Files
swift-mirror/lib/SILOptimizer/Utils/BasicBlockOptUtils.cpp
Andrew Trick bebbe370e8 Fix EscapeAnalysis verification assert at unreachable blocks
If EscapeAnalysis verification runs on unreachable code, it asserts
with "Missing escape connection graph mapping" because the connection
graph builder only runs on reachable blocks.

Add a ReachableBlocks utility and use it during verification.

Fixes <rdar://problem/60373501> EscapeAnalysis crashes with CFG with
unreachable blocks
2020-03-14 14:31:41 -07:00

315 lines
10 KiB
C++

//===--- BasicBlockOptUtils.cpp - SILOptimizer basic block utilities ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
using namespace swift;
/// Invoke \p visitor for each reachable block in \p f in worklist order (at
/// least one predecessor has been visited).
bool ReachableBlocks::visit(SILFunction *f,
function_ref<bool(SILBasicBlock *)> visitor) {
assert(visited.empty() && "blocks already visited");
// Walk over the CFG, starting at the entry block, until all reachable blocks
// are visited.
SILBasicBlock *entryBB = f->getEntryBlock();
SmallVector<SILBasicBlock *, 8> worklist = {entryBB};
visited.insert(entryBB);
while (!worklist.empty()) {
SILBasicBlock *bb = worklist.pop_back_val();
if (!visitor(bb))
return false;
for (auto &succ : bb->getSuccessors()) {
if (visited.insert(succ).second)
worklist.push_back(succ);
}
}
return true;
}
/// Remove all instructions in the body of \p bb in safe manner by using
/// undef.
void swift::clearBlockBody(SILBasicBlock *bb) {
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!bb->empty()) {
// Grab the last instruction in the bb.
auto *inst = &bb->back();
// Replace any still-remaining uses with undef values and erase.
inst->replaceAllUsesOfAllResultsWithUndef();
inst->eraseFromParent();
}
}
// Handle the mechanical aspects of removing an unreachable block.
void swift::removeDeadBlock(SILBasicBlock *bb) {
// Clear the body of bb.
clearBlockBody(bb);
// Now that the bb is empty, eliminate it.
bb->eraseFromParent();
}
bool swift::removeUnreachableBlocks(SILFunction &f) {
ReachableBlocks reachable;
// Visit all the blocks without doing any extra work.
reachable.visit(&f, [](SILBasicBlock *) { return true; });
// Remove the blocks we never reached. Assume the entry block is visited.
// Reachable's visited set contains dangling pointers during this loop.
bool changed = false;
for (auto ii = std::next(f.begin()), end = f.end(); ii != end;) {
auto *bb = &*ii++;
if (!reachable.isVisited(bb)) {
removeDeadBlock(bb);
changed = true;
}
}
return changed;
}
void BasicBlockCloner::updateSSAAfterCloning() {
// All instructions should have been checked by canCloneInstruction. But we
// still need to check the arguments.
for (auto arg : origBB->getArguments()) {
if ((needsSSAUpdate |= isUsedOutsideOfBlock(arg))) {
break;
}
}
if (!needsSSAUpdate)
return;
SILSSAUpdater ssaUpdater;
for (auto availValPair : availVals) {
ValueBase *inst = availValPair.first;
if (inst->use_empty())
continue;
SILValue newResult(availValPair.second);
SmallVector<UseWrapper, 16> useList;
// Collect the uses of the value.
for (auto *use : inst->getUses())
useList.push_back(UseWrapper(use));
ssaUpdater.Initialize(inst->getType());
ssaUpdater.AddAvailableValue(origBB, inst);
ssaUpdater.AddAvailableValue(getNewBB(), newResult);
if (useList.empty())
continue;
// Update all the uses.
for (auto useWrapper : useList) {
Operand *use = useWrapper; // unwrap
SILInstruction *user = use->getUser();
assert(user && "Missing user");
// Ignore uses in the same basic block.
if (user->getParent() == origBB)
continue;
ssaUpdater.RewriteUse(*use);
}
}
}
// FIXME: Remove this. SILCloner should not create critical edges.
bool BasicBlockCloner::splitCriticalEdges(DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
bool changed = false;
// Remove any critical edges that the EdgeThreadingCloner may have
// accidentally created.
for (unsigned succIdx = 0, succEnd = origBB->getSuccessors().size();
succIdx != succEnd; ++succIdx) {
if (nullptr
!= splitCriticalEdge(origBB->getTerminator(), succIdx, domInfo,
loopInfo))
changed |= true;
}
for (unsigned succIdx = 0, succEnd = getNewBB()->getSuccessors().size();
succIdx != succEnd; ++succIdx) {
auto *newBB = splitCriticalEdge(getNewBB()->getTerminator(), succIdx,
domInfo, loopInfo);
changed |= (newBB != nullptr);
}
return changed;
}
void BasicBlockCloner::sinkAddressProjections() {
// Because the address projections chains will be disjoint (an instruction
// in one chain cannot use the result of an instruction in another chain),
// the order they are sunk does not matter.
