mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
If type variable is associated with a code completion token it's possible that it doesn't have enough contextual information to be resolved to anything, so let's add a hole type which originates from type variable associated with code completion expression to make this relationship explicit and avoid "fixing" problems rooted in fact that type variable is underconstrained due to code completion.
1341 lines
48 KiB
C++
1341 lines
48 KiB
C++
//===--- CSBindings.cpp - Constraint Solver -------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements selection of bindings for type variables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "ConstraintGraph.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include <tuple>
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
void ConstraintSystem::PotentialBindings::inferTransitiveBindings(
|
|
ConstraintSystem &cs, llvm::SmallPtrSetImpl<CanType> &existingTypes,
|
|
const llvm::SmallDenseMap<TypeVariableType *,
|
|
ConstraintSystem::PotentialBindings>
|
|
&inferredBindings) {
|
|
using BindingKind = ConstraintSystem::AllowedBindingKind;
|
|
|
|
llvm::SmallVector<Constraint *, 4> conversions;
|
|
// First, let's collect all of the conversions associated
|
|
// with this type variable.
|
|
llvm::copy_if(
|
|
Sources, std::back_inserter(conversions),
|
|
[&](const Constraint *constraint) -> bool {
|
|
if (constraint->getKind() != ConstraintKind::Subtype &&
|
|
constraint->getKind() != ConstraintKind::Conversion &&
|
|
constraint->getKind() != ConstraintKind::ArgumentConversion &&
|
|
constraint->getKind() != ConstraintKind::OperatorArgumentConversion)
|
|
return false;
|
|
|
|
auto rhs = cs.simplifyType(constraint->getSecondType());
|
|
return rhs->getAs<TypeVariableType>() == TypeVar;
|
|
});
|
|
|
|
for (auto *constraint : conversions) {
|
|
auto *tv =
|
|
cs.simplifyType(constraint->getFirstType())->getAs<TypeVariableType>();
|
|
if (!tv || tv == TypeVar)
|
|
continue;
|
|
|
|
auto relatedBindings = inferredBindings.find(tv);
|
|
if (relatedBindings == inferredBindings.end())
|
|
continue;
|
|
|
|
auto &bindings = relatedBindings->getSecond();
|
|
|
|
// FIXME: This is a workaround necessary because solver doesn't filter
|
|
// bindings based on protocol requirements placed on a type variable.
|
|
//
|
|
// Forward propagate (subtype -> supertype) only literal conformance
|
|
// requirements since that helps solver to infer more types at
|
|
// parameter positions.
|
|
//
|
|
// \code
|
|
// func foo<T: ExpressibleByStringLiteral>(_: String, _: T) -> T {
|
|
// fatalError()
|
|
// }
|
|
//
|
|
// func bar(_: Any?) {}
|
|
//
|
|
// func test() {
|
|
// bar(foo("", ""))
|
|
// }
|
|
// \endcode
|
|
//
|
|
// If one of the literal arguments doesn't propagate its
|
|
// `ExpressibleByStringLiteral` conformance, we'd end up picking
|
|
// `T` with only one type `Any?` which is incorrect.
|
|
llvm::copy_if(bindings.Protocols, std::back_inserter(Protocols),
|
|
[](const Constraint *protocol) {
|
|
return protocol->getKind() ==
|
|
ConstraintKind::LiteralConformsTo;
|
|
});
|
|
|
|
// Infer transitive defaults.
|
|
llvm::copy(bindings.Defaults, std::back_inserter(Defaults));
|
|
|
|
// TODO: We shouldn't need this in the future.
|
|
if (constraint->getKind() != ConstraintKind::Subtype)
|
|
continue;
|
|
|
|
for (auto &binding : bindings.Bindings) {
|
|
// We need the binding kind for the potential binding to
|
|
// either be Exact or Supertypes in order for it to make sense
|
|
// to add Supertype bindings based on the relationship between
|
|
// our type variables.
|
|
if (binding.Kind != BindingKind::Exact &&
|
|
binding.Kind != BindingKind::Supertypes)
|
|
continue;
|
|
|
|
auto type = binding.BindingType;
|
|
|
|
if (type->isHole())
|
|
continue;
|
|
|
|
if (!existingTypes.insert(type->getCanonicalType()).second)
|
|
continue;
|
|
|
|
if (ConstraintSystem::typeVarOccursInType(TypeVar, type))
|
|
continue;
|
|
|
|
addPotentialBinding(
|
|
binding.withSameSource(type, BindingKind::Supertypes));
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
isUnviableDefaultType(Type defaultType,
|
|
llvm::SmallPtrSetImpl<CanType> &existingTypes) {
|
|
auto canType = defaultType->getCanonicalType();
|
|
|
|
if (!defaultType->hasUnboundGenericType())
|
|
return !existingTypes.insert(canType).second;
|
|
|
|
// For generic literal types, check whether we already have a
|
|
// specialization of this generic within our list.
|
|
// FIXME: This assumes that, e.g., the default literal
|
|
// int/float/char/string types are never generic.
|
|
auto nominal = defaultType->getAnyNominal();
|
|
if (!nominal)
|
|
return true;
|
|
|
|
if (llvm::any_of(existingTypes, [&nominal](CanType existingType) {
|
|
// FIXME: Check parents?
|
|
return nominal == existingType->getAnyNominal();
|
|
}))
|
|
return true;
|
|
|
|
existingTypes.insert(canType);
|
|
return false;
|
|
}
|
|
|
|
void ConstraintSystem::PotentialBindings::inferDefaultTypes(
|
|
ConstraintSystem &cs, llvm::SmallPtrSetImpl<CanType> &existingTypes) {
|
|
auto isDirectRequirement = [&](Constraint *constraint) -> bool {
|
|
if (auto *typeVar = constraint->getFirstType()->getAs<TypeVariableType>()) {
|
|
auto *repr = cs.getRepresentative(typeVar);
|
|
return repr == TypeVar;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// If we have any literal constraints, check whether there is already a
|
|
// binding that provides a type that conforms to that literal protocol. In
|
|
// such cases, don't add the default binding suggestion because the existing
|
|
// suggestion is better.
|
|
//
|
|
// Note that ordering is important when it comes to bindings, we'd like to
|
|
// add any "direct" default types first to attempt them before transitive
|
|
// ones.
|
|
//
|
|
// Key is a literal protocol requirement, Value indicates whether (first)
|
|
// given protocol is a direct requirement, and (second) whether it has been
|
|
// covered by an existing binding.
