Files
swift-mirror/lib/SILOptimizer/SILCombiner/SILCombinerApplyVisitors.cpp
Azoy 9ed732f0ab Introduce isDecl and getDeclType
fix enum logic issue

fix tests

guard against null types
2021-04-20 02:22:16 -04:00

1757 lines
68 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- SILCombinerApplyVisitors.cpp -------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-combine"
#include "SILCombiner.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Range.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/Existential.h"
#include "swift/SILOptimizer/Utils/KeyPathProjector.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include <utility>
using namespace swift;
using namespace swift::PatternMatch;
STATISTIC(NumOptimizedKeypaths, "Number of optimized keypath instructions");
/// Remove pointless reabstraction thunk closures.
/// partial_apply %reabstraction_thunk_typeAtoB(
/// partial_apply %reabstraction_thunk_typeBtoA %closure_typeB))
/// ->
/// %closure_typeB
static bool foldInverseReabstractionThunks(PartialApplyInst *PAI,
SILCombiner *Combiner) {
auto PAIArg = isPartialApplyOfReabstractionThunk(PAI);
if (!PAIArg)
return false;
auto *PAI2 = dyn_cast<PartialApplyInst>(PAIArg);
if (!PAI2)
return false;
if (!hasOneNonDebugUse(PAI2))
return false;
auto PAI2Arg = isPartialApplyOfReabstractionThunk(PAI2);
if (!PAI2Arg)
return false;
// The types must match.
if (PAI->getType() != PAI2->getArgument(0)->getType())
return false;
// Replace the partial_apply(partial_apply(X)) by X and remove the
// partial_applies.
Combiner->replaceInstUsesWith(*PAI, PAI2->getArgument(0));
Combiner->eraseInstFromFunction(*PAI);
assert(onlyHaveDebugUses(PAI2) && "Should not have any uses");
Combiner->eraseInstFromFunction(*PAI2);
return true;
}
SILInstruction *SILCombiner::visitPartialApplyInst(PartialApplyInst *pai) {
// partial_apply without any substitutions or arguments is just a
// thin_to_thick_function. thin_to_thick_function supports only thin operands.
if (!pai->hasSubstitutions() && (pai->getNumArguments() == 0) &&
pai->getSubstCalleeType()->getRepresentation() ==
SILFunctionTypeRepresentation::Thin) {
if (!pai->isOnStack())
return Builder.createThinToThickFunction(pai->getLoc(), pai->getCallee(),
pai->getType());
// Remove dealloc_stack of partial_apply [stack].
// Iterating while delete use a copy.
SmallVector<Operand *, 8> uses(pai->getUses());
for (auto *use : uses)
if (auto *dealloc = dyn_cast<DeallocStackInst>(use->getUser()))
eraseInstFromFunction(*dealloc);
auto *thinToThick = Builder.createThinToThickFunction(
pai->getLoc(), pai->getCallee(), pai->getType());
replaceInstUsesWith(*pai, thinToThick);
eraseInstFromFunction(*pai);
return nullptr;
}
// partial_apply %reabstraction_thunk_typeAtoB(
// partial_apply %reabstraction_thunk_typeBtoA %closure_typeB))
// -> %closure_typeB
if (foldInverseReabstractionThunks(pai, this))
return nullptr;
bool argsAreKeptAlive = tryOptimizeApplyOfPartialApply(
pai, Builder.getBuilderContext(), getInstModCallbacks());
if (argsAreKeptAlive)
invalidatedStackNesting = true;
// Try to delete the partial_apply.
// In case it became dead because of tryOptimizeApplyOfPartialApply, we don't
// need to copy all arguments again (to extend their lifetimes), because it
// was already done in tryOptimizeApplyOfPartialApply.
if (tryDeleteDeadClosure(pai, getInstModCallbacks(), !argsAreKeptAlive))
invalidatedStackNesting = true;
return nullptr;
}
SILInstruction *
SILCombiner::optimizeApplyOfConvertFunctionInst(FullApplySite AI,
ConvertFunctionInst *CFI) {
// We only handle simplification of static function references. If we don't
// have one, bail.
SILValue funcOper = CFI->getOperand();
if (auto *TTI = dyn_cast<ThinToThickFunctionInst>(funcOper))
funcOper = TTI->getOperand();
auto *FRI = dyn_cast<FunctionRefInst>(funcOper);
if (!FRI)
return nullptr;
// Grab our relevant callee types...
CanSILFunctionType SubstCalleeTy = AI.getSubstCalleeType();
auto ConvertCalleeTy = funcOper->getType().castTo<SILFunctionType>();
// ... and make sure they have no unsubstituted generics. If they do, bail.
if (SubstCalleeTy->hasArchetype() || ConvertCalleeTy->hasArchetype())
return nullptr;
// Indirect results are not currently handled.
if (AI.hasIndirectSILResults())
return nullptr;
// Bail if the result type of the converted callee is different from the callee's
// result type of the apply instruction.
if (SubstCalleeTy->getAllResultsSubstType(
AI.getModule(), AI.getFunction()->getTypeExpansionContext()) !=
ConvertCalleeTy->getAllResultsSubstType(
AI.getModule(), AI.getFunction()->getTypeExpansionContext())) {
return nullptr;
}
// Ok, we can now perform our transformation. Grab AI's operands and the
// relevant types from the ConvertFunction function type and AI.