InstructionDeleter deleter;
for (auto ii = origBB->begin(), ie = origBB->end(); ii != ie;) {
bool canSink = sinkProj.analyzeAddressProjections(&*ii);
(void)canSink;
assert(canSink && "canCloneInstruction should catch this.");
sinkProj.cloneProjections();
assert((sinkProj.getInBlockDefs().empty() || needsSSAUpdate)
&& "canCloneInstruction should catch this.");
auto nextII = std::next(ii);
deleter.trackIfDead(&*ii);
ii = nextII;
}
deleter.cleanUpDeadInstructions();
}
// Populate 'projections' with the chain of address projections leading
// to and including 'inst'.
//
// Populate 'inBlockDefs' with all the non-address value definitions in
// the block that will be used outside this block after projection sinking.
//
// Return true on success, even if projections is empty.
bool SinkAddressProjections::analyzeAddressProjections(SILInstruction *inst) {
projections.clear();
inBlockDefs.clear();
SILBasicBlock *bb = inst->getParent();
auto pushOperandVal = [&](SILValue def) {
if (def->getParentBlock() != bb)
return true;
if (!def->getType().isAddress()) {
inBlockDefs.insert(def);
return true;
}
if (auto *addressProj = dyn_cast<SingleValueInstruction>(def)) {
if (addressProj->isPure()) {
projections.push_back(addressProj);
return true;
}
}
// Can't handle a multi-value or unclonable address producer.
return false;
};
// Check the given instruction for any address-type results.
for (auto result : inst->getResults()) {
if (!isUsedOutsideOfBlock(result))
continue;
if (!pushOperandVal(result))
return false;
}
// Recurse upward through address projections.
for (unsigned idx = 0; idx < projections.size(); ++idx) {
// Only one address result/operand can be handled per instruction.
if (projections.size() != idx + 1)
return false;
for (SILValue operandVal : projections[idx]->getOperandValues())
pushOperandVal(operandVal);
}
return true;
}
// Clone the projections gathered by 'analyzeAddressProjections' at
// their use site outside this block.
bool SinkAddressProjections::cloneProjections() {
if (projections.empty())
return false;
SILBasicBlock *bb = projections.front()->getParent();
// Clone projections in last-to-first order.
for (unsigned idx = 0; idx < projections.size(); ++idx) {
auto *oldProj = projections[idx];
assert(oldProj->getParent() == bb);
// Reset transient per-projection sets.
usesToReplace.clear();
firstBlockUse.clear();
// Gather uses.
for (Operand *use : oldProj->getUses()) {
auto *useBB = use->getUser()->getParent();
if (useBB != bb) {
firstBlockUse.try_emplace(useBB, use);
usesToReplace.push_back(use);
}
}
// Replace uses. Uses must be handled in the same order they were discovered
// above.
//
// Avoid cloning a projection multiple times per block. This avoids extra
// projections, but also prevents the removal of DebugValue. If a
// projection's only remaining is DebugValue, then it is deleted along with
// the DebugValue.
for (Operand *use : usesToReplace) {
auto *useBB = use->getUser()->getParent();
auto *firstUse = firstBlockUse.lookup(useBB);
SingleValueInstruction *newProj;
if (use == firstUse)
newProj = cast<SingleValueInstruction>(oldProj->clone(use->getUser()));
else {
newProj = cast<SingleValueInstruction>(firstUse->get());
assert(newProj->getParent() == useBB);
newProj->moveFront(useBB);
}
use->set(newProj);
}
}
return true;
}
void StaticInitCloner::add(SILInstruction *initVal) {
// Don't schedule an instruction twice for cloning.
if (numOpsToClone.count(initVal) != 0)
return;
ArrayRef<Operand> operands = initVal->getAllOperands();
numOpsToClone[initVal] = operands.size();
if (operands.empty()) {
// It's an instruction without operands, e.g. a literal. It's ready to be
// cloned first.
readyToClone.push_back(initVal);
} else {
// Recursively add all operands.
for (const Operand &operand : operands) {
add(cast<SingleValueInstruction>(operand.get()));
}
}
}
SingleValueInstruction *
StaticInitCloner::clone(SingleValueInstruction *initVal) {
assert(numOpsToClone.count(initVal) != 0 && "initVal was not added");
if (!isValueCloned(initVal)) {
// Find the right order to clone: all operands of an instruction must be
// cloned before the instruction itself.
while (!readyToClone.empty()) {
SILInstruction *inst = readyToClone.pop_back_val();
// Clone the instruction into the SILGlobalVariable
visit(inst);
// Check if users of I can now be cloned.
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
if (numOpsToClone.count(user) != 0 && --numOpsToClone[user] == 0)
readyToClone.push_back(user);
}
}
if (inst == initVal)
break;
}
}
return cast<SingleValueInstruction>(getMappedValue(initVal));
}