Files
swift-mirror/lib/SILPasses/Utils/Local.cpp
Adrian Prantl c41b30299f Audit all SILPasses to ensure that new instructions are never created
without a valid SILDebugScope. An assertion in IRGenSIL prevents future
optimizations from regressing in this regard.
Introducing SILBuilderWithScope and SILBuilderwithPostprocess to ease the
transition.

This patch is large, but mostly mechanical.
<rdar://problem/18494573> Swift: Debugger is not stopping at the set breakpoint

Swift SVN r22978
2014-10-28 01:49:11 +00:00

539 lines
18 KiB
C++

//===--- Local.cpp - Functions that perform local SIL transformations. ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===---------------------------------------------------------------------===//
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILAnalysis/Analysis.h"
#include "swift/SILAnalysis/DominanceAnalysis.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include <deque>
using namespace swift;
bool
swift::isSideEffectFree(BuiltinInst *FR) {
// First, check if we are dealing with a swift builtin.
const BuiltinInfo &BInfo = FR->getBuiltinInfo();
if (BInfo.ID != BuiltinValueKind::None) {
return BInfo.isReadNone();
}
// Second, specialcase llvm intrinsic.
const IntrinsicInfo & IInfo = FR->getIntrinsicInfo();
if (IInfo.ID != llvm::Intrinsic::not_intrinsic) {
return ( (IInfo.hasAttribute(llvm::Attribute::ReadNone) ||
IInfo.hasAttribute(llvm::Attribute::ReadOnly)) &&
IInfo.hasAttribute(llvm::Attribute::NoUnwind) );
}
llvm_unreachable("All cases are covered.");
}
bool swift::isReadNone(BuiltinInst *FR) {
// First, check if we are dealing with a swift builtin.
const BuiltinInfo &BInfo = FR->getBuiltinInfo();
if (BInfo.ID != BuiltinValueKind::None)
return BInfo.isReadNone();
// Second, specialcase llvm intrinsic.
const IntrinsicInfo & IInfo = FR->getIntrinsicInfo();
if (IInfo.ID != llvm::Intrinsic::not_intrinsic)
return IInfo.hasAttribute(llvm::Attribute::ReadNone) &&
IInfo.hasAttribute(llvm::Attribute::NoUnwind);
llvm_unreachable("All cases are covered.");
}
bool swift::isReadNone(FunctionRefInst *FR) {
auto *F = FR->getReferencedFunction();
if (!F)
return false;
return F->getEffectsInfo() == EffectsKind::ReadNone;
}
/// \brief Perform a fast local check to see if the instruction is dead.
///
/// This routine only examines the state of the instruction at hand.
bool
swift::isInstructionTriviallyDead(SILInstruction *I) {
if (!I->use_empty() || isa<TermInst>(I))
return false;
// We know that some calls do not have side effects.
if (const ApplyInst *AI = dyn_cast<ApplyInst>(I)) {
if (auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee()))
// If we call an apply inst to a global initializer, but the value is not
// used it is safe to remove it.
if (FRI->getReferencedFunction()->isGlobalInit())
return true;
}
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
return isSideEffectFree(BI);
}
// condfail instructions that obviously can't fail are dead.
if (auto *CFI = dyn_cast<CondFailInst>(I))
if (auto *ILI = dyn_cast<IntegerLiteralInst>(CFI->getOperand()))
if (!ILI->getValue())
return true;
// mark_uninitialized is never dead.
if (isa<MarkUninitializedInst>(I))
return false;
// These invalidate enums so "write" memory, but that is not an essential
// operation so we can remove these if they are trivially dead.
if (isa<UncheckedTakeEnumDataAddrInst>(I))
return true;
if (!I->mayHaveSideEffects())
return true;
return false;
}
namespace {
using CallbackTy = std::function<void(SILInstruction *)>;
} // end anonymous namespace
bool swift::
recursivelyDeleteTriviallyDeadInstructions(ArrayRef<SILInstruction *> IA,
bool Force, CallbackTy Callback) {
// Delete these instruction and others that become dead after it's deleted.
llvm::SmallPtrSet<SILInstruction *, 8> DeadInsts;
for (auto I : IA) {
// If the instruction is not dead and force is false, do nothing.
if (Force || isInstructionTriviallyDead(I))
DeadInsts.insert(I);
}
llvm::SmallPtrSet<SILInstruction *, 8> NextInsts;
while (!DeadInsts.empty()) {
for (auto I : DeadInsts) {
// Call the callback before we mutate the to be deleted instruction in any
// way.
