Files
swift-mirror/lib/Immediate/Immediate.cpp
Hamish Knight c0a2ea7d0e Sink linker directive computation into IRGen
With an inverted pipeline, IRGen needs to be able
to compute the linker directives itself, so sink
it down such that it can be computed by the
`IRGenDescriptor`.
2020-07-15 17:46:14 -07:00

333 lines
11 KiB
C++

//===--- Immediate.cpp - the swift immediate mode -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This is the implementation of the swift interpreter, which takes a
// source file and JITs it.
//
//===----------------------------------------------------------------------===//
#include "swift/Immediate/Immediate.h"
#include "ImmediateImpl.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/IRGenRequests.h"
#include "swift/AST/Module.h"
#include "swift/Basic/LLVM.h"
#include "swift/Frontend/Frontend.h"
#include "swift/IRGen/IRGenPublic.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Config/config.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Support/Path.h"
#define DEBUG_TYPE "swift-immediate"
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#else
#include <dlfcn.h>
#endif
using namespace swift;
using namespace swift::immediate;
static void *loadRuntimeLib(StringRef runtimeLibPathWithName) {
#if defined(_WIN32)
return LoadLibraryA(runtimeLibPathWithName.str().c_str());
#else
return dlopen(runtimeLibPathWithName.str().c_str(), RTLD_LAZY | RTLD_GLOBAL);
#endif
}
static void *loadRuntimeLibAtPath(StringRef sharedLibName,
StringRef runtimeLibPath) {
// FIXME: Need error-checking.
llvm::SmallString<128> Path = runtimeLibPath;
llvm::sys::path::append(Path, sharedLibName);
return loadRuntimeLib(Path);
}
static void *loadRuntimeLib(StringRef sharedLibName,
ArrayRef<std::string> runtimeLibPaths) {
for (auto &runtimeLibPath : runtimeLibPaths) {
if (void *handle = loadRuntimeLibAtPath(sharedLibName, runtimeLibPath))
return handle;
}
return nullptr;
}
void *swift::immediate::loadSwiftRuntime(ArrayRef<std::string>
runtimeLibPaths) {
#if defined(_WIN32)
return loadRuntimeLib("swiftCore" LTDL_SHLIB_EXT, runtimeLibPaths);
#else
return loadRuntimeLib("libswiftCore" LTDL_SHLIB_EXT, runtimeLibPaths);
#endif
}
static bool tryLoadLibrary(LinkLibrary linkLib,
SearchPathOptions searchPathOpts) {
llvm::SmallString<128> path = linkLib.getName();
// If we have an absolute or relative path, just try to load it now.
if (llvm::sys::path::has_parent_path(path.str())) {
return loadRuntimeLib(path);
}
bool success = false;
switch (linkLib.getKind()) {
case LibraryKind::Library: {
llvm::SmallString<32> stem;
if (llvm::sys::path::has_extension(path.str())) {
stem = std::move(path);
} else {
// FIXME: Try the appropriate extension for the current platform?
stem = "lib";
stem += path;
stem += LTDL_SHLIB_EXT;
}
// Try user-provided library search paths first.
for (auto &libDir : searchPathOpts.LibrarySearchPaths) {
path = libDir;
llvm::sys::path::append(path, stem.str());
success = loadRuntimeLib(path);
if (success)
break;
}
// Let loadRuntimeLib determine the best search paths.
if (!success)
success = loadRuntimeLib(stem);
// If that fails, try our runtime library paths.
if (!success)
success = loadRuntimeLib(stem, searchPathOpts.RuntimeLibraryPaths);
break;
}
case LibraryKind::Framework: {
// If we have a framework, mangle the name to point to the framework
// binary.
llvm::SmallString<64> frameworkPart{std::move(path)};
frameworkPart += ".framework";
llvm::sys::path::append(frameworkPart, linkLib.getName());
// Try user-provided framework search paths first; frameworks contain
// binaries as well as modules.
for (auto &frameworkDir : searchPathOpts.FrameworkSearchPaths) {
path = frameworkDir.Path;
llvm::sys::path::append(path, frameworkPart.str());
success = loadRuntimeLib(path);
if (success)
break;
}
// If that fails, let loadRuntimeLib search for system frameworks.
if (!success)
success = loadRuntimeLib(frameworkPart);
break;
}
}
return success;
}
bool swift::immediate::tryLoadLibraries(ArrayRef<LinkLibrary> LinkLibraries,
SearchPathOptions SearchPathOpts,
DiagnosticEngine &Diags) {
SmallVector<bool, 4> LoadedLibraries;
LoadedLibraries.append(LinkLibraries.size(), false);
// Libraries are not sorted in the topological order of dependencies, and we
// don't know the dependencies in advance. Try to load all libraries until
// we stop making progress.
bool HadProgress;
do {
HadProgress = false;
for (unsigned i = 0; i != LinkLibraries.size(); ++i) {
if (!LoadedLibraries[i] &&
tryLoadLibrary(LinkLibraries[i], SearchPathOpts)) {
LoadedLibraries[i] = true;
HadProgress = true;
}
}
} while (HadProgress);
return std::all_of(LoadedLibraries.begin(), LoadedLibraries.end(),
[](bool Value) { return Value; });
}
bool swift::immediate::autolinkImportedModules(ModuleDecl *M,
const IRGenOptions &IRGenOpts) {
// Perform autolinking.
