mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
without a valid SILDebugScope. An assertion in IRGenSIL prevents future optimizations from regressing in this regard. Introducing SILBuilderWithScope and SILBuilderwithPostprocess to ease the transition. This patch is large, but mostly mechanical. <rdar://problem/18494573> Swift: Debugger is not stopping at the set breakpoint Swift SVN r22978
956 lines
34 KiB
C++
956 lines
34 KiB
C++
//===--- ConstantPropagation.cpp - Constant fold and diagnose overflows ---===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "constant-propagation"
|
|
#include "swift/SILPasses/Passes.h"
|
|
#include "swift/AST/DiagnosticsSIL.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILPasses/Utils/Local.h"
|
|
#include "swift/SILPasses/Transforms.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumInstFolded, "Number of constant folded instructions");
|
|
|
|
template<typename...T, typename...U>
|
|
static InFlightDiagnostic
|
|
diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag, U &&...args) {
|
|
return Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
|
|
}
|
|
|
|
/// \brief Construct (int, overflow) result tuple.
|
|
static SILInstruction *constructResultWithOverflowTuple(BuiltinInst *BI,
|
|
APInt Res,
|
|
bool Overflow) {
|
|
// Get the SIL subtypes of the returned tuple type.
|
|
SILType FuncResType = BI->getType();
|
|
assert(FuncResType.castTo<TupleType>()->getNumElements() == 2);
|
|
SILType ResTy1 = FuncResType.getTupleElementType(0);
|
|
SILType ResTy2 = FuncResType.getTupleElementType(1);
|
|
|
|
// Construct the folded instruction - a tuple of two literals, the
|
|
// result and overflow.
|
|
SILBuilderWithScope<4> B(BI);
|
|
SILLocation Loc = BI->getLoc();
|
|
SILValue Result[] = {
|
|
B.createIntegerLiteral(Loc, ResTy1, Res),
|
|
B.createIntegerLiteral(Loc, ResTy2, Overflow)
|
|
};
|
|
return B.createTuple(Loc, FuncResType, Result);
|
|
}
|
|
|
|
/// \brief Fold arithmetic intrinsics with overflow.
|
|
static SILInstruction *
|
|
constantFoldBinaryWithOverflow(BuiltinInst *BI, llvm::Intrinsic::ID ID,
|
|
bool ReportOverflow,
|
|
Optional<bool> &ResultsInError) {
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
assert(Args.size() >= 2);
|
|
|
|
IntegerLiteralInst *Op1 = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
IntegerLiteralInst *Op2 = dyn_cast<IntegerLiteralInst>(Args[1]);
|
|
|
|
// If either Op1 or Op2 is not a literal, we cannot do anything.
|
|
if (!Op1 || !Op2)
|
|
return nullptr;
|
|
|
|
// Calculate the result.
|
|
APInt LHSInt = Op1->getValue();
|
|
APInt RHSInt = Op2->getValue();
|
|
APInt Res;
|
|
bool Overflow;
|
|
bool Signed = false;
|
|
StringRef Operator = "+";
|
|
|
|
switch (ID) {
|
|
default: llvm_unreachable("Invalid case");
|
|
case llvm::Intrinsic::sadd_with_overflow:
|
|
Res = LHSInt.sadd_ov(RHSInt, Overflow);
|
|
Signed = true;
|
|
break;
|
|
case llvm::Intrinsic::uadd_with_overflow:
|
|
Res = LHSInt.uadd_ov(RHSInt, Overflow);
|
|
break;
|
|
case llvm::Intrinsic::ssub_with_overflow:
|
|
Res = LHSInt.ssub_ov(RHSInt, Overflow);
|
|
Operator = "-";
|
|
Signed = true;
|
|
break;
|
|
case llvm::Intrinsic::usub_with_overflow:
|
|
Res = LHSInt.usub_ov(RHSInt, Overflow);
|
|
Operator = "-";
|
|
break;
|
|
case llvm::Intrinsic::smul_with_overflow:
|
|
Res = LHSInt.smul_ov(RHSInt, Overflow);
|
|
Operator = "*";
|
|
Signed = true;
|
|
break;
|
|
case llvm::Intrinsic::umul_with_overflow:
|
|
Res = LHSInt.umul_ov(RHSInt, Overflow);
|
|
Operator = "*";
|
|
break;
|
|
}
|
|
|
|
// If we can statically determine that the operation overflows,
|
|
// warn about it if warnings are not disabled by ResultsInError being null.
|
|
if (ResultsInError.hasValue() && Overflow && ReportOverflow) {
|
|
// Try to infer the type of the constant expression that the user operates
|
|
// on. If the intrinsic was lowered from a call to a function that takes
|
|
// two arguments of the same type, use the type of the LHS argument.
|
|
// This would detect '+'/'+=' and such.
|
|
Type OpType;
|
|
SILLocation Loc = BI->getLoc();
|
|
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
|
|
SourceRange LHSRange, RHSRange;
|
|
if (CE) {
|
|
const TupleExpr *Args = dyn_cast_or_null<TupleExpr>(CE->getArg());
|
|
if (Args && Args->getNumElements() == 2) {
|
|
// Look through inout types in order to handle += well.
