Files
swift-mirror/lib/SILAnalysis/AliasAnalysis.cpp
Manman Ren bea41c0bd3 [Alias Analysis] handle casts in projection path.
We ignore casts when generating projection paths for alias analysis. When
comparing two paths, we say no alias when accessing different fields of
the same Decl Context.


Swift SVN r20353
2014-07-23 00:02:28 +00:00

793 lines
30 KiB
C++

//===-------------- AliasAnalysis.cpp - SIL Alias Analysis ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-aa"
#include "swift/SILAnalysis/AliasAnalysis.h"
#include "swift/SILAnalysis/ValueTracking.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILModule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// AA Debugging
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace {
enum class AAKind : unsigned {
None=0,
BasicAA=1,
TypedAccessTBAA=2,
All=3,
};
} // end anonymous namespace
static llvm::cl::opt<AAKind>
DebugAAKinds("aa", llvm::cl::desc("Alias Analysis Kinds:"),
llvm::cl::init(AAKind::All),
llvm::cl::values(clEnumValN(AAKind::None,
"none",
"Do not perform any AA"),
clEnumValN(AAKind::BasicAA,
"basic-aa",
"basic-aa"),
clEnumValN(AAKind::TypedAccessTBAA,
"typed-access-tb-aa",
"typed-access-tb-aa"),
clEnumValN(AAKind::All,
"all",
"all"),
clEnumValEnd));
static inline bool shouldRunAA() {
return unsigned(AAKind(DebugAAKinds));
}
static inline bool shouldRunTypedAccessTBAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::TypedAccessTBAA);
}
static inline bool shouldRunBasicAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::BasicAA);
}
#endif
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
AliasAnalysis::AliasResult R) {
switch (R) {
case AliasAnalysis::AliasResult::NoAlias:
return OS << "NoAlias";
case AliasAnalysis::AliasResult::MayAlias:
return OS << "MayAlias";
case AliasAnalysis::AliasResult::MustAlias:
return OS << "MustAlias";
}
}
//===----------------------------------------------------------------------===//
// Unequal Base Object AA
//===----------------------------------------------------------------------===//
/// Return true if the given SILArgument is an argument to the first BB of a
/// function.
static bool isFunctionArgument(SILValue V) {
auto *Arg = dyn_cast<SILArgument>(V);
if (!Arg)
return false;
return Arg->isFunctionArg();
}
/// A no alias argument is an argument that is an address type of the entry
/// basic block of a function.
static bool isNoAliasArgument(SILValue V) {
return isFunctionArgument(V) && V.getType().isAddress();
}
/// Return true if V is an object that at compile time can be uniquely
/// identified.
static bool isIdentifiableObject(SILValue V) {
if (isa<AllocationInst>(V) || isa<LiteralInst>(V))
return true;
if (isNoAliasArgument(V))
return true;
if (isa<GlobalAddrInst>(V) || isa<SILGlobalAddrInst>(V))
return true;
return false;
}
/// Is this a literal which we know can not refer to a global object?
///
/// FIXME: function_ref?, builtin_function_ref?
static bool isLocalLiteral(SILValue V) {
switch (V->getKind()) {
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
return true;
default:
return false;
}
}
/// Is this a value that can be unambiguously identified as being defined at the
/// function level.
static bool isIdentifiedFunctionLocal(SILValue V) {
return isa<AllocationInst>(*V) || isNoAliasArgument(V) || isLocalLiteral(V);
}
/// Returns true if V is a function argument that is not an address implying
/// that we do not have the gaurantee that it will not alias anything inside the
/// function.
static bool isAliasingFunctionArgument(SILValue V) {
return isFunctionArgument(V) && !V.getType().isAddress();
}
/// Returns true if V is an apply inst that may read or write to memory.
static bool isReadWriteApplyInst(SILValue V) {
// Attempt to convert the ValueBase inside of V to an ApplyInst.
auto *AI = dyn_cast<ApplyInst>(V);
// If we fail, bail...
if (!AI)
return false;
// If we succeed, check if AI's callee is a builtin that is not read none.
auto *BI = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee());
return !BI || !isReadNone(BI);
}
/// Return true if the pointer is one which would have been considered an escape
/// by isNonEscapingLocalObject.
static bool isEscapeSource(SILValue V) {
if (isReadWriteApplyInst(V))
return true;
if (isAliasingFunctionArgument(V))
return true;
// The LoadInst case works since valueMayBeCaptured always assumes stores are
// escapes.