Builder.setCurrentDebugScope(AI.getDebugScope());
OperandValueArrayRef Ops = AI.getArgumentsWithoutIndirectResults();
SILFunctionConventions substConventions(SubstCalleeTy, FRI->getModule());
SILFunctionConventions convertConventions(ConvertCalleeTy, FRI->getModule());
auto context = AI.getFunction()->getTypeExpansionContext();
auto oldOpTypes = substConventions.getParameterSILTypes(context);
auto newOpTypes = convertConventions.getParameterSILTypes(context);
assert(Ops.size() == SubstCalleeTy->getNumParameters()
&& "Ops and op types must have same size.");
assert(Ops.size() == ConvertCalleeTy->getNumParameters()
&& "Ops and op types must have same size.");
llvm::SmallVector<SILValue, 8> Args;
auto newOpI = newOpTypes.begin();
auto oldOpI = oldOpTypes.begin();
for (unsigned i = 0, e = Ops.size(); i != e; ++i, ++newOpI, ++oldOpI) {
SILValue Op = Ops[i];
SILType OldOpType = *oldOpI;
SILType NewOpType = *newOpI;
// Convert function takes refs to refs, address to addresses, and leaves
// other types alone.
if (OldOpType.isAddress()) {
assert(NewOpType.isAddress() && "Addresses should map to addresses.");
auto UAC = Builder.createUncheckedAddrCast(AI.getLoc(), Op, NewOpType);
Args.push_back(UAC);
} else if (OldOpType.getASTType() != NewOpType.getASTType()) {
auto URC =
Builder.createUncheckedReinterpretCast(AI.getLoc(), Op, NewOpType);
Args.push_back(URC);
} else {
Args.push_back(Op);
}
}
// Create the new apply inst.
if (auto *TAI = dyn_cast<TryApplyInst>(AI)) {
return Builder.createTryApply(AI.getLoc(), FRI, SubstitutionMap(), Args,
TAI->getNormalBB(), TAI->getErrorBB(),
TAI->getApplyOptions());
}
// Match the throwing bit of the underlying function_ref. We assume that if
// we got this far it is legal to perform the transformation (since
// otherwise, we would be creating malformed SIL).
ApplyOptions Options = AI.getApplyOptions();
Options -= ApplyFlags::DoesNotThrow;
if (FRI->getFunctionType()->hasErrorResult())
Options |= ApplyFlags::DoesNotThrow;
ApplyInst *NAI = Builder.createApply(AI.getLoc(), FRI, SubstitutionMap(),
Args, Options);
assert(FullApplySite(NAI).getSubstCalleeType()->getAllResultsSubstType(
AI.getModule(), AI.getFunction()->getTypeExpansionContext()) ==
AI.getSubstCalleeType()->getAllResultsSubstType(
AI.getModule(), AI.getFunction()->getTypeExpansionContext()) &&
"Function types should be the same");
return NAI;
}
/// Try to optimize a keypath application with an apply instruction.
///
/// Replaces (simplified SIL):
/// %kp = keypath ...
/// apply %keypath_runtime_function(%addr, %kp, %root_object)
/// with:
/// %addr = struct_element_addr/ref_element_addr %root_object
/// ...
/// load/store %addr
bool SILCombiner::tryOptimizeKeypathApplication(ApplyInst *AI,
SILFunction *callee) {
if (AI->getNumArguments() != 3)
return false;
SILValue keyPath, rootAddr, valueAddr;
bool isSet = false;
if (callee->getName() == "swift_setAtWritableKeyPath" ||
callee->getName() == "swift_setAtReferenceWritableKeyPath") {
keyPath = AI->getArgument(1);
rootAddr = AI->getArgument(0);
valueAddr = AI->getArgument(2);
isSet = true;
} else if (callee->getName() == "swift_getAtKeyPath") {
keyPath = AI->getArgument(2);
rootAddr = AI->getArgument(1);
valueAddr = AI->getArgument(0);
} else {
return false;
}
auto projector = KeyPathProjector::create(keyPath, rootAddr,
AI->getLoc(), Builder);
if (!projector)
return false;
KeyPathProjector::AccessType accessType;
if (isSet) accessType = KeyPathProjector::AccessType::Set;
else accessType = KeyPathProjector::AccessType::Get;
projector->project(accessType, [&](SILValue projectedAddr) {
if (isSet) {
Builder.createCopyAddr(AI->getLoc(), valueAddr, projectedAddr,
IsTake, IsInitialization);
} else {
Builder.createCopyAddr(AI->getLoc(), projectedAddr, valueAddr,
IsNotTake, IsInitialization);
}
});
eraseInstFromFunction(*AI);
++NumOptimizedKeypaths;
return true;
}
/// Replaces a call of the getter of AnyKeyPath._storedInlineOffset with a
/// "constant" offset, in case of a keypath literal.
