mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
This is kind of complicated, because an enum can be trivial for one case and not trivial for another case. We need to check at which parts of the function we can prove that the enum does (or could) have a trivial case. In such a branch, it's not required in SIL to destroy the enum location. Also, document the rules and requirements for enum memory locations in SIL.rst. rdar://73770085
856 lines
33 KiB
C++
856 lines
33 KiB
C++
//===--- ResultPlan.cpp ---------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ResultPlan.h"
|
|
#include "Callee.h"
|
|
#include "Conversion.h"
|
|
#include "Initialization.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
#include "SILGenFunction.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Result Plans
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// A result plan for evaluating an indirect result into the address
|
|
/// associated with an initialization.
|
|
class InPlaceInitializationResultPlan final : public ResultPlan {
|
|
Initialization *init;
|
|
|
|
public:
|
|
InPlaceInitializationResultPlan(Initialization *init) : init(init) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
init->finishInitialization(SGF);
|
|
return RValue::forInContext();
|
|
}
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
outList.emplace_back(init->getAddressForInPlaceInitialization(SGF, loc));
|
|
}
|
|
};
|
|
|
|
/// A cleanup that handles the delayed emission of an indirect buffer for opened
|
|
/// Self arguments.
|
|
class IndirectOpenedSelfCleanup final : public Cleanup {
|
|
SILValue box;
|
|
public:
|
|
IndirectOpenedSelfCleanup()
|
|
: box()
|
|
{}
|
|
|
|
void setBox(SILValue b) {
|
|
assert(!box && "buffer already set?!");
|
|
box = b;
|
|
}
|
|
|
|
void emit(SILGenFunction &SGF, CleanupLocation loc, ForUnwind_t forUnwind)
|
|
override {
|
|
assert(box && "buffer never emitted before activating cleanup?!");
|
|
SGF.B.createDeallocBox(loc, box);
|
|
}
|
|
|
|
void dump(SILGenFunction &SGF) const override {
|
|
llvm::errs() << "IndirectOpenedSelfCleanup\n";
|
|
if (box)
|
|
box->print(llvm::errs());
|
|
}
|
|
};
|
|
|
|
/// Map a type expressed in terms of opened archetypes into a context-free
|
|
/// dependent type, returning the type, a generic signature with parameters
|
|
/// corresponding to each opened type,
|
|
static std::tuple<CanType, CanGenericSignature, SubstitutionMap>
|
|
mapTypeOutOfOpenedExistentialContext(CanType t) {
|
|
SmallVector<OpenedArchetypeType *, 4> openedTypes;
|
|
t->getOpenedExistentials(openedTypes);
|
|
|
|
ArrayRef<Type> openedTypesAsTypes(
|
|
reinterpret_cast<const Type *>(openedTypes.data()),
|
|
openedTypes.size());
|
|
|
|
SmallVector<GenericTypeParamType *, 4> params;
|
|
for (unsigned i : indices(openedTypes)) {
|
|
params.push_back(GenericTypeParamType::get(0, i, t->getASTContext()));
|
|
}
|
|
|
|
auto mappedSig = GenericSignature::get(params, {});
|
|
auto mappedSubs = SubstitutionMap::get(mappedSig, openedTypesAsTypes, {});
|
|
|
|
auto mappedTy = t.subst(
|
|
[&](SubstitutableType *t) -> Type {
|
|
auto index = std::find(openedTypes.begin(), openedTypes.end(), t)
|
|
- openedTypes.begin();
|
|
assert(index != openedTypes.end() - openedTypes.begin());
|
|
return params[index];
|
|
},
|
|
MakeAbstractConformanceForGenericType());
|
|
|
|
return std::make_tuple(mappedTy->getCanonicalType(mappedSig),
|
|
mappedSig.getCanonicalSignature(), mappedSubs);
|
|
}
|
|
|
|
/// A result plan for an indirectly-returned opened existential value.
|
|
///
|
|
/// This defers allocating the temporary for the result to a later point so that
|
|
/// it happens after the arguments are evaluated.
|
|
class IndirectOpenedSelfResultPlan final : public ResultPlan {
|
|
AbstractionPattern origType;
|
|
CanType substType;
|
|
CleanupHandle handle = CleanupHandle::invalid();
|
|
mutable SILValue resultBox, resultBuf;
|
|
|
|
public:
|
|
IndirectOpenedSelfResultPlan(SILGenFunction &SGF,
|
|
AbstractionPattern origType,
|
|
CanType substType)
|
|
: origType(origType), substType(substType)
|
|
{
|
|
// Create a cleanup to deallocate the stack buffer at the proper scope.