if (isa<LoadInst>(*V))
return true;
// We could not prove anything, be conservative and return false.
return false;
}
/// Returns true if we can prove that the two input SILValues which do not equal
/// can not alias.
static bool aliasUnequalObjects(SILValue O1, SILValue O2) {
assert(O1 != O2 && "This function should only be called on unequal values.");
// If O1 and O2 do not equal and they are both values that can be statically
// and uniquely identified, they can not alias.
if (isIdentifiableObject(O1) && isIdentifiableObject(O2)) {
DEBUG(llvm::dbgs() << " Found two unequal identified "
"objects.\n");
return true;
}
// Function arguments can't alias with things that are known to be
// unambigously identified at the function level.
if ((isFunctionArgument(O1) && isIdentifiedFunctionLocal(O2)) ||
(isFunctionArgument(O2) && isIdentifiedFunctionLocal(O1))) {
DEBUG(llvm::dbgs() << " Found unequal function arg and "
"identified function local!\n");
return true;
}
// If one pointer is the result of an apply or load and the other is a
// non-escaping local object within the same function, then we know the object
// couldn't escape to a point where the call could return it.
if ((isEscapeSource(O1) && isNonEscapingLocalObject(O2)) ||
(isEscapeSource(O2) && isNonEscapingLocalObject(O1))) {
DEBUG(llvm::dbgs() << " Found unequal escape source and non "
"escaping local object!\n");
return true;
}
// We failed to prove that the two objects are different.
return false;
}
//===----------------------------------------------------------------------===//
// Projection Address AA
//===----------------------------------------------------------------------===//
/// Returns true if every projection in V1Path and V2Path equal. Returns false
/// otherwise.
static bool projectionListsEqual(llvm::SmallVectorImpl<Projection> &V1Path,
llvm::SmallVectorImpl<Projection> &V2Path) {
if (V1Path.size() != V2Path.size())
return false;
for (unsigned i = 0, e = V1Path.size(); i != e; ++i)
if (V1Path[i] != V2Path[i])
return false;
return true;
}
/// Returns true if we are accessing different fields.
static bool areProjectionsToDifferentFields(Projection &P1, Projection &P2) {
// If operands have the same type and we are accessing different fields,
// returns true. Operand's type is not saved in Projection. Instead we check
// Decl's context.
return P1.getDecl() && P2.getDecl() &&
P1.getDecl()->getDeclContext() == P2.getDecl()->getDeclContext() &&
P1 != P2;
}
/// Returns true if we are accessing different fields of the same object.
static bool projectionListsNoAlias(llvm::SmallVectorImpl<Projection> &V1Path,
llvm::SmallVectorImpl<Projection> &V2Path) {
if (V1Path.empty() || V2Path.empty())
return false;
// We reverse the projection path to scan from the common object.
std::reverse(V1Path.begin(), V1Path.end());
std::reverse(V2Path.begin(), V2Path.end());
// We scan up to the minimum path size.
unsigned e = V1Path.size() > V2Path.size() ? V2Path.size() : V1Path.size();
for (unsigned i = 0; i != e; ++i) {
// If we are accessing different fields of a common object, return true.
if (areProjectionsToDifferentFields(V1Path[i], V2Path[i])) {
DEBUG(llvm::dbgs() << " Path different at index: " << i << '\n');
return true;
}
if (V1Path[i] != V2Path[i])
return false;
// Continue if we are accessing the same field.
}
return false;
}
/// Uses a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer. We know that V1 is a GEP, but we don't know anything about
/// V2. O1, O2 are getUnderlyingObject of V1, V2 respectively.
static
AliasAnalysis::AliasResult
aliasAddressProjection(AliasAnalysis &AA, SILValue V1, SILValue V2, SILValue O1,
SILValue O2) {
// If V2 is also a gep instruction with a must-alias or not-aliasing base
// pointer, figure out if the indices of the GEPs tell us anything about the
// derived pointers.
if (Projection::isAddressProjection(V2)) {
// Do the base pointers alias?
