Files
swift-mirror/SwiftCompilerSources/Sources/Optimizer/FunctionPasses/LetPropertyLowering.swift
Michael Gottesman 11f0ff6e32 [sil] Ensure that all SILValues have a parent function by making it so that SILUndef is uniqued at the function instead of module level.
For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.

rdar://123484595
2024-02-27 13:14:47 -08:00

234 lines
8.6 KiB
Swift

//===--- LetPropertyLowering.swift -----------------------------------------==//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SIL
/// Lowers let property accesses of classes.
///
/// Lowering consists of two tasks:
///
/// * In class initializers, insert `end_init_let_ref` instructions at places where all let-fields are initialized.
/// This strictly separates the life-range of the class into a region where let fields are still written during
/// initialization and a region where let fields are truly immutable.
///
/// * Add the `[immutable]` flag to all `ref_element_addr` instructions (for let-fields) which are in the "immutable"
/// region. This includes the region after an inserted `end_init_let_ref` in an class initializer, but also all
/// let-field accesses in other functions than the initializer and the destructor.
///
/// This pass should run after DefiniteInitialization but before RawSILInstLowering (because it relies on
/// `mark_uninitialized` still present in the class initializer).
///
/// Note that it's not mandatory to run this pass. If it doesn't run, SIL is still correct.
///
/// Simplified example (after lowering):
///
/// bb0(%0 : @owned C): // = self of the class initializer
/// %1 = mark_uninitialized %0
/// %2 = ref_element_addr %1, #C.l // a let-field
/// store %init_value to %2
/// %3 = end_init_let_ref %1 // inserted by lowering
/// %4 = ref_element_addr [immutable] %3, #C.l // set to immutable by lowering
/// %5 = load %4
///
let letPropertyLowering = FunctionPass(name: "let-property-lowering") {
(function: Function, context: FunctionPassContext) in
assert(context.silStage == .raw, "let-property-lowering must run before RawSILInstLowering")
if context.hadError {
// If DefiniteInitialization (or other passes) already reported an error, we cannot assume valid SIL anymore.
return
}
if function.isDestructor {
// Let-fields are not immutable in the class destructor.
return
}
for inst in function.instructions {
switch inst {
// First task of lowering: insert `end_init_let_ref` instructions in class initializers.
case let markUninitialized as MarkUninitializedInst
where markUninitialized.type.isClass &&
// TODO: support move-only classes
!markUninitialized.type.isMoveOnly &&
// We only have to do that for root classes because derived classes call the super-initializer
// _after_ all fields in the derived class are already initialized.
markUninitialized.kind == .rootSelf:
insertEndInitInstructions(for: markUninitialized, context)
// Second task of lowering: set the `immutable` flags.
case let rea as RefElementAddrInst
where rea.fieldIsLet && !rea.isInUninitializedRegion &&
// TODO: support move-only classes
!rea.instance.type.isMoveOnly:
rea.set(isImmutable: true, context)
default:
break
}
}
}
private func insertEndInitInstructions(for markUninitialized: MarkUninitializedInst, _ context: FunctionPassContext) {
assert(!markUninitialized.type.isAddress, "self of class should not be an address")
// The region which contains all let-field initializations, including any partial
// let-field de-initializations (in case of a fail-able or throwing initializer).
var initRegion = InstructionRange(begin: markUninitialized, context)
defer { initRegion.deinitialize() }
constructLetInitRegion(of: markUninitialized, result: &initRegion, context)
insertEndInitInstructions(for: markUninitialized, atEndOf: initRegion, context)
}
private func insertEndInitInstructions(
for markUninitialized: MarkUninitializedInst,
atEndOf initRegion: InstructionRange,
_ context: FunctionPassContext
) {
