Files
swift-mirror/stdlib/public/runtime/MetadataLookup.cpp
Doug Gregor c45c84d913 [Runtime] Handle all generic parameters at once demangling to metadata.
When demangling a symbolic reference to a nested generic type, the
demangle-to-metadata path will be given all levels of generic arguments at
once. Cope with this in the demangling-to-metadata path.

Eventually, we would like to switch all clients over to take all
levels of generic arguments at once.
2018-09-26 15:33:15 -07:00

1470 lines
49 KiB
C++

//===--- MetadataLookup.cpp - Swift Language Type Name Lookup -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implementations of runtime functions for looking up a type by name.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeDecoder.h"
#include "swift/Reflection/Records.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Strings.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringExtras.h"
#include "Private.h"
#include "CompatibilityOverride.h"
#include "ImageInspection.h"
#include <functional>
#include <vector>
#include <list>
using namespace swift;
using namespace Demangle;
using namespace reflection;
#if SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#endif
/// Produce a Demangler value suitable for resolving runtime type metadata
/// strings.
static Demangler getDemanglerForRuntimeTypeResolution() {
Demangler dem;
// Resolve symbolic references to type contexts into the absolute address of
// the type context descriptor, so that if we see a symbolic reference in the
// mangled name we can immediately find the associated metadata.
dem.setSymbolicReferenceResolver([&](int32_t offset,
const void *base) -> NodePointer {
auto absolute_addr = (uintptr_t)detail::applyRelativeOffset(base, offset);
auto reference = dem.createNode(Node::Kind::SymbolicReference, absolute_addr);
auto type = dem.createNode(Node::Kind::Type);
type->addChild(reference, dem);
return type;
});
return dem;
}
#pragma mark Nominal type descriptor cache
// Type Metadata Cache.
namespace {
struct TypeMetadataSection {
const TypeMetadataRecord *Begin, *End;
const TypeMetadataRecord *begin() const {
return Begin;
}
const TypeMetadataRecord *end() const {
return End;
}
};
struct NominalTypeDescriptorCacheEntry {
private:
std::string Name;
const TypeContextDescriptor *Description;
public:
NominalTypeDescriptorCacheEntry(const llvm::StringRef name,
const TypeContextDescriptor *description)
: Name(name.str()), Description(description) {}
const TypeContextDescriptor *getDescription() {
return Description;
}
int compareWithKey(llvm::StringRef aName) const {
return aName.compare(Name);
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
} // end anonymous namespace
struct TypeMetadataPrivateState {
ConcurrentMap<NominalTypeDescriptorCacheEntry> NominalCache;
ConcurrentReadableArray<TypeMetadataSection> SectionsToScan;
TypeMetadataPrivateState() {
initializeTypeMetadataRecordLookup();
}
};
static Lazy<TypeMetadataPrivateState> TypeMetadataRecords;
static void
_registerTypeMetadataRecords(TypeMetadataPrivateState &T,
const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
T.SectionsToScan.push_back(TypeMetadataSection{begin, end});
}
void swift::addImageTypeMetadataRecordBlockCallback(const void *records,
uintptr_t recordsSize) {
assert(recordsSize % sizeof(TypeMetadataRecord) == 0
&& "weird-sized type metadata section?!");
// If we have a section, enqueue the type metadata for lookup.
auto recordBytes = reinterpret_cast<const char *>(records);
auto recordsBegin
= reinterpret_cast<const TypeMetadataRecord*>(records);
auto recordsEnd
= reinterpret_cast<const TypeMetadataRecord*>(recordBytes + recordsSize);
// Type metadata cache should always be sufficiently initialized by this
// point. Attempting to go through get() may also lead to an infinite loop,
// since we register records during the initialization of
// TypeMetadataRecords.
_registerTypeMetadataRecords(TypeMetadataRecords.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void
swift::swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
auto &T = TypeMetadataRecords.get();
_registerTypeMetadataRecords(T, begin, end);
}
static const TypeContextDescriptor *
_findNominalTypeDescriptor(Demangle::NodePointer node,
Demangle::Demangler &Dem);
/// Recognize imported tag types, which have a special mangling rule.
///
/// This should be kept in sync with the AST mangler and with
/// buildContextDescriptorMangling in MetadataReader.
bool swift::_isCImportedTagType(const TypeContextDescriptor *type,
const ParsedTypeIdentity &identity) {
// Tag types are always imported as structs or enums.
if (type->getKind() != ContextDescriptorKind::Enum &&
type->getKind() != ContextDescriptorKind::Struct)
return false;
// Not a typedef imported as a nominal type.
if (identity.isCTypedef())
return false;
// Not a related entity.
if (identity.isAnyRelatedEntity())
return false;
// Imported from C.
return type->Parent->isCImportedContext();
}
ParsedTypeIdentity
ParsedTypeIdentity::parse(const TypeContextDescriptor *type) {
ParsedTypeIdentity result;
// The first component is the user-facing name and (unless overridden)
// the ABI name.
