Files
swift-mirror/lib/SILOptimizer/SILCombiner/SILCombine.cpp
Michael Gottesman e670d2b4de [sil-combine] Canonicalize copies using canonicalizeOSSALifetimes when moving newly created instructions into the worklist.
To be more explicit, canonicalizeOSSALifetimes is a utility that
re-canonicalizes all at once a set of defs that the caller found by applying
CanonicalizeOSSALifetime::getCanonicalCopiedDef(copy)). The reason why I am
doing this is that when we RAUW in OSSA, we sometimes insert additional copies
to make the problem easier for a utility to handle. This lets us canonicalize
away any copies before we even leave the pass.
2021-05-01 16:02:21 -07:00

432 lines
16 KiB
C++

//===--- SILCombine.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A port of LLVM's InstCombine pass to SIL. Its main purpose is for performing
// small combining operations/peepholes at the SIL level. It additionally
// performs dead code elimination when it initially adds instructions to the
// work queue in order to reduce compile time by not visiting trivially dead
// instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-combine"
#include "SILCombiner.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/NonLocalAccessBlockAnalysis.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CanonicalOSSALifetime.h"
#include "swift/SILOptimizer/Utils/CanonicalizeInstruction.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumCombined, "Number of instructions combined");
STATISTIC(NumDeadInst, "Number of dead insts eliminated");
static llvm::cl::opt<bool> EnableSinkingOwnedForwardingInstToUses(
"silcombine-owned-code-sinking",
llvm::cl::desc("Enable sinking of owened forwarding insts"),
llvm::cl::init(true), llvm::cl::Hidden);
// Allow disabling general optimization for targetted unit tests.
static llvm::cl::opt<bool> EnableSILCombineCanonicalize(
"sil-combine-canonicalize",
llvm::cl::desc("Canonicalization during sil-combine"), llvm::cl::init(true),
llvm::cl::Hidden);
//===----------------------------------------------------------------------===//
// Utility Methods
//===----------------------------------------------------------------------===//
/// addReachableCodeToWorklist - Walk the function in depth-first order, adding
/// all reachable code to the worklist.
///
/// This has a couple of tricks to make the code faster and more powerful. In
/// particular, we DCE instructions as we go, to avoid adding them to the
/// worklist (this significantly speeds up SILCombine on code where many
/// instructions are dead or constant).
void SILCombiner::addReachableCodeToWorklist(SILBasicBlock *BB) {
BasicBlockWorklist Worklist(BB);
llvm::SmallVector<SILInstruction *, 128> InstrsForSILCombineWorklist;
while (SILBasicBlock *BB = Worklist.pop()) {
for (SILBasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
SILInstruction *Inst = &*BBI;
++BBI;
// DCE instruction if trivially dead.
if (isInstructionTriviallyDead(Inst)) {
++NumDeadInst;
LLVM_DEBUG(llvm::dbgs() << "SC: DCE: " << *Inst << '\n');
// We pass in false here since we need to signal to
// eraseInstFromFunction to not add this instruction's operands to the
// worklist since we have not initialized the worklist yet.
//
// The reason to just use a default argument here is that it allows us
// to centralize all instruction removal in SILCombine into this one
// function. This is important if we want to be able to update analyses
// in a clean manner.
eraseInstFromFunction(*Inst, BBI,
false /*Don't add operands to worklist*/);
continue;
}
InstrsForSILCombineWorklist.push_back(Inst);
}
// Recursively visit successors.
for (SILBasicBlock *Succ : BB->getSuccessors()) {
Worklist.pushIfNotVisited(Succ);
}
}
// Once we've found all of the instructions to add to the worklist, add them
// in reverse order. This way SILCombine will visit from the top of the
// function down. This jives well with the way that it adds all uses of
// instructions to the worklist after doing a transformation, thus avoiding
// some N^2 behavior in pathological cases.
addInitialGroup(InstrsForSILCombineWorklist);
}
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
// Define a CanonicalizeInstruction subclass for use in SILCombine.
class SILCombineCanonicalize final : CanonicalizeInstruction {
SmallSILInstructionWorklist<256> &Worklist;
bool changed = false;
public:
SILCombineCanonicalize(SmallSILInstructionWorklist<256> &Worklist,
DeadEndBlocks &deadEndBlocks)
: CanonicalizeInstruction(DEBUG_TYPE, deadEndBlocks), Worklist(Worklist) {
}
void notifyNewInstruction(SILInstruction *inst) override {
Worklist.add(inst);
Worklist.addUsersOfAllResultsToWorklist(inst);
changed = true;
}
// Just delete the given 'inst' and record its operands. The callback isn't
// allowed to mutate any other instructions.