AliasAnalysis::AliasResult BaseAlias = AA.alias(O1, O2);
// If we get a NoAlias or a MayAlias, then there is nothing we can do here
// so just return the base alias value.
if (BaseAlias != AliasAnalysis::AliasResult::MustAlias)
return BaseAlias;
// Otherwise, we have a MustAlias result. Since the base pointers alias each
// other exactly, see if computing offsets from the common pointer tells us
// about the relation of the resulting pointer.
llvm::SmallVector<Projection, 4> V1Path, V2Path;
bool Result = findAddressProjectionPathBetweenValues(O1, V1, V1Path,
true/*IgnoreCasts*/);
Result &= findAddressProjectionPathBetweenValues(O1, V2, V2Path,
true/*IgnoreCasts*/);
// getUnderlyingPath and findAddressProjectionPathBetweenValues disagree on
// what the base pointer of the two values are. Be conservative and return
// MayAlias.
//
// FIXME: The only way this should happen realistically is if there are
// casts in between two projection instructions. getUnderlyingObject will
// ignore that, while findAddressProjectionPathBetweenValues wont. The two
// solutions are to make address projections variadic (something on the wee
// horizon) or enable Projection to represent a cast as a special sort of
// projection.
if (!Result)
return AliasAnalysis::AliasResult::MayAlias;
// If all of the projections are equal, the two GEPs must be the same.
if (projectionListsEqual(V1Path, V2Path))
return AliasAnalysis::AliasResult::MustAlias;
// The two GEPs do not alias if they are accessing different fields of
// the same object, since different fields of the same object should not
// overlap.
if (projectionListsNoAlias(V1Path, V2Path))
return AliasAnalysis::AliasResult::NoAlias;
}
// We failed to prove anything. Be conservative and return MayAlias.
return AliasAnalysis::AliasResult::MayAlias;
}
//===----------------------------------------------------------------------===//
// TBAA
//===----------------------------------------------------------------------===//
static bool typedAccessTBAABuiltinTypesMayAlias(SILType LTy, SILType RTy,
SILModule &Mod) {
assert(LTy != RTy && "LTy should have already been shown to not equal RTy to "
"call this function.");
// If either of our types are raw pointers, they may alias any builtin.
if (LTy.is<BuiltinRawPointerType>() || RTy.is<BuiltinRawPointerType>())
return true;
// At this point, we have 3 possibilities:
//
// 1. (Pointer, Scalar): A pointer to a pointer can never alias a scalar.
//
// 2. (Pointer, Pointer): If we have two pointers to pointers, since we know
// that the two values do not equal due to previous AA calculations, one must
// be a native object and the other is an unknown object type (i.e. an objc
// object) which can not alias.
//
// 3. (Scalar, Scalar): If we have two scalar pointers, since we know that the
// types are already not equal, we know that they can not alias. For those
// unfamiliar even though BuiltinIntegerType/BuiltinFloatType are single
// classes, the AST represents each integer/float of different bit widths as
// different types, so equality of SILTypes allows us to know that they have
// different bit widths.
//
// Thus we can just return false since in none of the aforementioned cases we
// can not alias, so return false.
return false;
}
/// \brief return True if the types \p LTy and \p RTy may alias.
///
/// Currently this only implements typed access based TBAA. See the TBAA section
/// in the SIL reference manual.
static bool typedAccessTBAAMayAlias(SILType LTy, SILType RTy, SILModule &Mod) {
#ifndef NDEBUG
if (!shouldRunTypedAccessTBAA())
return true;
#endif
// If the two types are the same they may alias.
if (LTy == RTy)
return true;
// Typed access based TBAA only occurs on pointers. If we reach this point and
// do not have a pointer, be conservative and return that the two types may
// alias. *NOTE* This ensures we return may alias for local_storage.
if(!LTy.isAddress() || !RTy.isAddress())
return true;
// If the types have unbound generic arguments then we don't know
// the possible range of the type. A type such as $Array<Int> may
// alias $Array<T>. Right now we are conservative and we assume
// that $UnsafeMutablePointer<T> and $Int may alias.
if (LTy.hasArchetype() || RTy.hasArchetype())
return true;
// If either type is a protocol type, we don't know the underlying type so
// return may alias.