|
|
CanType LHSTy = Args->getElement(0)->getType()->getInOutObjectType()->
|
|
getCanonicalType();
|
|
CanType RHSTy = Args->getElement(1)->getType()->getCanonicalType();
|
|
if (LHSTy == RHSTy)
|
|
OpType = Args->getElement(1)->getType();
|
|
|
|
LHSRange = Args->getElement(0)->getSourceRange();
|
|
RHSRange = Args->getElement(1)->getSourceRange();
|
|
}
|
|
}
|
|
|
|
if (!OpType.isNull()) {
|
|
diagnose(BI->getModule().getASTContext(),
|
|
Loc.getSourceLoc(),
|
|
diag::arithmetic_operation_overflow,
|
|
LHSInt.toString(/*Radix*/ 10, Signed),
|
|
Operator,
|
|
RHSInt.toString(/*Radix*/ 10, Signed),
|
|
OpType).highlight(LHSRange).highlight(RHSRange);
|
|
} else {
|
|
// If we cannot get the type info in an expected way, describe the type.
|
|
diagnose(BI->getModule().getASTContext(),
|
|
Loc.getSourceLoc(),
|
|
diag::arithmetic_operation_overflow_generic_type,
|
|
LHSInt.toString(/*Radix*/ 10, Signed),
|
|
Operator,
|
|
RHSInt.toString(/*Radix*/ 10, Signed),
|
|
Signed,
|
|
LHSInt.getBitWidth()).highlight(LHSRange).highlight(RHSRange);
|
|
}
|
|
ResultsInError = Optional<bool>(true);
|
|
}
|
|
|
|
return constructResultWithOverflowTuple(BI, Res, Overflow);
|
|
}
|
|
|
|
static SILInstruction *
|
|
constantFoldBinaryWithOverflow(BuiltinInst *BI, BuiltinValueKind ID,
|
|
Optional<bool> &ResultsInError) {
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
IntegerLiteralInst *ShouldReportFlag = dyn_cast<IntegerLiteralInst>(Args[2]);
|
|
return constantFoldBinaryWithOverflow(BI,
|
|
getLLVMIntrinsicIDForBuiltinWithOverflow(ID),
|
|
ShouldReportFlag && (ShouldReportFlag->getValue() == 1),
|
|
ResultsInError);
|
|
}
|
|
|
|
static SILInstruction *constantFoldIntrinsic(BuiltinInst *BI,
|
|
llvm::Intrinsic::ID ID,
|
|
Optional<bool> &ResultsInError) {
|
|
switch (ID) {
|
|
default: break;
|
|
case llvm::Intrinsic::expect: {
|
|
// An expect of an integral constant is the constant itself.
|
|
assert(BI->getArguments().size() == 2 && "Expect should have 2 args.");
|
|
auto *Op1 = dyn_cast<IntegerLiteralInst>(BI->getArguments()[0]);
|
|
if (!Op1)
|
|
return nullptr;
|
|
return Op1;
|
|
}
|
|
|
|
case llvm::Intrinsic::sadd_with_overflow:
|
|
case llvm::Intrinsic::uadd_with_overflow:
|
|
case llvm::Intrinsic::ssub_with_overflow:
|
|
case llvm::Intrinsic::usub_with_overflow:
|
|
case llvm::Intrinsic::smul_with_overflow:
|
|
case llvm::Intrinsic::umul_with_overflow:
|
|
return constantFoldBinaryWithOverflow(BI, ID,
|
|
/* ReportOverflow */ false,
|
|
ResultsInError);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static SILInstruction *constantFoldCompare(BuiltinInst *BI,
|
|
BuiltinValueKind ID) {
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
|
|
// Fold for integer constant arguments.
|
|
IntegerLiteralInst *LHS = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
IntegerLiteralInst *RHS = dyn_cast<IntegerLiteralInst>(Args[1]);
|
|
if (LHS && RHS) {
|
|
APInt V1 = LHS->getValue();
|
|
APInt V2 = RHS->getValue();
|
|
APInt Res;
|
|
switch (ID) {
|
|
default: llvm_unreachable("Invalid integer compare kind");
|
|
case BuiltinValueKind::ICMP_EQ: Res = V1 == V2; break;
|
|
case BuiltinValueKind::ICMP_NE: Res = V1 != V2; break;
|
|
case BuiltinValueKind::ICMP_SLT: Res = V1.slt(V2); break;
|
|
case BuiltinValueKind::ICMP_SGT: Res = V1.sgt(V2); break;
|
|
case BuiltinValueKind::ICMP_SLE: Res = V1.sle(V2); break;
|
|
case BuiltinValueKind::ICMP_SGE: Res = V1.sge(V2); break;
|
|
case BuiltinValueKind::ICMP_ULT: Res = V1.ult(V2); break;
|
|
case BuiltinValueKind::ICMP_UGT: Res = V1.ugt(V2); break;
|
|
case BuiltinValueKind::ICMP_ULE: Res = V1.ule(V2); break;
|
|
case BuiltinValueKind::ICMP_UGE: Res = V1.uge(V2); break;
|
|
}
|
|
SILBuilderWithScope<1> B(BI);
|
|
return B.createIntegerLiteral(BI->getLoc(), BI->getType(), Res);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static SILInstruction *
|
|
constantFoldAndCheckDivision(BuiltinInst *BI, BuiltinValueKind ID,
|
|
Optional<bool> &ResultsInError) {
|
|
assert(ID == BuiltinValueKind::SDiv ||
|
|
ID == BuiltinValueKind::ExactSDiv ||
|
|
ID == BuiltinValueKind::SRem ||
|
|
ID == BuiltinValueKind::UDiv ||
|
|
ID == BuiltinValueKind::ExactUDiv ||
|
|
ID == BuiltinValueKind::URem);
|
|
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
SILModule &M = BI->getModule();
|
|
|
|
// Get the denominator.