///
/// "Constant" offset means a series of struct_element_addr and
/// tuple_element_addr instructions with a 0-pointer as base address.
/// These instructions can then be lowered to "real" constants in IRGen for
/// concrete types, or to metatype offset lookups for generic or resilient types.
///
/// Replaces:
/// %kp = keypath ...
/// %offset = apply %_storedInlineOffset_method(%kp)
/// with:
/// %zero = integer_literal $Builtin.Word, 0
/// %null_ptr = unchecked_trivial_bit_cast %zero to $Builtin.RawPointer
/// %null_addr = pointer_to_address %null_ptr
/// %projected_addr = struct_element_addr %null_addr
/// ... // other address projections
/// %offset_ptr = address_to_pointer %projected_addr
/// %offset_builtin_int = unchecked_trivial_bit_cast %offset_ptr
/// %offset_int = struct $Int (%offset_builtin_int)
/// %offset = enum $Optional<Int>, #Optional.some!enumelt, %offset_int
bool SILCombiner::tryOptimizeKeypathOffsetOf(ApplyInst *AI,
FuncDecl *calleeFn,
KeyPathInst *kp) {
auto *accessor = dyn_cast<AccessorDecl>(calleeFn);
if (!accessor || !accessor->isGetter())
return false;
AbstractStorageDecl *storage = accessor->getStorage();
DeclName name = storage->getName();
if (!name.isSimpleName() ||
(name.getBaseIdentifier().str() != "_storedInlineOffset"))
return false;
KeyPathPattern *pattern = kp->getPattern();
SubstitutionMap patternSubs = kp->getSubstitutions();
CanType rootTy = pattern->getRootType().subst(patternSubs)->getCanonicalType();
CanType parentTy = rootTy;
// First check if _storedInlineOffset would return an offset or nil. Basically
// only stored struct and tuple elements produce an offset. Everything else
// (e.g. computed properties, class properties) result in nil.
bool hasOffset = true;
for (const KeyPathPatternComponent &component : pattern->getComponents()) {
switch (component.getKind()) {
case KeyPathPatternComponent::Kind::StoredProperty: {
// Handle the special case of C tail-allocated arrays. IRGen would
// generate an undef offset for struct_element_addr of C tail-allocated
// arrays.
VarDecl *propDecl = component.getStoredPropertyDecl();
if (propDecl->hasClangNode() && propDecl->getType()->isVoid())
return false;
if (!parentTy.getStructOrBoundGenericStruct())
hasOffset = false;
break;
}
case KeyPathPatternComponent::Kind::TupleElement:
break;
case KeyPathPatternComponent::Kind::GettableProperty:
case KeyPathPatternComponent::Kind::SettableProperty:
// We cannot predict the offset of fields in resilient types, because it's
// unknown if a resilient field is a computed or stored property.
if (component.getExternalDecl())
return false;
hasOffset = false;
break;
case KeyPathPatternComponent::Kind::OptionalChain:
case KeyPathPatternComponent::Kind::OptionalForce:
case KeyPathPatternComponent::Kind::OptionalWrap:
hasOffset = false;
break;
}
parentTy = component.getComponentType();
}
SILLocation loc = AI->getLoc();
SILValue result;
if (hasOffset) {
SILType rootAddrTy = SILType::getPrimitiveAddressType(rootTy);
SILValue rootAddr = Builder.createBaseAddrForOffset(loc, rootAddrTy);
auto projector = KeyPathProjector::create(kp, rootAddr, loc, Builder);
if (!projector)
return false;
// Create the address projections of the keypath.
SILType ptrType = SILType::getRawPointerType(Builder.getASTContext());
SILValue offsetPtr;
projector->project(KeyPathProjector::AccessType::Get, [&](SILValue addr) {
offsetPtr = Builder.createAddressToPointer(loc, addr, ptrType);
});
// The result of the _storedInlineOffset call should be Optional<Int>. If
// not, something is wrong with the stdlib. Anyway, if it's not like we
// expect, bail.
SILType intType = AI->getType().getOptionalObjectType();
if (!intType)
return false;
StructDecl *intDecl = intType.getStructOrBoundGenericStruct();
if (!intDecl || intDecl->getStoredProperties().size() != 1)
return false;
VarDecl *member = intDecl->getStoredProperties()[0];
CanType builtinIntTy = member->getType()->getCanonicalType();
if (!isa<BuiltinIntegerType>(builtinIntTy))
return false;
// Convert the projected address back to an optional integer.
SILValue offset = Builder.createUncheckedReinterpretCast(
loc, offsetPtr, SILType::getPrimitiveObjectType(builtinIntTy));
SILValue offsetInt = Builder.createStruct(loc, intType, { offset });
result = Builder.createOptionalSome(loc, offsetInt, AI->getType());
} else {
// The keypath has no offset.
result = Builder.createOptionalNone(loc, AI->getType());
}
AI->replaceAllUsesWith(result);
eraseInstFromFunction(*AI);
++NumOptimizedKeypaths;
return true;
}
/// Try to optimize a keypath KVC string access on a literal key path.
