Files
swift-mirror/lib/SILPasses/Devirtualizer.cpp
Mark Lacey c0ef8dccb4 Update comments and simplify some code in the devirtualizer.
More prep for refactoring into utility functions that can be used
outside of the devirtualization pass.

Swift SVN r25671
2015-03-02 04:30:31 +00:00

1053 lines
40 KiB
C++

//===-- Devirtualizer.cpp ------ Devirtualize virtual calls ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Devirtualizes virtual function calls into direct function calls.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-devirtualizer"
#include "swift/Basic/DemangleWrappers.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILAnalysis/ClassHierarchyAnalysis.h"
#include "swift/SILPasses/Utils/Generics.h"
#include "swift/SILPasses/Passes.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILPasses/PassManager.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/SILPasses/Utils/SILInliner.h"
#include "swift/AST/ASTContext.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
STATISTIC(NumInlineCaches, "Number of monomorphic inline caches inserted");
STATISTIC(NumDevirtualized, "Number of calls devirtualized");
STATISTIC(NumAMI, "Number of witness_method devirtualized");
// The number of subclasses to allow when placing polymorphic inline caches.
static const int MaxNumPolymorphicInlineCaches = 6;
//===----------------------------------------------------------------------===//
// Class Method Optimization
//===----------------------------------------------------------------------===//
/// Return the dynamic class type of the value S, or nullptr if it
/// cannot be determined whether S has a class type or what type that
/// is.
static ClassDecl *getClassFromConstructor(SILValue S) {
// First strip off casts.
S = S.stripCasts();
// Look for a a static ClassTypes in AllocRefInst or MetatypeInst.
if (AllocRefInst *ARI = dyn_cast<AllocRefInst>(S))
return ARI->getType().getClassOrBoundGenericClass();
auto *MTI = dyn_cast<MetatypeInst>(S);
if (!MTI)
return nullptr;
CanType instTy = MTI->getType().castTo<MetatypeType>().getInstanceType();
return instTy.getClassOrBoundGenericClass();
}
/// Return bound generic type for the unbound type Superclass,
/// which is a superclass of a bound generic type BoundDerived
/// (Base may be also the same as BoundDerived).
static SILType bindSuperclass(Module *Module,
CanType Superclass,
SILType BoundDerived,
ArrayRef<Substitution>& Subs) {
assert(BoundDerived && "Expected non-null type!");
SILType BoundSuperclass = BoundDerived;
do {
auto CanBoundSuperclass = BoundSuperclass.getSwiftRValueType();
// Get declaration of the superclass.
auto *Decl = CanBoundSuperclass.getNominalOrBoundGenericNominal();
// Obtain the unbound variant of the current superclass
CanType UnboundSuperclass = Decl->getDeclaredType()->getCanonicalType();
// Check if we found a superclass we are looking for.
if (UnboundSuperclass == Superclass) {
auto BoundBaseType = dyn_cast<BoundGenericType>(CanBoundSuperclass);
if (BoundBaseType)
// If it is a bound generic type, look up its substitutions
Subs = BoundBaseType->getSubstitutions(Module,
nullptr);
else
// If it is a non-bound type, there are no substitutions.
Subs.empty();
return BoundSuperclass;
}
// Get the superclass of current one
BoundSuperclass = BoundSuperclass.getSuperclass(nullptr);
} while (BoundSuperclass);
return SILType();
}
// Returns true if any generic types parameters of the class are
// unbound.
static bool isClassWithUnboundGenericParameters(SILType C, SILModule &M) {
auto *CD = C.getClassOrBoundGenericClass();
if (CD && CD->getGenericSignature()) {
auto InstanceTypeSubsts =
C.gatherAllSubstitutions(M);
if (!InstanceTypeSubsts.empty()) {
if (hasUnboundGenericTypes(InstanceTypeSubsts))
return true;
}
}
return false;
}
/// \brief Devirtualize an Apply instruction and a class member obtained
/// using the class_method instruction into a direct call to a specific
/// member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p Member is the class member to devirtualize.
/// \p ClassInstance is the operand for the ClassMethodInst or an alternative
/// reference (such as downcasted class reference).
/// \p KnownClass (can be null) is a specific class type to devirtualize to.
/// return the new ApplyInst if created one or null.
static ApplyInst *devirtualizeMethod(ApplyInst *AI, SILDeclRef Member,
SILValue ClassInstance, ClassDecl *CD) {
DEBUG(llvm::dbgs() << " Trying to devirtualize : " << *AI);
// First attempt to lookup the origin for our class method. The origin should
// either be a metatype or an alloc_ref.
