mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
An error found in DiagnoseInvalidEscapingCaptures can indicate invalid SIL, which will cause DiagnoseStaticExclusivity to assert during SIL verification. When the source-level closure captures an inout argument, it appears in SIL to be a non-escaping closure. The SIL verification then fails because the "nonescaping" closure actually escapes. Ensure that capture diagnostics run on closures before exclusivity enforcement runs on the parent function. Bypass the SIL verification assert if a diagnostic error was found. Fixes rdar://75364904 (Crash with assertion `noescape partial_apply has unexpected use`)
638 lines
22 KiB
C++
638 lines
22 KiB
C++
//===--- AccessSummaryAnalysis.cpp - SIL Access Summary Analysis ----------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-access-summary-analysis"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SILOptimizer/Analysis/AccessSummaryAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/FunctionOrder.h"
|
|
#include "swift/SILOptimizer/PassManager/PassManager.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
|
|
using namespace swift;
|
|
|
|
void AccessSummaryAnalysis::processFunction(FunctionInfo *info,
|
|
FunctionOrder &order) {
|
|
// Does the summary need to be recomputed?
|
|
if (order.prepareForVisiting(info))
|
|
return;
|
|
|
|
// Compute function summary on a per-argument basis.
|
|
unsigned index = 0;
|
|
for (SILArgument *arg : info->getFunction()->getArguments()) {
|
|
FunctionSummary &functionSummary = info->getSummary();
|
|
ArgumentSummary &argSummary =
|
|
functionSummary.getAccessForArgument(index);
|
|
++index;
|
|
|
|
auto *functionArg = cast<SILFunctionArgument>(arg);
|
|
// Only summarize @inout_aliasable arguments.
|
|
SILArgumentConvention convention =
|
|
functionArg->getArgumentConvention().Value;
|
|
if (convention != SILArgumentConvention::Indirect_InoutAliasable)
|
|
continue;
|
|
|
|
processArgument(info, functionArg, argSummary, order);
|
|
}
|
|
}
|
|
|
|
/// Track uses of the arguments, recording in the summary any accesses
|
|
/// started by a begin_access and any flows of the arguments to other
|
|
/// functions.
|
|
void AccessSummaryAnalysis::processArgument(FunctionInfo *info,
|
|
SILFunctionArgument *argument,
|
|
ArgumentSummary &summary,
|
|
FunctionOrder &order) {
|
|
unsigned argumentIndex = argument->getIndex();
|
|
|
|
// Use a worklist to track argument uses to be processed.
|
|
llvm::SmallVector<Operand *, 32> worklist;
|
|
|
|
// Start by adding the immediate uses of the argument to the worklist.
|
|
worklist.append(argument->use_begin(), argument->use_end());
|
|
|
|
// Iterate to follow uses of the arguments.
|
|
while (!worklist.empty()) {
|
|
Operand *operand = worklist.pop_back_val();
|
|
SILInstruction *user = operand->getUser();
|
|
|
|
// Handle all types of full applies without switching over them.
|
|
// Ultimately, this analysis only considers calls with @inout_aliasable
|
|
// arguments because other argument conventions require an access on the
|
|
// caller side.
|
|
if (auto apply = FullApplySite::isa(user)) {
|
|
SILFunction *callee = apply.getCalleeFunction();
|
|
// We can't apply a summary for function whose body we can't see. Since
|
|
// user-provided closures are always in the same module as their callee
|
|
// This likely indicates a missing begin_access before an open-coded
|
|
// call.