|
|
// We won't emit the buffer till later, after arguments have been opened,
|
|
// though.
|
|
SGF.Cleanups.pushCleanupInState<IndirectOpenedSelfCleanup>(
|
|
CleanupState::Dormant);
|
|
handle = SGF.Cleanups.getCleanupsDepth();
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
assert(!resultBox && "already created temporary?!");
|
|
|
|
// We allocate the buffer as a box because the scope nesting won't clean
|
|
// this up with good stack discipline relative to any stack allocations that
|
|
// occur during argument emission. Escape analysis during mandatory passes
|
|
// ought to clean this up.
|
|
|
|
auto resultTy = SGF.getLoweredType(origType, substType).getASTType();
|
|
CanType layoutTy;
|
|
CanGenericSignature layoutSig;
|
|
SubstitutionMap layoutSubs;
|
|
std::tie(layoutTy, layoutSig, layoutSubs)
|
|
= mapTypeOutOfOpenedExistentialContext(resultTy);
|
|
|
|
auto boxLayout =
|
|
SILLayout::get(SGF.getASTContext(), layoutSig.getCanonicalSignature(),
|
|
SILField(layoutTy->getCanonicalType(layoutSig), true));
|
|
|
|
resultBox = SGF.B.createAllocBox(loc,
|
|
SILBoxType::get(SGF.getASTContext(),
|
|
boxLayout,
|
|
layoutSubs));
|
|
|
|
// Complete the cleanup to deallocate this buffer later, after we're
|
|
// finished with the argument.
|
|
static_cast<IndirectOpenedSelfCleanup&>(SGF.Cleanups.getCleanup(handle))
|
|
.setBox(resultBox);
|
|
SGF.Cleanups.setCleanupState(handle, CleanupState::Active);
|
|
|
|
resultBuf = SGF.B.createProjectBox(loc, resultBox, 0);
|
|
outList.emplace_back(resultBuf);
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
assert(resultBox && "never emitted temporary?!");
|
|
|
|
// Lower the unabstracted result type.
|
|
auto &substTL = SGF.getTypeLowering(substType);
|
|
|
|
ManagedValue value;
|
|
// If the value isn't address-only, go ahead and load.
|
|
if (!substTL.isAddressOnly()) {
|
|
auto load = substTL.emitLoad(SGF.B, loc, resultBuf,
|
|
LoadOwnershipQualifier::Take);
|
|
value = SGF.emitManagedRValueWithCleanup(load);
|
|
} else {
|
|
value = SGF.emitManagedRValueWithCleanup(resultBuf);
|
|
}
|
|
|
|
// A Self return should never be further abstracted. It's also never emitted
|
|
// into context; we disable that optimization because Self may not even
|
|
// be available to pre-allocate a stack buffer before we prepare a call.
|
|
return RValue(SGF, loc, substType, value);
|
|
}
|
|
};
|
|
|
|
/// A result plan for working with a single value and potentially
|
|
/// reabstracting it. The value can actually be a tuple if the
|
|
/// abstraction is opaque.
|
|
class ScalarResultPlan final : public ResultPlan {
|
|
std::unique_ptr<TemporaryInitialization> temporary;
|
|
AbstractionPattern origType;
|
|
Initialization *init;
|
|
SILFunctionTypeRepresentation rep;
|
|
|
|
public:
|
|
ScalarResultPlan(std::unique_ptr<TemporaryInitialization> &&temporary,
|
|
AbstractionPattern origType, Initialization *init,
|
|
SILFunctionTypeRepresentation rep)
|
|
: temporary(std::move(temporary)), origType(origType), init(init),
|
|
rep(rep) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
// Lower the unabstracted result type.
|
|
auto &substTL = SGF.getTypeLowering(substType);
|
|
|
|
// Claim the value:
|
|
ManagedValue value;
|
|
|
|
// If we were created with a temporary, that address was passed as
|
|
// an indirect result.
|
|
if (temporary) {
|
|
// Establish the cleanup.
|
|
temporary->finishInitialization(SGF);
|
|
value = temporary->getManagedAddress();
|
|
|
|
// If the value isn't address-only, go ahead and load.
