destructure transform!\n");
emittedEarlyDiagnostic = true;
return false;
}
// If we emitted an error diagnostic, do not transform further and instead
// mark that we emitted an early diagnostic and return true.
if (numDiagnostics != moveChecker.diagnosticEmitter.getDiagnosticCount()) {
LLVM_DEBUG(llvm::dbgs() << "Emitting borrow to destructure error!\n");
emittedEarlyDiagnostic = true;
return true;
}
// Now, validate that what we will transform into a take isn't a take that
// would invalidate a field that has a deinit.
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to compute leaf range for: " << *op->get());
return false;
}
checkForDestructureThroughDeinit(markedValue, op, *leafRange,
diagnosticEmitter);
// If we emitted an error diagnostic, do not transform further and instead
// mark that we emitted an early diagnostic and return true.
if (numDiagnostics != moveChecker.diagnosticEmitter.getDiagnosticCount()) {
LLVM_DEBUG(llvm::dbgs()
<< "Emitting destructure through deinit error!\n");
emittedEarlyDiagnostic = true;
return true;
}
// Canonicalize the lifetime of the load [take], load [copy].
LLVM_DEBUG(llvm::dbgs() << "Running copy propagation!\n");
moveChecker.changed |= moveChecker.canonicalizer.canonicalize();
// If we are asked to perform no_consume_or_assign checking or
// assignable_but_not_consumable checking, if we found any consumes of our
// load, then we need to emit an error.
auto checkKind = markedValue->getCheckKind();
if (checkKind != MarkMustCheckInst::CheckKind::ConsumableAndAssignable) {
if (moveChecker.canonicalizer.foundAnyConsumingUses()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found mark must check [nocopy] error: " << *user);
auto *fArg = dyn_cast<SILFunctionArgument>(
stripAccessMarkers(markedValue->getOperand()));
if (fArg && fArg->isClosureCapture() && fArg->getType().isAddress()) {
moveChecker.diagnosticEmitter.emitPromotedBoxArgumentError(
markedValue, fArg);
} else {
moveChecker.diagnosticEmitter
.emitAddressEscapingClosureCaptureLoadedAndConsumed(markedValue);
}
emittedEarlyDiagnostic = true;
return true;
}
// If set, this will tell the checker that we can change this load into
// a load_borrow.
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
LLVM_DEBUG(llvm::dbgs() << "Found potential borrow: " << *user);
if (checkForExclusivityHazards(li)) {
LLVM_DEBUG(llvm::dbgs() << "Found exclusivity violation?!\n");
emittedEarlyDiagnostic = true;
return true;
}
useState.borrows.insert({user, *leafRange});
// If we had a load [copy], borrow then we know that all of its destroys
// must have been destroy_value. So we can just gather up those
// destroy_value and use then to create liveness to ensure that our
// value is alive over the entire borrow scope we are going to create.
LLVM_DEBUG(llvm::dbgs() << "Adding destroys from load as liveness uses "
"since they will become end_borrows.\n");
for (auto *consumeUse : li->getConsumingUses()) {
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
useState.livenessUses.insert({dvi, *leafRange});
}
return true;
}
// First check if we had any consuming uses that actually needed a
// copy. This will always be an error and we allow the user to recompile
// and eliminate the error. This just allows us to rely on invariants
// later.
if (moveChecker.canonicalizer.foundConsumingUseRequiringCopy()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found that load at object level requires copies!\n");
// If we failed to understand how to perform the check or did not find
// any targets... continue. In the former case we want to fail with a
// checker did not understand diagnostic later and in the former, we
// succeeded.
// Otherwise, emit the diagnostic.
moveChecker.diagnosticEmitter.emitObjectOwnedDiagnostic(markedValue);
emittedEarlyDiagnostic = true;
LLVM_DEBUG(llvm::dbgs() << "Emitted early object level diagnostic.\n");
return true;
}
if (!moveChecker.canonicalizer.foundFinalConsumingUses()) {
LLVM_DEBUG(llvm::dbgs() << "Found potential borrow inst: " << *user);
if (checkForExclusivityHazards(li)) {
LLVM_DEBUG(llvm::dbgs() << "Found exclusivity violation?!\n");
emittedEarlyDiagnostic = true;
return true;
}
useState.borrows.insert({user, *leafRange});
// If we had a load [copy], borrow then we know that all of its destroys
// must have been destroy_value. So we can just gather up those
// destroy_value and use then to create liveness to ensure that our
// value is alive over the entire borrow scope we are going to create.