|
|
llvm::SmallMapVector<ProtocolDecl *, std::pair<bool, bool>, 4>
|
|
literalProtocols;
|
|
for (auto *constraint : Protocols) {
|
|
if (constraint->getKind() == ConstraintKind::LiteralConformsTo)
|
|
literalProtocols.insert({constraint->getProtocol(),
|
|
{isDirectRequirement(constraint), false}});
|
|
}
|
|
|
|
for (auto &binding : Bindings) {
|
|
Type type;
|
|
|
|
switch (binding.Kind) {
|
|
case AllowedBindingKind::Exact:
|
|
type = binding.BindingType;
|
|
break;
|
|
|
|
case AllowedBindingKind::Subtypes:
|
|
case AllowedBindingKind::Supertypes:
|
|
type = binding.BindingType->getRValueType();
|
|
break;
|
|
}
|
|
|
|
if (type->isTypeVariableOrMember() || type->isHole())
|
|
continue;
|
|
|
|
bool requiresUnwrap = false;
|
|
for (auto &entry : literalProtocols) {
|
|
auto *protocol = entry.first;
|
|
bool isDirectRequirement = entry.second.first;
|
|
bool &isCovered = entry.second.second;
|
|
|
|
if (isCovered)
|
|
continue;
|
|
|
|
// FIXME: This is a hack and it's incorrect because it depends
|
|
// on ordering of the literal procotols e.g. if `ExpressibleByNilLiteral`
|
|
// appears before e.g. `ExpressibleByIntegerLiteral` we'd drop
|
|
// optionality although that would be incorrect.
|
|
do {
|
|
// If the type conforms to this protocol, we're covered.
|
|
if (TypeChecker::conformsToProtocol(type, protocol, cs.DC)) {
|
|
isCovered = true;
|
|
break;
|
|
}
|
|
|
|
// If this literal protocol is not a direct requirement it
|
|
// would be possible to change optionality while inferring
|
|
// bindings for a supertype, so this hack doesn't apply.
|
|
if (!isDirectRequirement)
|
|
break;
|
|
|
|
// If we're allowed to bind to subtypes, look through optionals.
|
|
// FIXME: This is really crappy special case of computing a reasonable
|
|
// result based on the given constraints.
|
|
if (binding.Kind == AllowedBindingKind::Subtypes) {
|
|
if (auto objTy = type->getOptionalObjectType()) {
|
|
requiresUnwrap = true;
|
|
type = objTy;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
requiresUnwrap = false;
|
|
break;
|
|
} while (true);
|
|
}
|
|
|
|
if (requiresUnwrap)
|
|
binding.BindingType = type;
|
|
}
|
|
|
|
// If this is not a literal protocol or it has been "covered" by an existing
|
|
// binding it can't provide a default type.
|
|
auto isUnviableForDefaulting = [&literalProtocols](ProtocolDecl *protocol) {
|
|
auto literal = literalProtocols.find(protocol);
|
|
return literal == literalProtocols.end() || literal->second.second;
|
|
};
|
|
|
|
for (auto *constraint : Protocols) {
|
|
auto *protocol = constraint->getProtocol();
|
|
|
|
if (isUnviableForDefaulting(protocol))
|
|
continue;
|
|
|
|
// Let's try to coalesce integer and floating point literal protocols
|
|
// if they appear together because the only possible default type that
|
|
// could satisfy both requirements is `Double`.
|
|
if (protocol->isSpecificProtocol(
|
|
KnownProtocolKind::ExpressibleByIntegerLiteral)) {
|
|
auto *floatLiteral = cs.getASTContext().getProtocol(
|
|
KnownProtocolKind::ExpressibleByFloatLiteral);
|
|
// If `ExpressibleByFloatLiteral` is a requirement and it isn't
|
|
// covered, let's skip `ExpressibleByIntegerLiteral` requirement.
|
|
if (!isUnviableForDefaulting(floatLiteral))
|
|
continue;
|
|
}
|
|
|
|
auto defaultType = TypeChecker::getDefaultType(protocol, cs.DC);
|
|
if (!defaultType)
|
|
continue;
|
|
|
|
if (isUnviableDefaultType(defaultType, existingTypes))
|
|
continue;
|
|
|
|
// We need to figure out whether this is a direct conformance
|
|
// requirement or inferred transitive one to identify binding
|
|
// kind correctly.
|
|
addPotentialBinding({defaultType,
|
|
isDirectRequirement(constraint)
|
|
? AllowedBindingKind::Subtypes
|
|
: AllowedBindingKind::Supertypes,
|
|
constraint});
|
|
}
|
|
|
|
/// Add defaultable constraints.
|
|
for (auto *constraint : Defaults) {
|
|
Type type = constraint->getSecondType();
|
|
if (!existingTypes.insert(type->getCanonicalType()).second)
|
|
continue;
|
|
|
|
if (constraint->getKind() == ConstraintKind::DefaultClosureType) {
|
|
// If there are no other possible bindings for this closure
|
|
// let's default it to the type inferred from its parameters/body,
|
|
// otherwise we should only attempt contextual types as a
|
|
// top-level closure type.
|
|
if (!Bindings.empty())
|
|
continue;
|
|
}
|
|
|
|
addPotentialBinding({type, AllowedBindingKind::Exact, constraint});
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::PotentialBindings::finalize(
|
|
ConstraintSystem &cs,
|
|
const llvm::SmallDenseMap<TypeVariableType *,
|
|
ConstraintSystem::PotentialBindings>
|
|
&inferredBindings) {
|
|
// We need to make sure that there are no duplicate bindings in the
|
|
// set, otherwise solver would produce multiple identical solutions.
|
|
llvm::SmallPtrSet<CanType, 4> existingTypes;
|
|
for (const auto &binding : Bindings)
|
|
existingTypes.insert(binding.BindingType->getCanonicalType());
|
|
|
|
inferTransitiveBindings(cs, existingTypes, inferredBindings);
|
|
|
|
inferDefaultTypes(cs, existingTypes);
|
|
|
|
// Adjust optionality of existing bindings based on presence of
|
|
// `ExpressibleByNilLiteral` requirement.
|
|
if (llvm::any_of(Protocols, [](Constraint *constraint) {
|
|
auto *protocol = constraint->getProtocol();
|
|
return protocol->isSpecificProtocol(
|
|
KnownProtocolKind::ExpressibleByNilLiteral);
|
|
})) {
|
|
for (auto &binding : Bindings) {
|
|
bool wrapInOptional = false;
|
|
if (binding.Kind == AllowedBindingKind::Supertypes) {
|
|
auto type = binding.BindingType->getRValueType();
|
|
// If the type doesn't conform to ExpressibleByNilLiteral,
|
|
// produce an optional of that type as a potential binding. We
|
|
// overwrite the binding in place because the non-optional type
|
|
// will fail to type-check against the nil-literal conformance.
|
|
bool conformsToExprByNilLiteral = false;
|
|
if (auto *nominalBindingDecl = type->getAnyNominal()) {
|
|
SmallVector<ProtocolConformance *, 2> conformances;
|
|
conformsToExprByNilLiteral = nominalBindingDecl->lookupConformance(
|
|
cs.DC->getParentModule(),
|
|
cs.getASTContext().getProtocol(
|
|
KnownProtocolKind::ExpressibleByNilLiteral),
|
|
conformances);
|
|
}
|
|
wrapInOptional = !conformsToExprByNilLiteral;
|
|
} else if (binding.isDefaultableBinding() &&
|
|
binding.BindingType->isAny()) {
|
|
wrapInOptional = true;
|
|
}
|
|
|
|
if (wrapInOptional)
|
|
binding.BindingType = OptionalType::get(binding.BindingType);
|
|
}
|
|
}
|
|
|
|
// If there are no bindings, typeVar may be a hole.