|
|
if (!callee || callee->empty()) {
|
|
summary.mergeWith(SILAccessKind::Modify, apply.getLoc(),
|
|
apply.getModule().getIndexTrieRoot());
|
|
continue;
|
|
}
|
|
unsigned operandNumber = operand->getOperandNumber();
|
|
assert(operandNumber > 0 && "Summarizing apply for non-argument?");
|
|
|
|
unsigned calleeArgumentIndex = operandNumber - 1;
|
|
processCall(info, argumentIndex, callee, calleeArgumentIndex, order);
|
|
continue;
|
|
}
|
|
|
|
switch (user->getKind()) {
|
|
case SILInstructionKind::BeginAccessInst: {
|
|
auto *BAI = cast<BeginAccessInst>(user);
|
|
if (BAI->getEnforcement() != SILAccessEnforcement::Unsafe) {
|
|
const IndexTrieNode *subPath = findSubPathAccessed(BAI);
|
|
summary.mergeWith(BAI->getAccessKind(), BAI->getLoc(), subPath);
|
|
// We don't add the users of the begin_access to the worklist because
|
|
// even if these users eventually begin an access to the address
|
|
// or a projection from it, that access can't begin more exclusive
|
|
// access than this access -- otherwise it will be diagnosed
|
|
// elsewhere.
|
|
}
|
|
break;
|
|
}
|
|
case SILInstructionKind::EndUnpairedAccessInst:
|
|
// Don't diagnose unpaired access statically.
|
|
assert(cast<EndUnpairedAccessInst>(user)->getEnforcement() ==
|
|
SILAccessEnforcement::Dynamic);
|
|
break;
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst: {
|
|
// Eventually we'll summarize individual struct elements separately.
|
|
// For now an access to a part of the struct is treated as an access
|
|
// to the whole struct.
|
|
auto inst = cast<SingleValueInstruction>(user);
|
|
worklist.append(inst->use_begin(), inst->use_end());
|
|
break;
|
|
}
|
|
case SILInstructionKind::DebugValueAddrInst:
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
// Ignore these uses, they don't affect formal accesses.
|
|
break;
|
|
case SILInstructionKind::PartialApplyInst:
|
|
processPartialApply(info, argumentIndex, cast<PartialApplyInst>(user),
|
|
operand, order);
|
|
break;
|
|
default:
|
|
// FIXME: These likely represent scenarios in which we're not generating
|
|
// begin access markers. Ignore these for now. But we really should
|
|
// add SIL verification to ensure all loads and stores have associated
|
|
// access markers. Once SIL verification is implemented, enable the
|
|
// following assert to verify that the cases handled above are
|
|
// comprehensive, which guarantees that exclusivity enforcement is
|
|
// complete.
|
|
// assert(false && "Unrecognized argument use");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Sanity check to make sure that a noescape partial apply is only ultimately
|
|
/// used by directly calling it or passing it as argument, but not using it as a
|
|
/// partial_apply callee.
|
|
///
|
|
/// An error found in DiagnoseInvalidEscapingCaptures can indicate invalid SIL
|
|
/// that is detected here but not in normal SIL verification. When the
|
|
/// source-level closure captures an inout argument, it appears in SIL to be a
|
|
/// non-escaping closure. The following verification then fails because the
|
|
/// "nonescaping" closure actually escapes.
|
|
///
|
|
/// FIXME: This should be checked in the SILVerifier, with consideration for the
|
|
/// caveat above where an inout has been captured be an escaping closure.
|
|
static bool hasExpectedUsesOfNoEscapePartialApply(Operand *partialApplyUse) {
|
|
SILInstruction *user = partialApplyUse->getUser();
|
|
|
|
// Bypass this verification when a diagnostic error is present. See comments
|
|
// on DiagnoseInvalidEscapingCaptures above.
|
|
if (user->getModule().getASTContext().hadError())
|
|
return true;
|
|
|
|
// It is fine to call the partial apply
|
|
switch (user->getKind()) {
|
|
case SILInstructionKind::ApplyInst:
|
|
case SILInstructionKind::TryApplyInst:
|
|
case SILInstructionKind::BeginApplyInst:
|
|
// The partial_apply must be passed to a @noescape argument type, but that
|
|
// is already checked by the SIL verifier.
|
|
return true;
|
|
// partial_apply [stack] is terminated by a dealloc_stack.