//
// FIXME: We could be significantly smarter here by using the protocol
// hierarchy.
if (LTy.isAnyExistentialType() || RTy.isAnyExistentialType())
return true;
// If either type is an address only type, bail so we are conservative.
if (LTy.isAddressOnly(Mod) || RTy.isAddressOnly(Mod))
return true;
// If both types are builtin types, handle them separately.
if (LTy.is<BuiltinType>() && RTy.is<BuiltinType>())
return typedAccessTBAABuiltinTypesMayAlias(LTy, RTy, Mod);
// Otherwise, we know that at least one of our types is not a builtin
// type. If we have a builtin type, canonicalize it on the right.
if (LTy.is<BuiltinType>())
std::swap(LTy, RTy);
// If RTy is a builtin raw pointer type, it can alias anything.
if (RTy.is<BuiltinRawPointerType>())
return true;
ClassDecl *LTyClass = LTy.getClassOrBoundGenericClass();
// If RTy is a Builtin unknown object address type...
if (RTy.is<BuiltinUnknownObjectType>()) {
// And LTy is a swift class address type, they can not alias since swift
// classes and objective-c classes are allocated differently.
if (LTyClass)
return false;
// Otherwise bail and assume that the two values can alias.
return true;
}
// If RTy is a Builtin Native Object Type, since Builtin Native Object is the
// root of the class hierarchy, it may alias any class.
if (RTy.is<BuiltinNativeObjectType>() && LTyClass)
return true;
// If one type is an aggregate and it contains the other type then the record
// reference may alias the aggregate reference.
if (LTy.aggregateContainsRecord(RTy, Mod) ||
RTy.aggregateContainsRecord(LTy, Mod))
return true;
// FIXME: All the code following could be made significantly more aggressive
// by saying that aggregates of the same type that do not contain each other
// can not alias.
// Tuples do not alias non-tuples.
bool LTyTT = LTy.is<TupleType>();
bool RTyTT = RTy.is<TupleType>();
if ((LTyTT && !RTyTT) || (!LTyTT && RTyTT))
return false;
// Structs do not alias non-structs.
StructDecl *LTyStruct = LTy.getStructOrBoundGenericStruct();
StructDecl *RTyStruct = RTy.getStructOrBoundGenericStruct();
if ((LTyStruct && !RTyStruct) || (!LTyStruct && RTyStruct))
return false;
// Enums do not alias non-enums.
EnumDecl *LTyEnum = LTy.getEnumOrBoundGenericEnum();
EnumDecl *RTyEnum = RTy.getEnumOrBoundGenericEnum();
if ((LTyEnum && !RTyEnum) || (!LTyEnum && RTyEnum))
return false;
// Classes do not alias non-classes.
ClassDecl *RTyClass = RTy.getClassOrBoundGenericClass();
if ((LTyClass && !RTyClass) || (!LTyClass && RTyClass))
return false;
// Classes with separate class hierarchies do not alias.
if (!LTy.isSuperclassOf(RTy) && !RTy.isSuperclassOf(LTy))
return false;
// Otherwise be conservative and return that the two types may alias.
return true;
}
static bool typesMayAlias(SILType T1, SILType T2, SILType TBAA1Ty,
SILType TBAA2Ty, SILModule &Mod) {
// Perform type access based TBAA if we have TBAA info.
if (TBAA1Ty && TBAA2Ty)
return typedAccessTBAAMayAlias(TBAA1Ty, TBAA2Ty, Mod);
// Otherwise perform class based TBAA on the passed in refs.
//
// FIXME: Implement class based TBAA.
return true;
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
/// to disambiguate the two values.
AliasAnalysis::AliasResult AliasAnalysis::alias(SILValue V1, SILValue V2,
SILType TBAAType1,
SILType TBAAType2) {
#ifndef NDEBUG
// If alias analysis is disabled, always return may alias.
if (!shouldRunAA())
return AliasResult::MayAlias;
#endif
// If the two values equal, quickly return must alias.
if (V1 == V2)
return AliasResult::MustAlias;
DEBUG(llvm::dbgs() << "ALIAS ANALYSIS:\n V1: " << *V1.getDef()
<< " V2: " << *V2.getDef());
// Pass in both the TBAA types so we can perform typed access TBAA and the
// actual types of V1, V2 so we can perform class based TBAA.
if (!typesMayAlias(V1.getType(), V2.getType(), TBAAType1, TBAAType2, *Mod))
return AliasResult::NoAlias;
#ifndef NDEBUG
if (!shouldRunBasicAA())
return AliasResult::MayAlias;
#endif
// Strip off any casts on V1, V2.