|
|
if (cs.shouldAttemptFixes() && Bindings.empty() &&
|
|
TypeVar->getImpl().canBindToHole()) {
|
|
IsHole = true;
|
|
// If the base of the unresolved member reference like `.foo`
|
|
// couldn't be resolved we'd want to bind it to a hole at the
|
|
// very last moment possible, just like generic parameters.
|
|
auto *locator = TypeVar->getImpl().getLocator();
|
|
if (locator->isLastElement<LocatorPathElt::MemberRefBase>())
|
|
PotentiallyIncomplete = true;
|
|
|
|
// Delay resolution of the code completion expression until
|
|
// the very end to give it a chance to be bound to some
|
|
// contextual type even if it's a hole.
|
|
if (locator->directlyAt<CodeCompletionExpr>()) {
|
|
FullyBound = true;
|
|
PotentiallyIncomplete = true;
|
|
}
|
|
|
|
// Delay resolution of the `nil` literal to a hole until
|
|
// the very end to give it a change to be bound to some
|
|
// other type, just like code completion expression which
|
|
// relies solely on contextual information.
|
|
if (locator->directlyAt<NilLiteralExpr>()) {
|
|
FullyBound = true;
|
|
PotentiallyIncomplete = true;
|
|
}
|
|
|
|
// If this type variable is associated with a code completion token
|
|
// and it failed to infer any bindings let's adjust hole's locator
|
|
// to point to a code completion token to avoid attempting to "fix"
|
|
// this problem since its rooted in the fact that constraint system
|
|
// is under-constrained.
|
|
if (AssociatedCodeCompletionToken) {
|
|
locator = cs.getConstraintLocator(AssociatedCodeCompletionToken);
|
|
}
|
|
|
|
addPotentialBinding(PotentialBinding::forHole(TypeVar, locator));
|
|
}
|
|
|
|
// Let's always consider `Any` to be a last resort binding because
|
|
// it's always better to infer concrete type and erase it if required
|
|
// by the context.
|
|
if (Bindings.size() > 1) {
|
|
auto AnyTypePos =
|
|
llvm::find_if(Bindings, [](const PotentialBinding &binding) {
|
|
return binding.BindingType->isAny() &&
|
|
!binding.isDefaultableBinding();
|
|
});
|
|
|
|
if (AnyTypePos != Bindings.end()) {
|
|
std::rotate(AnyTypePos, AnyTypePos + 1, Bindings.end());
|
|
}
|
|
}
|
|
|
|
// Determine if the bindings only constrain the type variable from above with
|
|
// an existential type; such a binding is not very helpful because it's
|
|
// impossible to enumerate the existential type's subtypes.
|
|
if (!Bindings.empty()) {
|
|
SubtypeOfExistentialType =
|
|
llvm::all_of(Bindings, [](const PotentialBinding &binding) {
|
|
return binding.BindingType->isExistentialType() &&
|
|
binding.Kind == AllowedBindingKind::Subtypes;
|
|
});
|
|
}
|
|
}
|
|
|
|
Optional<ConstraintSystem::PotentialBindings>
|
|
ConstraintSystem::determineBestBindings() {
|
|
// Look for potential type variable bindings.
|
|
Optional<PotentialBindings> bestBindings;
|
|
llvm::SmallDenseMap<TypeVariableType *, PotentialBindings> cache;
|
|
|
|
// First, let's collect all of the possible bindings.
|
|
for (auto *typeVar : getTypeVariables()) {
|
|
if (!typeVar->getImpl().hasRepresentativeOrFixed())
|
|
cache.insert({typeVar, inferBindingsFor(typeVar, /*finalize=*/false)});
|
|
}
|
|
|
|
// Determine whether given type variable with its set of bindings is
|
|
// viable to be attempted on the next step of the solver. If type variable
|
|
// has no "direct" bindings of any kind e.g. direct bindings to concrete
|
|
// types, default types from "defaultable" constraints or literal
|
|
// conformances, such type variable is not viable to be evaluated to be
|
|
// attempted next.
|
|
auto isViableForRanking =
|
|
[this](const ConstraintSystem::PotentialBindings &bindings) -> bool {
|
|
auto *typeVar = bindings.TypeVar;
|
|
|
|
// If type variable is marked as a potential hole there is always going
|
|
// to be at least one binding available for it.
|
|
if (shouldAttemptFixes() && typeVar->getImpl().canBindToHole())
|
|
return true;
|
|
|
|
return !bindings.Bindings.empty() || !bindings.Defaults.empty() ||
|
|
llvm::any_of(bindings.Protocols, [&](Constraint *constraint) {
|
|
return bool(
|
|
TypeChecker::getDefaultType(constraint->getProtocol(), DC));
|
|
});
|
|
};
|
|
|
|
// Now let's see if we could infer something for related type
|
|
// variables based on other bindings.
|
|
for (auto *typeVar : getTypeVariables()) {
|
|
auto cachedBindings = cache.find(typeVar);
|
|
if (cachedBindings == cache.end())
|
|
continue;
|
|
|
|
auto &bindings = cachedBindings->getSecond();
|
|
|
|
// Before attempting to infer transitive bindings let's check
|
|
// whether there are any viable "direct" bindings associated with
|
|
// current type variable, if there are none - it means that this type
|
|
// variable could only be used to transitively infer bindings for
|
|
// other type variables and can't participate in ranking.
|
|
//
|
|
// Viable bindings include - any types inferred from constraints
|
|
// associated with given type variable, any default constraints,
|
|
// or any conformance requirements to literal protocols with can
|
|
// produce a default type.
|
|
bool isViable = isViableForRanking(bindings);
|
|
|
|
bindings.finalize(*this, cache);
|
|
|
|
if (!bindings || !isViable)
|
|
continue;
|
|
|
|
if (isDebugMode()) {
|
|
bindings.dump(typeVar, llvm::errs(), solverState->depth * 2);
|
|
}
|
|
|
|
// If these are the first bindings, or they are better than what
|
|
// we saw before, use them instead.
|
|
if (!bestBindings || bindings < *bestBindings)
|
|
bestBindings = bindings;
|
|
}
|
|
|
|
return bestBindings;
|
|
}
|
|
|
|
/// Find the set of type variables that are inferable from the given type.
|
|
///
|
|
/// \param type The type to search.
|
|
/// \param typeVars Collects the type variables that are inferable from the
|
|
/// given type. This set is not cleared, so that multiple types can be explored
|
|
/// and introduce their results into the same set.