StringRef component = type->Name.get();
result.UserFacingName = component;
// If we don't have import info, we're done.
if (!type->getTypeContextDescriptorFlags().hasImportInfo()) {
result.FullIdentity = result.UserFacingName;
return result;
}
// Otherwise, start parsing the import information.
result.ImportInfo.emplace();
// The identity starts with the user-facing name.
const char *startOfIdentity = component.begin();
const char *endOfIdentity = component.end();
#ifndef NDEBUG
enum {
AfterName,
AfterABIName,
AfterSymbolNamespace,
AfterRelatedEntityName,
AfterIdentity,
} stage = AfterName;
#endif
while (true) {
// Parse the next component. If it's empty, we're done.
component = StringRef(component.end() + 1);
if (component.empty()) break;
// Update the identity bounds and assert that the identity
// components are in the right order.
auto kind = TypeImportComponent(component[0]);
if (kind == TypeImportComponent::ABIName) {
#ifndef NDEBUG
assert(stage < AfterABIName);
stage = AfterABIName;
assert(result.UserFacingName != component.drop_front(1) &&
"user-facing name was same as the ABI name");
#endif
startOfIdentity = component.begin() + 1;
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::SymbolNamespace) {
#ifndef NDEBUG
assert(stage < AfterSymbolNamespace);
stage = AfterSymbolNamespace;
#endif
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::RelatedEntityName) {
#ifndef NDEBUG
assert(stage < AfterRelatedEntityName);
stage = AfterRelatedEntityName;
#endif
endOfIdentity = component.end();
} else {
#ifndef NDEBUG
// Anything else is assumed to not be part of the identity.
stage = AfterIdentity;
#endif
}
// Collect the component, whatever it is.
result.ImportInfo->collect</*asserting*/true>(component);
}
assert(stage != AfterName && "no components?");
// Record the full identity.
result.FullIdentity =
StringRef(startOfIdentity, endOfIdentity - startOfIdentity);
return result;
}
#if SWIFT_OBJC_INTEROP
/// For a mangled node that refers to an Objective-C class or protocol,
/// return the class or protocol name.
static Optional<StringRef> getObjCClassOrProtocolName(
const Demangle::NodePointer &node) {
if (node->getKind() != Demangle::Node::Kind::Class &&
node->getKind() != Demangle::Node::Kind::Protocol)
return None;
if (node->getNumChildren() != 2)
return None;
// Check whether we have the __ObjC module.
auto moduleNode = node->getChild(0);
if (moduleNode->getKind() != Demangle::Node::Kind::Module ||
moduleNode->getText() != MANGLING_MODULE_OBJC)
return None;
// Check whether we have an identifier.
auto nameNode = node->getChild(1);
if (nameNode->getKind() != Demangle::Node::Kind::Identifier)
return None;
return nameNode->getText();
}
/// Determine whether the two demangle trees both refer to the same
/// Objective-C class or protocol referenced by name.
static bool sameObjCTypeManglings(Demangle::NodePointer node1,
Demangle::NodePointer node2) {
// Entities need to be of the same kind.
if (node1->getKind() != node2->getKind())
return false;
auto name1 = getObjCClassOrProtocolName(node1);
if (!name1) return false;
auto name2 = getObjCClassOrProtocolName(node2);
if (!name2) return false;
return *name1 == *name2;
}
#endif
bool
swift::_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node) {
while (context) {
if (node->getKind() == Demangle::Node::Kind::Type)
node = node->getChild(0);
// We can directly match symbolic references to the current context.
if (node && node->getKind() == Demangle::Node::Kind::SymbolicReference) {
if (equalContexts(context, reinterpret_cast<const ContextDescriptor *>(
node->getIndex()))) {
return true;
}
}
switch (context->getKind()) {
case ContextDescriptorKind::Module: {
auto module = cast<ModuleContextDescriptor>(context);
// Match to a mangled module name.
if (node->getKind() != Demangle::Node::Kind::Module)
return false;
if (!node->getText().equals(module->Name.get()))
return false;
node = nullptr;
break;
}
case ContextDescriptorKind::Extension: {
auto extension = cast<ExtensionContextDescriptor>(context);
// Check whether the extension context matches the mangled context.
if (node->getKind() != Demangle::Node::Kind::Extension)
return false;
if (node->getNumChildren() < 2)
return false;
// Check that the context being extended matches as well.
auto extendedContextNode = node->getChild(1);
auto extendedContextMangledName = extension->getMangledExtendedContext();
auto demangler = getDemanglerForRuntimeTypeResolution();
auto extendedContextDemangled =
demangler.demangleType(extendedContextMangledName);
if (!extendedContextDemangled)
return false;
if (extendedContextDemangled->getKind() == Node::Kind::Type) {
if (extendedContextDemangled->getNumChildren() < 1)
return false;
extendedContextDemangled = extendedContextDemangled->getChild(0);
}
extendedContextDemangled =
stripGenericArgsFromContextNode(extendedContextDemangled, demangler);
auto extendedDescriptorFromNode =
_findNominalTypeDescriptor(extendedContextNode, demangler);
auto extendedDescriptorFromDemangled =
_findNominalTypeDescriptor(extendedContextDemangled, demangler);
// Determine whether the contexts match.
bool contextsMatch =
extendedDescriptorFromNode && extendedDescriptorFromDemangled &&
equalContexts(extendedDescriptorFromNode,
extendedDescriptorFromDemangled);
#if SWIFT_OBJC_INTEROP
if (!contextsMatch &&
(!extendedDescriptorFromNode || !extendedDescriptorFromDemangled) &&
sameObjCTypeManglings(extendedContextNode,
extendedContextDemangled)) {
contextsMatch = true;
}
#endif
if (!contextsMatch)
return false;
// Check whether the generic signature of the extension matches the
// mangled constraints, if any.
if (node->getNumChildren() >= 3) {
// NB: If we ever support extensions with independent generic arguments
// like `extension <T> Array where Element == Optional<T>`, we'd need
// to look at the mangled context name to match up generic arguments.