DEBUG(llvm::dbgs() << " Origin: " << ClassInstance);
assert(CD && "Invalid class type");
// Otherwise lookup from the module the least derived implementing method from
// the module vtables.
SILModule &Mod = AI->getModule();
// Find the implementation of the member which should be invoked.
SILFunction *F = Mod.lookUpFunctionFromVTable(CD, Member);
// If we do not find any such function, we have no function to devirtualize
// to... so bail.
if (!F) {
DEBUG(llvm::dbgs() << " FAIL: Could not find matching VTable or "
"vtable method for this class.\n");
return nullptr;
}
// Ok, we found a function F that we can devirtualize our class method
// to. We want to do everything on the substituted type in the case of
// generics. Thus construct our subst callee type for F.
SILModule &M = F->getModule();
CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();
unsigned CalleeGenericParamsNum = 0;
if (GenCalleeType->isPolymorphic())
CalleeGenericParamsNum = GenCalleeType->getGenericSignature()
->getGenericParams().size();
// Class F belongs to.
CanType FSelfClass = GenCalleeType->getSelfParameter().getType();
SILType ClassInstanceType = ClassInstance.getType();
// Bail if any generic types parameters of the class instance type are
// unbound.
// We cannot devirtualize unbound generic calls yet.
if (isClassWithUnboundGenericParameters(ClassInstanceType, AI->getModule()))
return nullptr;
// *NOTE*:
// Apply instruction substitutions are for the Member from a protocol or
// class B, where this member was first defined, before it got overridden by
// derived classes.
//
// The implementation F (the implementing method) which was found may have
// a different set of generic parameters, e.g. because it is implemented by a
// class D1 derived from B.
//
// ClassInstanceType may have a type different from both the type B
// the Member belongs to and from the ClassInstanceType, e.g. if
// ClassInstance is of a class D2, which is derived from D1, but does not
// override the Member.
//
// As a result, substitutions provided by AI are for Member, whereas
// substitutions in ClassInstanceType are for D2. And substitutions for D1
// are not available directly in a general case. Therefore, they have to
// be computed.
//
// What we know for sure:
// B is a superclass of D1
// D1 is a superclass of D2.
// D1 can be the same as D2. D1 can be the same as B.
//
// So, substitutions from AI are for class B.
// Substitutions for class D1 by means of bindSuperclass(), which starts
// with a bound type ClassInstanceType and checks its superclasses until it
// finds a bound superclass matching D1 and returns its substitutions.
ArrayRef<Substitution> Substitutions;
SILType FSelfSubstType;
if (GenCalleeType->isPolymorphic()) {
// Declaration of the class F belongs to.
if (auto *FSelfTypeDecl = FSelfClass.getNominalOrBoundGenericNominal()) {
// Get the unbound generic type F belongs to.
CanType FSelfGenericType =
FSelfTypeDecl->getDeclaredType()->getCanonicalType();
assert((isa<BoundGenericType>(ClassInstanceType.getSwiftRValueType()) ||
isa<NominalType>(ClassInstanceType.getSwiftRValueType())) &&
"Self type should be either a bound generic type"
"or a non-generic type");
assert((isa<UnboundGenericType>(FSelfGenericType) ||
isa<NominalType>(FSelfGenericType)) &&
"Method implementation self type should be generic");
// We know that ClassInstanceType is derived from FSelfGenericType.
// We need to determine the proper substitutions for FGenericSILClass
// based on the bound generic type of ClassInstanceType.
FSelfSubstType = bindSuperclass(AI->getModule().getSwiftModule(),
FSelfGenericType,
ClassInstanceType,
Substitutions);
// Bail if it was not possible to determine the bound generic class.
if (FSelfSubstType == SILType()) {
return nullptr;
}
if (!isa<BoundGenericType>(ClassInstanceType.getSwiftRValueType()) &&
CalleeGenericParamsNum &&
Substitutions.empty())
// If ClassInstance is not a bound generic type, try to derive
// substitutions from the apply instruction.
Substitutions = AI->getSubstitutions();
} else {
// It is not a type or bound type.
// It could be that GenCalleeType is generic, but its arguments cannot
// be derived from the type of self. In this case, we can try to
// approach it from another end and take the AI substitutions.
Substitutions = AI->getSubstitutions();
}
}
// If implementing method is not polymorphic, there is no need to
// use any substitutions.
if (CalleeGenericParamsNum == 0 && !Substitutions.empty())
Substitutions = {};
else if (CalleeGenericParamsNum != Substitutions.size())
// Bail if the number of generic parameters of the callee does not match
// the number of substitutions, because we don't know how to handle this.
return nullptr;
CanSILFunctionType SubstCalleeType =
GenCalleeType->substGenericArgs(M, M.getSwiftModule(), Substitutions);
// If F's this pointer has a different type from CMI's operand and the
// "this" pointer type is a super class of the CMI's operand, insert an
// upcast.
auto paramTypes =
SubstCalleeType->getParameterSILTypesWithoutIndirectResult();
// We should always have a this pointer. Assert on debug builds, return
// nullptr on release builds.
assert(!paramTypes.empty() &&
"Must have a this pointer when calling a class method inst.");
if (paramTypes.empty())
return nullptr;
// Grab the self type from the function ref and the self type from the class
// method inst.