|
|
static void
|
|
findInferableTypeVars(Type type,
|
|
SmallPtrSetImpl<TypeVariableType *> &typeVars) {
|
|
type = type->getCanonicalType();
|
|
if (!type->hasTypeVariable())
|
|
return;
|
|
|
|
class Walker : public TypeWalker {
|
|
SmallPtrSetImpl<TypeVariableType *> &typeVars;
|
|
|
|
public:
|
|
explicit Walker(SmallPtrSetImpl<TypeVariableType *> &typeVars)
|
|
: typeVars(typeVars) {}
|
|
|
|
Action walkToTypePre(Type ty) override {
|
|
if (ty->is<DependentMemberType>())
|
|
return Action::SkipChildren;
|
|
|
|
if (auto typeVar = ty->getAs<TypeVariableType>())
|
|
typeVars.insert(typeVar);
|
|
return Action::Continue;
|
|
}
|
|
};
|
|
|
|
type.walk(Walker(typeVars));
|
|
}
|
|
|
|
void ConstraintSystem::PotentialBindings::addPotentialBinding(
|
|
PotentialBinding binding, bool allowJoinMeet) {
|
|
assert(!binding.BindingType->is<ErrorType>());
|
|
|
|
// If this is a non-defaulted supertype binding,
|
|
// check whether we can combine it with another
|
|
// supertype binding by computing the 'join' of the types.
|
|
if (binding.Kind == AllowedBindingKind::Supertypes &&
|
|
!binding.BindingType->hasUnresolvedType() &&
|
|
!binding.BindingType->hasTypeVariable() &&
|
|
!binding.BindingType->hasHole() &&
|
|
!binding.BindingType->hasUnboundGenericType() &&
|
|
!binding.hasDefaultedLiteralProtocol() &&
|
|
!binding.isDefaultableBinding() && allowJoinMeet) {
|
|
if (lastSupertypeIndex) {
|
|
auto &lastBinding = Bindings[*lastSupertypeIndex];
|
|
auto lastType = lastBinding.BindingType->getWithoutSpecifierType();
|
|
auto bindingType = binding.BindingType->getWithoutSpecifierType();
|
|
|
|
auto join = Type::join(lastType, bindingType);
|
|
if (join && !(*join)->isAny() &&
|
|
(!(*join)->getOptionalObjectType()
|
|
|| !(*join)->getOptionalObjectType()->isAny())) {
|
|
// Replace the last supertype binding with the join. We're done.
|
|
lastBinding.BindingType = *join;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Record this as the most recent supertype index.
|
|
lastSupertypeIndex = Bindings.size();
|
|
}
|
|
|
|
if (auto *literalProtocol = binding.getDefaultedLiteralProtocol())
|
|
foundLiteralBinding(literalProtocol);
|
|
|
|
// If the type variable can't bind to an lvalue, make sure the
|
|
// type we pick isn't an lvalue.
|
|
if (!TypeVar->getImpl().canBindToLValue() &&
|
|
binding.BindingType->hasLValueType()) {
|
|
binding = binding.withType(binding.BindingType->getRValueType());
|
|
}
|
|
|
|
if (!isViable(binding))
|
|
return;
|
|
|
|
if (binding.isDefaultableBinding())
|
|
++NumDefaultableBindings;
|
|
|
|
Bindings.push_back(std::move(binding));
|
|
}
|
|
|
|
bool ConstraintSystem::PotentialBindings::isViable(
|
|
PotentialBinding &binding) const {
|
|
// Prevent against checking against the same opened nominal type
|
|
// over and over again. Doing so means redundant work in the best
|
|
// case. In the worst case, we'll produce lots of duplicate solutions
|
|
// for this constraint system, which is problematic for overload
|
|
// resolution.
|
|
auto type = binding.BindingType;
|
|
if (type->hasTypeVariable()) {
|
|
auto *NTD = type->getAnyNominal();
|
|
if (!NTD)
|
|
return true;
|
|
|
|
for (auto &existing : Bindings) {
|
|
auto *existingNTD = existing.BindingType->getAnyNominal();
|
|
if (existingNTD && NTD == existingNTD)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ConstraintSystem::PotentialBindings::favoredOverDisjunction(
|
|
Constraint *disjunction) const {
|
|
if (IsHole || FullyBound)
|
|
return false;
|
|
|
|
// If this bindings are for a closure and there are no holes,
|
|
// it shouldn't matter whether it there are any type variables
|
|
// or not because e.g. parameter type can have type variables,
|
|
// but we still want to resolve closure body early (instead of
|
|
// attempting any disjunction) to gain additional contextual
|
|
// information.
|
|
if (TypeVar->getImpl().isClosureType()) {
|
|
auto boundType = disjunction->getNestedConstraints()[0]->getFirstType();
|
|
// If disjunction is attempting to bind a type variable, let's
|
|
// favor closure because it would add additional context, otherwise
|
|
// if it's something like a collection (where it has to pick
|
|
// between a conversion and bridging conversion) or concrete
|
|
// type let's prefer the disjunction.
|
|
//
|
|
// We are looking through optionals here because it could be
|
|
// a situation where disjunction is formed to match optionals
|
|
// either as deep equality or optional-to-optional conversion.
|
|
// Such type variables might be connected to closure as well
|
|
// e.g. when result type is optional, so it makes sense to
|
|
// open closure before attempting such disjunction.
|
|
return boundType->lookThroughAllOptionalTypes()->is<TypeVariableType>();
|
|
}
|
|
|
|
return !InvolvesTypeVariables;
|
|
}
|
|
|
|
ConstraintSystem::PotentialBindings
|
|
ConstraintSystem::inferBindingsFor(TypeVariableType *typeVar, bool finalize) {
|
|
assert(typeVar->getImpl().getRepresentative(nullptr) == typeVar &&
|
|
"not a representative");
|
|
assert(!typeVar->getImpl().getFixedType(nullptr) && "has a fixed type");
|
|
|
|
PotentialBindings bindings(typeVar);
|
|
|
|
// Gather the constraints associated with this type variable.
|
|
auto constraints = CG.gatherConstraints(
|
|
typeVar, ConstraintGraph::GatheringKind::EquivalenceClass);
|
|
|
|
llvm::SmallPtrSet<CanType, 4> exactTypes;
|
|
|
|
for (auto *constraint : constraints) {
|
|
bool failed = bindings.infer(*this, exactTypes, constraint);
|
|
|
|
// Upon inference failure let's produce an empty set of bindings.
|
|
if (failed)
|
|
return {typeVar};
|
|
}
|
|
|
|
if (finalize) {
|
|
llvm::SmallDenseMap<TypeVariableType *, ConstraintSystem::PotentialBindings>
|
|
inferred;
|
|
|
|
bindings.finalize(*this, inferred);
|
|
}
|
|
|
|
return bindings;
|
|
}
|
|
|
|
Optional<ConstraintSystem::PotentialBinding>
|
|
ConstraintSystem::getPotentialBindingForRelationalConstraint(
|
|
PotentialBindings &result, Constraint *constraint) const {
|
|
assert(constraint->getClassification() ==
|
|
ConstraintClassification::Relational &&
|
|
"only relational constraints handled here");
|
|
|
|
auto *typeVar = result.TypeVar;
|
|
|
|
// Record constraint which contributes to the
|
|
// finding of potential bindings.