// That would probably need a new extension mangling form, though.
// TODO
}
// The parent context of the extension should match in the mangling and
// context descriptor.
node = node->getChild(0);
break;
}
case ContextDescriptorKind::Protocol:
// Match a protocol context.
if (node->getKind() == Demangle::Node::Kind::Protocol) {
auto proto = llvm::cast<ProtocolDescriptor>(context);
auto nameNode = node->getChild(1);
if (nameNode->getText() == proto->Name.get()) {
node = node->getChild(0);
break;
}
}
return false;
default:
if (auto type = llvm::dyn_cast<TypeContextDescriptor>(context)) {
Optional<ParsedTypeIdentity> _identity;
auto getIdentity = [&]() -> const ParsedTypeIdentity & {
if (_identity) return *_identity;
_identity = ParsedTypeIdentity::parse(type);
return *_identity;
};
switch (node->getKind()) {
// If the mangled name doesn't indicate a type kind, accept anything.
// Otherwise, try to match them up.
case Demangle::Node::Kind::OtherNominalType:
break;
case Demangle::Node::Kind::Structure:
// We allow non-structs to match Kind::Structure if they are
// imported C tag types. This is necessary because we artificially
// make imported C tag types Kind::Structure.
if (type->getKind() != ContextDescriptorKind::Struct &&
!_isCImportedTagType(type, getIdentity()))
return false;
break;
case Demangle::Node::Kind::Class:
if (type->getKind() != ContextDescriptorKind::Class)
return false;
break;
case Demangle::Node::Kind::Enum:
if (type->getKind() != ContextDescriptorKind::Enum)
return false;
break;
case Demangle::Node::Kind::TypeAlias:
if (!getIdentity().isCTypedef())
return false;
break;
default:
return false;
}
auto nameNode = node->getChild(1);
// Declarations synthesized by the Clang importer get a small tag
// string in addition to their name.
if (nameNode->getKind() == Demangle::Node::Kind::RelatedEntityDeclName){
if (!getIdentity().isRelatedEntity(nameNode->getText()))
return false;
nameNode = nameNode->getChild(0);
} else if (getIdentity().isAnyRelatedEntity()) {
return false;
}
// We should only match public or internal declarations with stable
// names. The runtime metadata for private declarations would be
// anonymized.
if (nameNode->getKind() == Demangle::Node::Kind::Identifier) {
if (nameNode->getText() != getIdentity().getABIName())
return false;
node = node->getChild(0);
break;
}
return false;
}
// We don't know about this kind of context, or it doesn't have a stable
// name we can match to.
return false;
}
context = context->Parent;
}
// We should have reached the top of the node tree at the same time we reached
// the top of the context tree.
if (node)
return false;
return true;
}
// returns the nominal type descriptor for the type named by typeName
static const TypeContextDescriptor *
_searchTypeMetadataRecords(TypeMetadataPrivateState &T,
Demangle::NodePointer node) {
for (auto &section : T.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto ntd = record.getTypeContextDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node)) {
return ntd;
}
}
}
}
return nullptr;
}
static const TypeContextDescriptor *
_findNominalTypeDescriptor(Demangle::NodePointer node,
Demangle::Demangler &Dem) {
const TypeContextDescriptor *foundNominal = nullptr;
auto &T = TypeMetadataRecords.get();
// If we have a symbolic reference to a context, resolve it immediately.
NodePointer symbolicNode = node;
if (symbolicNode->getKind() == Node::Kind::Type)
symbolicNode = symbolicNode->getChild(0);
if (symbolicNode->getKind() == Node::Kind::SymbolicReference)
return cast<TypeContextDescriptor>(
(const ContextDescriptor *)symbolicNode->getIndex());
auto mangledName =
Demangle::mangleNode(node,
[&](const void *context) -> NodePointer {
return _buildDemanglingForContext(
(const ContextDescriptor *) context,
{}, Dem);
});
// Look for an existing entry.
// Find the bucket for the metadata entry.
if (auto Value = T.NominalCache.find(mangledName))
return Value->getDescription();
// Check type metadata records
foundNominal = _searchTypeMetadataRecords(T, node);
// Check protocol conformances table. Note that this has no support for
// resolving generic types yet.
if (!foundNominal)
foundNominal = _searchConformancesByMangledTypeName(node);
if (foundNominal) {
T.NominalCache.getOrInsert(mangledName, foundNominal);
}
return foundNominal;
}
#pragma mark Protocol descriptor cache
namespace {
struct ProtocolSection {
const ProtocolRecord *Begin, *End;
const ProtocolRecord *begin() const {
return Begin;
}
const ProtocolRecord *end() const {
return End;
}
};
struct ProtocolDescriptorCacheEntry {
private:
std::string Name;
const ProtocolDescriptor *Description;
public:
ProtocolDescriptorCacheEntry(const llvm::StringRef name,
const ProtocolDescriptor *description)
: Name(name.str()), Description(description) {}
const ProtocolDescriptor *getDescription() { return Description; }
int compareWithKey(llvm::StringRef aName) const {
return aName.compare(Name);
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
struct ProtocolMetadataPrivateState {
ConcurrentMap<ProtocolDescriptorCacheEntry> ProtocolCache;
ConcurrentReadableArray<ProtocolSection> SectionsToScan;
ProtocolMetadataPrivateState() {
initializeProtocolLookup();
}
};
static Lazy<ProtocolMetadataPrivateState> Protocols;
}
static void
_registerProtocols(ProtocolMetadataPrivateState &C,
const ProtocolRecord *begin,
const ProtocolRecord *end) {
C.SectionsToScan.push_back(ProtocolSection{begin, end});
}
void swift::addImageProtocolsBlockCallback(const void *protocols,
uintptr_t protocolsSize) {
assert(protocolsSize % sizeof(ProtocolRecord) == 0 &&
"protocols section not a multiple of ProtocolRecord");
// If we have a section, enqueue the protocols for lookup.