///
/// Replace:
/// %kp = keypath (objc "blah", ...)
/// %string = apply %keypath_kvcString_method(%kp)
/// With:
/// %string = string_literal "blah"
bool SILCombiner::tryOptimizeKeypathKVCString(ApplyInst *AI,
FuncDecl *calleeFn,
KeyPathInst *kp) {
if (!calleeFn->getAttrs()
.hasSemanticsAttr(semantics::KEYPATH_KVC_KEY_PATH_STRING))
return false;
// Method should return `String?`
auto &C = calleeFn->getASTContext();
auto objTy = AI->getType().getOptionalObjectType();
if (!objTy || !objTy.getASTType()->isString())
return false;
auto objcString = kp->getPattern()->getObjCString();
SILValue literalValue;
if (objcString.empty()) {
// Replace with a nil String value.
literalValue = Builder.createEnum(AI->getLoc(), SILValue(),
C.getOptionalNoneDecl(),
AI->getType());
} else {
// Construct a literal String from the ObjC string.
auto init = C.getStringBuiltinInitDecl(C.getStringDecl());
if (!init)
return false;
auto initRef = SILDeclRef(init.getDecl(), SILDeclRef::Kind::Allocator);
auto initFn = AI->getModule().findFunction(initRef.mangle(),
SILLinkage::PublicExternal);
if (!initFn)
return false;
auto stringValue = Builder.createStringLiteral(AI->getLoc(), objcString,
StringLiteralInst::Encoding::UTF8);
auto stringLen = Builder.createIntegerLiteral(AI->getLoc(),
SILType::getBuiltinWordType(C),
objcString.size());
auto isAscii = Builder.createIntegerLiteral(AI->getLoc(),
SILType::getBuiltinIntegerType(1, C),
C.isASCIIString(objcString));
auto metaTy =
CanMetatypeType::get(objTy.getASTType(), MetatypeRepresentation::Thin);
auto self = Builder.createMetatype(AI->getLoc(),
SILType::getPrimitiveObjectType(metaTy));
auto initFnRef = Builder.createFunctionRef(AI->getLoc(), initFn);
auto string = Builder.createApply(AI->getLoc(),
initFnRef, {},
{stringValue, stringLen, isAscii, self});
literalValue = Builder.createEnum(AI->getLoc(), string,
C.getOptionalSomeDecl(), AI->getType());
}
AI->replaceAllUsesWith(literalValue);
eraseInstFromFunction(*AI);
++NumOptimizedKeypaths;
return true;
}
bool SILCombiner::tryOptimizeKeypath(ApplyInst *AI) {
if (SILFunction *callee = AI->getReferencedFunctionOrNull()) {
return tryOptimizeKeypathApplication(AI, callee);
}
// Try optimize keypath method calls.
auto *methodInst = dyn_cast<ClassMethodInst>(AI->getCallee());
if (!methodInst)
return false;
if (AI->getNumArguments() != 1) {
return false;
}
SILDeclRef callee = methodInst->getMember();
if (!callee.hasDecl()) {
return false;
}
auto *calleeFn = dyn_cast<FuncDecl>(callee.getDecl());
if (!calleeFn)
return false;
KeyPathInst *kp = KeyPathProjector::getLiteralKeyPath(AI->getArgument(0));
if (!kp || !kp->hasPattern())
return false;
if (tryOptimizeKeypathOffsetOf(AI, calleeFn, kp))
return true;
if (tryOptimizeKeypathKVCString(AI, calleeFn, kp))
return true;
return false;
}
/// Try to optimize a keypath application with an apply instruction.
///
/// Replaces (simplified SIL):
/// %kp = keypath ...
/// %inout_addr = begin_apply %keypath_runtime_function(%kp, %root_object)
/// // use %inout_addr
/// end_apply
/// with:
/// %addr = struct_element_addr/ref_element_addr %root_object
/// // use %inout_addr
bool SILCombiner::tryOptimizeInoutKeypath(BeginApplyInst *AI) {
SILFunction *callee = AI->getReferencedFunctionOrNull();
if (!callee)
return false;
if (AI->getNumArguments() != 2)
return false;
SILValue keyPath = AI->getArgument(1);
SILValue rootAddr = AI->getArgument(0);
bool isModify = false;
if (callee->getName() == "swift_modifyAtWritableKeyPath" ||
callee->getName() == "swift_modifyAtReferenceWritableKeyPath") {
isModify = true;
} else if (callee->getName() != "swift_readAtKeyPath") {
return false;
}
SILInstructionResultArray yields = AI->getYieldedValues();
if (yields.size() != 1)
return false;
SILValue valueAddr = yields[0];
Operand *AIUse = AI->getTokenResult()->getSingleUse();
if (!AIUse)
return false;
EndApplyInst *endApply = dyn_cast<EndApplyInst>(AIUse->getUser());
if (!endApply)
return false;
auto projector = KeyPathProjector::create(keyPath, rootAddr,
AI->getLoc(), Builder);
if (!projector)
return false;
KeyPathProjector::AccessType accessType;
if (isModify) accessType = KeyPathProjector::AccessType::Modify;
else accessType = KeyPathProjector::AccessType::Get;
projector->project(accessType, [&](SILValue projectedAddr) {
// Replace the projected address.
valueAddr->replaceAllUsesWith(projectedAddr);
// Skip to the end of the key path application before cleaning up.