|
|
IntegerLiteralInst *Denom = dyn_cast<IntegerLiteralInst>(Args[1]);
|
|
if (!Denom)
|
|
return nullptr;
|
|
APInt DenomVal = Denom->getValue();
|
|
|
|
// If the denominator is zero...
|
|
if (DenomVal == 0) {
|
|
// And if we are not asked to report errors, just return nullptr.
|
|
if (!ResultsInError.hasValue())
|
|
return nullptr;
|
|
|
|
// Otherwise emit a diagnosis error and set ResultsInError to true.
|
|
diagnose(M.getASTContext(), BI->getLoc().getSourceLoc(),
|
|
diag::division_by_zero);
|
|
ResultsInError = Optional<bool>(true);
|
|
return nullptr;
|
|
}
|
|
|
|
// Get the numerator.
|
|
IntegerLiteralInst *Num = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
if (!Num)
|
|
return nullptr;
|
|
APInt NumVal = Num->getValue();
|
|
|
|
APInt ResVal;
|
|
bool Overflowed = false;
|
|
switch (ID) {
|
|
// We do not cover all the cases below - only the ones that are easily
|
|
// computable for APInt.
|
|
default : return nullptr;
|
|
case BuiltinValueKind::SDiv:
|
|
ResVal = NumVal.sdiv_ov(DenomVal, Overflowed);
|
|
break;
|
|
case BuiltinValueKind::SRem:
|
|
ResVal = NumVal.srem(DenomVal);
|
|
break;
|
|
case BuiltinValueKind::UDiv:
|
|
ResVal = NumVal.udiv(DenomVal);
|
|
break;
|
|
case BuiltinValueKind::URem:
|
|
ResVal = NumVal.urem(DenomVal);
|
|
break;
|
|
}
|
|
|
|
// If we overflowed...
|
|
if (Overflowed) {
|
|
// And we are not asked to produce diagnostics, just return nullptr...
|
|
if (!ResultsInError.hasValue())
|
|
return nullptr;
|
|
|
|
// Otherwise emit the diagnostic, set ResultsInError to be true, and return
|
|
// nullptr.
|
|
diagnose(M.getASTContext(),
|
|
BI->getLoc().getSourceLoc(),
|
|
diag::division_overflow,
|
|
NumVal.toString(/*Radix*/ 10, /*Signed*/true),
|
|
"/",
|
|
DenomVal.toString(/*Radix*/ 10, /*Signed*/true));
|
|
ResultsInError = Optional<bool>(true);
|
|
return nullptr;
|
|
}
|
|
|
|
// Add the literal instruction to represnet the result of the division.
|
|
SILBuilderWithScope<1> B(BI);
|
|
return B.createIntegerLiteral(BI->getLoc(), BI->getType(), ResVal);
|
|
}
|
|
|
|
/// \brief Fold binary operations.
|
|
///
|
|
/// The list of operations we constant fold might not be complete. Start with
|
|
/// folding the operations used by the standard library.
|
|
static SILInstruction *constantFoldBinary(BuiltinInst *BI,
|
|
BuiltinValueKind ID,
|
|
Optional<bool> &ResultsInError) {
|
|
switch (ID) {
|
|
default:
|
|
llvm_unreachable("Not all BUILTIN_BINARY_OPERATIONs are covered!");
|
|
|
|
// Fold constant division operations and report div by zero.
|
|
case BuiltinValueKind::SDiv:
|
|
case BuiltinValueKind::ExactSDiv:
|
|
case BuiltinValueKind::SRem:
|
|
case BuiltinValueKind::UDiv:
|
|
case BuiltinValueKind::ExactUDiv:
|
|
case BuiltinValueKind::URem: {
|
|
return constantFoldAndCheckDivision(BI, ID, ResultsInError);
|
|
}
|
|
|
|
// Are there valid uses for these in stdlib?
|
|
case BuiltinValueKind::Add:
|
|
case BuiltinValueKind::Mul:
|
|
case BuiltinValueKind::Sub:
|
|
return nullptr;
|
|
|
|
case BuiltinValueKind::And:
|
|
case BuiltinValueKind::AShr:
|
|
case BuiltinValueKind::LShr:
|
|
case BuiltinValueKind::Or:
|
|
case BuiltinValueKind::Shl:
|
|
case BuiltinValueKind::Xor: {
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
IntegerLiteralInst *LHS = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
IntegerLiteralInst *RHS = dyn_cast<IntegerLiteralInst>(Args[1]);
|
|
if (!RHS || !LHS)
|
|
return nullptr;
|
|
APInt LHSI = LHS->getValue();
|
|
APInt RHSI = RHS->getValue();
|
|
APInt ResI;
|
|
switch (ID) {
|
|
default: llvm_unreachable("Not all cases are covered!");
|
|
case BuiltinValueKind::And:
|
|
ResI = LHSI.And(RHSI);
|
|
break;
|
|
case BuiltinValueKind::AShr:
|
|
ResI = LHSI.ashr(RHSI);
|
|
break;
|
|
case BuiltinValueKind::LShr:
|
|
ResI = LHSI.lshr(RHSI);
|
|
break;
|
|
case BuiltinValueKind::Or:
|
|
ResI = LHSI.Or(RHSI);
|
|
break;
|
|
case BuiltinValueKind::Shl:
|
|
ResI = LHSI.shl(RHSI);
|
|
break;
|
|
case BuiltinValueKind::Xor:
|
|
ResI = LHSI.Xor(RHSI);
|
|
break;
|
|
}
|
|
// Add the literal instruction to represent the result.