auto protocolsBytes = reinterpret_cast<const char *>(protocols);
auto recordsBegin
= reinterpret_cast<const ProtocolRecord *>(protocols);
auto recordsEnd
= reinterpret_cast<const ProtocolRecord *>(protocolsBytes + protocolsSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocols(Protocols.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void swift::swift_registerProtocols(const ProtocolRecord *begin,
const ProtocolRecord *end) {
auto &C = Protocols.get();
_registerProtocols(C, begin, end);
}
static const ProtocolDescriptor *
_searchProtocolRecords(ProtocolMetadataPrivateState &C,
const Demangle::NodePointer &node) {
for (auto &section : C.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto protocol = record.Protocol.getPointer()) {
if (_contextDescriptorMatchesMangling(protocol, node))
return protocol;
}
}
}
return nullptr;
}
static const ProtocolDescriptor *
_findProtocolDescriptor(const Demangle::NodePointer &node,
Demangle::Demangler &Dem,
std::string &mangledName) {
const ProtocolDescriptor *foundProtocol = nullptr;
auto &T = Protocols.get();
// If we have a symbolic reference to a context, resolve it immediately.
NodePointer symbolicNode = node;
if (symbolicNode->getKind() == Node::Kind::Type)
symbolicNode = symbolicNode->getChild(0);
if (symbolicNode->getKind() == Node::Kind::SymbolicReference)
return cast<ProtocolDescriptor>(
(const ContextDescriptor *)symbolicNode->getIndex());
mangledName =
Demangle::mangleNode(node,
[&](const void *context) -> NodePointer {
return _buildDemanglingForContext(
(const ContextDescriptor *) context,
{}, Dem);
});
// Look for an existing entry.
// Find the bucket for the metadata entry.
if (auto Value = T.ProtocolCache.find(mangledName))
return Value->getDescription();
// Check type metadata records
foundProtocol = _searchProtocolRecords(T, node);
if (foundProtocol) {
T.ProtocolCache.getOrInsert(mangledName, foundProtocol);
}
return foundProtocol;
}
#pragma mark Type field descriptor cache
namespace {
struct FieldDescriptorCacheEntry {
private:
const Metadata *Type;
const FieldDescriptor *Description;
public:
FieldDescriptorCacheEntry(const Metadata *type,
const FieldDescriptor *description)
: Type(type), Description(description) {}
const FieldDescriptor *getDescription() { return Description; }
int compareWithKey(const Metadata *other) const {
auto a = (uintptr_t)Type;
auto b = (uintptr_t)other;
return a == b ? 0 : (a < b ? -1 : 1);
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
};
class StaticFieldSection {
const void *Begin;
const void *End;
public:
StaticFieldSection(const void *begin, const void *end)
: Begin(begin), End(end) {}
FieldDescriptorIterator begin() const {
return FieldDescriptorIterator(Begin, End);
}
FieldDescriptorIterator end() const {
return FieldDescriptorIterator(End, End);
}
};
class DynamicFieldSection {
const FieldDescriptor **Begin;
const FieldDescriptor **End;
public:
DynamicFieldSection(const FieldDescriptor **fields, size_t size)
: Begin(fields), End(fields + size) {}
const FieldDescriptor **begin() const { return Begin; }
const FieldDescriptor **end() const { return End; }
};
} // namespace
#pragma mark Metadata lookup via mangled name
Optional<unsigned> swift::_depthIndexToFlatIndex(
unsigned depth, unsigned index,
ArrayRef<unsigned> paramCounts) {
// Out-of-bounds depth.
if (depth >= paramCounts.size()) return None;
// Compute the flat index.
unsigned flatIndex = index + (depth == 0 ? 0 : paramCounts[depth - 1]);
// Out-of-bounds index.
if (flatIndex >= paramCounts[depth]) return None;
return flatIndex;
}
/// Gather generic parameter counts from a context descriptor.
///
/// \returns true if the innermost descriptor is generic.
bool swift::_gatherGenericParameterCounts(
const ContextDescriptor *descriptor,
std::vector<unsigned> &genericParamCounts) {
// Once we hit a non-generic descriptor, we're done.
if (!descriptor->isGeneric()) return false;
// Recurse to record the parent context's generic parameters.
if (auto parent = descriptor->Parent.get())
(void)_gatherGenericParameterCounts(parent, genericParamCounts);
// Record a new level of generic parameters if the count exceeds the
// previous count.
auto myCount =
descriptor->getGenericContext()->getGenericContextHeader().NumParams;
if (genericParamCounts.empty() || myCount > genericParamCounts.back()) {
genericParamCounts.push_back(myCount);
return true;
}
return false;
}
namespace {
/// Find the offset of the protocol requirement for an associated type with
/// the given name in the given protocol descriptor.
Optional<unsigned> findAssociatedTypeByName(const ProtocolDescriptor *protocol,
StringRef name) {
// If we don't have associated type names, there's nothing to do.
const char *associatedTypeNamesPtr = protocol->AssociatedTypeNames.get();
if (!associatedTypeNamesPtr) return None;
// Look through the list of associated type names.