Builder.setInsertionPoint(endApply);
});
eraseInstFromFunction(*endApply);
eraseInstFromFunction(*AI);
++NumOptimizedKeypaths;
return true;
}
bool
SILCombiner::recursivelyCollectARCUsers(UserListTy &Uses, ValueBase *Value) {
// FIXME: We could probably optimize this case too
if (auto *AI = dyn_cast<ApplyInst>(Value))
if (AI->hasIndirectResults())
return false;
for (auto *Use : Value->getUses()) {
SILInstruction *Inst = Use->getUser();
if (isa<RefCountingInst>(Inst) || isa<DestroyValueInst>(Inst) ||
isa<DebugValueInst>(Inst) || isa<EndBorrowInst>(Inst)) {
Uses.push_back(Inst);
continue;
}
if (isa<TupleExtractInst>(Inst) || isa<StructExtractInst>(Inst) ||
isa<CopyValueInst>(Inst) || isa<BeginBorrowInst>(Inst) ||
isa<PointerToAddressInst>(Inst)) {
Uses.push_back(Inst);
if (recursivelyCollectARCUsers(Uses, cast<SingleValueInstruction>(Inst)))
continue;
}
return false;
}
return true;
}
bool SILCombiner::eraseApply(FullApplySite FAS, const UserListTy &Users) {
// Compute the places where we have to insert release-instructions for the
// owned arguments. This must not be done before the result of the
// apply is destroyed. Therefore we compute the lifetime of the apply-result.
// TODO: this is not required anymore when we have ownership SIL. But with
// the current SIL it can happen that the retain of a parameter is moved
// _after_ the apply.
// When we have ownership SIL we can just destroy the parameters at the apply
// location.
ValueLifetimeAnalysis VLA(FAS.getInstruction(), Users);
ValueLifetimeAnalysis::Frontier Frontier;
if (Users.empty()) {
// If the call does not have any ARC-uses or if there is no return value at
// all, we insert the argument release instructions right before the call.
Frontier.push_back(FAS.getInstruction());
} else {
if (!VLA.computeFrontier(Frontier, ValueLifetimeAnalysis::DontModifyCFG))
return false;
// As we are extending the lifetimes of owned parameters, we have to make
// sure that no dealloc_ref instructions are within this extended liferange.
// It could be that the dealloc_ref is deallocating a parameter and then
// we would have a release after the dealloc.
if (VLA.containsDeallocRef(Frontier))
return false;
}
// Release and destroy any owned or in-arguments.
auto FuncType = FAS.getOrigCalleeType();
assert(FuncType->getParameters().size() == FAS.getNumArguments() &&
"mismatching number of arguments");
for (SILInstruction *FrontierInst : Frontier) {
Builder.setInsertionPoint(FrontierInst);
for (int i = 0, e = FAS.getNumArguments(); i < e; ++i) {
SILParameterInfo PI = FuncType->getParameters()[i];
auto Arg = FAS.getArgument(i);
switch (PI.getConvention()) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Constant:
case ParameterConvention::Direct_Owned:
Builder.emitDestroyOperation(FAS.getLoc(), Arg);
break;
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
break;
}
}
}
// Erase all of the reference counting instructions (in reverse order to have
// no dangling uses).
for (auto rit = Users.rbegin(), re = Users.rend(); rit != re; ++rit)
eraseInstFromFunction(**rit);
// And the Apply itself.
eraseInstFromFunction(*FAS.getInstruction());
return true;
}
/// This routine replaces the old witness method inst with a new one.
void SILCombiner::replaceWitnessMethodInst(
WitnessMethodInst *WMI, SILBuilderContext &BuilderCtx, CanType ConcreteType,
const ProtocolConformanceRef ConformanceRef) {
SILBuilderWithScope WMIBuilder(WMI, BuilderCtx);
auto *NewWMI = WMIBuilder.createWitnessMethod(
WMI->getLoc(), ConcreteType, ConformanceRef, WMI->getMember(),
WMI->getType());
WMI->replaceAllUsesWith(NewWMI);
if (WMI->use_empty())
eraseInstFromFunction(*WMI);
}
// This function determines concrete type of an opened existential argument
// using ProtocolConformanceAnalysis. The concrete type of the argument can be a
// class, struct, or an enum.
//
// If some ConcreteOpenedExistentialInfo is returned, then new cast instructions
// have already been added to Builder's tracking list. If the caller can't make
// real progress then it must reset the Builder.
Optional<ConcreteOpenedExistentialInfo>
SILCombiner::buildConcreteOpenedExistentialInfoFromSoleConformingType(
Operand &ArgOperand) {
SILInstruction *AI = ArgOperand.getUser();
SILModule &M = AI->getModule();
SILFunction *F = AI->getFunction();
// SoleConformingType is only applicable in whole-module compilation.
if (!M.isWholeModule())
return None;
// Determine the protocol.