LLVM_DEBUG(llvm::dbgs() << "Adding destroys from load as liveness uses "
"since they will become end_borrows.\n");
for (auto *consumeUse : li->getConsumingUses()) {
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
useState.livenessUses.insert({dvi, *leafRange});
}
} else {
// If we had a load [copy], store this into the copy list. These are the
// things that we must merge into destroy_addr or reinits after we are
// done checking. The load [take] are already complete and good to go.
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
LLVM_DEBUG(llvm::dbgs() << "Found take inst: " << *user);
useState.takeInsts.insert({user, *leafRange});
} else {
LLVM_DEBUG(llvm::dbgs() << "Found copy inst: " << *user);
useState.copyInsts.insert({user, *leafRange});
}
}
return true;
}
// Now that we have handled or loadTakeOrCopy, we need to now track our
// additional pure takes.
if (::memInstMustConsume(op)) {
// If we don't have a consumeable and assignable check kind, then we can't
// consume. Emit an error.
//
// NOTE: Since SILGen eagerly loads loadable types from memory, this
// generally will only handle address only types.
if (markedValue->getCheckKind() !=
MarkMustCheckInst::CheckKind::ConsumableAndAssignable) {
auto *fArg = dyn_cast<SILFunctionArgument>(
stripAccessMarkers(markedValue->getOperand()));
if (fArg && fArg->isClosureCapture() && fArg->getType().isAddress()) {
moveChecker.diagnosticEmitter.emitPromotedBoxArgumentError(markedValue,
fArg);
} else {
moveChecker.diagnosticEmitter
.emitAddressEscapingClosureCaptureLoadedAndConsumed(markedValue);
}
emittedEarlyDiagnostic = true;
return true;
}
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
LLVM_DEBUG(llvm::dbgs() << "Pure consuming use: " << *user);
useState.takeInsts.insert({user, *leafRange});
return true;
}
if (auto fas = FullApplySite::isa(user)) {
switch (fas.getArgumentConvention(*op)) {
case SILArgumentConvention::Indirect_In_Guaranteed: {
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
useState.livenessUses.insert({user, *leafRange});
return true;
}
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_Out:
case SILArgumentConvention::Direct_Unowned:
case SILArgumentConvention::Direct_Owned:
case SILArgumentConvention::Direct_Guaranteed:
case SILArgumentConvention::Pack_Inout:
case SILArgumentConvention::Pack_Owned:
case SILArgumentConvention::Pack_Guaranteed:
case SILArgumentConvention::Pack_Out:
break;
}
}
if (auto *yi = dyn_cast<YieldInst>(user)) {
if (yi->getYieldInfoForOperand(*op).isGuaranteed()) {
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
useState.livenessUses.insert({user, *leafRange});
return true;
}
}
if (auto *pas = dyn_cast<PartialApplyInst>(user)) {
if (pas->isOnStack()) {
LLVM_DEBUG(llvm::dbgs() << "Found on stack partial apply!\n");
// On-stack partial applications and their final consumes are always a
// liveness use of their captures.
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
return false;
}
useState.livenessUses.insert({user, *leafRange});
for (auto *use : pas->getConsumingUses()) {
LLVM_DEBUG(llvm::dbgs()
<< "Adding consuming use of partial apply as liveness use: "
<< *use->getUser());
useState.livenessUses.insert({use->getUser(), *leafRange});
}
return true;
}
}
// If we don't fit into any of those categories, just track as a liveness
// use. We assume all such uses must only be reads to the memory. So we assert
// to be careful.