|
|
case SILInstructionKind::DeallocStackInst:
|
|
return true;
|
|
|
|
case SILInstructionKind::ConvertFunctionInst:
|
|
return llvm::all_of(cast<ConvertFunctionInst>(user)->getUses(),
|
|
hasExpectedUsesOfNoEscapePartialApply);
|
|
|
|
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
|
|
return llvm::all_of(cast<ConvertEscapeToNoEscapeInst>(user)->getUses(),
|
|
hasExpectedUsesOfNoEscapePartialApply);
|
|
|
|
case SILInstructionKind::PartialApplyInst:
|
|
if (partialApplyUse->get() == cast<PartialApplyInst>(user)->getCallee())
|
|
return false;
|
|
return llvm::all_of(cast<PartialApplyInst>(user)->getUses(),
|
|
hasExpectedUsesOfNoEscapePartialApply);
|
|
|
|
// Look through begin_borrow.
|
|
case SILInstructionKind::BeginBorrowInst:
|
|
return llvm::all_of(cast<BeginBorrowInst>(user)->getUses(),
|
|
hasExpectedUsesOfNoEscapePartialApply);
|
|
|
|
// Look through mark_dependence.
|
|
case SILInstructionKind::MarkDependenceInst:
|
|
return llvm::all_of(cast<MarkDependenceInst>(user)->getUses(),
|
|
hasExpectedUsesOfNoEscapePartialApply);
|
|
|
|
case SILInstructionKind::CopyBlockWithoutEscapingInst:
|
|
return partialApplyUse->getOperandNumber() ==
|
|
CopyBlockWithoutEscapingInst::Closure;
|
|
|
|
case SILInstructionKind::CopyValueInst:
|
|
return llvm::all_of(cast<CopyValueInst>(user)->getUses(),
|
|
hasExpectedUsesOfNoEscapePartialApply);
|
|
|
|
// End borrow is always ok.
|
|
case SILInstructionKind::EndBorrowInst:
|
|
return true;
|
|
|
|
case SILInstructionKind::IsEscapingClosureInst:
|
|
case SILInstructionKind::StoreInst:
|
|
case SILInstructionKind::DestroyValueInst:
|
|
// @block_storage is passed by storing it to the stack. We know this is
|
|
// still nonescaping simply because our original argument convention is
|
|
// @inout_aliasable. In this SIL, both store and destroy_value are users
|
|
// of %closure:
|
|
//
|
|
// %closure = partial_apply %f1(%arg)
|
|
// : $@convention(thin) (@inout_aliasable T) -> ()
|
|
// %storage = alloc_stack $@block_storage @callee_owned () -> ()
|
|
// %block_addr = project_block_storage %storage
|
|
// : $*@block_storage @callee_owned () -> ()
|
|
// store %closure to [init] %block_addr : $*@callee_owned () -> ()
|
|
// %block = init_block_storage_header %storage
|
|
// : $*@block_storage @callee_owned () -> (),
|
|
// invoke %f2 : $@convention(c)
|
|
// (@inout_aliasable @block_storage @callee_owned () -> ()) -> (),
|
|
// type $@convention(block) () -> ()
|
|
// %copy = copy_block %block : $@convention(block) () -> ()
|
|
// destroy_value %storage : $@callee_owned () -> ()
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void AccessSummaryAnalysis::processPartialApply(FunctionInfo *callerInfo,
|
|
unsigned callerArgumentIndex,
|
|
PartialApplyInst *apply,
|
|
Operand *applyArgumentOperand,
|
|
FunctionOrder &order) {
|
|
SILFunction *calleeFunction = apply->getCalleeFunction();
|
|
assert(calleeFunction && !calleeFunction->empty() &&
|
|
"Missing definition of noescape closure?");
|
|
|
|
// Make sure the partial_apply is not calling the result of another
|
|
// partial_apply.
