Files
swift-mirror/SwiftCompilerSources/Sources/Optimizer/ModulePasses/MandatoryPerformanceOptimizations.swift
Erik Eckstein c05234e677 MandatoryPerformanceOptimizations: specialize witness_method instructions
In Embedded Swift, witness method lookup is done from specialized witness tables.
For this to work, the type of witness_method must be specialized as well.
Otherwise the method call would be done with wrong parameter conventions (indirect instead of direct).
2024-10-07 09:00:31 +02:00

535 lines
19 KiB
Swift

//===--- MandatoryPerformanceOptimizations.swift --------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SIL
/// Performs mandatory optimizations for performance-annotated functions, and global
/// variable initializers that are required to be statically initialized.
///
/// Optimizations include:
/// * de-virtualization
/// * mandatory inlining
/// * generic specialization
/// * mandatory memory optimizations
/// * dead alloc elimination
/// * instruction simplification
///
/// The pass starts with performance-annotated functions / globals and transitively handles
/// called functions.
///
let mandatoryPerformanceOptimizations = ModulePass(name: "mandatory-performance-optimizations") {
(moduleContext: ModulePassContext) in
var worklist = FunctionWorklist()
// For embedded Swift, optimize all the functions (there cannot be any
// generics, type metadata, etc.)
if moduleContext.options.enableEmbeddedSwift {
// We need to specialize all vtables which are referenced from non-generic contexts. Beside
// `alloc_ref`s of generic classes in non-generic functions, we also need to specialize generic
// superclasses of non-generic classes. E.g. `class Derived : Base<Int> {}`
specializeVTablesOfSuperclasses(moduleContext)
worklist.addAllNonGenericFunctions(of: moduleContext)
} else {
worklist.addAllPerformanceAnnotatedFunctions(of: moduleContext)
worklist.addAllAnnotatedGlobalInitOnceFunctions(of: moduleContext)
}
optimizeFunctionsTopDown(using: &worklist, moduleContext)
if moduleContext.options.enableEmbeddedSwift {
// Print errors for generic functions in vtables, which is not allowed in embedded Swift.
checkVTablesForGenericFunctions(moduleContext)
}
}
private func optimizeFunctionsTopDown(using worklist: inout FunctionWorklist,
_ moduleContext: ModulePassContext) {
while let f = worklist.pop() {
moduleContext.transform(function: f) { context in
if !context.loadFunction(function: f, loadCalleesRecursively: true) {
return
}
// It's not required to set the perf_constraint flag on all functions in embedded mode.
// Embedded mode already implies that flag.
if !moduleContext.options.enableEmbeddedSwift {
f.set(isPerformanceConstraint: true, context)
}
optimize(function: f, context, moduleContext, &worklist)
}
// Generic specialization takes care of removing metatype arguments of generic functions.
// But sometimes non-generic functions have metatype arguments which must be removed.
// We need handle this case with a function signature optimization.
removeMetatypeArgumentsInCallees(of: f, moduleContext)
worklist.addCallees(of: f)
}
}
fileprivate struct PathFunctionTuple: Hashable {
var path: SmallProjectionPath
var function: Function
}
private func optimize(function: Function, _ context: FunctionPassContext, _ moduleContext: ModulePassContext, _ worklist: inout FunctionWorklist) {
var alreadyInlinedFunctions: Set<PathFunctionTuple> = Set()
var changed = true
while changed {
changed = runSimplification(on: function, context, preserveDebugInfo: true) { instruction, simplifyCtxt in
if let i = instruction as? OnoneSimplifyable {
i.simplify(simplifyCtxt)
if instruction.isDeleted {
return
}
}
switch instruction {
case let apply as FullApplySite:
inlineAndDevirtualize(apply: apply, alreadyInlinedFunctions: &alreadyInlinedFunctions, context, simplifyCtxt)
// Embedded Swift specific transformations
case let alloc as AllocRefInst:
if context.options.enableEmbeddedSwift {
specializeVTableAndAddEntriesToWorklist(for: alloc.type, in: function,
errorLocation: alloc.location,
moduleContext, &worklist)
}
case let metatype as MetatypeInst:
if context.options.enableEmbeddedSwift {
specializeVTableAndAddEntriesToWorklist(for: metatype.type, in: function,
errorLocation: metatype.location,
moduleContext, &worklist)
}
case let classMethod as ClassMethodInst:
if context.options.enableEmbeddedSwift {
_ = context.specializeClassMethodInst(classMethod)
}
case let witnessMethod as WitnessMethodInst:
if context.options.enableEmbeddedSwift {
_ = context.specializeWitnessMethodInst(witnessMethod)
}
case let initExRef as InitExistentialRefInst:
if context.options.enableEmbeddedSwift {
specializeWitnessTables(for: initExRef, moduleContext, &worklist)
}
// We need to de-virtualize deinits of non-copyable types to be able to specialize the deinitializers.