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
if (!leafRange)
return false;
LLVM_DEBUG(llvm::dbgs() << "Found liveness use: " << *user);
#ifndef NDEBUG
if (user->mayWriteToMemory()) {
llvm::errs() << "Found a write classified as a liveness use?!\n";
llvm::errs() << "Use: " << *user;
llvm_unreachable("standard failure");
}
#endif
useState.livenessUses.insert({user, *leafRange});
return true;
}
//===----------------------------------------------------------------------===//
// MARK: Global Dataflow
//===----------------------------------------------------------------------===//
namespace {
using InstLeafTypePair = std::pair<SILInstruction *, TypeTreeLeafTypeRange>;
using InstOptionalLeafTypePair =
std::pair<SILInstruction *, Optional<TypeTreeLeafTypeRange>>;
/// Post process the found liveness and emit errors if needed. TODO: Better
/// name.
struct GlobalLivenessChecker {
UseState &addressUseState;
DiagnosticEmitter &diagnosticEmitter;
FieldSensitiveMultiDefPrunedLiveRange &liveness;
SmallBitVector livenessVector;
bool hadAnyErrorUsers = false;
GlobalLivenessChecker(UseState &addressUseState,
DiagnosticEmitter &diagnosticEmitter,
FieldSensitiveMultiDefPrunedLiveRange &liveness)
: addressUseState(addressUseState), diagnosticEmitter(diagnosticEmitter),
liveness(liveness) {}
/// Returns true if we emitted any errors.
bool compute();
bool testInstVectorLiveness(
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4>
&instsToTest);
void clear() {
livenessVector.clear();
hadAnyErrorUsers = false;
}
};
} // namespace
bool GlobalLivenessChecker::testInstVectorLiveness(
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4>
&instsToTest) {
bool emittedDiagnostic = false;
for (auto takeInstAndValue : instsToTest) {
LLVM_DEBUG(llvm::dbgs() << " Checking: " << *takeInstAndValue.first);
// Check if we are in the boundary...
// If the bit vector does not contain any set bits, then we know that we did
// not have any boundary violations for any leaf node of our root value.
if (!liveness.isWithinBoundary(takeInstAndValue.first,
takeInstAndValue.second)) {
// TODO: Today, we don't tell the user the actual field itself where the
// violation occurred and just instead just shows the two instructions. We
// could be more specific though...
LLVM_DEBUG(llvm::dbgs() << " Not within the boundary.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< " Within the boundary! Emitting an error\n");
// Ok, we have an error and via the bit vector know which specific leaf
// elements of our root type were within the per field boundary. We need to
// go find the next reachable use that overlap with its sub-element. We only
// emit a single error per use even if we get multiple sub elements that
// match it. That helps reduce the amount of errors.
//
// DISCUSSION: It is important to note that this follows from the separation
// of concerns behind this pass: we have simplified how we handle liveness
// by losing this information. That being said, since we are erroring it is
// ok that we are taking a little more time since we are not going to
// codegen this code.
//
// That being said, set the flag that we saw at least one error, so we can
// exit early after this loop.
hadAnyErrorUsers = true;
// B/c of the separation of concerns with our liveness, we now need to walk
// blocks to go find the specific later takes that are reachable from this
// take. It is ok that we are doing a bit more work here since we are going
// to exit and not codegen.
auto *errorUser = takeInstAndValue.first;
auto errorSpan = takeInstAndValue.second;
// First walk from errorUser to the end of the block, looking for a take or
// a liveness use. If we find a single block error, emit the error and
// continue.
if (errorUser != errorUser->getParent()->getTerminator()) {
bool foundSingleBlockError = false;
for (auto ii = std::next(errorUser->getIterator()),
ie = errorUser->getParent()->end();
ii != ie; ++ii) {
if (addressUseState.isConsume(&*ii, errorSpan)) {
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &*ii, errorUser, true /*is consuming*/);
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
if (addressUseState.isLivenessUse(&*ii, errorSpan)) {
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &*ii, errorUser, false /*is consuming*/,
addressUseState.isInOutTermUser(&*ii));
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
// Check if we have a non-consuming liveness use.
//
// DISCUSSION: In certain cases, we only represent uses like end_borrow
// in liveness and not in address use state. This ensures that we
// properly emit a diagnostic in these cases.
//
// TODO: We should include liveness uses of the load_borrow itself in an
// array and emit an error on those instead since it would be a better
// error than using end_borrow here.