SILType FuncSelfTy = paramTypes[paramTypes.size() - 1];
SILType OriginTy = ClassInstance.getType();
SILBuilderWithScope<16> B(AI);
// Then compare the two types and if they are unequal...
if (FuncSelfTy != OriginTy) {
if (ClassInstance.stripUpCasts().getType().getAs<MetatypeType>()) {
auto &Module = AI->getModule();
(void) Module;
assert(FuncSelfTy.getMetatypeInstanceType(Module).
isSuperclassOf(OriginTy.getMetatypeInstanceType(Module)) &&
"Can not call a class method"
" on a non-subclass of the class_methods class.");
} else {
assert(FuncSelfTy.isSuperclassOf(OriginTy) &&
"Can not call a class method"
" on a non-subclass of the class_methods class.");
}
// Otherwise, upcast origin to the appropriate type.
ClassInstance = B.createUpcast(AI->getLoc(), ClassInstance, FuncSelfTy);
}
// Success! Perform the devirtualization.
FunctionRefInst *FRI = B.createFunctionRef(AI->getLoc(), F);
// Construct a new arg list. First process all non-self operands, ref, addr
// casting them to the appropriate types for F so that we allow for covariant
// indirect return types and contravariant arguments.
llvm::SmallVector<SILValue, 8> NewArgs;
auto Args = AI->getArguments();
auto allParamTypes = SubstCalleeType->getParameterSILTypes();
// For each old argument Op...
for (unsigned i = 0, e = Args.size() - 1; i != e; ++i) {
SILValue Op = Args[i];
SILType OpTy = Op.getType();
SILType FOpTy = allParamTypes[i];
// If the type matches the type for the given parameter in F, just add it to
// our arg list and continue.
if (OpTy == FOpTy) {
NewArgs.push_back(Op);
continue;
}
// Otherwise we have either a covariant return type or a contravariant
// argument type. Cast it appropriately.
assert((OpTy.isAddress() || OpTy.isHeapObjectReferenceType()) &&
"Only addresses and refs can have their types changed due to "
"covariant return types or contravariant argument types.");
// If OpTy is an address, perform an unchecked_addr_cast.
if (OpTy.isAddress()) {
NewArgs.push_back(B.createUncheckedAddrCast(AI->getLoc(), Op, FOpTy));
} else {
// Otherwise perform a ref cast.
NewArgs.push_back(B.createUncheckedRefCast(AI->getLoc(), Op, FOpTy));
}
}
// Add in self to the end.
NewArgs.push_back(ClassInstance);
// If we have a direct return type, make sure we use the subst callee return
// type. If we have an indirect return type, AI's return type of the empty
// tuple should be ok.
SILType ReturnType = AI->getType();
if (!SubstCalleeType->hasIndirectResult()) {
ReturnType = SubstCalleeType->getSILResult();
}
SILType SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeType);
ApplyInst *NewAI =
B.createApply(AI->getLoc(), FRI, SubstCalleeSILType, ReturnType,
Substitutions, NewArgs,
FRI->getReferencedFunction()->isTransparent());
// If our return type differs from AI's return type, then we know that we have
// a covariant return type. Cast it before we RAUW. This can not happen
if (ReturnType != AI->getType()) {
// Check if the return type is an optional of the apply_inst type
// or the other way around
bool UnwrapOptionalResult = false;
OptionalTypeKind OTK;
auto OptionalReturnType = ReturnType.getSwiftRValueType()
.getAnyOptionalObjectType();
if (OptionalReturnType == AI->getType().getSwiftRValueType()) {
ReturnType.getSwiftRValueType().getAnyOptionalObjectType(OTK);
UnwrapOptionalResult = true;
}
assert((ReturnType.isAddress() ||
ReturnType.isHeapObjectReferenceType() ||
UnwrapOptionalResult) &&
"Only addresses and refs can have their types changed due to "
"covariant return types or contravariant argument types.");
SILValue CastedAI = NewAI;
if (UnwrapOptionalResult) {
// The devirtualized method returns an optional result.