|
|
assert(isa<FunctionRefBaseInst>(apply->getCallee())
|
|
&& "Noescape partial apply of non-functionref?");
|
|
|
|
assert(llvm::all_of(apply->getUses(),
|
|
hasExpectedUsesOfNoEscapePartialApply) &&
|
|
"noescape partial_apply has unexpected use!");
|
|
|
|
// The argument index in the called function.
|
|
ApplySite site(apply);
|
|
unsigned calleeArgumentIndex = site.getCalleeArgIndex(*applyArgumentOperand);
|
|
|
|
processCall(callerInfo, callerArgumentIndex, calleeFunction,
|
|
calleeArgumentIndex, order);
|
|
}
|
|
|
|
void AccessSummaryAnalysis::processCall(FunctionInfo *callerInfo,
|
|
unsigned callerArgumentIndex,
|
|
SILFunction *callee,
|
|
unsigned argumentIndex,
|
|
FunctionOrder &order) {
|
|
// Record the flow of an argument from the caller to the callee so that
|
|
// the interprocedural analysis can iterate to a fixpoint.
|
|
FunctionInfo *calleeInfo = getFunctionInfo(callee);
|
|
ArgumentFlow flow = {callerArgumentIndex, argumentIndex, calleeInfo};
|
|
callerInfo->recordFlow(flow);
|
|
if (!calleeInfo->isVisited()) {
|
|
processFunction(calleeInfo, order);
|
|
order.tryToSchedule(calleeInfo);
|
|
}
|
|
|
|
propagateFromCalleeToCaller(callerInfo, flow);
|
|
}
|
|
|
|
bool AccessSummaryAnalysis::ArgumentSummary::mergeWith(
|
|
SILAccessKind otherKind, SILLocation otherLoc,
|
|
const IndexTrieNode *otherSubPath) {
|
|
bool changed = false;
|
|
|
|
auto found =
|
|
SubAccesses.try_emplace(otherSubPath, otherKind, otherLoc, otherSubPath);
|
|
if (!found.second) {
|
|
// We already have an entry for otherSubPath, so merge with it.
|
|
changed = found.first->second.mergeWith(otherKind, otherLoc, otherSubPath);
|
|
} else {
|
|
// We just added a new entry for otherSubPath.
|
|
changed = true;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
bool AccessSummaryAnalysis::ArgumentSummary::mergeWith(
|
|
const ArgumentSummary &other) {
|
|
bool changed = false;
|
|
|
|
const SubAccessMap &otherAccesses = other.SubAccesses;
|
|
for (auto it = otherAccesses.begin(), e = otherAccesses.end(); it != e;
|
|
++it) {
|
|
const SubAccessSummary &otherSubAccess = it->getSecond();
|
|
if (mergeWith(otherSubAccess.getAccessKind(), otherSubAccess.getAccessLoc(),
|
|
otherSubAccess.getSubPath())) {
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
bool AccessSummaryAnalysis::SubAccessSummary::mergeWith(
|
|
SILAccessKind otherKind, SILLocation otherLoc,
|
|
const IndexTrieNode *otherSubPath) {
|
|
assert(otherSubPath == this->SubPath);
|
|
// In the lattice, a modification-like accesses subsume a read access or no
|
|
// access.
|
|
if (Kind == SILAccessKind::Read && otherKind != SILAccessKind::Read) {
|
|
Kind = otherKind;
|
|
AccessLoc = otherLoc;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AccessSummaryAnalysis::SubAccessSummary::mergeWith(
|
|
const SubAccessSummary &other) {
|
|
// We don't currently support merging accesses for different sub paths.
|
|
assert(SubPath == other.SubPath);
|
|
return mergeWith(other.Kind, other.AccessLoc, SubPath);
|
|
}
|
|
|
|
void AccessSummaryAnalysis::recompute(FunctionInfo *initial) {
|
|
allocNewUpdateID();
|
|
|
|
FunctionOrder order(getCurrentUpdateID());
|
|
|
|
// Summarize the function and its callees.