|
|
result.Sources.insert(constraint);
|
|
|
|
auto first = simplifyType(constraint->getFirstType());
|
|
auto second = simplifyType(constraint->getSecondType());
|
|
|
|
if (first->is<TypeVariableType>() && first->isEqual(second))
|
|
return None;
|
|
|
|
Type type;
|
|
AllowedBindingKind kind;
|
|
if (first->getAs<TypeVariableType>() == typeVar) {
|
|
// Upper bound for this type variable.
|
|
type = second;
|
|
kind = AllowedBindingKind::Subtypes;
|
|
} else if (second->getAs<TypeVariableType>() == typeVar) {
|
|
// Lower bound for this type variable.
|
|
type = first;
|
|
kind = AllowedBindingKind::Supertypes;
|
|
} else {
|
|
// If the left-hand side of a relational constraint is a
|
|
// type variable representing a closure type, let's delay
|
|
// attempting any bindings related to any type variables
|
|
// on the other side since it could only be either a closure
|
|
// parameter or a result type, and we can't get a full set
|
|
// of bindings for them until closure's body is opened.
|
|
if (auto *typeVar = first->getAs<TypeVariableType>()) {
|
|
if (typeVar->getImpl().isClosureType()) {
|
|
result.InvolvesTypeVariables = true;
|
|
result.FullyBound = true;
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// Can't infer anything.
|
|
if (result.InvolvesTypeVariables)
|
|
return None;
|
|
|
|
// Check whether both this type and another type variable are
|
|
// inferable.
|
|
SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
findInferableTypeVars(first, typeVars);
|
|
findInferableTypeVars(second, typeVars);
|
|
if (typeVars.size() > 1 && typeVars.count(typeVar))
|
|
result.InvolvesTypeVariables = true;
|
|
return None;
|
|
}
|
|
|
|
// Do not attempt to bind to ErrorType.
|
|
if (type->hasError())
|
|
return None;
|
|
|
|
if (auto *locator = typeVar->getImpl().getLocator()) {
|
|
if (locator->isKeyPathType()) {
|
|
auto *BGT =
|
|
type->lookThroughAllOptionalTypes()->getAs<BoundGenericType>();
|
|
if (!BGT || !isKnownKeyPathDecl(getASTContext(), BGT->getDecl()))
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// If the source of the binding is 'OptionalObject' constraint
|
|
// and type variable is on the left-hand side, that means
|
|
// that it _has_ to be of optional type, since the right-hand
|
|
// side of the constraint is object type of the optional.
|
|
if (constraint->getKind() == ConstraintKind::OptionalObject &&
|
|
kind == AllowedBindingKind::Subtypes) {
|
|
type = OptionalType::get(type);
|
|
}
|
|
|
|
// If the type we'd be binding to is a dependent member, don't try to
|
|
// resolve this type variable yet.
|
|
if (type->is<DependentMemberType>()) {
|
|
if (!ConstraintSystem::typeVarOccursInType(typeVar, type,
|
|
&result.InvolvesTypeVariables)) {
|
|
result.FullyBound = true;
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
// If our binding choice is a function type and we're attempting
|
|
// to bind to a type variable that is the result of opening a
|
|
// generic parameter, strip the noescape bit so that we only allow
|
|
// bindings of escaping functions in this position. We do this
|
|
// because within the generic function we have no indication of
|
|
// whether the parameter is a function type and if so whether it
|
|
// should be allowed to escape. As a result we allow anything
|
|
// passed in to escape.
|
|
if (auto *fnTy = type->getAs<AnyFunctionType>())
|
|
if (typeVar->getImpl().getGenericParameter() && !shouldAttemptFixes())
|
|
type = fnTy->withExtInfo(fnTy->getExtInfo().withNoEscape(false));
|
|
|
|
// Check whether we can perform this binding.
|
|
// FIXME: this has a super-inefficient extraneous simplifyType() in it.
|
|
if (auto boundType = checkTypeOfBinding(typeVar, type)) {
|
|
type = *boundType;
|
|
if (type->hasTypeVariable())
|
|
result.InvolvesTypeVariables = true;
|
|
} else {
|
|
auto *bindingTypeVar = type->getRValueType()->getAs<TypeVariableType>();
|
|
|
|
if (!bindingTypeVar)
|
|
return None;
|
|
|
|
result.InvolvesTypeVariables = true;
|
|
|
|
// If current type variable is associated with a code completion token
|
|
// it's possible that it doesn't have enough contextual information
|
|
// to be resolved to anything, so let's note that fact in the potential
|
|
// bindings and use it when forming a hole if there are no other bindings
|
|
// available.
|
|
if (auto *locator = bindingTypeVar->getImpl().getLocator()) {
|
|
if (locator->directlyAt<CodeCompletionExpr>()) {
|
|
result.AssociatedCodeCompletionToken = locator->getAnchor();
|
|
result.PotentiallyIncomplete = true;
|
|
}
|
|
}
|
|
|
|
if (constraint->getKind() == ConstraintKind::Subtype &&
|
|
kind == AllowedBindingKind::Subtypes) {
|
|
result.SubtypeOf.insert(bindingTypeVar);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
// Make sure we aren't trying to equate type variables with different
|
|
// lvalue-binding rules.
|
|
if (auto otherTypeVar = type->getAs<TypeVariableType>()) {
|
|
if (typeVar->getImpl().canBindToLValue() !=
|
|
otherTypeVar->getImpl().canBindToLValue())
|
|
return None;
|
|
}
|
|
|
|
// If subtyping is allowed and this is a result of an implicit member chain,
|
|
// let's delay binding it to an optional until its object type resolved too or
|
|
// it has been determined that there is no possibility to resolve it. Otherwise
|
|
// we might end up missing solutions since it's allowed to implicitly unwrap
|
|
// base type of the chain but it can't be done early - type variable
|
|
// representing chain's result type has a different l-valueness comparing
|
|
// to generic parameter of the optional.
|
|
if (kind == AllowedBindingKind::Subtypes) {
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
if (locator &&
|
|
locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
|
|
auto objectType = type->getOptionalObjectType();
|
|
if (objectType && objectType->isTypeVariableOrMember()) {
|
|
result.PotentiallyIncomplete = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type->is<InOutType>() && !typeVar->getImpl().canBindToInOut())
|
|
type = LValueType::get(type->getInOutObjectType());
|
|
if (type->is<LValueType>() && !typeVar->getImpl().canBindToLValue())
|
|
type = type->getRValueType();
|
|
|
|
// BindParam constraints are not reflexive and must be treated specially.