StringRef associatedTypeNames(associatedTypeNamesPtr);
unsigned matchingAssocTypeIdx = 0;
bool found = false;
while (!associatedTypeNames.empty()) {
// Avoid using StringRef::split because its definition is not
// provided in the header so that it requires linking with libSupport.a.
auto splitIdx = associatedTypeNames.find(' ');
if (associatedTypeNames.substr(0, splitIdx) == name) {
found = true;
break;
}
++matchingAssocTypeIdx;
associatedTypeNames = associatedTypeNames.substr(splitIdx).substr(1);
}
if (!found) return None;
// We have a match on the Nth associated type; go find the Nth associated
// type requirement.
unsigned currentAssocTypeIdx = 0;
unsigned numRequirements = protocol->NumRequirements;
auto requirements = protocol->getRequirements();
for (unsigned reqIdx = 0; reqIdx != numRequirements; ++reqIdx) {
if (requirements[reqIdx].Flags.getKind() !=
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction)
continue;
if (currentAssocTypeIdx == matchingAssocTypeIdx)
return reqIdx + WitnessTableFirstRequirementOffset;
++currentAssocTypeIdx;
}
swift_runtime_unreachable("associated type names don't line up");
}
/// Retrieve the generic parameters introduced in this context.
static ArrayRef<GenericParamDescriptor> getLocalGenericParams(
const ContextDescriptor *context) {
if (!context->isGeneric())
return { };
// Determine where to start looking at generic parameters.
unsigned startParamIndex;
if (auto parent = context->Parent.get())
startParamIndex = parent->getNumGenericParams();
else
startParamIndex = 0;
auto genericContext = context->getGenericContext();
return genericContext->getGenericParams().slice(startParamIndex);
}
/// Constructs metadata by decoding a mangled type name, for use with
/// \c TypeDecoder.
class DecodedMetadataBuilder {
public:
/// Callback used to handle the substitution of a generic parameter for
/// its metadata.
using SubstGenericParameterFn =
std::function<const Metadata *(unsigned depth, unsigned index)>;
/// Callback used to handle the lookup of dependent member types.
using LookupDependentMemberFn =
std::function<const Metadata *(const Metadata *base, StringRef assocType,
const ProtocolDescriptor *protocol)>;
private:
/// The demangler we'll use when building new nodes.
Demangler &demangler;
/// Substitute generic parameters.
SubstGenericParameterFn substGenericParameter;
/// Lookup dependent member types.
LookupDependentMemberFn lookupDependentMember;
/// Ownership information related to the metadata we are trying to lookup.
TypeReferenceOwnership ReferenceOwnership;
public:
DecodedMetadataBuilder(Demangler &demangler,
SubstGenericParameterFn substGenericParameter
= nullptr,
LookupDependentMemberFn lookupDependentMember
= nullptr)
: demangler(demangler),
substGenericParameter(substGenericParameter),
lookupDependentMember(lookupDependentMember) { }
using BuiltType = const Metadata *;
struct BuiltNominalTypeDecl :
llvm::PointerUnion<const TypeContextDescriptor *, const Metadata *>
{
using PointerUnion::PointerUnion;
explicit operator bool() const { return !isNull(); }
};
using BuiltProtocolDecl = ProtocolDescriptorRef;
Demangle::NodeFactory &getNodeFactory() { return demangler; }
BuiltNominalTypeDecl createNominalTypeDecl(
const Demangle::NodePointer &node) const {
#if SWIFT_OBJC_INTEROP
// If we have an Objective-C class name, call into the Objective-C
// runtime to find them.
if (auto objcClassName = getObjCClassOrProtocolName(node)) {
auto objcClass = objc_getClass(objcClassName->str().c_str());
return swift_getObjCClassMetadata((const ClassMetadata *)objcClass);
}
#endif
// Look for a nominal type descriptor based on its mangled name.
return _findNominalTypeDescriptor(node, demangler);
}
BuiltProtocolDecl createProtocolDecl(
const Demangle::NodePointer &node) const {
#if SWIFT_OBJC_INTEROP
// If we have an Objective-C protocol name, call into the Objective-C
// runtime to find them.
if (auto objcProtocolName = getObjCClassOrProtocolName(node)) {
return ProtocolDescriptorRef::forObjC(objc_getProtocol(
objcProtocolName->str().c_str()));
}
#endif
// Look for a protocol descriptor based on its mangled name.
std::string mangledName;
if (auto protocol = _findProtocolDescriptor(node, demangler, mangledName))
return ProtocolDescriptorRef::forSwift(protocol);;
#if SWIFT_OBJC_INTEROP
// Look for a Swift-defined @objc protocol with the Swift 3 mangling that
// is used for Objective-C entities.
std::string objcMangledName =
"_TtP" + mangledName.substr(0, mangledName.size()-1) + "_";
if (auto protocol = objc_getProtocol(objcMangledName.c_str()))
return ProtocolDescriptorRef::forObjC(protocol);
#endif
return ProtocolDescriptorRef();
}
BuiltType createNominalType(BuiltNominalTypeDecl metadataOrTypeDecl,
BuiltType parent) const {
// Treat nominal type creation the same way as generic type creation,
// but with no generic arguments at this level.
return createBoundGenericType(metadataOrTypeDecl, { }, parent);
}
BuiltType createBoundGenericType(BuiltNominalTypeDecl metadataOrTypeDecl,
const ArrayRef<BuiltType> genericArgs,
const BuiltType parent) const {
// If we already have metadata, return it.
if (auto metadata = metadataOrTypeDecl.dyn_cast<const Metadata *>())
return metadata;
auto typeDecl = metadataOrTypeDecl.get<const TypeContextDescriptor *>();
// Figure out the various levels of generic parameters we have in
// this type.
std::vector<unsigned> genericParamCounts;
(void)_gatherGenericParameterCounts(typeDecl, genericParamCounts);
unsigned numTotalGenericParams =
genericParamCounts.empty() ? 0 : genericParamCounts.back();
// Check whether we have the right number of generic arguments.
if (genericArgs.size() == getLocalGenericParams(typeDecl).size()) {
// Okay: genericArgs is the innermost set of generic arguments.