|
|
processFunction(initial, order);
|
|
|
|
// Build the bottom-up order.
|
|
order.tryToSchedule(initial);
|
|
order.finishScheduling();
|
|
|
|
// Iterate the interprocedural analysis to a fixed point.
|
|
bool needAnotherIteration;
|
|
do {
|
|
needAnotherIteration = false;
|
|
for (FunctionInfo *calleeInfo : order) {
|
|
for (const auto &callerEntry : calleeInfo->getCallers()) {
|
|
assert(callerEntry.isValid());
|
|
if (!order.wasRecomputedWithCurrentUpdateID(calleeInfo))
|
|
continue;
|
|
|
|
FunctionInfo *callerInfo = callerEntry.Caller;
|
|
|
|
// Propagate from callee to caller.
|
|
for (const auto &argumentFlow : callerInfo->getArgumentFlows()) {
|
|
if (argumentFlow.CalleeFunctionInfo != calleeInfo)
|
|
continue;
|
|
|
|
bool changed = propagateFromCalleeToCaller(callerInfo, argumentFlow);
|
|
if (changed && !callerInfo->isScheduledAfter(calleeInfo)) {
|
|
needAnotherIteration = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} while (needAnotherIteration);
|
|
}
|
|
|
|
std::string AccessSummaryAnalysis::SubAccessSummary::getDescription(
|
|
SILType BaseType, SILModule &M, TypeExpansionContext context) const {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << AccessSummaryAnalysis::getSubPathDescription(BaseType, SubPath, M,
|
|
context);
|
|
|
|
if (!SubPath->isRoot())
|
|
os << " ";
|
|
os << getSILAccessKindName(getAccessKind());
|
|
return os.str();
|
|
}
|
|
|
|
void AccessSummaryAnalysis::ArgumentSummary::getSortedSubAccesses(
|
|
SmallVectorImpl<SubAccessSummary> &storage) const {
|
|
for (auto it = SubAccesses.begin(), e = SubAccesses.end(); it != e; ++it) {
|
|
storage.push_back(it->getSecond());
|
|
}
|
|
|
|
const auto &compare = [](const SubAccessSummary &lhs,
|
|
const SubAccessSummary &rhs) {
|
|
return compareSubPaths(lhs.getSubPath(), rhs.getSubPath());
|
|
};
|
|
std::sort(storage.begin(), storage.end(), compare);
|
|
|
|
assert(storage.size() == SubAccesses.size());
|
|
}
|
|
|
|
std::string AccessSummaryAnalysis::ArgumentSummary::getDescription(
|
|
SILType BaseType, SILModule &M, TypeExpansionContext context) const {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "[";
|
|
unsigned index = 0;
|
|
|
|
SmallVector<AccessSummaryAnalysis::SubAccessSummary, 8> Sorted;
|
|
Sorted.reserve(SubAccesses.size());
|
|
getSortedSubAccesses(Sorted);
|
|
|
|
for (auto &subAccess : Sorted) {
|
|
if (index > 0) {
|
|
os << ", ";
|
|
}
|
|
os << subAccess.getDescription(BaseType, M, context);
|
|
++index;
|
|
}
|
|
os << "]";
|
|
|
|
return os.str();
|
|
}
|
|
|
|
bool AccessSummaryAnalysis::propagateFromCalleeToCaller(
|
|
FunctionInfo *callerInfo, ArgumentFlow flow) {
|
|
// For a given flow from a caller's argument to a callee's argument,
|
|
// propagate the argument summary information to the caller.