|
|
if (constraint->getKind() == ConstraintKind::BindParam) {
|
|
if (kind == AllowedBindingKind::Subtypes) {
|
|
if (auto *lvt = type->getAs<LValueType>()) {
|
|
type = InOutType::get(lvt->getObjectType());
|
|
}
|
|
} else if (kind == AllowedBindingKind::Supertypes) {
|
|
if (auto *iot = type->getAs<InOutType>()) {
|
|
type = LValueType::get(iot->getObjectType());
|
|
}
|
|
}
|
|
kind = AllowedBindingKind::Exact;
|
|
}
|
|
|
|
return PotentialBinding{type, kind, constraint};
|
|
}
|
|
|
|
/// Retrieve the set of potential type bindings for the given
|
|
/// representative type variable, along with flags indicating whether
|
|
/// those types should be opened.
|
|
bool ConstraintSystem::PotentialBindings::infer(
|
|
ConstraintSystem &cs, llvm::SmallPtrSetImpl<CanType> &exactTypes,
|
|
Constraint *constraint) {
|
|
switch (constraint->getKind()) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
case ConstraintKind::OptionalObject: {
|
|
// If there is a `bind param` constraint associated with
|
|
// current type variable, result should be aware of that
|
|
// fact. Binding set might be incomplete until
|
|
// this constraint is resolved, because we currently don't
|
|
// look-through constraints expect to `subtype` to try and
|
|
// find related bindings.
|
|
// This only affects type variable that appears one the
|
|
// right-hand side of the `bind param` constraint and
|
|
// represents result type of the closure body, because
|
|
// left-hand side gets types from overload choices.
|
|
if (constraint->getKind() == ConstraintKind::BindParam &&
|
|
constraint->getSecondType()->isEqual(TypeVar))
|
|
PotentiallyIncomplete = true;
|
|
|
|
auto binding =
|
|
cs.getPotentialBindingForRelationalConstraint(*this, constraint);
|
|
if (!binding)
|
|
break;
|
|
|
|
auto type = binding->BindingType;
|
|
if (exactTypes.insert(type->getCanonicalType()).second) {
|
|
addPotentialBinding(*binding);
|
|
|
|
// Determines whether this type variable represents an object
|
|
// of the optional type extracted by force unwrap.
|
|
if (auto *locator = TypeVar->getImpl().getLocator()) {
|
|
auto anchor = locator->getAnchor();
|
|
// Result of force unwrap is always connected to its base
|
|
// optional type via `OptionalObject` constraint which
|
|
// preserves l-valueness, so in case where object type got
|
|
// inferred before optional type (because it got the
|
|
// type from context e.g. parameter type of a function call),
|
|
// we need to test type with and without l-value after
|
|
// delaying bindings for as long as possible.
|
|
if (isExpr<ForceValueExpr>(anchor) && !type->is<LValueType>()) {
|
|
addPotentialBinding(binding->withType(LValueType::get(type)));
|
|
FullyBound = true;
|
|
}
|
|
|
|
// If this is a type variable representing closure result,
|
|
// which is on the right-side of some relational constraint
|
|
// let's have it try `Void` as well because there is an
|
|
// implicit conversion `() -> T` to `() -> Void` and this
|
|
// helps to avoid creating a thunk to support it.
|
|
auto voidType = cs.getASTContext().TheEmptyTupleType;
|
|
if (locator->isLastElement<LocatorPathElt::ClosureResult>() &&
|
|
binding->Kind == AllowedBindingKind::Supertypes &&
|
|
exactTypes.insert(voidType).second) {
|
|
addPotentialBinding({voidType, binding->Kind, constraint},
|
|
/*allowJoinMeet=*/false);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ConstraintKind::KeyPathApplication: {
|
|
if (FullyBound)
|
|
return false;
|
|
|
|
// If this variable is in the application projected result type, mark the
|
|
// result as `FullyBound` to ensure we delay binding until we've bound
|
|
// other type variables in the KeyPathApplication constraint. This ensures
|
|
// we try to bind the key path type first, which can allow us to discover
|
|
// additional bindings for the result type.
|
|
SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
findInferableTypeVars(cs.simplifyType(constraint->getThirdType()),
|
|
typeVars);
|
|
if (typeVars.count(TypeVar))
|
|
FullyBound = true;
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::BridgingConversion:
|
|
case ConstraintKind::CheckedCast:
|
|
case ConstraintKind::EscapableFunctionOf:
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
case ConstraintKind::KeyPath:
|
|
case ConstraintKind::FunctionInput:
|
|
case ConstraintKind::FunctionResult:
|
|
case ConstraintKind::OpaqueUnderlyingType:
|
|
// Constraints from which we can't do anything.
|
|
break;
|
|
|
|
case ConstraintKind::DynamicTypeOf: {
|
|
// Direct binding of the left-hand side could result
|
|
// in `DynamicTypeOf` failure if right-hand side is
|
|
// bound (because 'Bind' requires equal types to
|
|
// succeed), or left is bound to Any which is not an
|
|
// [existential] metatype.
|
|
auto dynamicType = constraint->getFirstType();
|
|
if (auto *tv = dynamicType->getAs<TypeVariableType>()) {
|
|
if (tv->getImpl().getRepresentative(nullptr) == TypeVar)
|
|
return true;
|
|
}
|
|
|
|
// This is right-hand side, let's continue.
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::DefaultClosureType:
|
|
// Do these in a separate pass.
|
|
if (cs.getFixedTypeRecursive(constraint->getFirstType(), true)
|
|
->getAs<TypeVariableType>() == TypeVar) {
|
|
Defaults.push_back(constraint);
|
|
}
|
|
break;
|
|
|
|
case ConstraintKind::Disjunction:
|
|
// FIXME: Recurse into these constraints to see whether this
|
|
// type variable is fully bound by any of them.
|
|
InvolvesTypeVariables = true;
|
|
|
|
// If there is additional context available via disjunction
|
|
// associated with closure literal (e.g. coercion to some other
|
|
// type) let's delay resolving the closure until the disjunction
|
|
// is attempted.
|
|
if (TypeVar->getImpl().isClosureType())
|
|
return true;
|
|
|
|
break;
|
|
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::SelfObjectOfProtocol:
|
|
return false;
|
|
|
|
case ConstraintKind::LiteralConformsTo: {
|
|
// Record constraint where protocol requirement originated
|
|
// this is useful to use for the binding later.
|
|
Protocols.push_back(constraint);
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
case ConstraintKind::BindOverload: {
|
|
if (FullyBound && InvolvesTypeVariables)
|
|
return false;
|
|
|
|
// If this variable is in the left-hand side, it is fully bound.
|
|
SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
findInferableTypeVars(cs.simplifyType(constraint->getFirstType()),
|
|
typeVars);
|
|
if (typeVars.count(TypeVar))
|
|
FullyBound = true;
|
|
|
|
if (InvolvesTypeVariables)
|
|
return false;
|
|
|
|
// If this and another type variable occur, this result involves
|
|
// type variables.