SmallVector<LinkLibrary, 4> AllLinkLibraries(IRGenOpts.LinkLibraries);
auto addLinkLibrary = [&](LinkLibrary linkLib) {
AllLinkLibraries.push_back(linkLib);
};
M->collectLinkLibraries(addLinkLibrary);
tryLoadLibraries(AllLinkLibraries, M->getASTContext().SearchPathOpts,
M->getASTContext().Diags);
return false;
}
int swift::RunImmediately(CompilerInstance &CI,
const ProcessCmdLine &CmdLine,
const IRGenOptions &IRGenOpts,
const SILOptions &SILOpts,
std::unique_ptr<SILModule> &&SM) {
ASTContext &Context = CI.getASTContext();
// IRGen the main module.
auto *swiftModule = CI.getMainModule();
const auto PSPs = CI.getPrimarySpecificPathsForAtMostOnePrimary();
const auto &TBDOpts = CI.getInvocation().getTBDGenOptions();
auto GenModule = performIRGeneration(
swiftModule, IRGenOpts, TBDOpts, std::move(SM),
swiftModule->getName().str(), PSPs, ArrayRef<std::string>());
if (Context.hadError())
return -1;
assert(GenModule && "Emitted no diagnostics but IR generation failed?");
// Load libSwiftCore to setup process arguments.
//
// This must be done here, before any library loading has been done, to avoid
// racing with the static initializers in user code.
auto stdlib = loadSwiftRuntime(Context.SearchPathOpts.RuntimeLibraryPaths);
if (!stdlib) {
CI.getDiags().diagnose(SourceLoc(),
diag::error_immediate_mode_missing_stdlib);
return -1;
}
// Setup interpreted process arguments.
using ArgOverride = void (*)(const char **, int);
#if defined(_WIN32)
auto module = static_cast<HMODULE>(stdlib);
auto emplaceProcessArgs = reinterpret_cast<ArgOverride>(
GetProcAddress(module, "_swift_stdlib_overrideUnsafeArgvArgc"));
if (emplaceProcessArgs == nullptr)
return -1;
#else
auto emplaceProcessArgs
= (ArgOverride)dlsym(stdlib, "_swift_stdlib_overrideUnsafeArgvArgc");
if (dlerror())
return -1;
#endif
SmallVector<const char *, 32> argBuf;
for (size_t i = 0; i < CmdLine.size(); ++i) {
argBuf.push_back(CmdLine[i].c_str());
}
argBuf.push_back(nullptr);
(*emplaceProcessArgs)(argBuf.data(), CmdLine.size());
if (autolinkImportedModules(swiftModule, IRGenOpts))
return -1;
llvm::PassManagerBuilder PMBuilder;
PMBuilder.OptLevel = 2;
PMBuilder.Inliner = llvm::createFunctionInliningPass(200);
// Build the ExecutionEngine.
llvm::TargetOptions TargetOpt;
std::string CPU;
std::string Triple;
std::vector<std::string> Features;
std::tie(TargetOpt, CPU, Features, Triple)
= getIRTargetOptions(IRGenOpts, swiftModule->getASTContext());
std::unique_ptr<llvm::orc::LLJIT> JIT;
{
auto JITOrErr =
llvm::orc::LLJITBuilder()
.setJITTargetMachineBuilder(
llvm::orc::JITTargetMachineBuilder(llvm::Triple(Triple))
.setRelocationModel(llvm::Reloc::PIC_)
.setOptions(std::move(TargetOpt))
.setCPU(std::move(CPU))
.addFeatures(Features)
.setCodeGenOptLevel(llvm::CodeGenOpt::Default))
.create();
if (!JITOrErr) {
llvm::logAllUnhandledErrors(JITOrErr.takeError(), llvm::errs(), "");
return -1;
} else
JIT = std::move(*JITOrErr);
}
auto Module = GenModule.getModule();
{
// Get a generator for the process symbols and attach it to the main
// JITDylib.
if (auto G = llvm::orc::DynamicLibrarySearchGenerator::GetForCurrentProcess(Module->getDataLayout().getGlobalPrefix()))
JIT->getMainJITDylib().addGenerator(std::move(*G));
else {
logAllUnhandledErrors(G.takeError(), llvm::errs(), "");
return -1;
}
}
LLVM_DEBUG(llvm::dbgs() << "Module to be executed:\n";
Module->dump());
{
if (auto Err = JIT->addIRModule(std::move(GenModule).intoThreadSafeContext())) {
llvm::logAllUnhandledErrors(std::move(Err), llvm::errs(), "");
return -1;
}
}
using MainFnTy = int(*)(int, char*[]);
LLVM_DEBUG(llvm::dbgs() << "Running static constructors\n");
if (auto Err = JIT->initialize(JIT->getMainJITDylib())) {
llvm::logAllUnhandledErrors(std::move(Err), llvm::errs(), "");
return -1;
}
MainFnTy JITMain = nullptr;
if (auto MainFnOrErr = JIT->lookup("main"))
JITMain = llvm::jitTargetAddressToFunction<MainFnTy>(MainFnOrErr->getAddress());
else {
logAllUnhandledErrors(MainFnOrErr.takeError(), llvm::errs(), "");
return -1;
}
LLVM_DEBUG(llvm::dbgs() << "Running main\n");
int Result = llvm::orc::runAsMain(JITMain, CmdLine);
LLVM_DEBUG(llvm::dbgs() << "Running static destructors\n");
if (auto Err = JIT->deinitialize(JIT->getMainJITDylib())) {
logAllUnhandledErrors(std::move(Err), llvm::errs(), "");
return -1;
}
return Result;
}