var ssaUpdater = SSAUpdater(function: markUninitialized.parentFunction,
type: markUninitialized.type, ownership: .owned, context)
ssaUpdater.addAvailableValue(markUninitialized, in: markUninitialized.parentBlock)
for endInst in initRegion.ends {
let builder = Builder(after: endInst, context)
let newValue = builder.createEndInitLetRef(operand: markUninitialized)
ssaUpdater.addAvailableValue(newValue, in: endInst.parentBlock)
}
for exitInst in initRegion.exits {
let builder = Builder(before: exitInst, context)
let newValue = builder.createEndInitLetRef(operand: markUninitialized)
ssaUpdater.addAvailableValue(newValue, in: exitInst.parentBlock)
}
for use in markUninitialized.uses {
if !initRegion.inclusiveRangeContains(use.instruction) &&
!(use.instruction is EndInitLetRefInst)
{
use.set(to: ssaUpdater.getValue(atEndOf: use.instruction.parentBlock), context)
}
}
}
private func constructLetInitRegion(
of markUninitialized: MarkUninitializedInst,
result initRegion: inout InstructionRange,
_ context: FunctionPassContext
) {
// Adding the initial `mark_uninitialized` ensures that a single `end_init_let_ref` is inserted (after the
// `mark_uninitialized`) in case there are no let-field accesses at all.
// Note that we have to insert an `end_init_let_ref` even if there are no let-field initializations, because
// derived classes could have let-field initializations in their initializers (which eventually call the
// root-class initializer).
initRegion.insert(markUninitialized)
var borrows = Stack<BorrowIntroducingInstruction>(context)
defer { borrows.deinitialize() }
for inst in markUninitialized.parentFunction.instructions {
switch inst {
case let assign as AssignInst
where assign.destination.isLetFieldAddress(of: markUninitialized):
assert(assign.assignOwnership == .initialize)
initRegion.insert(inst)
case let store as StoreInst
where store.destination.isLetFieldAddress(of: markUninitialized):
assert(store.storeOwnership != .assign)
initRegion.insert(inst)
case let copy as CopyAddrInst
where copy.destination.isLetFieldAddress(of: markUninitialized):
assert(copy.isInitializationOfDest)
initRegion.insert(inst)
case let beginAccess as BeginAccessInst
where beginAccess.accessKind == .deinit &&
beginAccess.address.isLetFieldAddress(of: markUninitialized):
// Include let-field partial de-initializations in the region.
initRegion.insert(inst)
case let beginBorrow as BeginBorrowInst
where beginBorrow.borrowedValue.isReferenceDerived(from: markUninitialized):
borrows.append(beginBorrow)
case let storeBorrow as StoreBorrowInst
where storeBorrow.source.isReferenceDerived(from: markUninitialized):
borrows.append(storeBorrow)
default:
break
}
}
// Extend the region to whole borrow scopes to avoid that we insert an `end_init_let_ref` in the
// middle of a borrow scope.
for borrow in borrows where initRegion.contains(borrow) {
initRegion.insert(borrowScopeOf: borrow, context)
}
}
private extension RefElementAddrInst {
var isInUninitializedRegion: Bool {
var root = self.instance
while true {
switch root {
case let beginBorrow as BeginBorrowInst:
root = beginBorrow.borrowedValue
case let loadBorrow as LoadBorrowInst:
// Initializers of derived classes store `self` into a stack location from where
// it's loaded via a `load_borrow`.
root = loadBorrow.address
case is MarkUninitializedInst:
return true
default:
return false
}
}
}
}
private extension Value {
func isReferenceDerived(from root: Value) -> Bool {
var parent: Value = self
while true {
if parent == root {
return true
}
if let operand = parent.forwardingInstruction?.singleForwardedOperand {
parent = operand.value
continue
}
if let transition = parent.definingInstruction as? OwnershipTransitionInstruction {
parent = transition.operand.value
continue
}
return false
}
}
func isLetFieldAddress(of markUninitialized: MarkUninitializedInst) -> Bool {
if case .class(let rea) = self.accessBase,
rea.fieldIsLet,
rea.instance.isReferenceDerived(from: markUninitialized)
{
return true
}
return false
}
}