V1 = V1.stripCasts();
V2 = V2.stripCasts();
DEBUG(llvm::dbgs() << " After Cast Stripping V1:" << *V1.getDef());
DEBUG(llvm::dbgs() << " After Cast Stripping V2:" << *V2.getDef());
// Create a key to lookup if we have already computed an alias result for V1,
// V2. Canonicalize our cache keys so that the pointer with the lower address
// is always the first element of the pair. This ensures we do not pollute our
// cache with two entries with the same key, albeit with the key's fields
// swapped.
auto Key = V1 < V2? std::make_pair(V1, V2) : std::make_pair(V2, V1);
// If we find our key in the cache, just return the alias result.
auto Pair = AliasCache.find(Key);
if (Pair != AliasCache.end()) {
DEBUG(llvm::dbgs() << " Found value in the cache: "
<< Pair->second << "\n");
return Pair->second;
}
// Ok, we need to actually compute an Alias Analysis result for V1, V2. Begin
// by finding the "base" of V1, V2 by stripping off all casts and GEPs.
SILValue O1 = getUnderlyingObject(V1);
SILValue O2 = getUnderlyingObject(V2);
DEBUG(llvm::dbgs() << " Underlying V1:" << *O1.getDef());
DEBUG(llvm::dbgs() << " Underlying V2:" << *O2.getDef());
// If O1 and O2 do not equal, see if we can prove that they can not be the
// same object. If we can, return No Alias.
if (O1 != O2 && aliasUnequalObjects(O1, O2))
return AliasCache[Key] = AliasResult::NoAlias;
// Ok, either O1, O2 are the same or we could not prove anything based off of
// their inequality. Now we climb up use-def chains and attempt to do tricks
// based off of GEPs.
// First if one instruction is a gep and the other is not, canonicalize our
// inputs so that V1 always is the instruction containing the GEP.
if (!Projection::isAddressProjection(V1) &&
Projection::isAddressProjection(V2)) {
std::swap(V1, V2);
std::swap(O1, O2);
}
// If V1 is an address projection, attempt to use information from the
// aggregate type tree to disambiguate it from V2.
if (Projection::isAddressProjection(V1)) {
AliasResult Result = aliasAddressProjection(*this, V1, V2, O1, O2);
if (Result != AliasResult::MayAlias)
return AliasCache[Key] = Result;
}
// We could not prove anything. Be conservative and return that V1, V2 may
// alias.
return AliasResult::MayAlias;
}
namespace {
using MemBehavior = SILInstruction::MemoryBehavior;
/// Visitor that determines the memory behavior of an instruction relative to a
/// specific SILValue (i.e. can the instruction cause the value to be read,
/// etc.).
class MemoryBehaviorVisitor
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
/// The alias analysis for any queries we may need.
AliasAnalysis &AA;
/// The value we are attempting to discover memory behavior relative to.
SILValue V;
/// Should we treat instructions that increment ref counts as None instead of
/// MayHaveSideEffects.
bool IgnoreRefCountIncrements;
public:
MemoryBehaviorVisitor(AliasAnalysis &AA, SILValue V, bool IgnoreRefCountIncs)
: AA(AA), V(V), IgnoreRefCountIncrements(IgnoreRefCountIncs) {}
MemBehavior visitValueBase(ValueBase *V) {
llvm_unreachable("unimplemented");
}
MemBehavior visitSILInstruction(SILInstruction *Inst) {
// If we do not have any more information, just use the general memory
// behavior implementation.
return Inst->getMemoryBehavior();
}
MemBehavior visitLoadInst(LoadInst *LI);
MemBehavior visitStoreInst(StoreInst *SI);
MemBehavior visitApplyInst(ApplyInst *AI);
// Instructions which are none if our SILValue does not alias one of its
// arguments. If we can not prove such a thing, return the relevant memory
// behavior.
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
for (Operand &Op : I->getAllOperands()) { \
if (!AA.isNoAlias(Op.get(), V)) { \
DEBUG(llvm::dbgs() << " " #Name \
" does alias inst. Returning Normal behavior.\n"); \
return I->getMemoryBehavior(); \
} \
} \
\
DEBUG(llvm::dbgs() << " " #Name " does not alias inst. Returning " \
"None.\n"); \
return MemBehavior::None; \
}
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialInst)
OPERANDALIAS_MEMBEHAVIOR_INST(UpcastExistentialInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
#undef OPERANDALIAS_MEMBEHAVIOR_INST
// Override simple behaviors where MayHaveSideEffects is too general and
// encompasses other behavior that is not read/write/ref count decrement
// behavior we care about.