|
|
if (!substTL.isAddressOnly()) {
|
|
auto load = substTL.emitLoad(SGF.B, loc, value.forward(SGF),
|
|
LoadOwnershipQualifier::Take);
|
|
value = SGF.emitManagedRValueWithCleanup(load);
|
|
}
|
|
|
|
// Otherwise, it was returned as a direct result.
|
|
} else {
|
|
value = directResults.front();
|
|
directResults = directResults.slice(1);
|
|
}
|
|
|
|
// Reabstract the value if the types don't match. This can happen
|
|
// due to either substitution reabstractions or bridging.
|
|
SILType loweredResultTy = substTL.getLoweredType();
|
|
if (value.getType().hasAbstractionDifference(rep, loweredResultTy)) {
|
|
Conversion conversion = [&] {
|
|
// Assume that a C-language API doesn't have substitution
|
|
// reabstractions. This shouldn't be necessary, but
|
|
// emitOrigToSubstValue can get upset.
|
|
if (getSILFunctionLanguage(rep) == SILFunctionLanguage::C) {
|
|
return Conversion::getBridging(Conversion::BridgeResultFromObjC,
|
|
origType.getType(), substType,
|
|
loweredResultTy);
|
|
} else {
|
|
return Conversion::getOrigToSubst(origType, substType,
|
|
loweredResultTy);
|
|
}
|
|
}();
|
|
|
|
// Attempt to peephole this conversion into the context.
|
|
if (init) {
|
|
if (auto outerConversion = init->getAsConversion()) {
|
|
if (outerConversion->tryPeephole(SGF, loc, value, conversion)) {
|
|
outerConversion->finishInitialization(SGF);
|
|
return RValue::forInContext();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If that wasn't possible, just apply the conversion.
|
|
value = conversion.emit(SGF, loc, value, SGFContext(init));
|
|
|
|
// If that successfully emitted into the initialization, we're done.
|
|
if (value.isInContext()) {
|
|
return RValue::forInContext();
|
|
}
|
|
}
|
|
|
|
// Otherwise, forcibly emit into the initialization if it exists.
|
|
if (init) {
|
|
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
|
|
init->finishInitialization(SGF);
|
|
return RValue::forInContext();
|
|
|
|
// Otherwise, we've got the r-value we want.
|
|
} else {
|
|
return RValue(SGF, loc, substType, value);
|
|
}
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
if (!temporary)
|
|
return;
|
|
outList.emplace_back(temporary->getAddress());
|
|
}
|
|
};
|
|
|
|
/// A result plan which calls copyOrInitValueInto on an Initialization
|
|
/// using a temporary buffer initialized by a sub-plan.
|
|
class InitValueFromTemporaryResultPlan final : public ResultPlan {
|
|
Initialization *init;
|
|
ResultPlanPtr subPlan;
|
|
std::unique_ptr<TemporaryInitialization> temporary;
|
|
|
|
public:
|
|
InitValueFromTemporaryResultPlan(
|
|
Initialization *init, ResultPlanPtr &&subPlan,
|
|
std::unique_ptr<TemporaryInitialization> &&temporary)
|
|
: init(init), subPlan(std::move(subPlan)),
|
|
temporary(std::move(temporary)) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
RValue subResult = subPlan->finish(SGF, loc, substType, directResults);
|
|
assert(subResult.isInContext() && "sub-plan didn't emit into context?");
|
|
(void)subResult;
|
|
|
|
ManagedValue value = temporary->getManagedAddress();
|
|
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
|
|
init->finishInitialization(SGF);
|
|
|
|
return RValue::forInContext();
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
};
|
|
|
|
/// A result plan which calls copyOrInitValueInto using the result of
|
|
/// a sub-plan.
|
|
class InitValueFromRValueResultPlan final : public ResultPlan {
|
|
Initialization *init;
|
|
ResultPlanPtr subPlan;
|
|
|
|
public:
|
|
InitValueFromRValueResultPlan(Initialization *init, ResultPlanPtr &&subPlan)
|
|
: init(init), subPlan(std::move(subPlan)) {}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
RValue subResult = subPlan->finish(SGF, loc, substType, directResults);
|
|
ManagedValue value = std::move(subResult).getAsSingleValue(SGF, loc);
|
|
|
|
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
|
|
init->finishInitialization(SGF);
|
|
|
|
return RValue::forInContext();
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
};
|
|
|
|
/// A result plan which produces a larger RValue from a bunch of
|
|
/// components.