{
auto pair = liveness.isInterestingUser(&*ii);
if (pair.first == FieldSensitivePrunedLiveness::NonLifetimeEndingUse &&
pair.second->contains(errorSpan)) {
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &*ii, errorUser, false /*is consuming*/,
addressUseState.isInOutTermUser(&*ii));
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
}
if (addressUseState.isInitUse(&*ii, errorSpan)) {
llvm::errs() << "Should not have errored if we see an init?! Init: "
<< *ii;
llvm_unreachable("Standard compiler error");
}
}
if (foundSingleBlockError)
continue;
}
// If we didn't find a single block error, then we need to go search for our
// liveness error in successor blocks. We know that this means that our
// current block must be live out. Do a quick check just to be careful.
using IsLive = FieldSensitivePrunedLiveBlocks::IsLive;
SmallVector<IsLive, 8> isLiveArray;
#ifndef NDEBUG
liveness.getBlockLiveness(errorUser->getParent(), errorSpan, isLiveArray);
assert(llvm::all_of(
isLiveArray,
[](IsLive liveness) { return liveness = IsLive::LiveOut; }) &&
"Should be live out?!");
isLiveArray.clear();
#endif
BasicBlockWorklist worklist(errorUser->getFunction());
for (auto *succBlock : errorUser->getParent()->getSuccessorBlocks())
worklist.pushIfNotVisited(succBlock);
LLVM_DEBUG(llvm::dbgs() << "Performing forward traversal from errorUse "
"looking for the cause of liveness!\n");
SmallSetVector<SILInstruction *, 1> violatingInst;
bool foundSingleBlockError = false;
while (auto *block = worklist.pop()) {
LLVM_DEBUG(llvm::dbgs()
<< "Visiting block: bb" << block->getDebugID() << "\n");
SWIFT_DEFER { isLiveArray.clear(); };
liveness.getBlockLiveness(block, takeInstAndValue.second, isLiveArray);
// If we hit an init or dead along all bits in the block, we do not need
// to process further successors.
bool shouldVisitSuccessors = false;
// Now search forward for uses.
for (auto isLive : isLiveArray) {
switch (isLive) {
case IsLive::Dead:
LLVM_DEBUG(llvm::dbgs() << " Dead block!\n");
// Ignore a dead block. Our error use could not be in such a block.
//
// This can happen for instance along an exit block of a loop where
// the error use is within the loop.
continue;
case IsLive::LiveOut:
LLVM_DEBUG(llvm::dbgs() << " Live out block!\n");
// If we see a live out block that is also a def block, we need to fa
assert(!liveness.isDefBlock(block, errorSpan) &&
"If in def block... we are in liveness block");
[[clang::fallthrough]];
case IsLive::LiveWithin:
if (isLive == IsLive::LiveWithin)
LLVM_DEBUG(llvm::dbgs() << " Live within block!\n");
bool foundInit = false;
for (auto &blockInst : *block) {
LLVM_DEBUG(llvm::dbgs() << " Inst: " << blockInst);
if (addressUseState.isConsume(&blockInst, errorSpan)) {
LLVM_DEBUG(llvm::dbgs() << " Is consume!\n");
diagnosticEmitter.emitAddressDiagnostic(addressUseState.address,
&blockInst, errorUser,
true /*is consuming*/);
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
if (addressUseState.isLivenessUse(&blockInst, errorSpan)) {
LLVM_DEBUG(llvm::dbgs() << " Is liveness use!\n");
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &blockInst, errorUser,
false /*is consuming*/,
addressUseState.isInOutTermUser(&blockInst));
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
// If we find an init use for this bit... just break.
if (addressUseState.isInitUse(&blockInst, errorSpan)) {
foundInit = true;
break;
}
}
// If we did not find an init and visited the entire block... we need
// to visit successors for at least one bit.
if (!foundInit)
shouldVisitSuccessors = true;
assert((isLive == IsLive::LiveOut || foundSingleBlockError ||
foundInit) &&
"Should either have a pure live out, found an init, or we "
"should have found "
"an error.");
}
// If we found an error, break out of the loop. We don't have further
// work to do.
if (foundSingleBlockError) {
break;
}
}
// If we found an error, just bail without processing additional blocks.
if (foundSingleBlockError)
break;
// If we saw only dead blocks or found inits for all bits... then we do
// not need to process further
if (!shouldVisitSuccessors)
continue;
// If we didn't find a single block error, add successors to the worklist
// and visit them.
for (auto *succBlock : block->getSuccessorBlocks())
worklist.pushIfNotVisited(succBlock);
}
}
return emittedDiagnostic;
}
bool GlobalLivenessChecker::compute() {
// Then revisit our takes, this time checking if we are within the boundary
// and if we are, emit an error.