|
|
SILBuilderWithScope<1> B(BI);
|
|
return B.createIntegerLiteral(BI->getLoc(), BI->getType(), ResI);
|
|
}
|
|
case BuiltinValueKind::FAdd:
|
|
case BuiltinValueKind::FDiv:
|
|
case BuiltinValueKind::FMul:
|
|
case BuiltinValueKind::FSub: {
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
FloatLiteralInst *LHS = dyn_cast<FloatLiteralInst>(Args[0]);
|
|
FloatLiteralInst *RHS = dyn_cast<FloatLiteralInst>(Args[1]);
|
|
if (!RHS || !LHS)
|
|
return nullptr;
|
|
APFloat LHSF = LHS->getValue();
|
|
APFloat RHSF = RHS->getValue();
|
|
switch (ID) {
|
|
default: llvm_unreachable("Not all cases are covered!");
|
|
case BuiltinValueKind::FAdd:
|
|
LHSF.add(RHSF, APFloat::rmNearestTiesToEven);
|
|
break;
|
|
case BuiltinValueKind::FDiv:
|
|
LHSF.divide(RHSF, APFloat::rmNearestTiesToEven);
|
|
break;
|
|
case BuiltinValueKind::FMul:
|
|
LHSF.multiply(RHSF, APFloat::rmNearestTiesToEven);
|
|
break;
|
|
case BuiltinValueKind::FSub:
|
|
LHSF.subtract(RHSF, APFloat::rmNearestTiesToEven);
|
|
break;
|
|
}
|
|
|
|
// Add the literal instruction to represent the result.
|
|
SILBuilderWithScope<1> B(BI);
|
|
return B.createFloatLiteral(BI->getLoc(), BI->getType(), LHSF);
|
|
}
|
|
}
|
|
}
|
|
|
|
static std::pair<bool, bool> getTypeSigndness(const BuiltinInfo &Builtin) {
|
|
bool SrcTySigned =
|
|
(Builtin.ID == BuiltinValueKind::SToSCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::SToUCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::SUCheckedConversion);
|
|
|
|
bool DstTySigned =
|
|
(Builtin.ID == BuiltinValueKind::SToSCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::UToSCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::USCheckedConversion);
|
|
|
|
return std::pair<bool, bool>(SrcTySigned, DstTySigned);
|
|
}
|
|
|
|
static SILInstruction *
|
|
constantFoldAndCheckIntegerConversions(BuiltinInst *BI,
|
|
const BuiltinInfo &Builtin,
|
|
Optional<bool> &ResultsInError) {
|
|
assert(Builtin.ID == BuiltinValueKind::SToSCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::UToUCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::SToUCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::UToSCheckedTrunc ||
|
|
Builtin.ID == BuiltinValueKind::SUCheckedConversion ||
|
|
Builtin.ID == BuiltinValueKind::USCheckedConversion);
|
|
|
|
// Check if we are converting a constant integer.
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
if (!V)
|
|
return nullptr;
|
|
APInt SrcVal = V->getValue();
|
|
|
|
// Get source type and bit width.
|
|
Type SrcTy = Builtin.Types[0];
|
|
uint32_t SrcBitWidth =
|
|
Builtin.Types[0]->castTo<BuiltinIntegerType>()->getGreatestWidth();
|
|
|
|
// Compute the destination (for SrcBitWidth < DestBitWidth) and enough info
|
|
// to check for overflow.
|
|
APInt Result;
|
|
bool OverflowError;
|
|
Type DstTy;
|
|
|
|
// Process conversions signed <-> unsigned for same size integers.
|
|
if (Builtin.ID == BuiltinValueKind::SUCheckedConversion ||
|
|
Builtin.ID == BuiltinValueKind::USCheckedConversion) {
|
|
DstTy = SrcTy;
|
|
Result = SrcVal;
|
|
// Report an error if the sign bit is set.
|
|
OverflowError = SrcVal.isNegative();
|
|
|
|
// Process truncation from unsigned to signed.
|
|
} else if (Builtin.ID != BuiltinValueKind::UToSCheckedTrunc) {
|
|
assert(Builtin.Types.size() == 2);
|
|
DstTy = Builtin.Types[1];
|
|
uint32_t DstBitWidth =
|
|
DstTy->castTo<BuiltinIntegerType>()->getGreatestWidth();
|
|
// Result = trunc_IntFrom_IntTo(Val)
|
|
// For signed destination:
|
|
// sext_IntFrom(Result) == Val ? Result : overflow_error
|
|
// For signed destination:
|
|
// zext_IntFrom(Result) == Val ? Result : overflow_error
|
|
Result = SrcVal.trunc(DstBitWidth);
|
|
// Get the signedness of the destination.