// We need to extract the actual result from the optional.
auto *SomeDecl = B.getASTContext().getOptionalSomeDecl(OTK);
CastedAI = B.createUncheckedEnumData(AI->getLoc(), NewAI, SomeDecl);
} else if (ReturnType.isAddress()) {
CastedAI = B.createUncheckedAddrCast(AI->getLoc(), NewAI, AI->getType());
} else {
CastedAI = B.createUncheckedRefCast(AI->getLoc(), NewAI, AI->getType());
}
SILValue(AI).replaceAllUsesWith(CastedAI);
} else {
AI->replaceAllUsesWith(NewAI);
}
AI->eraseFromParent();
DEBUG(llvm::dbgs() << " SUCCESS: " << F->getName() << "\n");
NumDevirtualized++;
return NewAI;
}
//===----------------------------------------------------------------------===//
// Witness Method Optimization
//===----------------------------------------------------------------------===//
static SILValue upcastArgument(SILValue Arg, SILType SuperTy, ApplyInst *AI) {
SILType ArgTy = Arg.getType();
if (dyn_cast<MetatypeInst>(Arg) || dyn_cast<ValueMetatypeInst>(Arg)) {
// In case of metatypes passed as parameters, we need to upcast to a
// metatype of a superclass.
auto &Module = AI->getModule();
(void) Module;
assert (SuperTy.getSwiftRValueType()->is<AnyMetatypeType>() &&
"super type should be a metatype");
assert(SuperTy.getMetatypeInstanceType(Module)
.isSuperclassOf(ArgTy.getMetatypeInstanceType(Module)) &&
"Should only create upcasts for sub class devirtualization.");
} else {
assert(SuperTy.isSuperclassOf(ArgTy) &&
"Should only create upcasts for sub class devirtualization.");
(void)ArgTy;
}
Arg = SILBuilderWithScope<1>(AI).createUpcast(AI->getLoc(), Arg, SuperTy);
return Arg;
}
/// Generate a new apply of a function_ref to replace an apply of a
/// witness_method when we've determined the actual function we'll end
/// up calling.
ApplyInst *devirtualizeWitness(ApplyInst *AI, SILFunction *F,
ArrayRef<Substitution> Subs) {
// We know the witness thunk and the corresponding set of substitutions
// required to invoke the protocol method at this point.
auto &Module = AI->getModule();
// Collect all the required substitutions.
//
// The complete set of substitutions may be different, e.g. because the found
// witness thunk F may have been created by a specialization pass and have
// additional generic parameters.
SmallVector<Substitution, 16> NewSubstList(Subs.begin(), Subs.end());
// Add the non-self-derived substitutions from the original application.
for (auto &origSub : AI->getSubstitutionsWithoutSelfSubstitution())
if (!origSub.getArchetype()->isSelfDerived())
NewSubstList.push_back(origSub);
// Figure out the exact bound type of the function to be called by
// applying all substitutions.
auto CalleeCanType = F->getLoweredFunctionType();
auto SubstCalleeCanType = CalleeCanType->substGenericArgs(
Module, Module.getSwiftModule(), NewSubstList);
// Collect arguments from the apply instruction.
auto Arguments = SmallVector<SILValue, 4>();
auto ParamTypes = SubstCalleeCanType->getParameterSILTypes();
// Type of the current parameter being processed
auto ParamType = ParamTypes.begin();
// Iterate over the non self arguments and add them to the
// new argument list, upcasting when required.
for (SILValue A : AI->getArguments()) {
if (A.getType() != *ParamType) {
// Upcast argument
A = upcastArgument(A, *ParamType, AI);
}
Arguments.push_back(A);
++ParamType;
}
// Replace old apply instruction by a new apply instruction that invokes
// the witness thunk.
SILBuilderWithScope<2> Builder(AI);
SILLocation Loc = AI->getLoc();
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, F);
auto SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeCanType);
auto ResultSILType = SubstCalleeCanType->getSILResult();
auto *SAI = Builder.createApply(Loc, FRI, SubstCalleeSILType,
ResultSILType, NewSubstList, Arguments,
FRI->getReferencedFunction()->isTransparent());
AI->replaceAllUsesWith(SAI);
AI->eraseFromParent();
NumAMI++;
return SAI;
}
/// In the cases where we can statically determine the function that
/// we'll call to, replace an apply of a witness_method with an apply
/// of a function_ref, returning the new apply.
static ApplyInst *optimizeWitnessMethod(ApplyInst *AI, WitnessMethodInst *WMI) {
SILFunction *F;
ArrayRef<Substitution> Subs;
SILWitnessTable *WT;
std::tie(F, WT, Subs) =
AI->getModule().findFuncInWitnessTable(WMI->getConformance(),
WMI->getMember());
if (!F)
return nullptr;
return devirtualizeWitness(AI, F, Subs);
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
/// Return the final class decl based on access control information.