|
|
findInferableTypeVars(cs.simplifyType(constraint->getSecondType()),
|
|
typeVars);
|
|
if (typeVars.size() > 1 && typeVars.count(TypeVar))
|
|
InvolvesTypeVariables = true;
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::ValueWitness:
|
|
// If our type variable shows up in the base type, there's
|
|
// nothing to do.
|
|
// FIXME: Can we avoid simplification here?
|
|
if (ConstraintSystem::typeVarOccursInType(
|
|
TypeVar, cs.simplifyType(constraint->getFirstType()),
|
|
&InvolvesTypeVariables)) {
|
|
return false;
|
|
}
|
|
|
|
// If the type variable is in the list of member type
|
|
// variables, it is fully bound.
|
|
// FIXME: Can we avoid simplification here?
|
|
if (ConstraintSystem::typeVarOccursInType(
|
|
TypeVar, cs.simplifyType(constraint->getSecondType()),
|
|
&InvolvesTypeVariables)) {
|
|
FullyBound = true;
|
|
}
|
|
break;
|
|
|
|
case ConstraintKind::OneWayEqual:
|
|
case ConstraintKind::OneWayBindParam: {
|
|
// Don't produce any bindings if this type variable is on the left-hand
|
|
// side of a one-way binding.
|
|
auto firstType = constraint->getFirstType();
|
|
if (auto *tv = firstType->getAs<TypeVariableType>()) {
|
|
if (tv->getImpl().getRepresentative(nullptr) == TypeVar)
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check whether the given type can be used as a binding for the given
|
|
/// type variable.
|
|
///
|
|
/// \returns the type to bind to, if the binding is okay.
|
|
Optional<Type> ConstraintSystem::checkTypeOfBinding(TypeVariableType *typeVar,
|
|
Type type) const {
|
|
// Simplify the type.
|
|
type = simplifyType(type);
|
|
|
|
// If the type references the type variable, don't permit the binding.
|
|
SmallVector<TypeVariableType *, 4> referencedTypeVars;
|
|
type->getTypeVariables(referencedTypeVars);
|
|
if (count(referencedTypeVars, typeVar))
|
|
return None;
|
|
|
|
// If type variable is not allowed to bind to `lvalue`,
|
|
// let's check if type of potential binding has any
|
|
// type variables, which are allowed to bind to `lvalue`,
|
|
// and postpone such type from consideration.
|
|
if (!typeVar->getImpl().canBindToLValue()) {
|
|
for (auto *typeVar : referencedTypeVars) {
|
|
if (typeVar->getImpl().canBindToLValue())
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// If the type is a type variable itself, don't permit the binding.
|
|
if (type->getRValueType()->is<TypeVariableType>())
|
|
return None;
|
|
|
|
// Don't bind to a dependent member type, even if it's currently
|
|
// wrapped in any number of optionals, because binding producer
|
|
// might unwrap and try to attempt it directly later.
|
|
if (type->lookThroughAllOptionalTypes()->is<DependentMemberType>())
|
|
return None;
|
|
|
|
// Okay, allow the binding (with the simplified type).
|
|
return type;
|
|
}
|
|
|
|
// Given a possibly-Optional type, return the direct superclass of the
|
|
// (underlying) type wrapped in the same number of optional levels as
|
|
// type.
|
|
static Type getOptionalSuperclass(Type type) {
|
|
int optionalLevels = 0;
|
|
while (auto underlying = type->getOptionalObjectType()) {
|
|
++optionalLevels;
|
|
type = underlying;
|
|
}
|
|
|
|
if (!type->mayHaveSuperclass())
|
|
return Type();
|
|
|
|
auto superclass = type->getSuperclass();
|
|
if (!superclass)
|
|
return Type();
|
|
|
|
while (optionalLevels--)
|
|
superclass = OptionalType::get(superclass);
|
|
|
|
return superclass;
|
|
}
|
|
|
|
/// Enumerates all of the 'direct' supertypes of the given type.
|
|
///
|
|
/// The direct supertype S of a type T is a supertype of T (e.g., T < S)
|
|
/// such that there is no type U where T < U and U < S.
|
|
static SmallVector<Type, 4> enumerateDirectSupertypes(Type type) {
|
|
SmallVector<Type, 4> result;
|
|
|
|
if (type->is<InOutType>() || type->is<LValueType>()) {
|
|
type = type->getWithoutSpecifierType();
|
|
result.push_back(type);
|
|
}
|
|
|
|
if (auto superclass = getOptionalSuperclass(type)) {
|
|
// FIXME: Can also weaken to the set of protocol constraints, but only
|
|
// if there are any protocols that the type conforms to but the superclass
|
|
// does not.
|
|
|
|
result.push_back(superclass);
|
|
}
|
|
|
|
// FIXME: lots of other cases to consider!
|
|
return result;
|
|
}
|
|
|
|
bool TypeVarBindingProducer::computeNext() {
|
|
SmallVector<Binding, 4> newBindings;
|
|
auto addNewBinding = [&](Binding binding) {
|
|
auto type = binding.BindingType;
|
|
|
|
// If we've already tried this binding, move on.
|
|
if (!BoundTypes.insert(type.getPointer()).second)
|
|
return;
|
|
|
|
if (!ExploredTypes.insert(type->getCanonicalType()).second)
|
|
return;
|
|
|
|
newBindings.push_back(std::move(binding));
|
|
};
|
|
|
|
for (auto &binding : Bindings) {
|
|
const auto type = binding.BindingType;
|
|
assert(!type->hasError());
|
|
|
|
// After our first pass, note that we've explored these types.
|
|
if (NumTries == 0)
|
|
ExploredTypes.insert(type->getCanonicalType());
|
|
|
|
// If we have a protocol with a default type, look for alternative
|
|
// types to the default.
|
|
if (NumTries == 0 && binding.hasDefaultedLiteralProtocol()) {
|
|
auto knownKind =
|
|
*(binding.getDefaultedLiteralProtocol()->getKnownProtocolKind());
|
|
for (auto altType : CS.getAlternativeLiteralTypes(knownKind)) {
|
|
addNewBinding(binding.withSameSource(altType, BindingKind::Subtypes));
|
|
}
|
|
}
|
|
|
|
// Allow solving for T even for a binding kind where that's invalid
|
|
// if fixes are allowed, because that gives us the opportunity to
|
|
// match T? values to the T binding by adding an unwrap fix.
|
|
if (binding.Kind == BindingKind::Subtypes || CS.shouldAttemptFixes()) {
|
|
// If we were unsuccessful solving for T?, try solving for T.
|
|
if (auto objTy = type->getOptionalObjectType()) {
|
|
// If T is a type variable, only attempt this if both the
|
|
// type variable we are trying bindings for, and the type
|
|
// variable we will attempt to bind, both have the same
|
|
// polarity with respect to being able to bind lvalues.