|
|
bool Signed = (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc);
|
|
APInt Ext = Signed ? Result.sext(SrcBitWidth) : Result.zext(SrcBitWidth);
|
|
OverflowError = (SrcVal != Ext);
|
|
|
|
// Process the rest of truncations.
|
|
} else {
|
|
assert(Builtin.Types.size() == 2);
|
|
DstTy = Builtin.Types[1];
|
|
uint32_t DstBitWidth =
|
|
Builtin.Types[1]->castTo<BuiltinIntegerType>()->getGreatestWidth();
|
|
// Compute the destination (for SrcBitWidth < DestBitWidth):
|
|
// Result = trunc_IntTo(Val)
|
|
// Trunc = trunc_'IntTo-1bit'(Val)
|
|
// zext_IntFrom(Trunc) == Val ? Result : overflow_error
|
|
Result = SrcVal.trunc(DstBitWidth);
|
|
APInt TruncVal = SrcVal.trunc(DstBitWidth - 1);
|
|
OverflowError = (SrcVal != TruncVal.zext(SrcBitWidth));
|
|
}
|
|
|
|
// Check for overflow.
|
|
if (OverflowError) {
|
|
// If we are not asked to emit overflow diagnostics, just return nullptr on
|
|
// overflow.
|
|
if (!ResultsInError.hasValue())
|
|
return nullptr;
|
|
|
|
SILLocation Loc = BI->getLoc();
|
|
SILModule &M = BI->getModule();
|
|
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
|
|
Type UserSrcTy;
|
|
Type UserDstTy;
|
|
// Primitive heuristics to get the user-written type.
|
|
// Eventually we might be able to use SILLocation (when it contains info
|
|
// about inlined call chains).
|
|
if (CE) {
|
|
if (const TupleType *RTy = CE->getArg()->getType()->getAs<TupleType>()) {
|
|
if (RTy->getNumElements() == 1) {
|
|
UserSrcTy = RTy->getElementType(0);
|
|
UserDstTy = CE->getType();
|
|
}
|
|
} else {
|
|
UserSrcTy = CE->getArg()->getType();
|
|
UserDstTy = CE->getType();
|
|
}
|
|
}
|
|
|
|
|
|
// Assume that we are converting from a literal if the Source size is
|
|
// 2048. Is there a better way to identify conversions from literals?
|
|
bool Literal = (SrcBitWidth == 2048);
|
|
|
|
// FIXME: This will prevent hard error in cases the error is comming
|
|
// from ObjC interoperability code. Currently, we treat NSUInteger as
|
|
// Int.
|
|
if (Loc.getSourceLoc().isInvalid()) {
|
|
|
|
// Otherwise emit the appropriate diagnostic and set ResultsInError.
|
|
if (Literal)
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_literal_overflow_warn,
|
|
UserDstTy.isNull() ? DstTy : UserDstTy);
|
|
else
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_conversion_overflow_warn,
|
|
UserSrcTy.isNull() ? SrcTy : UserSrcTy,
|
|
UserDstTy.isNull() ? DstTy : UserDstTy);
|
|
|
|
ResultsInError = Optional<bool>(true);
|
|
return nullptr;
|
|
}
|
|
|
|
// Otherwise report the overflow error.
|
|
if (Literal) {
|
|
// Try to print user-visible types if they are available.
|
|
if (!UserDstTy.isNull()) {
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_literal_overflow, UserDstTy);
|
|
// Otherwise, print the Builtin Types.
|
|
} else {
|
|
bool SrcTySigned, DstTySigned;
|
|
std::tie(SrcTySigned, DstTySigned) = getTypeSigndness(Builtin);
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_literal_overflow_builtin_types,
|
|
DstTySigned, DstTy);
|
|
}
|
|
} else {
|
|
if (Builtin.ID == BuiltinValueKind::SUCheckedConversion) {
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_conversion_sign_error,
|
|
UserDstTy.isNull() ? DstTy : UserDstTy);
|
|
} else {
|
|
// Try to print user-visible types if they are available.
|
|
if (!UserSrcTy.isNull()) {
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_conversion_overflow,
|
|
UserSrcTy, UserDstTy);
|
|
|
|
// Otherwise, print the Builtin Types.
|
|
} else {
|
|
// Since builtin types are sign-agnostic, print the signdness
|
|
// separately.
|
|
bool SrcTySigned, DstTySigned;
|
|
std::tie(SrcTySigned, DstTySigned) = getTypeSigndness(Builtin);
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_conversion_overflow_builtin_types,
|
|
SrcTySigned, SrcTy, DstTySigned, DstTy);
|
|
}
|
|
}
|
|
}
|
|
|
|
ResultsInError = Optional<bool>(true);
|
|
return nullptr;
|
|
}
|
|
|
|
// The call to the builtin should be replaced with the constant value.
|
|
return constructResultWithOverflowTuple(BI, Result, false);
|
|
|
|
}
|
|
|
|
static SILInstruction *constantFoldBuiltin(BuiltinInst *BI,
|
|
Optional<bool> &ResultsInError) {
|
|
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
|
|
SILModule &M = BI->getModule();
|
|
|
|
// If it's an llvm intrinsic, fold the intrinsic.
|
|
if (Intrinsic.ID != llvm::Intrinsic::not_intrinsic)
|
|
return constantFoldIntrinsic(BI, Intrinsic.ID, ResultsInError);
|
|
|
|
// Otherwise, it should be one of the builtin functions.