case let destroyValue as DestroyValueInst:
if !devirtualizeDeinits(of: destroyValue, simplifyCtxt) {
context.diagnosticEngine.diagnose(destroyValue.location.sourceLoc, .deinit_not_visible)
}
case let destroyAddr as DestroyAddrInst:
if !devirtualizeDeinits(of: destroyAddr, simplifyCtxt) {
context.diagnosticEngine.diagnose(destroyAddr.location.sourceLoc, .deinit_not_visible)
}
case let iem as InitExistentialMetatypeInst:
if iem.uses.ignoreDebugUses.isEmpty {
context.erase(instructionIncludingDebugUses: iem)
}
case let fri as FunctionRefInst:
// Mandatory de-virtualization and mandatory inlining might leave referenced functions in "serialized"
// functions with wrong linkage. Fix this by making the referenced function public.
// It's not great, because it can prevent dead code elimination. But it's only a rare case.
if function.serializedKind != .notSerialized,
!fri.referencedFunction.hasValidLinkageForFragileRef(function.serializedKind)
{
fri.referencedFunction.set(linkage: .public, moduleContext)
}
default:
break
}
}
_ = context.specializeApplies(in: function, isMandatory: true)
removeUnusedMetatypeInstructions(in: function, context)
// If this is a just specialized function, try to optimize copy_addr, etc.
changed = context.optimizeMemoryAccesses(in: function) || changed
changed = context.eliminateDeadAllocations(in: function) || changed
}
}
private func specializeVTableAndAddEntriesToWorklist(for type: Type, in function: Function,
errorLocation: Location,
_ moduleContext: ModulePassContext,
_ worklist: inout FunctionWorklist) {
let vTablesCountBefore = moduleContext.vTables.count
guard specializeVTable(forClassType: type, errorLocation: errorLocation, moduleContext) != nil else {
return
}
// More than one new vtable might have been created (superclasses), process them all
let vTables = moduleContext.vTables
for i in vTablesCountBefore ..< vTables.count {
for entry in vTables[i].entries
// A new vtable can still contain a generic function if the method couldn't be specialized for some reason
// and an error has been printed. Exclude generic functions to not run into an assert later.
where !entry.implementation.isGeneric
{
worklist.pushIfNotVisited(entry.implementation)
}
}
}
private func inlineAndDevirtualize(apply: FullApplySite, alreadyInlinedFunctions: inout Set<PathFunctionTuple>,
_ context: FunctionPassContext, _ simplifyCtxt: SimplifyContext) {
// De-virtualization and inlining in/into a "serialized" function might create function references to functions
// with wrong linkage. We need to fix this later (see handling of FunctionRefInst in `optimize`).
if simplifyCtxt.tryDevirtualize(apply: apply, isMandatory: true) != nil {
return
}
guard let callee = apply.referencedFunction else {
return
}
if !context.loadFunction(function: callee, loadCalleesRecursively: true) {
// We don't have the function body of the callee.
return
}
if shouldInline(apply: apply, callee: callee, alreadyInlinedFunctions: &alreadyInlinedFunctions) {
if apply.inliningCanInvalidateStackNesting {
simplifyCtxt.notifyInvalidatedStackNesting()
}
simplifyCtxt.inlineFunction(apply: apply, mandatoryInline: true)
}
}
private func removeMetatypeArgumentsInCallees(of function: Function, _ context: ModulePassContext) {
for inst in function.instructions {
if let apply = inst as? FullApplySite {
specializeByRemovingMetatypeArguments(apply: apply, context)
}
}
}
private func removeUnusedMetatypeInstructions(in function: Function, _ context: FunctionPassContext) {
for inst in function.instructions {
if let mt = inst as? MetatypeInst,
mt.isTriviallyDeadIgnoringDebugUses {
context.erase(instructionIncludingDebugUses: mt)
}
}
}
private func shouldInline(apply: FullApplySite, callee: Function, alreadyInlinedFunctions: inout Set<PathFunctionTuple>) -> Bool {
if callee.isTransparent {
precondition(callee.hasOwnership, "transparent functions should have ownership at this stage of the pipeline")
return true
}
if !apply.canInline {
return false
}
if apply is BeginApplyInst {
// Avoid co-routines because they might allocate (their context).