|
|
class TupleRValueResultPlan final : public ResultPlan {
|
|
SmallVector<ResultPlanPtr, 4> eltPlans;
|
|
|
|
public:
|
|
TupleRValueResultPlan(ResultPlanBuilder &builder, AbstractionPattern origType,
|
|
CanTupleType substType) {
|
|
// Create plans for all the elements.
|
|
eltPlans.reserve(substType->getNumElements());
|
|
for (auto i : indices(substType->getElementTypes())) {
|
|
AbstractionPattern origEltType = origType.getTupleElementType(i);
|
|
CanType substEltType = substType.getElementType(i);
|
|
eltPlans.push_back(builder.build(nullptr, origEltType, substEltType));
|
|
}
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
RValue tupleRV(substType);
|
|
|
|
// Finish all the component tuples.
|
|
auto substTupleType = cast<TupleType>(substType);
|
|
assert(substTupleType.getElementTypes().size() == eltPlans.size());
|
|
for (auto i : indices(substTupleType.getElementTypes())) {
|
|
RValue eltRV = eltPlans[i]->finish(
|
|
SGF, loc, substTupleType.getElementType(i), directResults);
|
|
tupleRV.addElement(std::move(eltRV));
|
|
}
|
|
|
|
return tupleRV;
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
for (const auto &eltPlan : eltPlans) {
|
|
eltPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A result plan which evaluates into the sub-components
|
|
/// of a splittable tuple initialization.
|
|
class TupleInitializationResultPlan final : public ResultPlan {
|
|
Initialization *tupleInit;
|
|
SmallVector<InitializationPtr, 4> eltInitsBuffer;
|
|
MutableArrayRef<InitializationPtr> eltInits;
|
|
SmallVector<ResultPlanPtr, 4> eltPlans;
|
|
|
|
public:
|
|
TupleInitializationResultPlan(ResultPlanBuilder &builder,
|
|
Initialization *tupleInit,
|
|
AbstractionPattern origType,
|
|
CanTupleType substType)
|
|
: tupleInit(tupleInit) {
|
|
|
|
// Get the sub-initializations.
|
|
eltInits = tupleInit->splitIntoTupleElements(builder.SGF, builder.loc,
|
|
substType, eltInitsBuffer);
|
|
|
|
// Create plans for all the sub-initializations.
|
|
eltPlans.reserve(substType->getNumElements());
|
|
for (auto i : indices(substType->getElementTypes())) {
|
|
AbstractionPattern origEltType = origType.getTupleElementType(i);
|
|
CanType substEltType = substType.getElementType(i);
|
|
Initialization *eltInit = eltInits[i].get();
|
|
eltPlans.push_back(builder.build(eltInit, origEltType, substEltType));
|
|
}
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
auto substTupleType = cast<TupleType>(substType);
|
|
assert(substTupleType.getElementTypes().size() == eltPlans.size());
|
|
for (auto i : indices(substTupleType.getElementTypes())) {
|
|
auto eltType = substTupleType.getElementType(i);
|
|
RValue eltRV = eltPlans[i]->finish(SGF, loc, eltType, directResults);
|
|
assert(eltRV.isInContext());
|
|
(void)eltRV;
|
|
}
|
|
tupleInit->finishInitialization(SGF);
|
|
|
|
return RValue::forInContext();
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
for (const auto &eltPlan : eltPlans) {
|
|
eltPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ForeignAsyncInitializationPlan final : public ResultPlan {
|
|
SILLocation loc;
|
|
CalleeTypeInfo calleeTypeInfo;
|
|
SILType opaqueResumeType;
|
|
SILValue resumeBuf;
|
|
SILValue continuation;
|
|
|
|
public:
|
|
ForeignAsyncInitializationPlan(SILGenFunction &SGF, SILLocation loc,
|
|
const CalleeTypeInfo &calleeTypeInfo)
|
|
: loc(loc), calleeTypeInfo(calleeTypeInfo)
|
|
{
|
|
// Allocate space to receive the resume value when the continuation is
|
|
// resumed.
|
|
opaqueResumeType = SGF.getLoweredType(AbstractionPattern::getOpaque(),
|
|
calleeTypeInfo.substResultType);
|
|
resumeBuf = SGF.emitTemporaryAllocation(loc, opaqueResumeType);
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
// A foreign async function shouldn't have any indirect results.
|
|
}
|
|
|
|
ManagedValue
|
|
emitForeignAsyncCompletionHandler(SILGenFunction &SGF, SILLocation loc)
|
|
override {
|
|
// Get the current continuation for the task.