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
|
|
|
|
switch (Builtin.ID) {
|
|
default: break;
|
|
|
|
// Check and fold binary arithmetic with overflow.
|
|
#define BUILTIN(id, name, Attrs)
|
|
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \
|
|
case BuiltinValueKind::id:
|
|
#include "swift/AST/Builtins.def"
|
|
return constantFoldBinaryWithOverflow(BI, Builtin.ID, ResultsInError);
|
|
|
|
#define BUILTIN(id, name, Attrs)
|
|
#define BUILTIN_BINARY_OPERATION(id, name, attrs, overload) \
|
|
case BuiltinValueKind::id:
|
|
#include "swift/AST/Builtins.def"
|
|
return constantFoldBinary(BI, Builtin.ID, ResultsInError);
|
|
|
|
// Fold comparison predicates.
|
|
#define BUILTIN(id, name, Attrs)
|
|
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \
|
|
case BuiltinValueKind::id:
|
|
#include "swift/AST/Builtins.def"
|
|
return constantFoldCompare(BI, Builtin.ID);
|
|
|
|
case BuiltinValueKind::Trunc:
|
|
case BuiltinValueKind::ZExt:
|
|
case BuiltinValueKind::SExt:
|
|
case BuiltinValueKind::TruncOrBitCast:
|
|
case BuiltinValueKind::ZExtOrBitCast:
|
|
case BuiltinValueKind::SExtOrBitCast: {
|
|
|
|
// We can fold if the value being cast is a constant.
|
|
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
// Get the cast result.
|
|
Type SrcTy = Builtin.Types[0];
|
|
Type DestTy = Builtin.Types.size() == 2 ? Builtin.Types[1] : Type();
|
|
uint32_t SrcBitWidth =
|
|
SrcTy->castTo<BuiltinIntegerType>()->getGreatestWidth();
|
|
uint32_t DestBitWidth =
|
|
DestTy->castTo<BuiltinIntegerType>()->getGreatestWidth();
|
|
|
|
APInt CastResV;
|
|
if (SrcBitWidth == DestBitWidth) {
|
|
CastResV = V->getValue();
|
|
} else switch (Builtin.ID) {
|
|
default : llvm_unreachable("Invalid case.");
|
|
case BuiltinValueKind::Trunc:
|
|
case BuiltinValueKind::TruncOrBitCast:
|
|
CastResV = V->getValue().trunc(DestBitWidth);
|
|
break;
|
|
case BuiltinValueKind::ZExt:
|
|
case BuiltinValueKind::ZExtOrBitCast:
|
|
CastResV = V->getValue().zext(DestBitWidth);
|
|
break;
|
|
case BuiltinValueKind::SExt:
|
|
case BuiltinValueKind::SExtOrBitCast:
|
|
CastResV = V->getValue().sext(DestBitWidth);
|
|
break;
|
|
}
|
|
|
|
// Add the literal instruction to represent the result of the cast.
|
|
SILBuilderWithScope<1> B(BI);
|
|
return B.createIntegerLiteral(BI->getLoc(), BI->getType(), CastResV);
|
|
}
|
|
|
|
// Process special builtins that are designed to check for overflows in
|
|
// integer conversions.
|
|
case BuiltinValueKind::SToSCheckedTrunc:
|
|
case BuiltinValueKind::UToUCheckedTrunc:
|
|
case BuiltinValueKind::SToUCheckedTrunc:
|
|
case BuiltinValueKind::UToSCheckedTrunc:
|
|
case BuiltinValueKind::SUCheckedConversion:
|
|
case BuiltinValueKind::USCheckedConversion: {
|
|
return constantFoldAndCheckIntegerConversions(BI, Builtin, ResultsInError);
|
|
}
|
|
|
|
case BuiltinValueKind::IntToFPWithOverflow: {
|
|
// Get the value. It should be a constant in most cases.
|
|
// Note, this will not always be a constant, for example, when analyzing
|
|
// _convertFromBuiltinIntegerLiteral function itself.
|
|
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
|
|
if (!V)
|
|
return nullptr;
|
|
APInt SrcVal = V->getValue();
|
|
Type DestTy = Builtin.Types[1];
|
|
|
|
APFloat TruncVal(
|
|
DestTy->castTo<BuiltinFloatType>()->getAPFloatSemantics());
|
|
APFloat::opStatus ConversionStatus = TruncVal.convertFromAPInt(
|
|
SrcVal, /*isSigned=*/true, APFloat::rmNearestTiesToEven);
|
|
|
|
SILLocation Loc = BI->getLoc();
|
|
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
|
|
|
|
// Check for overflow.
|
|
if (ConversionStatus & APFloat::opOverflow) {
|
|
// If we overflow and are not asked for diagnostics, just return nullptr.
|
|
if (!ResultsInError.hasValue())
|
|
return nullptr;
|
|
|
|
// Otherwise emit our diagnostics and then return nullptr.