|
|
if (auto otherTypeVar = objTy->getAs<TypeVariableType>()) {
|
|
if (TypeVar->getImpl().canBindToLValue() ==
|
|
otherTypeVar->getImpl().canBindToLValue()) {
|
|
addNewBinding(binding.withSameSource(objTy, binding.Kind));
|
|
}
|
|
} else {
|
|
addNewBinding(binding.withSameSource(objTy, binding.Kind));
|
|
}
|
|
}
|
|
}
|
|
|
|
auto srcLocator = binding.getLocator();
|
|
if (srcLocator &&
|
|
(srcLocator->isLastElement<LocatorPathElt::ApplyArgToParam>() ||
|
|
srcLocator->isLastElement<LocatorPathElt::AutoclosureResult>()) &&
|
|
!type->hasTypeVariable() && type->isKnownStdlibCollectionType()) {
|
|
// If the type binding comes from the argument conversion, let's
|
|
// instead of binding collection types directly, try to bind
|
|
// using temporary type variables substituted for element
|
|
// types, that's going to ensure that subtype relationship is
|
|
// always preserved.
|
|
auto *BGT = type->castTo<BoundGenericType>();
|
|
auto dstLocator = TypeVar->getImpl().getLocator();
|
|
auto newType = CS.openUnboundGenericType(BGT->getDecl(), BGT->getParent(),
|
|
dstLocator)
|
|
->reconstituteSugar(/*recursive=*/false);
|
|
addNewBinding(binding.withType(newType));
|
|
}
|
|
|
|
if (binding.Kind == BindingKind::Supertypes) {
|
|
for (auto supertype : enumerateDirectSupertypes(type)) {
|
|
// If we're not allowed to try this binding, skip it.
|
|
if (auto simplifiedSuper = CS.checkTypeOfBinding(TypeVar, supertype))
|
|
addNewBinding(binding.withType(*simplifiedSuper));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (newBindings.empty())
|
|
return false;
|
|
|
|
Index = 0;
|
|
++NumTries;
|
|
Bindings = std::move(newBindings);
|
|
return true;
|
|
}
|
|
|
|
Optional<std::pair<ConstraintFix *, unsigned>>
|
|
TypeVariableBinding::fixForHole(ConstraintSystem &cs) const {
|
|
auto *dstLocator = TypeVar->getImpl().getLocator();
|
|
auto *srcLocator = Binding.getLocator();
|
|
|
|
unsigned defaultImpact = 1;
|
|
|
|
if (auto *GP = TypeVar->getImpl().getGenericParameter()) {
|
|
// If it is represetative for a key path root, let's emit a more
|
|
// specific diagnostic.
|
|
auto *keyPathRoot =
|
|
cs.isRepresentativeFor(TypeVar, ConstraintLocator::KeyPathRoot);
|
|
if (keyPathRoot) {
|
|
ConstraintFix *fix = SpecifyKeyPathRootType::create(
|
|
cs, keyPathRoot->getImpl().getLocator());
|
|
return std::make_pair(fix, defaultImpact);
|
|
} else {
|
|
auto path = dstLocator->getPath();
|
|
// Drop `generic parameter` locator element so that all missing
|
|
// generic parameters related to the same path can be coalesced later.
|
|
ConstraintFix *fix = DefaultGenericArgument::create(
|
|
cs, GP,
|
|
cs.getConstraintLocator(dstLocator->getAnchor(), path.drop_back()));
|
|
return std::make_pair(fix, defaultImpact);
|
|
}
|
|
}
|
|
|
|
if (TypeVar->getImpl().isClosureParameterType()) {
|
|
ConstraintFix *fix = SpecifyClosureParameterType::create(cs, dstLocator);
|
|
return std::make_pair(fix, defaultImpact);
|
|
}
|
|
|
|
if (TypeVar->getImpl().isClosureResultType()) {
|
|
auto *closure = castToExpr<ClosureExpr>(dstLocator->getAnchor());
|
|
// If the whole body is being ignored due to a pre-check failure,
|
|
// let's not record a fix about result type since there is
|
|
// just not enough context to infer it without a body.
|
|
if (cs.hasFixFor(cs.getConstraintLocator(closure->getBody()),
|
|
FixKind::IgnoreInvalidFunctionBuilderBody))
|
|
return None;
|
|
|
|
ConstraintFix *fix = SpecifyClosureReturnType::create(cs, dstLocator);
|
|
return std::make_pair(fix, defaultImpact);
|
|
}
|
|
|
|
if (srcLocator->directlyAt<ObjectLiteralExpr>()) {
|
|
ConstraintFix *fix = SpecifyObjectLiteralTypeImport::create(cs, dstLocator);
|
|
return std::make_pair(fix, defaultImpact);
|
|
}
|
|
|
|
if (srcLocator->isKeyPathRoot()) {
|
|
// If we recorded an invalid key path fix, let's skip this specify root
|
|
// type fix because it wouldn't produce a useful diagnostic.
|
|
auto *kpLocator = cs.getConstraintLocator(srcLocator->getAnchor());
|
|
if (cs.hasFixFor(kpLocator, FixKind::AllowKeyPathWithoutComponents))
|
|
return None;
|
|
|
|
ConstraintFix *fix = SpecifyKeyPathRootType::create(cs, dstLocator);
|
|
return std::make_pair(fix, defaultImpact);
|
|
}
|
|
|
|
if (dstLocator->directlyAt<NilLiteralExpr>()) {
|
|
// This is a dramatic event, it means that there is absolutely
|
|
// no contextual information to resolve type of `nil`.
|
|
ConstraintFix *fix = SpecifyContextualTypeForNil::create(cs, dstLocator);
|
|
return std::make_pair(fix, /*impact=*/(unsigned)10);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
bool TypeVariableBinding::attempt(ConstraintSystem &cs) const {
|
|
auto type = Binding.BindingType;
|
|
auto *srcLocator = Binding.getLocator();
|
|
auto *dstLocator = TypeVar->getImpl().getLocator();
|
|
|
|
if (Binding.hasDefaultedLiteralProtocol()) {
|
|
type = cs.openUnboundGenericTypes(type, dstLocator);
|
|
type = type->reconstituteSugar(/*recursive=*/false);
|
|
}
|
|
|
|
cs.addConstraint(ConstraintKind::Bind, TypeVar, type, srcLocator);
|
|
|
|
// If this was from a defaultable binding note that.
|
|
if (Binding.isDefaultableBinding()) {
|
|
cs.DefaultedConstraints.push_back(srcLocator);
|
|
|
|
if (type->isHole()) {
|
|
// Reflect in the score that this type variable couldn't be
|
|
// resolved and had to be bound to a placeholder "hole" type.
|
|
cs.increaseScore(SK_Hole);
|
|
|
|
if (auto fix = fixForHole(cs)) {
|
|
if (cs.recordFix(/*fix=*/fix->first, /*impact=*/fix->second))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return !cs.failedConstraint && !cs.simplify();
|
|
}
|