} else if (genericArgs.size() == numTotalGenericParams && !parent) {
// Okay: genericArgs is the complete set of generic arguments.
} else {
return BuiltType();
}
std::vector<const void *> allGenericArgsVec;
// If there are generic parameters at any level, check the generic
// requirements and fill in the generic arguments vector.
if (!genericParamCounts.empty()) {
// Compute the set of generic arguments "as written".
std::vector<const Metadata *> allGenericArgs;
// If we have a parent, gather it's generic arguments "as written".
if (parent) {
gatherWrittenGenericArgs(parent, parent->getTypeContextDescriptor(),
allGenericArgs);
}
// Add the generic arguments we were given.
allGenericArgs.insert(allGenericArgs.end(),
genericArgs.begin(), genericArgs.end());
// Copy the generic arguments needed for metadata from the generic
// arguments "as written".
auto genericContext = typeDecl->getGenericContext();
{
auto genericParams = genericContext->getGenericParams();
for (unsigned i = 0, n = genericParams.size(); i != n; ++i) {
const auto &param = genericParams[i];
if (param.getKind() != GenericParamKind::Type)
return BuiltType();
if (param.hasExtraArgument())
return BuiltType();
if (param.hasKeyArgument())
allGenericArgsVec.push_back(allGenericArgs[i]);
}
}
// If we have the wrong number of generic arguments, fail.
// Check whether the generic requirements are satisfied, collecting
// any extra arguments we need for the instantiation function.
SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs,
genericParamCounts);
bool failed =
_checkGenericRequirements(genericContext->getGenericRequirements(),
allGenericArgsVec, substitutions,
substitutions);
if (failed)
return BuiltType();
// If we still have the wrong number of generic arguments, this is
// some kind of metadata mismatch.
if (typeDecl->getGenericContextHeader().getNumArguments() !=
allGenericArgsVec.size())
return BuiltType();
}
// Call the access function.
auto accessFunction = typeDecl->getAccessFunction();
if (!accessFunction) return BuiltType();
return accessFunction(MetadataState::Abstract, allGenericArgsVec).Value;
}
BuiltType createBuiltinType(StringRef mangledName) const {
#define BUILTIN_TYPE(Symbol, _) \
if (mangledName.equals(#Symbol)) \
return &METADATA_SYM(Symbol).base;
#include "swift/Runtime/BuiltinTypes.def"
return BuiltType();
}
BuiltType createMetatypeType(BuiltType instance, bool wasAbstract) const {
return swift_getMetatypeMetadata(instance);
}
BuiltType createExistentialMetatypeType(BuiltType instance) const {
return swift_getExistentialMetatypeMetadata(instance);
}
BuiltType createProtocolCompositionType(ArrayRef<BuiltProtocolDecl> protocols,
BuiltType superclass,
bool isClassBound) const {
// Determine whether we have a class bound.
ProtocolClassConstraint classConstraint = ProtocolClassConstraint::Any;
if (isClassBound || superclass) {
classConstraint = ProtocolClassConstraint::Class;
} else {
for (auto protocol : protocols) {
if (protocol.getClassConstraint() == ProtocolClassConstraint::Class) {
classConstraint = ProtocolClassConstraint::Class;
break;
}
}
}
return swift_getExistentialTypeMetadata(classConstraint, superclass,
protocols.size(), protocols.data());
}
BuiltType createGenericTypeParameterType(unsigned depth,
unsigned index) const {
// Use the callback, when provided.
if (substGenericParameter)
return substGenericParameter(depth, index);
return BuiltType();
}
BuiltType createFunctionType(
ArrayRef<Demangle::FunctionParam<BuiltType>> params,
BuiltType result, FunctionTypeFlags flags) const {
std::vector<BuiltType> paramTypes;
std::vector<uint32_t> paramFlags;
// Fill in the parameters.
paramTypes.reserve(params.size());
if (flags.hasParameterFlags())
paramFlags.reserve(params.size());
for (const auto &param : params) {
paramTypes.push_back(param.getType());
if (flags.hasParameterFlags())
paramFlags.push_back(param.getFlags().getIntValue());
}
return swift_getFunctionTypeMetadata(flags, paramTypes.data(),
flags.hasParameterFlags()
? paramFlags.data()
: nullptr,
result);
}
BuiltType createTupleType(ArrayRef<BuiltType> elements,
std::string labels,
bool variadic) const {
// TODO: 'variadic' should no longer exist
auto flags = TupleTypeFlags().withNumElements(elements.size());
if (!labels.empty())
flags = flags.withNonConstantLabels(true);
return swift_getTupleTypeMetadata(MetadataState::Abstract,
flags, elements.data(),
labels.empty() ? nullptr : labels.c_str(),
/*proposedWitnesses=*/nullptr).Value;
}
BuiltType createDependentMemberType(StringRef name, BuiltType base,
BuiltProtocolDecl protocol) const {
#if SWIFT_OBJC_INTEROP
if (protocol.isObjC())
return BuiltType();
#endif
if (lookupDependentMember)
return lookupDependentMember(base, name, protocol.getSwiftProtocol());
return BuiltType();
}
#define REF_STORAGE(Name, ...) \
BuiltType create##Name##StorageType(BuiltType base) { \
ReferenceOwnership.set##Name(); \
return base; \
}
#include "swift/AST/ReferenceStorage.def"
BuiltType createSILBoxType(BuiltType base) const {
// FIXME: Implement.