return true
}
if callee.mayBindDynamicSelf {
// We don't support inlining a function that binds dynamic self into a global-init function
// because the global-init function cannot provide the self metadata.
return false
}
if apply.parentFunction.isGlobalInitOnceFunction && callee.inlineStrategy == .always {
// Some arithmetic operations, like integer conversions, are not transparent but `inline(__always)`.
// Force inlining them in global initializers so that it's possible to statically initialize the global.
return true
}
if apply.substitutionMap.isEmpty,
let pathIntoGlobal = apply.resultIsUsedInGlobalInitialization(),
alreadyInlinedFunctions.insert(PathFunctionTuple(path: pathIntoGlobal, function: callee)).inserted {
return true
}
return false
}
private func specializeWitnessTables(for initExRef: InitExistentialRefInst, _ context: ModulePassContext,
_ worklist: inout FunctionWorklist)
{
for conformance in initExRef.conformances where conformance.isConcrete {
let origWitnessTable = context.lookupWitnessTable(for: conformance)
if conformance.isSpecialized {
if origWitnessTable == nil {
specializeWitnessTable(forConformance: conformance, errorLocation: initExRef.location, context) {
worklist.addWitnessMethods(of: $0)
}
}
} else if let origWitnessTable {
checkForGenericMethods(in: origWitnessTable, errorLocation: initExRef.location, context)
}
}
}
private func checkForGenericMethods(in witnessTable: WitnessTable,
errorLocation: Location,
_ context: ModulePassContext)
{
for entry in witnessTable.entries {
if case .method(let requirement, let witness) = entry,
let witness,
witness.isGeneric
{
context.diagnosticEngine.diagnose(errorLocation.sourceLoc, .cannot_specialize_witness_method, requirement)
return
}
}
}
private func checkVTablesForGenericFunctions(_ context: ModulePassContext) {
for vTable in context.vTables where !vTable.class.isGenericAtAnyLevel {
for entry in vTable.entries where entry.implementation.isGeneric {
context.diagnosticEngine.diagnose(entry.methodDecl.location.sourceLoc, .non_final_generic_class_function)
}
}
}
private extension FullApplySite {
func resultIsUsedInGlobalInitialization() -> SmallProjectionPath? {
guard parentFunction.isGlobalInitOnceFunction,
let global = parentFunction.getInitializedGlobal() else {
return nil
}
switch numIndirectResultArguments {
case 0:
return singleDirectResult?.isStored(to: global)
case 1:
let resultAccessPath = arguments[0].accessPath
switch resultAccessPath.base {
case .global(let resultGlobal) where resultGlobal == global:
return resultAccessPath.materializableProjectionPath
case .stack(let allocStack) where resultAccessPath.projectionPath.isEmpty:
return allocStack.getStoredValue(by: self)?.isStored(to: global)
default:
return nil
}
default:
return nil
}
}
}
private extension AllocStackInst {
func getStoredValue(by storingInstruction: Instruction) -> Value? {
// If the only use (beside `storingInstruction`) is a load, it's the value which is
// stored by `storingInstruction`.
var loadedValue: Value? = nil
for use in self.uses {
switch use.instruction {
case is DeallocStackInst:
break
case let load as LoadInst:
if loadedValue != nil {
return nil
}
loadedValue = load
default:
if use.instruction != storingInstruction {
return nil
}
}
}
return loadedValue
}
}
private extension Value {
/// Analyzes the def-use chain of an apply instruction, and looks for a single chain that leads to a store instruction
/// that initializes a part of a global variable or the entire variable:
///
/// Example:
/// %g = global_addr @global
/// ...
/// %f = function_ref @func
/// %apply = apply %f(...)
/// store %apply to %g <--- is a store to the global trivially (the apply result is immediately going into a store)
///
/// Example:
/// %apply = apply %f(...)
/// %apply2 = apply %f2(%apply)
/// store %apply2 to %g <--- is a store to the global (the apply result has a single chain into the store)
///
/// Example:
/// %a = apply %f(...)