ProtocolDecl *PD = nullptr;
WitnessMethodInst *WMI = nullptr;
FullApplySite FAS = FullApplySite::isa(AI);
if (FAS && (WMI = dyn_cast<WitnessMethodInst>(FAS.getCallee())) &&
(FAS.getSelfArgumentOperand().get() == ArgOperand.get())) {
// If the witness method mutates self, we cannot replace self.
//
// FIXME: Remove this out-dated check for mutating self. canReplaceCopiedArg
// is supposed to handle this case.
if (FAS.getOrigCalleeType()->getSelfParameter().isIndirectMutating())
return None;
PD = WMI->getLookupProtocol();
} else {
auto ArgType = ArgOperand.get()->getType();
auto SwiftArgType = ArgType.getASTType();
/// If the argtype is an opened existential conforming to a protocol type
/// and that the protocol type has a sole conformance, then we can propagate
/// concrete type for it as well.
ArchetypeType *archetypeTy;
if (SwiftArgType->isOpenedExistential() &&
(archetypeTy = dyn_cast<ArchetypeType>(SwiftArgType)) &&
(archetypeTy->getConformsTo().size() == 1)) {
PD = archetypeTy->getConformsTo()[0];
} else if (ArgType.isExistentialType() && !ArgType.isAnyObject() &&
!SwiftArgType->isAny()) {
PD = dyn_cast_or_null<ProtocolDecl>(SwiftArgType->getAnyNominal());
}
}
if (!PD)
return None;
// Determine the sole conforming type.
CanType ConcreteType;
if (!PCA->getSoleConformingType(PD, CHA, ConcreteType))
return None;
// Determine OpenedArchetypeDef and SubstituionMap.
ConcreteOpenedExistentialInfo COAI(ArgOperand, ConcreteType, PD);
if (!COAI.CEI)
return None;
const OpenedArchetypeInfo &OAI = COAI.OAI;
ConcreteExistentialInfo &SoleCEI = *COAI.CEI;
assert(SoleCEI.isValid());
if (SoleCEI.ConcreteValue)
return COAI;
// Create SIL type for the concrete type.
SILType concreteSILType = F->getLoweredType(ConcreteType);
// Prepare the code by adding UncheckedCast instructions that cast opened
// existentials to concrete types. Set the ConcreteValue of CEI.
if (auto *OER = dyn_cast<OpenExistentialRefInst>(OAI.OpenedArchetypeValue)) {
// If we have an owned open_existential_ref, we only optimize for now if our
// open_existential_ref has a single non-debug consuming use that is a
// destroy_value.
if (OER->getForwardingOwnershipKind() != OwnershipKind::Owned) {
// We use OER as the insertion point so that
SILBuilderWithScope b(std::next(OER->getIterator()), Builder);
auto loc = RegularLocation::getAutoGeneratedLocation();
SoleCEI.ConcreteValue =
b.createUncheckedRefCast(loc, OER, concreteSILType);
return COAI;
}
auto *consumingUse = OER->getSingleConsumingUse();
if (!consumingUse || !isa<DestroyValueInst>(consumingUse->getUser())) {
return None;
}
// We use std::next(OER) as the insertion point so that we can reuse the
// destroy_value of consumingUse.
SILBuilderWithScope b(std::next(OER->getIterator()), Builder);
auto loc = RegularLocation::getAutoGeneratedLocation();
auto *uri = b.createUncheckedRefCast(loc, OER, concreteSILType);
SoleCEI.ConcreteValue = uri;
replaceInstUsesWith(*OER, uri);
return COAI;
}
if (auto *OEA = dyn_cast<OpenExistentialAddrInst>(OAI.OpenedArchetypeValue)) {
// Bail if ConcreteSILType is not the same SILType as the type stored in the
// existential after maximal reabstraction.
auto abstractionPattern = Lowering::AbstractionPattern::getOpaque();
auto abstractTy = F->getLoweredType(abstractionPattern, ConcreteType);
if (abstractTy != concreteSILType)
return None;
SoleCEI.ConcreteValue =
Builder.createUncheckedAddrCast(
OEA->getLoc(), OEA, concreteSILType.getAddressType());
return COAI;
}
// Bail if OpenArchetypeInfo recognizes any additional opened archetype
// producers. This shouldn't be hit currently because metatypes don't
// conform to protocols.
return None;
}
// This function builds a ConcreteExistentialInfo by first following the data
// flow chain from the ArgOperand. Otherwise, we check if the operand is of
// protocol type that conforms to a single concrete type.
Optional<ConcreteOpenedExistentialInfo>
SILCombiner::buildConcreteOpenedExistentialInfo(Operand &ArgOperand) {
// Build a ConcreteOpenedExistentialInfo following the data flow chain of the
// ArgOperand through the open_existential backward to an init_existential.