|
|
|
|
FunctionInfo *calleeInfo = flow.CalleeFunctionInfo;
|
|
const auto &calleeArgument =
|
|
calleeInfo->getSummary().getAccessForArgument(flow.CalleeArgumentIndex);
|
|
auto &callerArgument =
|
|
callerInfo->getSummary().getAccessForArgument(flow.CallerArgumentIndex);
|
|
|
|
bool changed = callerArgument.mergeWith(calleeArgument);
|
|
return changed;
|
|
}
|
|
|
|
AccessSummaryAnalysis::FunctionInfo *
|
|
AccessSummaryAnalysis::getFunctionInfo(SILFunction *F) {
|
|
FunctionInfo *&FInfo = FunctionInfos[F];
|
|
if (!FInfo) {
|
|
FInfo = new (Allocator.Allocate()) FunctionInfo(F);
|
|
}
|
|
return FInfo;
|
|
}
|
|
|
|
const AccessSummaryAnalysis::FunctionSummary &
|
|
AccessSummaryAnalysis::getOrCreateSummary(SILFunction *fn) {
|
|
FunctionInfo *info = getFunctionInfo(fn);
|
|
if (!info->isValid())
|
|
recompute(info);
|
|
|
|
return info->getSummary();
|
|
}
|
|
|
|
void AccessSummaryAnalysis::AccessSummaryAnalysis::invalidate() {
|
|
FunctionInfos.clear();
|
|
Allocator.DestroyAll();
|
|
}
|
|
|
|
void AccessSummaryAnalysis::invalidate(SILFunction *F, InvalidationKind K) {
|
|
FunctionInfos.erase(F);
|
|
}
|
|
|
|
SILAnalysis *swift::createAccessSummaryAnalysis(SILModule *M) {
|
|
return new AccessSummaryAnalysis();
|
|
}
|
|
|
|
/// If the instruction is a field or tuple projection and it has a single
|
|
/// user return a pair of the single user and the projection index.
|
|
/// Otherwise, return a pair with the component nullptr and the second
|
|
/// unspecified.
|
|
static std::pair<SingleValueInstruction *, unsigned>
|
|
getSingleAddressProjectionUser(SingleValueInstruction *I) {
|
|
SingleValueInstruction *SingleUser = nullptr;
|
|
unsigned ProjectionIndex = 0;
|
|
|
|
for (Operand *Use : I->getUses()) {
|
|
SILInstruction *User = Use->getUser();
|
|
if (isa<BeginAccessInst>(I) && isa<EndAccessInst>(User))
|
|
continue;
|
|
|
|
// Ignore sanitizer instrumentation when looking for a single projection
|
|
// user. This ensures that we're able to find a single projection subpath
|
|
// even when sanitization is enabled.
|
|
if (isSanitizerInstrumentation(User))
|
|
continue;
|
|
|
|
// We have more than a single user so bail.
|
|
if (SingleUser)
|
|
return std::make_pair(nullptr, 0);
|
|
|
|
switch (User->getKind()) {
|
|
case SILInstructionKind::StructElementAddrInst: {
|
|
auto inst = cast<StructElementAddrInst>(User);
|
|
ProjectionIndex = inst->getFieldIndex();
|
|
SingleUser = inst;
|
|
break;
|
|
}
|
|
case SILInstructionKind::TupleElementAddrInst: {
|
|
auto inst = cast<TupleElementAddrInst>(User);
|
|
ProjectionIndex = inst->getFieldIndex();
|
|
SingleUser = inst;
|
|
break;
|
|
}
|
|
default:
|
|
return std::make_pair(nullptr, 0);
|
|
}
|
|
}
|
|
|
|
return std::make_pair(SingleUser, ProjectionIndex);
|
|
}
|
|
|
|
const IndexTrieNode *
|
|
AccessSummaryAnalysis::findSubPathAccessed(BeginAccessInst *BAI) {
|
|
IndexTrieNode *SubPath = BAI->getModule().getIndexTrieRoot();
|
|
|
|
// For each single-user projection of BAI, construct or get a node
|
|
// from the trie representing the index of the field or tuple element
|
|
// accessed by that projection.