LLVM_DEBUG(llvm::dbgs() << "Checking takes for errors!\n");
bool emittedDiagnostic = false;
emittedDiagnostic |= testInstVectorLiveness(addressUseState.takeInsts);
emittedDiagnostic |= testInstVectorLiveness(addressUseState.copyInsts);
// If we emitted an error user, we should always emit at least one
// diagnostic. If we didn't there is a bug in the implementation.
assert(hadAnyErrorUsers == emittedDiagnostic);
return hadAnyErrorUsers;
}
//===----------------------------------------------------------------------===//
// MARK: Main Pass Implementation
//===----------------------------------------------------------------------===//
/// Create a new destroy_value instruction before the specified instruction and
/// record it as a final consume.
static void insertDestroyBeforeInstruction(UseState &addressUseState,
SILInstruction *nextInstruction,
SILValue baseAddress,
SmallBitVector &bv,
ConsumeInfo &consumes) {
// If we need all bits...
if (bv.all()) {
// And our next instruction is a destroy_addr on the base address, just
// claim that destroy instead of inserting another destroy_addr.
if (auto *dai = dyn_cast<DestroyAddrInst>(nextInstruction)) {
if (dai->getOperand() == baseAddress) {
consumes.recordFinalConsume(dai, TypeTreeLeafTypeRange(0, bv.size()));
return;
}
}
// Otherwise, create a new destroy addr on the entire address.
SILBuilderWithScope builder(nextInstruction);
auto loc =
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
auto *dai = builder.createDestroyAddr(loc, baseAddress);
consumes.recordFinalConsume(dai, TypeTreeLeafTypeRange(0, bv.size()));
addressUseState.destroys.insert({dai, TypeTreeLeafTypeRange(0, bv.size())});
return;
}
// Otherwise, we have a partially destroyed type. Create new destroy addr for
// each contiguous range of elts. This should only happen for structs/tuples.
SILBuilderWithScope builder(nextInstruction);
auto loc =
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
SmallVector<std::pair<SILValue, TypeTreeLeafTypeRange>> valuesToDestroy;
TypeTreeLeafTypeRange::constructProjectionsForNeededElements(
baseAddress, nextInstruction, bv, valuesToDestroy);
while (!valuesToDestroy.empty()) {
auto pair = valuesToDestroy.pop_back_val();
if (pair.first->getType().isTrivial(*nextInstruction->getFunction()))
continue;
auto *dai = builder.createDestroyAddr(loc, pair.first);
consumes.recordFinalConsume(dai, pair.second);
addressUseState.destroys.insert({dai, pair.second});
}
}
void MoveOnlyAddressCheckerPImpl::insertDestroysOnBoundary(
MarkMustCheckInst *markedValue,
FieldSensitiveMultiDefPrunedLiveRange &liveness,
FieldSensitivePrunedLivenessBoundary &boundary) {
using IsInterestingUser = FieldSensitivePrunedLiveness::IsInterestingUser;
LLVM_DEBUG(llvm::dbgs() << "Inserting destroys on boundary!\n");
// If we're in no_consume_or_assign mode, we don't insert destroys, as we've
// already checked that there are no consumes. There can only be borrow uses,
// which means no destruction is needed at all.
//
// NOTE: This also implies that we do not need to insert invalidating
// debug_value undef since our value will not be invalidated.
if (markedValue->getCheckKind() ==
MarkMustCheckInst::CheckKind::NoConsumeOrAssign) {
LLVM_DEBUG(llvm::dbgs()
<< " Skipping destroy insertion b/c no_consume_or_assign\n");
consumes.finishRecordingFinalConsumes();
return;
}
LLVM_DEBUG(llvm::dbgs() << " Visiting users!\n");
auto debugVar = DebugVarCarryingInst::getFromValue(
stripAccessMarkers(markedValue->getOperand()));
// Local helper that insert a debug_value undef to invalidate a noncopyable
// value that has been moved. Importantly, for LLVM to recognize that we are
// referring to the same debug variable as the original definition, we have to
// use the same debug scope and location as the original debug var.