static ClassDecl *getClassFromAccessControl(ClassMethodInst *CMI) {
const DeclContext *associatedDC = CMI->getModule().getAssociatedContext();
if (!associatedDC) {
// Without an associated context, we can't perform any access-based
// optimizations.
return nullptr;
}
SILDeclRef Member = CMI->getMember();
FuncDecl *FD = Member.getFuncDecl();
SILType ClassType = CMI->getOperand().stripUpCasts().getType();
ClassDecl *CD = ClassType.getClassOrBoundGenericClass();
// Only handle valid non-dynamic non-overridden members.
if (!CD || !FD || FD->isInvalid() || FD->isDynamic() || FD->isOverridden())
return nullptr;
// Only handle members defined within the SILModule's associated context.
if (!FD->isChildContextOf(associatedDC))
return nullptr;
if (!FD->hasAccessibility())
return nullptr;
// Only consider 'private' members, unless we are in whole-module compilation.
switch (FD->getAccessibility()) {
case Accessibility::Public:
return nullptr;
case Accessibility::Internal:
if (!CMI->getModule().isWholeModule())
return nullptr;
break;
case Accessibility::Private:
break;
}
Type selfTypeInMember = FD->getDeclContext()->getDeclaredTypeInContext();
return selfTypeInMember->getClassOrBoundGenericClass();
}
/// Try to devirtualize a call. Return a new ApplyInst or null.
static ApplyInst *optimizeApplyInst(ApplyInst *AI) {
DEBUG(llvm::dbgs() << " Trying to optimize ApplyInst : " << *AI);
// Devirtualize apply instructions that call witness_method instructions:
//
// %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter.1
// %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
//
if (auto *AMI = dyn_cast<WitnessMethodInst>(AI->getCallee()))
return optimizeWitnessMethod(AI, AMI);
/// Optimize a class_method and alloc_ref pair into a direct function
/// reference:
///
/// \code
/// %XX = alloc_ref $Foo
/// %YY = class_method %XX : $Foo, #Foo.get!1 : $@cc(method) @thin ...
/// \endcode
///
/// or
///
/// %XX = metatype $...
/// %YY = class_method %XX : ...
///
/// into
///
/// %YY = function_ref @...
if (auto *CMI = dyn_cast<ClassMethodInst>(AI->getCallee())) {
// Check if the class member is known to be final.
if (ClassDecl *C = getClassFromAccessControl(CMI))
return devirtualizeMethod(AI, CMI->getMember(), CMI->getOperand(), C);
// Try to search for the point of construction.
if (ClassDecl *C = getClassFromConstructor(CMI->getOperand()))
return devirtualizeMethod(AI, CMI->getMember(),
CMI->getOperand().stripUpCasts(), C);
}
return nullptr;
}
namespace {
class SILDevirtualizationPass : public SILModuleTransform {
public:
virtual ~SILDevirtualizationPass() {}
/// The entry point to the transformation.
void run() override {
/// A list of devirtualized calls.
GenericSpecializer::AIList DevirtualizedCalls;
bool Changed = false;
// Perform devirtualization locally and compute potential polymorphic
// arguments for all existing functions.
for (auto &F : *getModule()) {
DEBUG(llvm::dbgs() << "*** Devirtualizing Function: "
<< demangle_wrappers::demangleSymbolAsString(F.getName())
<< "\n");
for (auto &BB : F) {
for (auto II = BB.begin(), IE = BB.end(); II != IE;) {
ApplyInst *AI = dyn_cast<ApplyInst>(&*II);
++II;
if (!AI)
continue;
if (ApplyInst *NewAI = optimizeApplyInst(AI)) {
DevirtualizedCalls.push_back(NewAI);
Changed |= true;
}
}
}
DEBUG(llvm::dbgs() << "\n");
}
if (Changed) {
// Try to specialize the devirtualized calls.
auto GS = GenericSpecializer(getModule());
// Try to specialize the newly devirtualized calls.
if (GS.specialize(DevirtualizedCalls)) {
DEBUG(llvm::dbgs() << "Specialized some generic functions\n");
}
PM->scheduleAnotherIteration();
invalidateAnalysis(SILAnalysis::InvalidationKind::CallGraph);
}
}
StringRef getName() override { return "Devirtualization"; }
};
} // end anonymous namespace
SILTransform *swift::createDevirtualizer() {
return new SILDevirtualizationPass();
}
// A utility function for cloning the apply instruction.
static ApplyInst *CloneApply(ApplyInst *AI, SILBuilder &Builder) {
// Clone the Apply.