/// %s = struct $MyStruct (%a, %b)
/// store %s to %g <--- is a partial store to the global (returned SmallProjectionPath is MyStruct.s0)
///
/// Example:
/// %a = apply %f(...)
/// %as = struct $AStruct (%other, %a)
/// %bs = struct $BStruct (%as, %bother)
/// store %bs to %g <--- is a partial store to the global (returned SmallProjectionPath is MyStruct.s0.s1)
///
/// Returns nil if we cannot find a singular def-use use chain (e.g. because a value has more than one user)
/// leading to a store to the specified global variable.
func isStored(to global: GlobalVariable) -> SmallProjectionPath? {
var singleUseValue: any Value = self
var path = SmallProjectionPath()
while true {
// The initializer value of a global can contain access instructions if it references another
// global variable by address, e.g.
// var p = Point(x: 10, y: 20)
// let o = UnsafePointer(&p)
// Therefore ignore the `end_access` use of a `begin_access`.
let relevantUses = singleUseValue.uses.ignoreDebugUses.ignoreUsers(ofType: EndAccessInst.self)
guard let use = relevantUses.singleUse else {
return nil
}
switch use.instruction {
case is StructInst:
path = path.push(.structField, index: use.index)
break
case is TupleInst:
path = path.push(.tupleField, index: use.index)
break
case let ei as EnumInst:
path = path.push(.enumCase, index: ei.caseIndex)
break
case let si as StoreInst:
let accessPath = si.destination.getAccessPath(fromInitialPath: path)
switch accessPath.base {
case .global(let storedGlobal) where storedGlobal == global:
return accessPath.materializableProjectionPath
default:
return nil
}
case is PointerToAddressInst, is AddressToPointerInst, is BeginAccessInst:
break
default:
return nil
}
guard let nextInstruction = use.instruction as? SingleValueInstruction else {
return nil
}
singleUseValue = nextInstruction
}
}
}
private extension Function {
/// Analyzes the global initializer function and returns global it initializes (from `alloc_global` instruction).
func getInitializedGlobal() -> GlobalVariable? {
if !isDefinition {
return nil
}
for inst in self.entryBlock.instructions {
switch inst {
case let agi as AllocGlobalInst:
return agi.global
default:
break
}
}
return nil
}
}
fileprivate struct FunctionWorklist {
private(set) var functions = Array<Function>()
private var pushedFunctions = Set<Function>()
private var currentIndex = 0
mutating func pop() -> Function? {
if currentIndex < functions.count {
let f = functions[currentIndex]
currentIndex += 1
return f
}
return nil
}
mutating func addAllPerformanceAnnotatedFunctions(of moduleContext: ModulePassContext) {
for f in moduleContext.functions where f.performanceConstraints != .none {
pushIfNotVisited(f)
}
}
mutating func addAllNonGenericFunctions(of moduleContext: ModulePassContext) {
for f in moduleContext.functions where !f.isGeneric {
pushIfNotVisited(f)
}
return
}
mutating func addAllAnnotatedGlobalInitOnceFunctions(of moduleContext: ModulePassContext) {
for f in moduleContext.functions where f.isGlobalInitOnceFunction {
if let global = f.getInitializedGlobal(),
global.mustBeInitializedStatically {
pushIfNotVisited(f)
}
}
}
mutating func addCallees(of function: Function) {
for inst in function.instructions {
switch inst {
case let apply as ApplySite:
if let callee = apply.referencedFunction {
pushIfNotVisited(callee)
}
case let bi as BuiltinInst:
switch bi.id {
case .Once, .OnceWithContext:
if let fri = bi.operands[1].value as? FunctionRefInst {
pushIfNotVisited(fri.referencedFunction)
}
break;
default:
break
}
default:
break
}
}
}
mutating func addWitnessMethods(of witnessTable: WitnessTable) {
for entry in witnessTable.entries {
if case .method(_, let witness) = entry,
let method = witness,
// A new witness table can still contain a generic function if the method couldn't be specialized for
// some reason and an error has been printed. Exclude generic functions to not run into an assert later.
!method.isGeneric
{
pushIfNotVisited(method)
}
}
}
mutating func pushIfNotVisited(_ element: Function) {
if pushedFunctions.insert(element).inserted {
functions.append(element)
}
}
}