void killInstruction(SILInstruction *inst) override {
Worklist.eraseSingleInstFromFunction(*inst,
/*AddOperandsToWorklist*/ true);
changed = true;
}
void notifyHasNewUsers(SILValue value) override {
if (Worklist.size() < 10000) {
Worklist.addUsersToWorklist(value);
}
changed = true;
}
bool tryCanonicalize(SILInstruction *inst) {
if (!EnableSILCombineCanonicalize)
return false;
changed = false;
canonicalize(inst);
return changed;
}
};
bool SILCombiner::trySinkOwnedForwardingInst(SingleValueInstruction *svi) {
if (auto *consumingUse = svi->getSingleConsumingUse()) {
auto *consumingUser = consumingUse->getUser();
// If our user is already in the same block, we don't move it further.
if (svi->getParent() == consumingUser->getParent())
return false;
// Otherwise, make sure our instruction does not have any non-debug uses
// that are non-lifetime ending. If so, we return.
if (llvm::any_of(getNonDebugUses(svi),
[](Operand *use) { return !use->isLifetimeEnding(); }))
return false;
// Otherwise, delete all of the debug uses so we don't have to sink them as
// well and then return true so we process svi in its new position.
deleteAllDebugUses(svi, instModCallbacks);
svi->moveBefore(consumingUser);
MadeChange = true;
// NOTE: We return false here so that our caller doesn't delete the
// instruction and instead tries to simplify it.
return false;
}
// If we have multiple consuming uses, then we know that our
// forwarding inst must be live out of the current block and thus we
// might be able to duplicate/sink.
if (llvm::any_of(getNonDebugUses(svi),
[](Operand *use) { return !use->isLifetimeEnding(); }))
return false;
while (!svi->use_empty()) {
auto *sviUse = *svi->use_begin();
auto *sviUser = sviUse->getUser();
if (auto *dvi = dyn_cast<DestroyValueInst>(sviUser)) {
dvi->setOperand(svi->getOperand(0));
Worklist.add(dvi);
continue;
}
if (sviUser->isDebugInstruction()) {
eraseInstFromFunction(*sviUser);
continue;
}
auto *newSVI = svi->clone(sviUser);
Worklist.add(newSVI);
sviUse->set(newSVI);
}
eraseInstFromFunction(*svi);
MadeChange = true;
return true;
}
bool SILCombiner::doOneIteration(SILFunction &F, unsigned Iteration) {
MadeChange = false;
LLVM_DEBUG(llvm::dbgs() << "\n\nSILCOMBINE ITERATION #" << Iteration << " on "
<< F.getName() << "\n");
// Add reachable instructions to our worklist.
addReachableCodeToWorklist(&*F.begin());
SILCombineCanonicalize scCanonicalize(Worklist, deadEndBlocks);
// Process until we run out of items in our worklist.
while (!Worklist.isEmpty()) {
SILInstruction *I = Worklist.pop_back_val();
// When we erase an instruction, we use the map in the worklist to check if
// the instruction is in the worklist. If it is, we replace it with null
// instead of shifting all members of the worklist towards the front. This
// check makes sure that if we run into any such residual null pointers, we
// skip them.
if (I == nullptr)
continue;
// Check to see if we can DCE the instruction.
if (isInstructionTriviallyDead(I)) {
LLVM_DEBUG(llvm::dbgs() << "SC: DCE: " << *I << '\n');
eraseInstFromFunction(*I);
++NumDeadInst;
MadeChange = true;
continue;
}
// Canonicalize the instruction.
if (scCanonicalize.tryCanonicalize(I)) {
MadeChange = true;
continue;
}
// If we have reached this point, all attempts to do simple simplifications
// have failed. First if we have an owned forwarding value, we try to
// sink. Otherwise, we perform the actual SILCombine operation.
if (EnableSinkingOwnedForwardingInstToUses) {
// If we have an ownership forwarding single value inst that forwards
// through its first argument and it is trivially duplicatable, see if it
// only has consuming uses. If so, we can duplicate the instruction into
// the consuming use blocks and destroy any destroy_value uses of it that
// we see. This makes it easier for SILCombine to fold instructions with
// owned paramaters since chains of these values will be in the same
// block.
if (auto *svi = dyn_cast<SingleValueInstruction>(I)) {
if ((isa<FirstArgOwnershipForwardingSingleValueInst>(svi) ||
isa<OwnershipForwardingConversionInst>(svi)) &&
SILValue(svi).getOwnershipKind() == OwnershipKind::Owned) {
// Try to sink the value. If we sank the value and deleted it,
// continue. If we didn't optimize or sank but we are still able to
// optimize further, we fall through to SILCombine below.
if (trySinkOwnedForwardingInst(svi)) {
continue;
}
}
}
}
// Then begin... SILCombine.