auto insertUndefDebugValue = [&debugVar](SILInstruction *insertPt) {
if (!debugVar) {
return;
}
auto varInfo = debugVar.getVarInfo();
if (!varInfo) {
return;
}
SILBuilderWithScope debugInfoBuilder(insertPt);
debugInfoBuilder.setCurrentDebugScope(debugVar->getDebugScope());
debugInfoBuilder.createDebugValue(
debugVar->getLoc(),
SILUndef::get(debugVar.getOperandForDebugValueClone()->getType(),
insertPt->getModule()),
*varInfo, false, true);
};
for (auto &pair : boundary.getLastUsers()) {
auto *inst = pair.first;
auto &bv = pair.second;
LLVM_DEBUG(llvm::dbgs() << " User: " << *inst);
auto interestingUse = liveness.isInterestingUser(inst);
switch (interestingUse.first) {
case IsInterestingUser::LifetimeEndingUse: {
LLVM_DEBUG(llvm::dbgs()
<< " Lifetime ending use! Recording final consume!\n");
// If we have a consuming use, when we stop at the consuming use we want
// the value to still be around. We only want the value to be invalidated
// once the consume operation has occured. Thus we always place the
// debug_value undef strictly after the consuming operation.
if (auto *ti = dyn_cast<TermInst>(inst)) {
for (auto *succBlock : ti->getSuccessorBlocks()) {
insertUndefDebugValue(&succBlock->front());
}
} else {
insertUndefDebugValue(inst->getNextInstruction());
}
consumes.recordFinalConsume(inst, *interestingUse.second);
continue;
}
case IsInterestingUser::NonLifetimeEndingUse:
case IsInterestingUser::NonUser:
LLVM_DEBUG(llvm::dbgs() << " NoneUser or NonLifetimeEndingUse! "
"inserting destroy before instruction!\n");
// If we are dealing with an inout parameter, we will have modeled our
// last use by treating a return inst as a last use. Since it doesn't have
// any successors, this results in us not inserting any destroy_addr.
if (isa<TermInst>(inst)) {
auto *block = inst->getParent();
for (auto *succBlock : block->getSuccessorBlocks()) {
auto *insertPt = &*succBlock->begin();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), bv, consumes);
// We insert the debug_value undef /after/ the last use since we want
// the value to be around when we stop at the last use instruction.
insertUndefDebugValue(insertPt);
}
continue;
}
auto *insertPt = inst->getNextInstruction();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), bv, consumes);
// We insert the debug_value undef /after/ the last use since we want
// the value to be around when we stop at the last use instruction.
insertUndefDebugValue(insertPt);
continue;
}
}
for (auto pair : boundary.getBoundaryEdges()) {
auto *insertPt = &*pair.first->begin();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), pair.second,
consumes);
insertUndefDebugValue(insertPt);
LLVM_DEBUG(llvm::dbgs() << " Inserting destroy on edge bb"
<< pair.first->getDebugID() << "\n");
}
for (auto defPair : boundary.getDeadDefs()) {
LLVM_DEBUG(llvm::dbgs()
<< " Inserting destroy on dead def" << *defPair.first);
if (auto *arg = dyn_cast<SILArgument>(defPair.first)) {
auto *insertPt = &*arg->getParent()->begin();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), defPair.second,
consumes);
insertUndefDebugValue(insertPt);
} else {
auto *inst = cast<SILInstruction>(defPair.first);
// If we have a dead def that is our mark must check and that mark must
// check was an init but not consumable, then do not destroy that
// def. This is b/c we are in some sort of class initialization and we are
// looking at the initial part of the live range before the initialization
// has occured. This is our way of makinmg this fit the model that the
// checker expects (which is that values are always initialized at the def
// point).
if (markedValue &&
markedValue->getCheckKind() ==
MarkMustCheckInst::CheckKind::InitableButNotConsumable)
continue;
auto *insertPt = inst->getNextInstruction();
assert(insertPt && "def instruction was a terminator");
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), defPair.second,
consumes);
insertUndefDebugValue(insertPt);
}
}
consumes.finishRecordingFinalConsumes();
}
void MoveOnlyAddressCheckerPImpl::rewriteUses(
FieldSensitiveMultiDefPrunedLiveRange &liveness,
const FieldSensitivePrunedLivenessBoundary &boundary) {
LLVM_DEBUG(llvm::dbgs() << "MoveOnlyAddressChecker Rewrite Uses!\n");
// First remove all destroy_addr that have not been claimed.