return BuiltType();
}
TypeReferenceOwnership getReferenceOwnership() const {
return ReferenceOwnership;
}
};
}
TypeInfo
swift::_getTypeByMangledName(StringRef typeName,
SubstGenericParameterFn substGenericParam) {
auto demangler = getDemanglerForRuntimeTypeResolution();
NodePointer node;
// Check whether this is the convenience syntax "ModuleName.ClassName".
auto getDotPosForConvenienceSyntax = [&]() -> size_t {
size_t dotPos = typeName.find('.');
if (dotPos == llvm::StringRef::npos)
return llvm::StringRef::npos;
if (typeName.find('.', dotPos + 1) != llvm::StringRef::npos)
return llvm::StringRef::npos;
if (typeName.find('\1') != llvm::StringRef::npos)
return llvm::StringRef::npos;
return dotPos;
};
auto dotPos = getDotPosForConvenienceSyntax();
if (dotPos != llvm::StringRef::npos) {
// Form a demangle tree for this class.
NodePointer classNode = demangler.createNode(Node::Kind::Class);
NodePointer moduleNode = demangler.createNode(Node::Kind::Module,
typeName.substr(0, dotPos));
NodePointer nameNode = demangler.createNode(Node::Kind::Identifier,
typeName.substr(dotPos + 1));
classNode->addChild(moduleNode, demangler);
classNode->addChild(nameNode, demangler);
node = classNode;
} else {
// Demangle the type name.
node = demangler.demangleType(typeName);
if (!node)
return TypeInfo();
}
DecodedMetadataBuilder builder(demangler, substGenericParam,
[](const Metadata *base, StringRef assocType,
const ProtocolDescriptor *protocol) -> const Metadata * {
// Look for a conformance of the base type to the protocol.
auto witnessTable = swift_conformsToProtocol(base, protocol);
if (!witnessTable) return nullptr;
// Look for the named associated type within the protocol.
auto assocTypeReqIndex = findAssociatedTypeByName(protocol, assocType);
if (!assocTypeReqIndex) return nullptr;
// Call the associated type access function.
return ((AssociatedTypeAccessFunction * const *)witnessTable)[*assocTypeReqIndex]
(MetadataState::Abstract, base, witnessTable).Value;
});
auto type = Demangle::decodeMangledType(builder, node);
return {type, builder.getReferenceOwnership()};
}
static const Metadata * _Nullable
swift_getTypeByMangledNameImpl(const char *typeNameStart, size_t typeNameLength,
size_t numberOfLevels,
size_t *parametersPerLevel,
const Metadata * const *flatSubstitutions) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
auto metadata = _getTypeByMangledName(typeName,
[&](unsigned depth, unsigned index) -> const Metadata * {
if (depth >= numberOfLevels)
return nullptr;
if (index >= parametersPerLevel[depth])
return nullptr;
unsigned flatIndex = index;
for (unsigned i = 0; i < depth; ++i)
flatIndex += parametersPerLevel[i];
return flatSubstitutions[flatIndex];
});
if (!metadata) return nullptr;
return swift_checkMetadataState(MetadataState::Complete, metadata).Value;
}
unsigned SubstGenericParametersFromMetadata::
buildDescriptorPath(const ContextDescriptor *context) const {
// Terminating condition: we don't have a context.
if (!context)
return 0;
// Add the parent's contributino to the descriptor path.
unsigned numKeyGenericParamsInParent =
buildDescriptorPath(context->Parent.get());
// If this context is non-generic, we're done.
if (!context->isGeneric())
return numKeyGenericParamsInParent;
// Count the number of key generic params at this level.
unsigned numKeyGenericParamsHere = 0;
bool hasNonKeyGenericParams = false;
for (const auto &genericParam : getLocalGenericParams(context)) {
if (genericParam.hasKeyArgument())
++numKeyGenericParamsHere;
else
hasNonKeyGenericParams = true;
}
// Form the path element.
descriptorPath.push_back(PathElement{context, numKeyGenericParamsInParent,
numKeyGenericParamsHere,
hasNonKeyGenericParams});
return numKeyGenericParamsInParent + numKeyGenericParamsHere;
}
void SubstGenericParametersFromMetadata::setup() const {
if (!descriptorPath.empty() || !base)
return;
buildDescriptorPath(base->getTypeContextDescriptor());
}
const Metadata *
SubstGenericParametersFromMetadata::operator()(unsigned flatIndex) const {
// On first access, compute the descriptor path.
setup();
// Find the depth at which this parameter occurs.
unsigned depth = descriptorPath.size();
unsigned index = flatIndex;
for (const auto &pathElement : descriptorPath) {
// If the flat index is beyond the element at this position, we're done.
if (flatIndex >= pathElement.context->getNumGenericParams()) {
// Subtract off the number of parameters.
index -= pathElement.context->getNumGenericParams();
break;
}
--depth;
}
// Perform the access based on depth/index.