ConcreteOpenedExistentialInfo COEI(ArgOperand);
if (COEI.CEI)
return COEI;
// Use SoleConformingType information.
return buildConcreteOpenedExistentialInfoFromSoleConformingType(ArgOperand);
}
// Build ConcreteExistentialInfo for every existential argument of an Apply
// instruction including Self.
void SILCombiner::buildConcreteOpenedExistentialInfos(
FullApplySite Apply,
llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> &COEIs,
SILBuilderContext &BuilderCtx) {
for (unsigned ArgIdx = 0, e = Apply.getNumArguments(); ArgIdx < e;
++ArgIdx) {
auto ArgASTType = Apply.getArgument(ArgIdx)->getType().getASTType();
if (!ArgASTType->hasArchetype())
continue;
auto OptionalCOEI =
buildConcreteOpenedExistentialInfo(Apply.getArgumentOperands()[ArgIdx]);
if (!OptionalCOEI.hasValue())
continue;
auto COEI = OptionalCOEI.getValue();
assert(COEI.isValid());
COEIs.try_emplace(ArgIdx, COEI);
}
}
/// Given an Apply and an argument value produced by InitExistentialAddrInst,
/// return true if the argument can be replaced by a copy of its value.
///
/// FIXME: remove this helper when we can assume SIL opaque values.
static bool canReplaceCopiedArg(FullApplySite Apply, SILValue Arg,
DominanceAnalysis *DA, unsigned ArgIdx) {
auto *IEA = dyn_cast<InitExistentialAddrInst>(Arg);
// Only init_existential_addr may be copied.
if (!IEA)
return false;
auto *DT = DA->get(Apply.getFunction());
auto *AI = Apply.getInstruction();
SILValue existentialAddr = IEA->getOperand();
// If we peeked through an InitEnumDataAddr or some such, then don't assume we
// can reuse the copied value. It's likely destroyed by
// UncheckedTakeEnumDataInst before the copy.
auto *ASI = dyn_cast<AllocStackInst>(existentialAddr);
if (!ASI)
return false;
// Return true only if the given value is guaranteed to be initialized across
// the given call site.
//
// It's possible for an address to be initialized/deinitialized/reinitialized.
// Rather than keeping track of liveness, we very conservatively check that
// all deinitialization occures after the call.
auto isDestroy = [](Operand *use) {
switch (use->getUser()->getKind()) {
default:
return false;
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::DeinitExistentialAddrInst:
return true;
case SILInstructionKind::CopyAddrInst: {
auto *copy = cast<CopyAddrInst>(use->getUser());
return copy->getSrc() == use->get() && copy->isTakeOfSrc();
}
}
};
for (auto use : existentialAddr->getUses()) {
SILInstruction *user = use->getUser();
if (isDestroy(use)) {
if (!DT->properlyDominates(AI, user))
return false;
} else {
// The caller has to guarantee that there are no other instructions which
// use the address. This is done in findInitExistential called from
// the constructor of ConcreteExistentialInfo.
assert(isa<CopyAddrInst>(user) || isa<InitExistentialAddrInst>(user) ||
isa<OpenExistentialAddrInst>(user) ||
isa<DeallocStackInst>(user) ||
isa<ApplyInst>(user) || isa<TryApplyInst>(user) ||
user->isDebugInstruction() && "Unexpected instruction");
}
}
return true;
}
// Check the legal conditions under which a Arg parameter (specified as ArgIdx)
// can be replaced with a concrete type. Concrete type info is passed as CEI
// argument.
bool SILCombiner::canReplaceArg(FullApplySite Apply,
const OpenedArchetypeInfo &OAI,
const ConcreteExistentialInfo &CEI,
unsigned ArgIdx) {
// Don't specialize apply instructions that return the callee's Arg type,
// because this optimization does not know how to substitute types in the
// users of this apply. In the function type substitution below, all
// references to OpenedArchetype will be substituted. So walk to type to
// find all possible references, such as returning Optional<Arg>.
if (Apply.getType().getASTType().findIf(
[&OAI](Type t) -> bool { return t->isEqual(OAI.OpenedArchetype); })) {
return false;
}
// Bail out if any other arguments or indirect result that refer to the
// OpenedArchetype. The following optimization substitutes all occurrences
// of OpenedArchetype in the function signature, but will only rewrite the
// Arg operand.
//
// Note that the language does not allow Self to occur in contravariant
// position. However, SIL does allow this and it can happen as a result of
// upstream transformations. Since this is bail-out logic, it must handle
// all verifiable SIL.
// This bailout check is also needed for non-Self arguments [including Self].
unsigned NumApplyArgs = Apply.getNumArguments();
for (unsigned Idx = 0; Idx < NumApplyArgs; ++Idx) {
if (Idx == ArgIdx)
continue;
if (Apply.getArgument(Idx)->getType().getASTType().findIf(
[&OAI](Type t) -> bool {
return t->isEqual(OAI.OpenedArchetype);
})) {
return false;
}
}
// If the convention is mutating, then the existential must have been
// initialized by copying the concrete value (regardless of whether
// CEI.isConcreteValueCopied is true). Replacing the existential address with
// the concrete address would result in mutation of the wrong object.
auto origConv = Apply.getOrigCalleeConv();
if (origConv.getParamInfoForSILArg(ArgIdx).isIndirectMutating())
return false;
// If either the initialized existential or opened existential was copied,
// then check that the original value can be passed as the new argument.
if (CEI.isConcreteValueCopied
&& (!CEI.ConcreteValue
|| !canReplaceCopiedArg(Apply, CEI.ConcreteValue, DA, ArgIdx))) {
return false;
}
// It is safe to replace Arg.
return true;
}
/// Track temporary copies required for argument substitution when rewritting an
/// apply's argument types from an opened existential types to concrete types.