|
|
bool throws = calleeTypeInfo.foreign.async
|
|
->completionHandlerErrorParamIndex().hasValue();
|
|
|
|
continuation = SGF.B.createGetAsyncContinuationAddr(loc, resumeBuf,
|
|
calleeTypeInfo.substResultType, throws);
|
|
|
|
// Wrap the Builtin.RawUnsafeContinuation in an
|
|
// UnsafeContinuation<T, E>.
|
|
auto continuationDecl = SGF.getASTContext().getUnsafeContinuationDecl();
|
|
|
|
auto errorTy = throws
|
|
? SGF.getASTContext().getExceptionType()
|
|
: SGF.getASTContext().getNeverType();
|
|
auto continuationTy = BoundGenericType::get(continuationDecl, Type(),
|
|
{ calleeTypeInfo.substResultType, errorTy })
|
|
->getCanonicalType();
|
|
auto wrappedContinuation =
|
|
SGF.B.createStruct(loc,
|
|
SILType::getPrimitiveObjectType(continuationTy),
|
|
{continuation});
|
|
|
|
// Stash it in a buffer for a block object.
|
|
auto blockStorageTy = SILType::getPrimitiveAddressType(
|
|
SILBlockStorageType::get(continuationTy));
|
|
auto blockStorage = SGF.emitTemporaryAllocation(loc, blockStorageTy);
|
|
auto continuationAddr = SGF.B.createProjectBlockStorage(loc, blockStorage);
|
|
SGF.B.createStore(loc, wrappedContinuation, continuationAddr,
|
|
StoreOwnershipQualifier::Trivial);
|
|
|
|
// Get the block invocation function for the given completion block type.
|
|
auto completionHandlerIndex = calleeTypeInfo.foreign.async
|
|
->completionHandlerParamIndex();
|
|
auto impTy = SGF.getSILType(calleeTypeInfo.substFnType
|
|
->getParameters()[completionHandlerIndex],
|
|
calleeTypeInfo.substFnType);
|
|
bool handlerIsOptional;
|
|
CanSILFunctionType impFnTy;
|
|
if (auto impObjTy = impTy.getOptionalObjectType()) {
|
|
handlerIsOptional = true;
|
|
impFnTy = cast<SILFunctionType>(impObjTy.getASTType());
|
|
} else {
|
|
handlerIsOptional = false;
|
|
impFnTy = cast<SILFunctionType>(impTy.getASTType());
|
|
}
|
|
auto env = SGF.F.getGenericEnvironment();
|
|
auto sig = env ? env->getGenericSignature()->getCanonicalSignature()
|
|
: CanGenericSignature();
|
|
SILFunction *impl = SGF.SGM
|
|
.getOrCreateForeignAsyncCompletionHandlerImplFunction(
|
|
cast<SILFunctionType>(impFnTy->mapTypeOutOfContext()
|
|
->getCanonicalType(sig)),
|
|
continuationTy->mapTypeOutOfContext()->getCanonicalType(sig),
|
|
sig,
|
|
*calleeTypeInfo.foreign.async);
|
|
auto impRef = SGF.B.createFunctionRef(loc, impl);
|
|
|
|
// Initialize the block object for the completion handler.
|
|
SILValue block = SGF.B.createInitBlockStorageHeader(loc, blockStorage,
|
|
impRef, SILType::getPrimitiveObjectType(impFnTy),
|
|
SGF.getForwardingSubstitutionMap());
|
|
|
|
// Wrap it in optional if the callee expects it.
|
|
if (handlerIsOptional) {
|
|
block = SGF.B.createOptionalSome(loc, block, impTy);
|
|
}
|
|
|
|
// We don't need to manage the block because it's still on the stack. We
|
|
// know we won't escape it locally so the callee can be responsible for
|
|
// _Block_copy-ing it.
|
|
return ManagedValue::forUnmanaged(block);
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
// There should be no direct results from the call.
|
|
assert(directResults.empty());
|
|
|
|
// Await the continuation we handed off to the completion handler.
|
|
SILBasicBlock *resumeBlock = SGF.createBasicBlock();
|
|
SILBasicBlock *errorBlock = nullptr;
|
|
auto errorParamIndex = calleeTypeInfo.foreign.async->completionHandlerErrorParamIndex();
|
|
if (errorParamIndex) {
|
|
errorBlock = SGF.createBasicBlock(FunctionSection::Postmatter);
|
|
}
|
|
|
|
SGF.B.createAwaitAsyncContinuation(loc, continuation, resumeBlock, errorBlock);
|
|
|
|
// Propagate an error if we have one.