|
|
diagnose(M.getASTContext(), Loc.getSourceLoc(),
|
|
diag::integer_literal_overflow,
|
|
CE ? CE->getType() : DestTy);
|
|
ResultsInError = Optional<bool>(true);
|
|
return nullptr;
|
|
}
|
|
|
|
// The call to the builtin should be replaced with the constant value.
|
|
SILBuilderWithScope<1> B(BI);
|
|
return B.createFloatLiteral(Loc, BI->getType(), TruncVal);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static SILValue constantFoldInstruction(SILInstruction &I,
|
|
Optional<bool> &ResultsInError) {
|
|
// Constant fold function calls.
|
|
if (BuiltinInst *BI = dyn_cast<BuiltinInst>(&I)) {
|
|
return constantFoldBuiltin(BI, ResultsInError);
|
|
return SILValue();
|
|
}
|
|
|
|
// Constant fold extraction of a constant element.
|
|
if (TupleExtractInst *TEI = dyn_cast<TupleExtractInst>(&I)) {
|
|
if (TupleInst *TheTuple = dyn_cast<TupleInst>(TEI->getOperand()))
|
|
return TheTuple->getElements()[TEI->getFieldNo()];
|
|
}
|
|
|
|
// Constant fold extraction of a constant struct element.
|
|
if (StructExtractInst *SEI = dyn_cast<StructExtractInst>(&I)) {
|
|
if (StructInst *Struct = dyn_cast<StructInst>(SEI->getOperand()))
|
|
return Struct->getOperandForField(SEI->getField())->get();
|
|
}
|
|
|
|
// Constant fold indexing insts of a 0 integer literal.
|
|
if (auto *II = dyn_cast<IndexingInst>(&I))
|
|
if (auto *IntLiteral = dyn_cast<IntegerLiteralInst>(II->getIndex()))
|
|
if (!IntLiteral->getValue())
|
|
return II->getBase();
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
static bool isApplyOfBuiltin(SILInstruction &I, BuiltinValueKind kind) {
|
|
if (auto *BI = dyn_cast<BuiltinInst>(&I))
|
|
if (BI->getBuiltinInfo().ID == kind)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool isFoldable(SILInstruction *I) {
|
|
return isa<IntegerLiteralInst>(I) || isa<FloatLiteralInst>(I);
|
|
}
|
|
|
|
static bool CCPFunctionBody(SILFunction &F, bool EnableDiagnostics,
|
|
unsigned AssertConfiguration) {
|
|
DEBUG(llvm::dbgs() << "*** ConstPropagation processing: " << F.getName()
|
|
<< "\n");
|
|
bool Changed = false;
|
|
|
|
// Should we replace calls to assert_configuration by the assert
|
|
// configuration.
|
|
bool InstantiateAssertConfiguration =
|
|
(AssertConfiguration != SILOptions::DisableReplacement);
|
|
|
|
// The list of instructions whose evaluation resulted in error or warning.
|
|
// This is used to avoid duplicate error reporting in case we reach the same
|
|
// instruction from different entry points in the WorkList.
|
|
llvm::DenseSet<SILInstruction *> ErrorSet;
|
|
|
|
// The worklist of the constants that could be folded into their users.
|
|
llvm::SetVector<SILInstruction *> WorkList;
|
|
// Initialize the worklist to all of the constant instructions.
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB) {
|
|
if (isFoldable(&I) && !I.use_empty())
|
|
WorkList.insert(&I);
|
|
else if (InstantiateAssertConfiguration
|
|
&& (isApplyOfBuiltin(I, BuiltinValueKind::AssertConf)
|
|
|| isApplyOfBuiltin(I, BuiltinValueKind::CondUnreachable)))
|
|
WorkList.insert(&I);
|
|
}
|
|
}
|
|
|
|
llvm::SetVector<SILInstruction *> FoldedUsers;
|
|
|
|
while (!WorkList.empty()) {
|
|
SILInstruction *I = WorkList.pop_back_val();
|
|
assert(I->getParent() && "SILInstruction must have parent.");
|
|
|
|
DEBUG(llvm::dbgs() << "Visiting: " << *I);
|
|
|
|
// Replace assert_configuration instructions by their constant value. We
|
|
// want them to be replace even if we can't fully propagate the constant.
|
|
if (InstantiateAssertConfiguration)
|
|
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
|
|
if (isApplyOfBuiltin(*BI, BuiltinValueKind::AssertConf)) {
|
|
// Instantiate the constant.
|
|
SILBuilderWithScope<1> B(BI);
|
|
auto AssertConfInt = B.createIntegerLiteral(
|
|
BI->getLoc(), BI->getType(), AssertConfiguration);
|
|
BI->replaceAllUsesWith(AssertConfInt);
|
|
// Schedule users for constant folding.
|
|
WorkList.insert(AssertConfInt);
|
|
// Delete the call.
|
|
recursivelyDeleteTriviallyDeadInstructions(BI);
|
|
continue;
|
|
}
|
|
|
|
// Kill calls to conditionallyUnreachable if we've folded assert
|
|
// configuration calls.
|
|
if (isApplyOfBuiltin(*BI, BuiltinValueKind::CondUnreachable)) {
|
|
assert(BI->use_empty() && "use of conditionallyUnreachable?!");
|
|
recursivelyDeleteTriviallyDeadInstructions(BI, /*force*/ true);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Go through all users of the constant and try to fold them.