Callback(I);
// Check if any of the operands will become dead as well.
MutableArrayRef<Operand> Ops = I->getAllOperands();
for (Operand &Op : Ops) {
SILValue OpVal = Op.get();
if (!OpVal)
continue;
// Remove the reference from the instruction being deleted to this
// operand.
Op.drop();
// If the operand is an instruction that is only used by the instruction
// being deleted, delete it.
if (SILInstruction *OpValInst = dyn_cast<SILInstruction>(OpVal))
if (!DeadInsts.count(OpValInst) &&
isInstructionTriviallyDead(OpValInst))
NextInsts.insert(OpValInst);
}
}
for (auto I : DeadInsts) {
// This will remove this instruction and all its uses.
I->eraseFromParent();
}
NextInsts.swap(DeadInsts);
NextInsts.clear();
}
return true;
}
/// \brief If the given instruction is dead, delete it along with its dead
/// operands.
///
/// \param I The instruction to be deleted.
/// \param Force If Force is set, don't check if the top level instruction is
/// considered dead - delete it regardless.
/// \return Returns true if any instructions were deleted.
bool swift::recursivelyDeleteTriviallyDeadInstructions(SILInstruction *I,
bool Force,
CallbackTy Callback) {
ArrayRef<SILInstruction *> AI = ArrayRef<SILInstruction *>(I);
return recursivelyDeleteTriviallyDeadInstructions(AI, Force, Callback);
}
void swift::eraseUsesOfInstruction(SILInstruction *Inst) {
for (auto UI : Inst->getUses()) {
auto *User = UI->getUser();
// If the instruction itself has any uses, recursively zap them so that
// nothing uses this instruction.
eraseUsesOfInstruction(User);
// Walk through the operand list and delete any random instructions that
// will become trivially dead when this instruction is removed.
for (auto &Op : User->getAllOperands()) {
if (auto *OpI = dyn_cast<SILInstruction>(Op.get())) {
// Don't recursively delete the pointer we're getting in.
if (OpI != Inst) {
Op.drop();
recursivelyDeleteTriviallyDeadInstructions(OpI);
}
}
}
User->eraseFromParent();
}
}
void swift::replaceWithSpecializedFunction(ApplyInst *AI, SILFunction *NewF) {
SILLocation Loc = AI->getLoc();
ArrayRef<Substitution> Subst;
SmallVector<SILValue, 4> Arguments;
for (auto &Op : AI->getArgumentOperands()) {
Arguments.push_back(Op.get());
}
SILBuilderWithScope<2> Builder(AI);
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
ApplyInst *NAI =
Builder.createApply(Loc, FRI, Arguments, AI->isTransparent());
AI->replaceAllUsesWith(NAI);
recursivelyDeleteTriviallyDeadInstructions(AI, true);
}
bool swift::hasUnboundGenericTypes(TypeSubstitutionMap &SubsMap) {
// Check whether any of the substitutions are dependent.
for (auto &entry : SubsMap)
if (entry.second->getCanonicalType()->hasArchetype())
return true;
return false;
}
bool swift::hasUnboundGenericTypes(ArrayRef<Substitution> Subs) {
// Check whether any of the substitutions are dependent.
for (auto &sub : Subs)
if (sub.getReplacement()->getCanonicalType()->hasArchetype())
return true;
return false;
}
bool swift::hasAnyExistentialTypes(ArrayRef<Substitution> Subs) {
// Check whether any of the substitutions are dependent.
for (auto &sub : Subs)
if (sub.getReplacement()->getCanonicalType()->isAnyExistentialType())
return true;
return false;
}
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
/// use. Not that FuncionRefInsts may be shared by multiple ApplyInsts.
void swift::placeFuncRef(ApplyInst *AI, DominanceInfo *DT) {
FunctionRefInst *FuncRef = cast<FunctionRefInst>(AI->getCallee());
SILBasicBlock *DomBB =
DT->findNearestCommonDominator(AI->getParent(), FuncRef->getParent());
if (DomBB == AI->getParent() && DomBB != FuncRef->getParent())
// Prefer to place the FuncRef immediately before the call. Since we're
// moving FuncRef up, this must be the only call to it in the block.
FuncRef->moveBefore(AI);
else
// Otherwise, conservatively stick it at the beginning of the block.
FuncRef->moveBefore(DomBB->begin());
}
/// \brief Add an argument, \p val, to the branch-edge that is pointing into
/// block \p Dest. Return a new instruction and do not erase the old
/// instruction.