|
|
if (errorBlock) {
|
|
SGF.B.emitBlock(errorBlock);
|
|
|
|
Scope errorScope(SGF, loc);
|
|
|
|
auto errorTy = SGF.getASTContext().getErrorDecl()->getDeclaredType()
|
|
->getCanonicalType();
|
|
auto errorVal
|
|
= SGF.B.createOwnedPhiArgument(SILType::getPrimitiveObjectType(errorTy));
|
|
|
|
SGF.emitThrow(loc, errorVal, true);
|
|
}
|
|
|
|
SGF.B.emitBlock(resumeBlock);
|
|
|
|
// The incoming value is the maximally-abstracted result type of the
|
|
// continuation. Move it out of the resume buffer and reabstract it if
|
|
// necessary.
|
|
auto resumeResult = SGF.emitLoad(loc, resumeBuf,
|
|
calleeTypeInfo.origResultType
|
|
? *calleeTypeInfo.origResultType
|
|
: AbstractionPattern(calleeTypeInfo.substResultType),
|
|
calleeTypeInfo.substResultType,
|
|
SGF.getTypeLowering(calleeTypeInfo.substResultType),
|
|
SGFContext(), IsTake);
|
|
|
|
return RValue(SGF, loc, calleeTypeInfo.substResultType, resumeResult);
|
|
}
|
|
};
|
|
|
|
class ForeignErrorInitializationPlan final : public ResultPlan {
|
|
SILLocation loc;
|
|
LValue lvalue;
|
|
ResultPlanPtr subPlan;
|
|
ManagedValue managedErrorTemp;
|
|
CanType unwrappedPtrType;
|
|
PointerTypeKind ptrKind;
|
|
bool isOptional;
|
|
CanType errorPtrType;
|
|
|
|
public:
|
|
ForeignErrorInitializationPlan(SILGenFunction &SGF, SILLocation loc,
|
|
const CalleeTypeInfo &calleeTypeInfo,
|
|
ResultPlanPtr &&subPlan)
|
|
: loc(loc), subPlan(std::move(subPlan)) {
|
|
unsigned errorParamIndex =
|
|
calleeTypeInfo.foreign.error->getErrorParameterIndex();
|
|
auto substFnType = calleeTypeInfo.substFnType;
|
|
SILParameterInfo errorParameter =
|
|
substFnType->getParameters()[errorParamIndex];
|
|
// We assume that there's no interesting reabstraction here beyond a layer
|
|
// of optional.
|
|
errorPtrType = errorParameter.getArgumentType(
|
|
SGF.SGM.M, substFnType, SGF.getTypeExpansionContext());
|
|
unwrappedPtrType = errorPtrType;
|
|
Type unwrapped = errorPtrType->getOptionalObjectType();
|
|
isOptional = (bool) unwrapped;
|
|
|
|
if (unwrapped)
|
|
unwrappedPtrType = unwrapped->getCanonicalType();
|
|
|
|
auto errorType =
|
|
CanType(unwrappedPtrType->getAnyPointerElementType(ptrKind));
|
|
auto &errorTL = SGF.getTypeLowering(errorType);
|
|
|
|
// Allocate a temporary.
|
|
// It's flagged with "hasDynamicLifetime" because it's not possible to
|
|
// statically verify the lifetime of the value.
|
|
SILValue errorTemp =
|
|
SGF.emitTemporaryAllocation(loc, errorTL.getLoweredType(),
|
|
/*hasDynamicLifetime*/ true);
|
|
|
|
// Nil-initialize it.
|
|
SGF.emitInjectOptionalNothingInto(loc, errorTemp, errorTL);
|
|
|
|
// Enter a cleanup to destroy the value there.
|
|
managedErrorTemp = SGF.emitManagedBufferWithCleanup(errorTemp, errorTL);
|
|
|
|
// Create the appropriate pointer type.