for (auto destroyPair : addressUseState.destroys) {
if (!consumes.claimConsume(destroyPair.first, destroyPair.second)) {
destroyPair.first->eraseFromParent();
}
}
// Then convert all claimed reinits to inits.
for (auto reinitPair : addressUseState.reinitInsts) {
if (!isReinitToInitConvertibleInst(reinitPair.first))
continue;
if (!consumes.claimConsume(reinitPair.first, reinitPair.second))
convertMemoryReinitToInitForm(reinitPair.first);
}
// Check all takes.
for (auto takeInst : addressUseState.takeInsts) {
bool claimedConsume =
consumes.claimConsume(takeInst.first, takeInst.second);
(void)claimedConsume;
assert(claimedConsume && "Should claim all copies?!");
}
// Then rewrite all copy insts to be takes and claim them.
for (auto copyInst : addressUseState.copyInsts) {
bool claimedConsume =
consumes.claimConsume(copyInst.first, copyInst.second);
if (!claimedConsume) {
llvm::errs()
<< "Found consume that was not recorded as a 'claimed consume'!\n";
llvm::errs() << "Unrecorded consume: " << *copyInst.first;
llvm_unreachable("Standard compiler abort?!");
}
if (auto *li = dyn_cast<LoadInst>(copyInst.first)) {
// Convert this to its take form.
auto accessPath = AccessPathWithBase::computeInScope(li->getOperand());
if (auto *access = dyn_cast<BeginAccessInst>(accessPath.base))
access->setAccessKind(SILAccessKind::Modify);
li->setOwnershipQualifier(LoadOwnershipQualifier::Take);
changed = true;
continue;
}
if (auto *copy = dyn_cast<CopyAddrInst>(copyInst.first)) {
// Convert this to its take form.
auto accessPath = AccessPathWithBase::computeInScope(copy->getSrc());
if (auto *access = dyn_cast<BeginAccessInst>(accessPath.base))
access->setAccessKind(SILAccessKind::Modify);
copy->setIsTakeOfSrc(IsTake);
continue;
}
llvm::dbgs() << "Unhandled copy user: " << *copyInst.first;
llvm_unreachable("Unhandled case?!");
}
// Finally now that we have placed all of our destroys in the appropriate
// places, convert any copies that we know are borrows into begin_borrow. We
// do not need to worry about expanding scopes since if we needed to expand a
// scope, we would have emitted the scope expansion error during diagnostics.
for (auto pair : addressUseState.borrows) {
if (auto *li = dyn_cast<LoadInst>(pair.first)) {
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
// If we had a load [copy], borrow then we know that all of its destroys
// must have been destroy_value. So we can just gather up those
// destroy_value and use then to create a new load_borrow scope.
SILBuilderWithScope builder(li);
auto *lbi = builder.createLoadBorrow(li->getLoc(), li->getOperand());
// We use this auxillary list to avoid iterator invalidation of
// li->getConsumingUse();
StackList<DestroyValueInst *> toDelete(lbi->getFunction());
for (auto *consumeUse : li->getConsumingUses()) {
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
SILBuilderWithScope destroyBuilder(dvi);
destroyBuilder.createEndBorrow(dvi->getLoc(), lbi);
toDelete.push_back(dvi);
changed = true;
}
while (!toDelete.empty())
toDelete.pop_back_val()->eraseFromParent();
li->replaceAllUsesWith(lbi);
li->eraseFromParent();
continue;
}
}
llvm::dbgs() << "Borrow: " << *pair.first;
llvm_unreachable("Unhandled case?!");
}
#ifndef NDEBUG
if (consumes.hasUnclaimedConsumes()) {
llvm::errs() << "Found unclaimed consumes?!\n";
consumes.print(llvm::errs());
llvm_unreachable("Standard error?!");
}
#endif
}
bool MoveOnlyAddressCheckerPImpl::performSingleCheck(
MarkMustCheckInst *markedAddress) {
SWIFT_DEFER { diagnosticEmitter.clearUsesWithDiagnostic(); };
unsigned diagCount = diagnosticEmitter.getDiagnosticCount();
// Before we do anything, canonicalize load_borrow + copy_value into load
// [copy] + begin_borrow for further processing. This just eliminates a case
// that the checker doesn't need to know about.