TermInst *swift::addArgumentToBranch(SILValue Val, SILBasicBlock *Dest,
TermInst *Branch) {
SILBuilderWithScope<2> Builder(Branch);
if (CondBranchInst *CBI = dyn_cast<CondBranchInst>(Branch)) {
SmallVector<SILValue, 8> TrueArgs;
SmallVector<SILValue, 8> FalseArgs;
for (auto A : CBI->getTrueArgs())
TrueArgs.push_back(A);
for (auto A : CBI->getFalseArgs())
FalseArgs.push_back(A);
if (Dest == CBI->getTrueBB()) {
TrueArgs.push_back(Val);
assert(TrueArgs.size() == Dest->getNumBBArg());
} else {
FalseArgs.push_back(Val);
assert(FalseArgs.size() == Dest->getNumBBArg());
}
return Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(),
CBI->getTrueBB(), TrueArgs,
CBI->getFalseBB(), FalseArgs);
}
if (BranchInst *BI = dyn_cast<BranchInst>(Branch)) {
SmallVector<SILValue, 8> Args;
for (auto A : BI->getArgs())
Args.push_back(A);
Args.push_back(Val);
assert(Args.size() == Dest->getNumBBArg());
return Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
}
llvm_unreachable("unsupported terminator");
}
SILLinkage swift::getSpecializedLinkage(SILLinkage L) {
switch (L) {
case SILLinkage::Public:
case SILLinkage::PublicExternal:
case SILLinkage::Shared:
case SILLinkage::SharedExternal:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
// Specializations of public or hidden symbols can be shared by all TUs
// that specialize the definition.
return SILLinkage::Shared;
case SILLinkage::Private:
case SILLinkage::PrivateExternal:
// Specializations of private symbols should remain so.
// TODO: maybe PrivateExternals should get SharedExternal (these are private
// functions from the stdlib which are specialized in another module).
return SILLinkage::Private;
}
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(ValueBase *V,
StringRef SemanticStr,
bool MatchPartialName) {
if (auto AI = dyn_cast<ApplyInst>(V))
if (auto FRI = dyn_cast<FunctionRefInst>(AI->getCallee()))
if (auto FunRef = FRI->getReferencedFunction()) {
if (MatchPartialName) {
if (FunRef->hasDefinedSemantics() &&
FunRef->getSemanticsString().startswith(SemanticStr)) {
SemanticsCall = AI;
return;
}
} else {
if (FunRef->hasSemanticsString(SemanticStr)) {
SemanticsCall = AI;
return;
}
}
}
// Otherwise, this is not the semantic call we are looking for.
SemanticsCall = nullptr;
}
/// Determine which kind of array semantics call this is.
ArrayCallKind swift::ArraySemanticsCall::getKind() {
if (!SemanticsCall)
return ArrayCallKind::kNone;
auto F = cast<FunctionRefInst>(SemanticsCall->getCallee())
->getReferencedFunction();
auto Kind = llvm::StringSwitch<ArrayCallKind>(F->getSemanticsString())
.Case("array.init", ArrayCallKind::kArrayInit)
.Case("array.check_subscript", ArrayCallKind::kCheckSubscript)
.Case("array.check_index", ArrayCallKind::kCheckIndex)
.Case("array.get_count", ArrayCallKind::kGetCount)
.Case("array.get_capacity", ArrayCallKind::kGetCapacity)
.Case("array.get_element", ArrayCallKind::kGetElement)
.Case("array.make_mutable", ArrayCallKind::kMakeMutable)
.Case("array.get_element_address", ArrayCallKind::kGetElementAddress)
.Case("array.mutate_unknown", ArrayCallKind::kMutateUnknown)
.Default(ArrayCallKind::kNone);
return Kind;
}
SILValue swift::ArraySemanticsCall::getSelf() {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
return SemanticsCall->getSelfArgument();
}
SILValue swift::ArraySemanticsCall::getIndex() {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
assert(getKind() == ArrayCallKind::kCheckSubscript ||
getKind() == ArrayCallKind::kCheckIndex ||
getKind() == ArrayCallKind::kGetElement ||
getKind() == ArrayCallKind::kGetElementAddress);
return SemanticsCall->getArgument(0);
}
static bool canHoistArrayArgument(SILValue Arr, SILInstruction *InsertBefore,
DominanceInfo *DT) {
auto *SelfVal = Arr.getDef();
auto *SelfBB = SelfVal->getParentBB();
if (DT->dominates(SelfBB, InsertBefore->getParent()))
return true;
if (auto LI = dyn_cast<LoadInst>(SelfVal)) {
// Are we loading a value from an address in a struct defined at a point
// dominating the hoist point.