|
|
SingleValueInstruction *Iter = BAI;
|
|
while (true) {
|
|
std::pair<SingleValueInstruction *, unsigned> ProjectionUser =
|
|
getSingleAddressProjectionUser(Iter);
|
|
if (!ProjectionUser.first)
|
|
break;
|
|
|
|
SubPath = SubPath->getChild(ProjectionUser.second);
|
|
Iter = ProjectionUser.first;
|
|
}
|
|
|
|
return SubPath;
|
|
}
|
|
|
|
/// Returns a string representation of the SubPath
|
|
/// suitable for use in diagnostic text. Only supports the Projections
|
|
/// that stored-property relaxation supports: struct stored properties
|
|
/// and tuple elements.
|
|
std::string AccessSummaryAnalysis::getSubPathDescription(
|
|
SILType baseType, const IndexTrieNode *subPath, SILModule &M,
|
|
TypeExpansionContext context) {
|
|
// Walk the trie to the root to collect the sequence (in reverse order).
|
|
llvm::SmallVector<unsigned, 4> reversedIndices;
|
|
const IndexTrieNode *I = subPath;
|
|
while (!I->isRoot()) {
|
|
reversedIndices.push_back(I->getIndex());
|
|
I = I->getParent();
|
|
}
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
SILType containingType = baseType;
|
|
for (unsigned index : llvm::reverse(reversedIndices)) {
|
|
os << ".";
|
|
|
|
if (StructDecl *D = containingType.getStructOrBoundGenericStruct()) {
|
|
VarDecl *var = D->getStoredProperties()[index];
|
|
os << var->getBaseName();
|
|
containingType = containingType.getFieldType(var, M, context);
|
|
continue;
|
|
}
|
|
|
|
if (auto tupleTy = containingType.getAs<TupleType>()) {
|
|
Identifier elementName = tupleTy->getElement(index).getName();
|
|
if (elementName.empty())
|
|
os << index;
|
|
else
|
|
os << elementName;
|
|
containingType = containingType.getTupleElementType(index);
|
|
continue;
|
|
}
|
|
|
|
llvm_unreachable("Unexpected type in projection SubPath!");
|
|
}
|
|
|
|
return os.str();
|
|
}
|
|
|
|
static unsigned subPathLength(const IndexTrieNode *subPath) {
|
|
unsigned length = 0;
|
|
|
|
const IndexTrieNode *iter = subPath;
|
|
while (iter) {
|
|
++length;
|
|
iter = iter->getParent();
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
bool AccessSummaryAnalysis::compareSubPaths(const IndexTrieNode *lhs,
|
|
const IndexTrieNode *rhs) {
|
|
unsigned lhsLength = subPathLength(lhs);
|
|
unsigned rhsLength = subPathLength(rhs);
|
|
|
|
if (lhsLength != rhsLength)
|
|
return lhsLength < rhsLength;
|
|
|
|
|
|
while (lhs) {
|
|
if (lhs->getIndex() != rhs->getIndex())
|
|
return lhs->getIndex() < rhs->getIndex();
|
|
|
|
lhs = lhs->getParent();
|
|
rhs = rhs->getParent();
|
|
}
|
|
|
|
assert(!rhs && "Equal paths with different lengths?");
|
|
// The two paths are equal.
|
|
return false;
|
|
}
|
|
|
|
void AccessSummaryAnalysis::FunctionSummary::print(raw_ostream &os,
|
|
SILFunction *fn) const {
|
|
unsigned argCount = getArgumentCount();
|
|
os << "(";
|
|
|
|
for (unsigned i = 0; i < argCount; ++i) {
|
|
if (i > 0) {
|
|
os << ", ";
|
|
}
|
|
SILArgument *arg = fn->getArgument(i);
|
|
SILModule &m = fn->getModule();
|
|
os << getAccessForArgument(i).getDescription(arg->getType(), m,
|
|
TypeExpansionContext(*fn));
|
|
}
|
|
|
|
os << ")";
|
|
}
|