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
#undef SIMPLE_MEMBEHAVIOR_INST
// If we are asked to treat ref count increments as being inert, return None
// for these.
//
// FIXME: Once we separate the notion of ref counts from reading/writing
// memory this will be unnecessary.
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
if (IgnoreRefCountIncrements) \
return MemBehavior::None; \
return I->getMemoryBehavior(); \
}
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainAutoreleasedInst)
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainUnownedInst)
REFCOUNTINC_MEMBEHAVIOR_INST(UnownedRetainInst)
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
#undef REFCOUNTINC_MEMBEHAVIOR_INST
};
} // end anonymous namespace
/// Is this an instruction that can act as a type "oracle" allowing typed access
/// TBAA to know what the real types associated with the SILInstruction are.
static bool isTypedAccessOracle(SILInstruction *I) {
switch (I->getKind()) {
case ValueKind::RefElementAddrInst:
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::UncheckedTakeEnumDataAddrInst:
case ValueKind::LoadInst:
case ValueKind::StoreInst:
case ValueKind::AllocStackInst:
case ValueKind::AllocBoxInst:
case ValueKind::AllocArrayInst:
case ValueKind::DeallocStackInst:
case ValueKind::DeallocBoxInst:
return true;
default:
return false;
}
}
/// Look at the origin/user ValueBase of V to see if any of them are
/// TypedAccessOracle which enable one to ascertain via undefined behavior the
/// "true" type of the instruction.
SILType swift::findTypedAccessType(SILValue V) {
// First look at the origin of V and see if we have any instruction that is a
// typed oracle.
if (auto *I = dyn_cast<SILInstruction>(V))
if (isTypedAccessOracle(I))
return V.getType();
// Then look at any uses of V that potentially could act as a typed access
// oracle.
for (auto Use : V.getUses())
if (isTypedAccessOracle(Use->getUser()))
return V.getType();
// Otherwise return an empty SILType
return SILType();
}
MemBehavior MemoryBehaviorVisitor::visitLoadInst(LoadInst *LI) {
if (AA.isNoAlias(LI->getOperand(), V, LI->getOperand().getType(),
findTypedAccessType(V))) {
DEBUG(llvm::dbgs() << " Load Operand does not alias inst. Returning "
"None.\n");
return MemBehavior::None;
}
DEBUG(llvm::dbgs() << " Could not prove that load inst does not alias "
"pointer. Returning may read.");
return MemBehavior::MayRead;
}
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
// If the store dest cannot alias the pointer in question, then the
// specified value can not be modified by the store.
if (AA.isNoAlias(SI->getDest(), V, SI->getDest().getType(),
findTypedAccessType(V))) {
DEBUG(llvm::dbgs() << " Store Dst does not alias inst. Returning "
"None.\n");
return MemBehavior::None;
}
// Otherwise, a store just writes.
DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
"Returning MayWrite.\n");
return MemBehavior::MayWrite;
}
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
// If the ApplyInst is from a no-read builtin it can not read or write and
// if it comes from a no-side effect builtin, it can only read.
auto *BFR = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee());
// If our callee is not a builtin, be conservative and return may have side
// effects.
if (!BFR) {
DEBUG(llvm::dbgs() << " Found apply we don't understand returning "
"MHSF.\n");
return MemBehavior::MayHaveSideEffects;
}
// If the builtin is read none, it does not read or write memory.
if (isReadNone(BFR)) {
DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
" None.\n");
return MemBehavior::None;
}
// If the builtin is side effect free, then it can only read memory.
if (isSideEffectFree(BFR)) {
DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
"Returning MayRead.\n");
return MemBehavior::MayRead;
}
// FIXME: If the value (or any other values from the instruction that the
// value comes from) that we are tracking does not escape and we don't alias
// any of the arguments of the apply inst, we should be ok.
// Otherwise be conservative and return that we may have side effects.
DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
"Returning MayHaveSideEffects.\n");
return MemBehavior::MayHaveSideEffects;
}
SILInstruction::MemoryBehavior
AliasAnalysis::getMemoryBehavior(SILInstruction *Inst, SILValue V,
bool IgnoreRefCountIncrements) {
DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
<< *V.getDef());
return MemoryBehaviorVisitor(*this, V, IgnoreRefCountIncrements).visit(Inst);
}
SILAnalysis *swift::createAliasAnalysis(SILModule *M) {
return new AliasAnalysis(M);
}