auto Args = AI->getArguments();
SmallVector<SILValue, 8> Ret(Args.size());
for (unsigned i = 0, e = Args.size(); i != e; ++i)
Ret[i] = Args[i];
auto NAI = Builder.createApply(AI->getLoc(), AI->getCallee(),
AI->getSubstCalleeSILType(),
AI->getType(),
AI->getSubstitutions(),
Ret, AI->isTransparent());
NAI->setDebugScope(AI->getDebugScope());
return NAI;
}
/// Insert monomorphic inline caches for a specific class type \p SubClassTy.
static ApplyInst* insertMonomorphicInlineCaches(ApplyInst *AI,
SILType SubClassTy) {
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
SILValue ClassInstance = CMI->getOperand();
ClassDecl *CD = SubClassTy.getClassOrBoundGenericClass();
// If method implementation for a SubClassTy is not known,
// bail out early as we won't be able to devirtualize it.
// This may happen e.g in case of a -primary-file
// compilations, where information about methods implemented
// in other files is unavailable.
// Early exit guarantees that we do not create two
// basic blocks which both perform virtual calls of a method.
auto &Mod = AI->getModule();
auto *Method = Mod.lookUpFunctionFromVTable(CD, CMI->getMember());
if (!Method)
return nullptr;
bool IsValueMetatype = false;
SILType RealSubClassTy = SubClassTy;
if (isa<ValueMetatypeInst>(ClassInstance.stripUpCasts())) {
// Convert this type to its metatype type.
Lowering::TypeConverter TC(AI->getModule());
RealSubClassTy = TC.getLoweredLoadableType(CD->getType());
IsValueMetatype = true;
}
// Create a diamond shaped control flow and a checked_cast_branch
// instruction that checks the exact type of the object.
// This cast selects between two paths: one that calls the slow dynamic
// dispatch and one that calls the specific method.
SILBasicBlock::iterator It = AI;
SILFunction *F = AI->getFunction();
SILBasicBlock *Entry = AI->getParent();
// Iden is the basic block containing the direct call.
SILBasicBlock *Iden = F->createBasicBlock();
// Virt is the block containing the slow virtual call.
SILBasicBlock *Virt = F->createBasicBlock();
Iden->createBBArg(RealSubClassTy);
SILBasicBlock *Continue = Entry->splitBasicBlock(It);
SILBuilderWithScope<> Builder(Entry, AI->getDebugScope());
// Create the checked_cast_branch instruction that checks at runtime if the
// class instance is identical to the SILType.
if (!IsValueMetatype)
assert(SubClassTy.getClassOrBoundGenericClass() &&
"Dest type must be a class type");
It = Builder.createCheckedCastBranch(AI->getLoc(), /*exact*/ true,
ClassInstance, RealSubClassTy, Iden,
Virt);
SILBuilder VirtBuilder(Virt);
SILBuilder IdenBuilder(Iden);
// This is the class reference downcasted into subclass SubClassTy.
SILValue DownCastedClassInstance = Iden->getBBArg(0);
// Try sinking the retain of the class instance into the diamond. This may
// allow additional ARC optimizations on the fast path.
if (It != Entry->begin()) {
StrongRetainInst *SRI = dyn_cast<StrongRetainInst>(--It);
// Try to skip another instruction, in case the class_method came first.
if (!SRI && It != Entry->begin())
SRI = dyn_cast<StrongRetainInst>(--It);
if (SRI && SRI->getOperand() == ClassInstance) {
VirtBuilder.createStrongRetain(SRI->getLoc(), ClassInstance)
->setDebugScope(SRI->getDebugScope());
IdenBuilder.createStrongRetain(SRI->getLoc(), DownCastedClassInstance)
->setDebugScope(SRI->getDebugScope());
SRI->eraseFromParent();
}
}
// Copy the two apply instructions into the two blocks.
ApplyInst *IdenAI = CloneApply(AI, IdenBuilder);
ApplyInst *VirtAI = CloneApply(AI, VirtBuilder);
// Create a PHInode for returning the return value from both apply
// instructions.
SILArgument *Arg = Continue->createBBArg(AI->getType());
IdenBuilder.createBranch(AI->getLoc(), Continue, ArrayRef<SILValue>(IdenAI))
->setDebugScope(AI->getDebugScope());
VirtBuilder.createBranch(AI->getLoc(), Continue, ArrayRef<SILValue>(VirtAI))
->setDebugScope(AI->getDebugScope());
// Remove the old Apply instruction.
AI->replaceAllUsesWith(Arg);
AI->eraseFromParent();
// Update the stats.