return (*this)(depth, index);
}
const Metadata *
SubstGenericParametersFromMetadata::operator()(
unsigned depth, unsigned index) const {
// On first access, compute the descriptor path.
setup();
// If the depth is too great, there is nothing to do.
if (depth >= descriptorPath.size())
return nullptr;
/// Retrieve the descriptor path element at this depth.
auto &pathElement = descriptorPath[depth];
auto currentContext = pathElement.context;
// Check whether the index is clearly out of bounds.
if (index >= currentContext->getNumGenericParams())
return nullptr;
// Compute the flat index.
unsigned flatIndex = pathElement.numKeyGenericParamsInParent;
if (pathElement.hasNonKeyGenericParams > 0) {
// We have non-key generic parameters at this level, so the index needs to
// be checked more carefully.
auto genericParams = getLocalGenericParams(currentContext);
// Make sure that the requested parameter itself has a key argument.
if (!genericParams[index].hasKeyArgument())
return nullptr;
// Increase the flat index for each parameter with a key argument, up to
// the given index.
for (const auto &genericParam : genericParams.slice(0, index)) {
if (genericParam.hasKeyArgument())
++flatIndex;
}
} else {
flatIndex += index;
}
return base->getGenericArgs()[flatIndex];
}
const Metadata *SubstGenericParametersFromWrittenArgs::operator()(
unsigned flatIndex) const {
if (flatIndex < allGenericArgs.size())
return allGenericArgs[flatIndex];
return nullptr;
}
const Metadata *SubstGenericParametersFromWrittenArgs::operator()(
unsigned depth,
unsigned index) const {
if (auto flatIndex =
_depthIndexToFlatIndex(depth, index, genericParamCounts)) {
if (*flatIndex < allGenericArgs.size())
return allGenericArgs[*flatIndex];
}
return nullptr;
}
void swift::gatherWrittenGenericArgs(
const Metadata *metadata,
const TypeContextDescriptor *description,
std::vector<const Metadata *> &allGenericArgs) {
auto generics = description->getGenericContext();
if (!generics)
return;
bool missingWrittenArguments = false;
auto genericArgs = description->getGenericArguments(metadata);
for (auto param : generics->getGenericParams()) {
switch (param.getKind()) {
case GenericParamKind::Type:
// The type should have a key argument unless it's been same-typed to
// another type.
if (param.hasKeyArgument()) {
auto genericArg = *genericArgs++;
allGenericArgs.push_back(genericArg);
} else {
// Leave a gap for us to fill in by looking at same type info.
allGenericArgs.push_back(nullptr);
missingWrittenArguments = true;
}
// We don't know about type parameters with extra arguments. Leave
// a hole for it.
if (param.hasExtraArgument()) {
allGenericArgs.push_back(nullptr);
++genericArgs;
}
break;
default:
// We don't know about this kind of parameter. Create placeholders where
// needed.
if (param.hasKeyArgument()) {
allGenericArgs.push_back(nullptr);
++genericArgs;
}
if (param.hasExtraArgument()) {
allGenericArgs.push_back(nullptr);
++genericArgs;
}
break;
}
}
// If there is no follow-up work to do, we're done.
if (!missingWrittenArguments)
return;
// We have generic arguments that would be written, but have been
// canonicalized away. Use same-type requirements to reconstitute them.
// Retrieve the mapping information needed for depth/index -> flat index.
std::vector<unsigned> genericParamCounts;
(void)_gatherGenericParameterCounts(description, genericParamCounts);
// Walk through the generic requirements to evaluate same-type
// constraints that are needed to fill in missing generic arguments.
for (const auto &req : generics->getGenericRequirements()) {
// We only care about same-type constraints.
if (req.Flags.getKind() != GenericRequirementKind::SameType)
continue;
// Where the left-hand side is a generic parameter.
if (req.Param.begin() != req.Param.end())
continue;
// If we don't yet have an argument for this parameter, it's a
// same-type-to-concrete constraint.
unsigned lhsFlatIndex = req.Param.getRootParamIndex();
if (lhsFlatIndex >= allGenericArgs.size())
continue;
if (!allGenericArgs[lhsFlatIndex]) {
// Substitute into the right-hand side.
SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs,
genericParamCounts);
allGenericArgs[lhsFlatIndex] =
_getTypeByMangledName(req.getMangledTypeName(), substitutions);
continue;
}
// If we do have an argument for this parameter, it might be that
// the right-hand side is itself a generic parameter, which means
// we have a same-type constraint A == B where A is already filled in.
Demangler demangler;
NodePointer node = demangler.demangleType(req.getMangledTypeName());
if (!node)
continue;
// Find the flat index that the right-hand side refers to.
if (node->getKind() == Demangle::Node::Kind::Type)
node = node->getChild(0);
if (node->getKind() != Demangle::Node::Kind::DependentGenericParamType)
continue;
auto rhsFlatIndex =
_depthIndexToFlatIndex(node->getChild(0)->getIndex(),
node->getChild(1)->getIndex(),
genericParamCounts);
if (!rhsFlatIndex || *rhsFlatIndex >= allGenericArgs.size())
continue;
if (allGenericArgs[*rhsFlatIndex] || !allGenericArgs[lhsFlatIndex])
continue;
allGenericArgs[*rhsFlatIndex] = allGenericArgs[lhsFlatIndex];
}
}
#define OVERRIDE_METADATALOOKUP COMPATIBILITY_OVERRIDE
#include "CompatibilityOverride.def"