|
|
lvalue = LValue::forAddress(SGFAccessKind::ReadWrite,
|
|
ManagedValue::forLValue(errorTemp),
|
|
/*TODO: enforcement*/ None,
|
|
AbstractionPattern(errorType), errorType);
|
|
}
|
|
|
|
RValue finish(SILGenFunction &SGF, SILLocation loc, CanType substType,
|
|
ArrayRef<ManagedValue> &directResults) override {
|
|
return subPlan->finish(SGF, loc, substType, directResults);
|
|
}
|
|
|
|
void
|
|
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
|
|
SmallVectorImpl<SILValue> &outList) const override {
|
|
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
|
|
}
|
|
|
|
Optional<std::pair<ManagedValue, ManagedValue>>
|
|
emitForeignErrorArgument(SILGenFunction &SGF, SILLocation loc) override {
|
|
SILGenFunction::PointerAccessInfo pointerInfo = {
|
|
unwrappedPtrType, ptrKind, SGFAccessKind::ReadWrite
|
|
};
|
|
auto pointerValue =
|
|
SGF.emitLValueToPointer(loc, std::move(lvalue), pointerInfo);
|
|
|
|
// Wrap up in an Optional if called for.
|
|
if (isOptional) {
|
|
auto &optTL = SGF.getTypeLowering(errorPtrType);
|
|
pointerValue = SGF.getOptionalSomeValue(loc, pointerValue, optTL);
|
|
}
|
|
|
|
return std::make_pair(managedErrorTemp, pointerValue);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Result Plan Builder
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Build a result plan for the results of an apply.
|
|
///
|
|
/// If the initialization is non-null, the result plan will emit into it.
|
|
ResultPlanPtr ResultPlanBuilder::buildTopLevelResult(Initialization *init,
|
|
SILLocation loc) {
|
|
// First check if we have a foreign error and/or async convention.
|
|
if (auto foreignAsync = calleeTypeInfo.foreign.async) {
|
|
// Create a result plan that gets the result schema from the completion
|
|
// handler callback's arguments.
|
|
// completion handler.
|
|
return ResultPlanPtr(new ForeignAsyncInitializationPlan(SGF, loc, calleeTypeInfo));
|
|
} else if (auto foreignError = calleeTypeInfo.foreign.error) {
|
|
// Handle the foreign error first.
|
|
//
|
|
// The plan needs to be built using the formal result type after foreign-error
|
|
// adjustment.
|
|
switch (foreignError->getKind()) {
|
|
// These conventions make the formal result type ().
|
|
case ForeignErrorConvention::ZeroResult:
|
|
case ForeignErrorConvention::NonZeroResult:
|
|
assert(calleeTypeInfo.substResultType->isVoid());
|
|
allResults.clear();
|
|
break;
|
|
|
|
// These conventions leave the formal result alone.
|
|
case ForeignErrorConvention::ZeroPreservedResult:
|
|
case ForeignErrorConvention::NonNilError:
|
|
break;
|
|
|
|
// This convention changes the formal result to the optional object type; we
|
|
// need to make our own make SILResultInfo array.
|
|
case ForeignErrorConvention::NilResult: {
|
|
assert(allResults.size() == 1);
|
|
auto substFnTy = calleeTypeInfo.substFnType;
|
|
CanType objectType = allResults[0]
|
|
.getReturnValueType(SGF.SGM.M, substFnTy,
|
|
SGF.getTypeExpansionContext())
|
|
.getOptionalObjectType();
|
|
SILResultInfo optResult = allResults[0].getWithInterfaceType(objectType);
|
|
allResults.clear();
|
|
allResults.push_back(optResult);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ResultPlanPtr subPlan = build(init, calleeTypeInfo.origResultType.getValue(),
|
|
calleeTypeInfo.substResultType);
|
|
return ResultPlanPtr(new ForeignErrorInitializationPlan(
|
|
SGF, loc, calleeTypeInfo, std::move(subPlan)));
|
|
} else {
|
|
// Otherwise, we can just call build.
|
|
return build(init, calleeTypeInfo.origResultType.getValue(),
|
|
calleeTypeInfo.substResultType);
|
|
}
|
|
}
|
|
|
|
/// Build a result plan for the results of an apply.
|
|
///
|
|
/// If the initialization is non-null, the result plan will emit into it.
|
|
ResultPlanPtr ResultPlanBuilder::build(Initialization *init,
|
|
AbstractionPattern origType,
|
|
CanType substType) {
|
|
// Destructure original tuples.
|
|
if (origType.isTuple()) {
|
|
return buildForTuple(init, origType, cast<TupleType>(substType));
|
|
}
|
|
|
|
// Otherwise, grab the next result.
|
|
auto result = allResults.pop_back_val();
|
|
|
|
auto calleeTy = calleeTypeInfo.substFnType;
|
|
|
|
// If the result is indirect, and we have an address to emit into, and
|
|
// there are no abstraction differences, then just do it.