NumInlineCaches++;
// Devirtualize the apply instruction on the identical path.
devirtualizeMethod(IdenAI, CMI->getMember(), DownCastedClassInstance, CD);
// Sink class_method instructions down to their single user.
if (CMI->hasOneUse())
CMI->moveBefore(CMI->use_begin()->getUser());
return VirtAI;
}
/// \brief Returns true, if a method implementation to be called by the
/// default case handler of a speculative devirtualization is statically
/// known. This happens if it can be proven that generated
/// checked_cast_br instructions cover all other possible cases.
///
/// \p CHA class hierarchy analysis to be used
/// \p AI invocation instruction
/// \p CD static class of the instance whose method is being invoked
/// \p Subs set of direct subclasses of this class
static bool isDefaultCaseKnown(ClassHierarchyAnalysis *CHA,
ApplyInst *AI,
ClassDecl *CD,
ClassHierarchyAnalysis::ClassList &Subs) {
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
auto *Method = CMI->getMember().getFuncDecl();
const DeclContext *DC = AI->getModule().getAssociatedContext();
// Without an associated context we cannot perform any
// access-based optimizations.
if (!DC)
return false;
// Only handle classes defined within the SILModule's associated context.
if (!CD->isChildContextOf(DC))
return false;
if (!CD->hasAccessibility())
return false;
// Only consider 'private' members, unless we are in whole-module compilation.
switch (CD->getAccessibility()) {
case Accessibility::Public:
return false;
case Accessibility::Internal:
if (!AI->getModule().isWholeModule())
return false;
break;
case Accessibility::Private:
break;
}
// This is a private or a module internal class.
//
// We can analyze the class hierarchy rooted at it and
// eventually devirtualize a method call more efficiently.
// First, analyze all direct subclasses.
// We know that a dedicated checked_cast_br check is
// generated for each direct subclass by insertInlineCaches.
for (auto S : Subs) {
// Check if the subclass overrides a method
auto *FD = S->findOverridingDecl(Method);
if (!FD)
continue;
if (CHA->hasKnownDirectSubclasses(S)) {
// This subclass has its own subclasses and
// they will use this implementation or provide
// their own. In either case it is not covered by
// checked_cast_br instructions generated by
// insertInlineCaches. Therefore it increases
// the number of remaining cases to be handled
// by the default case handler.
return false;
}
}
// Then, analyze indirect subclasses.
// Set of indirect subclasses for the class.
auto &IndirectSubs = CHA->getIndirectSubClasses(CD);
// Check if any indirect subclasses use an implementation
// of the method different from the implementation in
// the current class. If this is the case, then such
// an indirect subclass would need a dedicated
// checked_cast_br check to be devirtualized. But this is
// not done by insertInlineCaches yet and therefore
// such a subclass should be handled by the "default"
// case handler, which essentially means that "default"
// case cannot be devirtualized since it covers more
// then one alternative.
for (auto S : IndirectSubs) {
auto *ImplFD = S->findImplementingMethod(Method);
if (ImplFD != Method) {
// Different implementation is used by a subclass.
// Therefore, the default case is not known.
return false;
}
}
return true;
}
/// \brief Try to insert inline cahces for the call \p AI. This function
/// returns true if a change was made.
static bool insertInlineCaches(ApplyInst *AI, ClassHierarchyAnalysis *CHA) {
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
assert(CMI && "Invalid class method instruction");
SILValue ClassInstance = CMI->getOperand();
// The static type used by the class_method instruction
// is the class which a given method belongs to.
// Is either the class of the instance itself or one of its superclasses.
// Therefore, strip all upcasts to get the real static type
// of the instance.
// Specifically, only the upcast to the static class which method belongs to
// should be stripped.
SILType InstanceType = ClassInstance.stripUpCasts().getType();
ClassDecl *CD = InstanceType.getClassOrBoundGenericClass();
if (auto *VMTI = dyn_cast<ValueMetatypeInst>(ClassInstance.stripUpCasts())) {
CanType InstTy = VMTI->getType().castTo<MetatypeType>().getInstanceType();
CD = InstTy.getClassOrBoundGenericClass();
}
// Check if it is legal to insert inline caches.
if (!CD || CMI->isVolatile())
return false;
if (ClassInstance.getType() != InstanceType) {
// The implementation of a method to be invoked may actually
// be defined by one of the superclasses.
if (!ClassInstance.getType().isSuperclassOf(InstanceType))
return false;
// ClassInstance and InstanceType should match for
// devirtualizeMethod to work.
ClassInstance = ClassInstance.stripUpCasts();
}
// Bail if any generic types parameters of the class instance type are
// unbound.