{
CopiedLoadBorrowEliminationVisitor copiedLoadBorrowEliminator(fn);
if (AddressUseKind::Unknown ==
std::move(copiedLoadBorrowEliminator).walk(markedAddress)) {
LLVM_DEBUG(llvm::dbgs() << "Failed copied load borrow eliminator visit: "
<< *markedAddress);
return false;
}
copiedLoadBorrowEliminator.process();
}
// Then gather all uses of our address by walking from def->uses. We use this
// to categorize the uses of this address into their ownership behavior (e.x.:
// init, reinit, take, destroy, etc.).
GatherUsesVisitor visitor(*this, addressUseState, markedAddress,
diagnosticEmitter);
SWIFT_DEFER { visitor.clear(); };
visitor.reset(markedAddress);
if (AddressUseKind::Unknown == std::move(visitor).walk(markedAddress)) {
LLVM_DEBUG(llvm::dbgs() << "Failed access path visit: " << *markedAddress);
return false;
}
// If we found a load [copy] or copy_addr that requires multiple copies or an
// exclusivity error, then we emitted an early error. Bail now and allow the
// user to fix those errors and recompile to get further errors.
//
// DISCUSSION: The reason why we do this is in the dataflow below we want to
// be able to assume that the load [copy] or copy_addr/copy_addr [init] are
// actual last uses, but the frontend that emitted the code for simplicity
// emitted a copy from the base address + a destroy_addr of the use. By
// bailing here, we can make that assumption since we would have errored
// earlier otherwise.
if (diagCount != diagnosticEmitter.getDiagnosticCount())
return true;
// Now that we know that we have run our visitor and did not emit any errors
// and successfully visited everything, see if have any
// assignable_but_not_consumable of address only types that are consumed.
//
// DISCUSSION: For non address only types, this is not an issue since we
// eagerly load
addressUseState.initializeInOutTermUsers();
//===---
// Liveness Checking
//
SmallVector<SILBasicBlock *, 32> discoveredBlocks;
FieldSensitiveMultiDefPrunedLiveRange liveness(fn, markedAddress,
&discoveredBlocks);
addressUseState.initializeLiveness(liveness);
// Then compute the takes that are within the cumulative boundary of
// liveness that we have computed. If we find any, they are the errors ones.
GlobalLivenessChecker emitter(addressUseState, diagnosticEmitter, liveness);
// If we had any errors, we do not want to modify the SIL... just bail.
if (emitter.compute()) {
return true;
}
//===
// Final Transformation
//
// Ok, we now know that we fit our model since we did not emit errors and thus
// can begin the transformation.
SWIFT_DEFER { consumes.clear(); };
// First add any debug_values that we saw as liveness uses. This is important
// since the debugger wants to see live values when we define a debug_value,
// but we do not want to use them earlier when emitting diagnostic errors.
if (auto *di = addressUseState.debugValue) {
// Move the debug_value to right before the markedAddress to ensure that we
// do not actually change our liveness computation.
//
// NOTE: The author is not sure if this can ever happen with SILGen output,
// but this is being put just to be safe.
di->moveAfter(markedAddress);
liveness.updateForUse(di, TypeTreeLeafTypeRange(markedAddress),
false /*lifetime ending*/);
}
FieldSensitivePrunedLivenessBoundary boundary(liveness.getNumSubElements());
liveness.computeBoundary(boundary);
insertDestroysOnBoundary(markedAddress, liveness, boundary);
rewriteUses(liveness, boundary);
return true;
}
//===----------------------------------------------------------------------===//
// MARK: Top Level Entrypoint
//===----------------------------------------------------------------------===//
bool MoveOnlyAddressChecker::check(
SmallSetVector<MarkMustCheckInst *, 32> &moveIntroducersToProcess) {
assert(moveIntroducersToProcess.size() &&
"Must have checks to process to call this function");
MoveOnlyAddressCheckerPImpl pimpl(fn, diagnosticEmitter, domTree, poa,
allocator);
for (auto *markedValue : moveIntroducersToProcess) {
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << *markedValue);
// Perform our address check.
if (!pimpl.performSingleCheck(markedValue)) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to perform single check! Emitting error!\n");
// If we fail the address check in some way, set the diagnose!
diagnosticEmitter.emitCheckerDoesntUnderstandDiagnostic(markedValue);
}
}
return pimpl.changed;
}