|
|
if (init && init->canPerformInPlaceInitialization() &&
|
|
SGF.silConv.isSILIndirect(result) &&
|
|
!SGF.getLoweredType(substType).getAddressType().hasAbstractionDifference(
|
|
calleeTypeInfo.getOverrideRep(),
|
|
result.getSILStorageType(SGF.SGM.M, calleeTy,
|
|
SGF.getTypeExpansionContext()))) {
|
|
return ResultPlanPtr(new InPlaceInitializationResultPlan(init));
|
|
}
|
|
|
|
// Otherwise, we need to:
|
|
// - get the value, either directly or indirectly
|
|
// - possibly reabstract it
|
|
// - store it to the destination
|
|
// We could break this down into different ResultPlan implementations,
|
|
// but it's easier not to.
|
|
|
|
// If the result type involves an indirectly-returned opened existential,
|
|
// then we need to evaluate the arguments first in order to have access to
|
|
// the opened Self type. A special result plan defers allocating the stack
|
|
// slot to the point the call is emitted.
|
|
if (result
|
|
.getReturnValueType(SGF.SGM.M, calleeTy,
|
|
SGF.getTypeExpansionContext())
|
|
->hasOpenedExistential() &&
|
|
SGF.silConv.isSILIndirect(result)) {
|
|
return ResultPlanPtr(
|
|
new IndirectOpenedSelfResultPlan(SGF, origType, substType));
|
|
}
|
|
|
|
// Create a temporary if the result is indirect.
|
|
std::unique_ptr<TemporaryInitialization> temporary;
|
|
if (SGF.silConv.isSILIndirect(result)) {
|
|
auto &resultTL = SGF.getTypeLowering(result.getReturnValueType(
|
|
SGF.SGM.M, calleeTy, SGF.getTypeExpansionContext()));
|
|
temporary = SGF.emitTemporary(loc, resultTL);
|
|
}
|
|
|
|
return ResultPlanPtr(new ScalarResultPlan(
|
|
std::move(temporary), origType, init, calleeTypeInfo.getOverrideRep()));
|
|
}
|
|
|
|
ResultPlanPtr ResultPlanBuilder::buildForTuple(Initialization *init,
|
|
AbstractionPattern origType,
|
|
CanTupleType substType) {
|
|
// If we don't have an initialization for the tuple, just build the
|
|
// individual components.
|
|
if (!init) {
|
|
return ResultPlanPtr(new TupleRValueResultPlan(*this, origType, substType));
|
|
}
|
|
|
|
// Okay, we have an initialization for the tuple that we need to emit into.
|
|
|
|
// If we can just split the initialization, do so.
|
|
if (init->canSplitIntoTupleElements()) {
|
|
return ResultPlanPtr(
|
|
new TupleInitializationResultPlan(*this, init, origType, substType));
|
|
}
|
|
|
|
// Otherwise, we're going to have to call copyOrInitValueInto, which only
|
|
// takes a single value.
|
|
|
|
// If the tuple is address-only, we'll get much better code if we
|
|
// emit into a single buffer.
|
|
auto &substTL = SGF.getTypeLowering(substType);
|
|
if (substTL.isAddressOnly()) {
|
|
// Create a temporary.
|
|
auto temporary = SGF.emitTemporary(loc, substTL);
|
|
|
|
// Build a sub-plan to emit into the temporary.
|
|
auto subplan = buildForTuple(temporary.get(), origType, substType);
|
|
|
|
// Make a plan to initialize into that.
|
|
return ResultPlanPtr(new InitValueFromTemporaryResultPlan(
|
|
init, std::move(subplan), std::move(temporary)));
|
|
}
|
|
|
|
// Build a sub-plan that doesn't know about the initialization.
|
|
auto subplan = buildForTuple(nullptr, origType, substType);
|
|
|
|
// Make a plan that calls copyOrInitValueInto.
|
|
return ResultPlanPtr(
|
|
new InitValueFromRValueResultPlan(init, std::move(subplan)));
|
|
}
|
|
|
|
ResultPlanPtr
|
|
ResultPlanBuilder::computeResultPlan(SILGenFunction &SGF,
|
|
const CalleeTypeInfo &calleeTypeInfo,
|
|
SILLocation loc, SGFContext evalContext) {
|
|
ResultPlanBuilder builder(SGF, loc, calleeTypeInfo);
|
|
return builder.buildTopLevelResult(evalContext.getEmitInto(), loc);
|
|
}
|