auto Val = LI->getOperand().getDef();
bool DoesNotDominate;
StructElementAddrInst *SEI;
while ((DoesNotDominate = !DT->dominates(Val->getParentBB(),
InsertBefore->getParent())) &&
(SEI = dyn_cast<StructElementAddrInst>(Val)))
Val = SEI->getOperand().getDef();
return DoesNotDominate == false;
}
return false;
}
bool swift::ArraySemanticsCall::canHoist(SILInstruction *InsertBefore,
DominanceInfo *DT) {
switch (getKind()) {
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
return canHoistArrayArgument(getSelf(), InsertBefore, DT);
}
default:
break;
}
return false;
}
/// Copy the array load to the insert point.
static SILValue copyArrayLoad(SILValue ArrayStructValue,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
if (isa<SILArgument>(ArrayStructValue.getDef())) {
// Assume that the argument dominates the insert point.
assert(DT->dominates(ArrayStructValue.getDef()->getParentBB(),
InsertBefore->getParent()));
return ArrayStructValue;
}
auto *LI = cast<LoadInst>(ArrayStructValue.getDef());
if (DT->dominates(LI->getParent(), InsertBefore->getParent()))
return ArrayStructValue;
// Recursively move struct_element_addr.
auto *Val = LI->getOperand().getDef();
auto *InsertPt = InsertBefore;
while (!DT->dominates(Val->getParentBB(), InsertBefore->getParent())) {
auto *Inst = cast<StructElementAddrInst>(Val);
Inst->moveBefore(InsertPt);
Val = Inst->getOperand().getDef();
InsertPt = Inst;
}
return SILValue(LI->clone(InsertBefore), 0);
}
static ApplyInst *hoistOrCopyCall(ApplyInst *AI, SILInstruction *InsertBefore,
bool LeaveOriginal, DominanceInfo *DT) {
if (!LeaveOriginal) {
AI->moveBefore(InsertBefore);
} else {
// Leave the original and 'hoist' a clone.
AI = cast<ApplyInst>(AI->clone(InsertBefore));
}
placeFuncRef(AI, DT);
return AI;
}
ApplyInst *swift::ArraySemanticsCall::hoistOrCopy(SILInstruction *InsertBefore,
DominanceInfo *DT,
bool LeaveOriginal) {
auto Kind = getKind();
switch (Kind) {
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
auto Self = getSelf();
// We are going to have a retain, emit a matching release.
if (!LeaveOriginal)
SILBuilderWithScope<1>(SemanticsCall)
.createReleaseValue(SemanticsCall->getLoc(), Self);
// Hoist the array load, if neccessary.
SILBuilder B(InsertBefore);
auto NewArrayStructValue = copyArrayLoad(Self, InsertBefore, DT);
// Retain the array.
B.createRetainValue(SemanticsCall->getLoc(), NewArrayStructValue)
->setDebugScope(SemanticsCall->getDebugScope());
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(NewArrayStructValue);
return Call;
}
case ArrayCallKind::kMakeMutable: {
assert(!LeaveOriginal && "Copying not yet implemented");
SemanticsCall->moveBefore(InsertBefore);
placeFuncRef(SemanticsCall, DT);
return SemanticsCall;
}
default:
llvm_unreachable("Don't know how to hoist this instruction");
break;
} // End switch.
}
void swift::ArraySemanticsCall::replaceByRetainValue() {
assert(getKind() < ArrayCallKind::kMakeMutable &&
"Must be a semantics call that passes the array by value");
SILBuilderWithScope<1>(SemanticsCall)
.createReleaseValue(SemanticsCall->getLoc(), getSelf());
SemanticsCall->eraseFromParent();
}
/// Remove all instructions in the body of \p BB in safe manner by using
/// undef.
void swift::clearBlockBody(SILBasicBlock *BB) {
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!BB->empty()) {
// Grab the last instruction in the BB.
auto *Inst = &BB->getInstList().back();
// Replace any non-dead results with SILUndef values.
Inst->replaceAllUsesWithUndef();
// Pop the instruction off of the back of the basic block.
BB->getInstList().pop_back();
}
}
// Handle the mechanical aspects of removing an unreachable block.
void swift::removeDeadBlock(SILBasicBlock *BB) {
// Clear the body of BB.
clearBlockBody(BB);
// Now that the BB is empty, eliminate it.
BB->eraseFromParent();
}