// We cannot devirtualize unbound generic calls yet.
if (isClassWithUnboundGenericParameters(InstanceType, AI->getModule()))
return false;
if (!CHA->hasKnownDirectSubclasses(CD)) {
DEBUG(llvm::dbgs() << "Inserting monomorphic inline caches for class " <<
CD->getName() << "\n");
return insertMonomorphicInlineCaches(AI, InstanceType);
}
// Collect the direct subclasses for the class.
auto &Subs = CHA->getDirectSubClasses(CD);
if (Subs.size() > MaxNumPolymorphicInlineCaches) {
DEBUG(llvm::dbgs() << "Class " << CD->getName() << " has too many (" <<
Subs.size() << ") subclasses. Not inserting inline caches.\n");
return false;
}
DEBUG(llvm::dbgs() << "Class " << CD->getName() << " is a superclass. "
"Inserting polymorphic inline caches.\n");
// Perform a speculative devirtualization of a method invocation.
// It replaces an indirect class_method-based call by a code to perform
// a direct call of the method implementation based on the dynamic class
// of the instance.
//
// The code is generated according to the following principles:
//
// - For each direct subclass, a dedicated checked_cast_br instruction
// is generated to check if a dynamic class of the instance is exactly
// this subclass.
//
// - If this check succeeds, then it jumps to the code which performs a
// direct call of a method implementation specific to this subclass.
//
// - If this check fails, then a different subclass is checked by means of
// checked_cast_br in a similar way.
//
// - Finally, if the instance does not exactly match any of the direct
// subclasses, the "default" case code is generated, which should handle
// all remaining alternatives, i.e. it should be able to dispatch to any
// possible remaining method implementations. Typically this is achieved by
// using a class_method instruction, which performs an indirect invocation.
// But if it can be proven that only one specific implementation of
// a method will be always invoked by this code, then a class_method-based
// call can be devirtualized and replaced by a more efficient direct
// invocation of this specific method implementation.
//
// Remark: With the current implementation of a speculative devirtualization,
// if devirtualization of the "default" case is possible, then it would
// by construction directly invoke the implementation of the method
// corresponding to the static type of the instance. This may change
// in the future, if we start using PGO for ordering of checked_cast_br
// checks.
// TODO: The ordering of checks may benefit from using a PGO, because
// the most probable alternatives could be checked first.
// Number of subclasses which cannot be handled by checked_cast_br checks.
int NotHandledSubsNum = 0;
// True if any instructions were changed or generated.
bool Changed = false;
for (auto S : Subs) {
DEBUG(llvm::dbgs() << "Inserting a cache for class " << CD->getName() <<
" and subclass " << S->getName() << "\n");
CanType CanClassType = S->getDeclaredType()->getCanonicalType();
SILType InstanceType = SILType::getPrimitiveObjectType(CanClassType);
if (!InstanceType.getClassOrBoundGenericClass()) {
// This subclass cannot be handled. This happens e.g. if it is
// a generic class.
NotHandledSubsNum++;
continue;
}
AI = insertMonomorphicInlineCaches(AI, InstanceType);
assert(AI && "Unable to insert inline caches!");
Changed = true;
}
// Check if there is only a single statically known implementation
// of the method which can be called by the default case handler.
if (NotHandledSubsNum || !isDefaultCaseKnown(CHA, AI, CD, Subs)) {
// Devirtualization of remaining cases is not possible,
// because more than one implementation of the method
// needs to be handled here. Thus, an indirect call through
// the class_method cannot be eliminated completely.
//
// But we can still try to devirtualize the static class of instance
// if it is possible.
return insertMonomorphicInlineCaches(AI, InstanceType);
}
// At this point it is known that there is only one remaining method
// implementation which is not covered by checked_cast_br checks yet.
// So, it is safe to replace a class_method invocation by
// a direct call of this remaining implementation.
devirtualizeMethod(AI, CMI->getMember(), ClassInstance, CD);
return true;
}
namespace {
/// Generate inline caches of virtual calls by speculating that the requested
/// class is at the bottom of the class hierarchy.
class SILInlineCaches : public SILFunctionTransform {
public:
virtual ~SILInlineCaches() {}
void run() override {
ClassHierarchyAnalysis *CHA = PM->getAnalysis<ClassHierarchyAnalysis>();
bool Changed = false;
// Collect virtual calls that may be specialized.
SmallVector<ApplyInst *, 16> ToSpecialize;
for (auto &BB : *getFunction()) {
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
ApplyInst *AI = dyn_cast<ApplyInst>(&*II);
if (AI && isa<ClassMethodInst>(AI->getCallee()))
ToSpecialize.push_back(AI);
}
}
// Create the inline caches.
for (auto AI : ToSpecialize)
Changed |= insertInlineCaches(AI, CHA);
if (Changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallGraph);
}
}
StringRef getName() override { return "Inline Caches"; }
};
} // end anonymous namespace
SILTransform *swift::createInlineCaches() {
return new SILInlineCaches();
}