Builder.setInsertionPoint(I);
#ifndef NDEBUG
std::string OrigI;
#endif
LLVM_DEBUG(llvm::raw_string_ostream SS(OrigI); I->print(SS);
OrigI = SS.str(););
LLVM_DEBUG(llvm::dbgs() << "SC: Visiting: " << OrigI << '\n');
if (SILInstruction *Result = visit(I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
Worklist.replaceInstructionWithInstruction(I, Result
#ifndef NDEBUG
,
OrigI
#endif
);
MadeChange = true;
}
// Our tracking list has been accumulating instructions created by the
// SILBuilder during this iteration. In order to finish this round of
// SILCombine, go through the tracking list and add its contents to the
// worklist and then clear said list in preparation for the next
// iteration. We canonicalize any copies that we created in order to
// eliminate unnecessary copies introduced by RAUWing when ownership is
// enabled.
//
// NOTE: It is ok if copy propagation results in MadeChanges being set to
// true. This is because we only add elements to the tracking list if we
// actually made a change to the IR, so MadeChanges should already be true
// at this point.
auto &TrackingList = *Builder.getTrackingList();
if (TrackingList.size() && Builder.hasOwnership()) {
SmallSetVector<SILValue, 16> defsToCanonicalize;
for (auto *trackedInst : TrackingList) {
if (auto *cvi = dyn_cast<CopyValueInst>(trackedInst)) {
defsToCanonicalize.insert(
CanonicalizeOSSALifetime::getCanonicalCopiedDef(cvi));
}
}
if (defsToCanonicalize.size()) {
CanonicalizeOSSALifetime canonicalizer(
false /*prune debug*/, false /*canonicalize borrows*/,
false /*poison refs*/, NLABA, DA, instModCallbacks);
auto analysisInvalidation = canonicalizeOSSALifetimes(
canonicalizer, defsToCanonicalize.getArrayRef());
if (bool(analysisInvalidation)) {
NLABA->lockInvalidation();
parentTransform->invalidateAnalysis(analysisInvalidation);
NLABA->unlockInvalidation();
}
}
}
for (SILInstruction *I : TrackingList) {
LLVM_DEBUG(llvm::dbgs() << "SC: add " << *I
<< " from tracking list to worklist\n");
Worklist.add(I);
}
TrackingList.clear();
}
Worklist.resetChecked();
return MadeChange;
}
bool SILCombiner::runOnFunction(SILFunction &F) {
clear();
bool Changed = false;
// Perform iterations until we do not make any changes.
while (doOneIteration(F, Iteration)) {
Changed = true;
++Iteration;
}
if (invalidatedStackNesting) {
StackNesting::fixNesting(&F);
}
// Cleanup the builder and return whether or not we made any changes.
return Changed;
}
void SILCombiner::eraseInstIncludingUsers(SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
while (!result->use_empty()) {
eraseInstIncludingUsers(result->use_begin()->getUser());
}
}
eraseInstFromFunction(*inst);
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
namespace {
class SILCombine : public SILFunctionTransform {
llvm::SmallVector<SILInstruction *, 64> TrackingList;
/// The entry point to the transformation.
void run() override {
auto *AA = PM->getAnalysis<AliasAnalysis>();
auto *DA = PM->getAnalysis<DominanceAnalysis>();
auto *PCA = PM->getAnalysis<ProtocolConformanceAnalysis>();
auto *CHA = PM->getAnalysis<ClassHierarchyAnalysis>();
auto *NLABA = PM->getAnalysis<NonLocalAccessBlockAnalysis>();
SILOptFunctionBuilder FuncBuilder(*this);
// Create a SILBuilder with a tracking list for newly added
// instructions, which we will periodically move to our worklist.
SILBuilder B(*getFunction(), &TrackingList);
SILCombiner Combiner(this, FuncBuilder, B, AA, DA, PCA, CHA, NLABA,
getOptions().RemoveRuntimeAsserts);
bool Changed = Combiner.runOnFunction(*getFunction());
assert(TrackingList.empty() &&
"TrackingList should be fully processed by SILCombiner");
if (Changed) {
// Invalidate everything.
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
void handleDeleteNotification(SILNode *node) override {
auto I = dyn_cast<SILInstruction>(node);
if (!I) return;
// Linear searching the tracking list doesn't hurt because usually it only
// contains a few elements.
auto Iter = std::find(TrackingList.begin(), TrackingList.end(), I);
if (Iter != TrackingList.end())
TrackingList.erase(Iter);
}
bool needsNotifications() override { return true; }
};
} // end anonymous namespace
SILTransform *swift::createSILCombine() {
return new SILCombine();
}