|
|
FoldedUsers.clear();
|
|
for (auto Use : I->getUses()) {
|
|
SILInstruction *User = Use->getUser();
|
|
DEBUG(llvm::dbgs() << " User: " << *User);
|
|
|
|
// It is possible that we had processed this user already. Do not try
|
|
// to fold it again if we had previously produced an error while folding
|
|
// it. It is not always possible to fold an instruction in case of error.
|
|
if (ErrorSet.count(User))
|
|
continue;
|
|
|
|
// Some constant users may indirectly cause folding of their users.
|
|
if (isa<StructInst>(User) || isa<TupleInst>(User)) {
|
|
WorkList.insert(User);
|
|
continue;
|
|
}
|
|
|
|
// Always consider cond_fail instructions as potential for DCE. If the
|
|
// expression feeding them is false, they are dead. We can't handle this
|
|
// as part of the constant folding logic, because there is no value
|
|
// they can produce (other than empty tuple, which is wasteful).
|
|
if (isa<CondFailInst>(User))
|
|
FoldedUsers.insert(User);
|
|
|
|
// Initialize ResultsInError as a None optional.
|
|
//
|
|
// We are essentially using this optional to represent 3 states: true,
|
|
// false, and n/a.
|
|
Optional<bool> ResultsInError;
|
|
|
|
// If we are asked to emit diagnostics, override ResultsInError with a
|
|
// Some optional initialized to false.
|
|
if (EnableDiagnostics)
|
|
ResultsInError = false;
|
|
|
|
// Try to fold the user. If ResultsInError is None, we do not emit any
|
|
// diagnostics. If ResultsInError is some, we use it as our return value.
|
|
SILValue C = constantFoldInstruction(*User, ResultsInError);
|
|
|
|
// If we did not pass in a None and the optional is set to true, add the
|
|
// user to our error set.
|
|
if (ResultsInError.hasValue() && ResultsInError.getValue())
|
|
ErrorSet.insert(User);
|
|
|
|
// We failed to constant propogate... continue...
|
|
if (!C)
|
|
continue;
|
|
|
|
// Ok, we have succeeded. Add user to the FoldedUsers list and perform the
|
|
// necessary cleanups, RAUWs, etc.
|
|
FoldedUsers.insert(User);
|
|
++NumInstFolded;
|
|
Changed = true;
|
|
|
|
// If the constant produced a tuple, be smarter than RAUW: explicitly nuke
|
|
// any tuple_extract instructions using the apply. This is a common case
|
|
// for functions returning multiple values.
|
|
if (auto *TI = dyn_cast<TupleInst>(C)) {
|
|
for (auto UI = User->use_begin(), E = User->use_end(); UI != E;) {
|
|
Operand *O = *UI++;
|
|
|
|
// If the user is a tuple_extract, just substitute the right value in.
|
|
if (auto *TEI = dyn_cast<TupleExtractInst>(O->getUser())) {
|
|
SILValue NewVal = TI->getOperand(TEI->getFieldNo());
|
|
assert(TEI->getTypes().size() == 1 &&
|
|
"Currently, we only support single result instructions.");
|
|
SILValue(TEI, 0).replaceAllUsesWith(NewVal);
|
|
TEI->dropAllReferences();
|
|
FoldedUsers.insert(TEI);
|
|
if (auto *Inst = dyn_cast<SILInstruction>(NewVal.getDef()))
|
|
WorkList.insert(Inst);
|
|
}
|
|
}
|
|
|
|
if (User->use_empty())
|
|
FoldedUsers.insert(TI);
|
|
}
|
|
|
|
|
|
// We were able to fold, so all users should use the new folded value.
|
|
assert(User->getTypes().size() == 1 &&
|
|
"Currently, we only support single result instructions");
|
|
SILValue(User).replaceAllUsesWith(C);
|
|
|
|
// The new constant could be further folded now, add it to the worklist.
|
|
if (auto *Inst = dyn_cast<SILInstruction>(C.getDef()))
|
|
WorkList.insert(Inst);
|
|
}
|
|
|
|
// Eagerly DCE. We do this after visiting all users to ensure we don't
|
|
// invalidate the uses iterator.
|
|
auto UserArray = ArrayRef<SILInstruction *>(&*FoldedUsers.begin(),
|
|
FoldedUsers.size());
|
|
recursivelyDeleteTriviallyDeadInstructions(UserArray, false,
|
|
[&](SILInstruction *DeadI) {
|
|
WorkList.remove(DeadI);
|
|
});
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
class ConstantPropagation : public SILFunctionTransform {
|
|
bool EnableDiagnostics;
|
|
|
|
public:
|
|
ConstantPropagation(bool EnableDiagnostics) :
|
|
EnableDiagnostics(EnableDiagnostics) {}
|
|
|
|
private:
|
|
/// The entry point to the transformation.
|
|
void run() {
|
|
if (CCPFunctionBody(*getFunction(), EnableDiagnostics,
|
|
getOptions().AssertConfig))
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
|
|
}
|
|
|
|
StringRef getName() override { return "Constant Propagation"; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createDiagnosticConstantPropagation() {
|
|
return new ConstantPropagation(true /*enable diagnostics*/);
|
|
}
|
|
|
|
SILTransform *swift::createPerformanceConstantPropagation() {
|
|
return new ConstantPropagation(false /*disable diagnostics*/);
|
|
}
|