///
/// This is relevant for non-mutating arguments that are consumed by the call
/// (@in or @owned convention).
struct ConcreteArgumentCopy {
SILValue origArg;
AllocStackInst *tempArg;
ConcreteArgumentCopy(SILValue origArg, AllocStackInst *tempArg)
: origArg(origArg), tempArg(tempArg) {
assert(origArg->getType().isAddress());
}
static Optional<ConcreteArgumentCopy>
generate(const ConcreteExistentialInfo &existentialInfo, ApplySite apply,
unsigned argIdx, SILBuilderContext &builderCtx) {
SILParameterInfo paramInfo =
apply.getOrigCalleeConv().getParamInfoForSILArg(argIdx);
// Mutation should have been checked before we get this far.
assert(!paramInfo.isIndirectMutating()
&& "A mutated opened existential value can't be replaced");
if (!paramInfo.isConsumed())
return None;
SILValue origArg = apply.getArgument(argIdx);
// FIXME_opaque: With SIL opaque values, a formally indirect argument may be
// passed as a SIL object. In this case, generate a copy_value for the new
// argument and a destroy_value for the old argument, as should also be done
// for owned references.
assert(origArg->getType().isAddress() == paramInfo.isFormalIndirect());
// If argument convention is direct, then the existential reference was
// originally consumed by the call. After substitution, the concrete
// reference will be consumed by the call. This maintains the correct
// reference count.
//
// FIXME_ownership: to maintain ownership SSA, generate a copy_value from
// the concrete reference for the new argument (record this copy as a
// union with tempArgCopy above). After emitting the apply, emit a
// destroy_value of the existential, which is no longer consumed by the
// call.
if (!paramInfo.isFormalIndirect())
return None;
SILBuilderWithScope builder(apply.getInstruction(), builderCtx);
auto loc = apply.getLoc();
auto *asi =
builder.createAllocStack(loc, existentialInfo.ConcreteValue->getType());
// If the type is an address, simple copy it.
if (existentialInfo.ConcreteValue->getType().isAddress()) {
builder.createCopyAddr(loc, existentialInfo.ConcreteValue, asi, IsNotTake,
IsInitialization_t::IsInitialization);
} else {
// Otherwise, we probably got the value from the source of a store
// instruction so, create a store into the temporary argument.
auto copy =
builder.emitCopyValueOperation(loc, existentialInfo.ConcreteValue);
builder.emitStoreValueOperation(loc, copy, asi,
StoreOwnershipQualifier::Init);
}
return ConcreteArgumentCopy(origArg, asi);
}
};
SILValue SILCombiner::canCastArg(FullApplySite Apply,
const OpenedArchetypeInfo &OAI,
const ConcreteExistentialInfo &CEI,
unsigned ArgIdx) {
if (!CEI.ConcreteValue || CEI.ConcreteType->isOpenedExistential() ||
!CEI.ConcreteValue->getType().isAddress())
return SILValue();
// Don't specialize apply instructions that return the callee's Arg type,
// because this optimization does not know how to substitute types in the
// users of this apply. In the function type substitution below, all
// references to OpenedArchetype will be substituted. So walk to type to
// find all possible references, such as returning Optional<Arg>.
if (Apply.getType().getASTType().findIf(
[&OAI](Type t) -> bool { return t->isEqual(OAI.OpenedArchetype); })) {
return SILValue();
}
// Bail out if any other arguments or indirect result that refer to the
// OpenedArchetype. The following optimization substitutes all occurrences
// of OpenedArchetype in the function signature, but will only rewrite the
// Arg operand.
//
// Note that the language does not allow Self to occur in contravariant
// position. However, SIL does allow this and it can happen as a result of
// upstream transformations. Since this is bail-out logic, it must handle
// all verifiable SIL.
// This bailout check is also needed for non-Self arguments [including Self].
unsigned NumApplyArgs = Apply.getNumArguments();
for (unsigned Idx = 0; Idx < NumApplyArgs; ++Idx) {
if (Idx == ArgIdx)
continue;
if (Apply.getArgument(Idx)->getType().getASTType().findIf(
[&OAI](Type t) -> bool {
return t->isEqual(OAI.OpenedArchetype);
})) {
return SILValue();
}
}
return Builder.createUncheckedAddrCast(
Apply.getLoc(), Apply.getArgument(ArgIdx), CEI.ConcreteValue->getType());
}
/// Rewrite the given method apply instruction in terms of the provided conrete
/// type information.
///
/// If the rewrite is successful, the original apply will be removed and the new
/// apply is returned. Otherwise, the original apply will not be removed and
/// nullptr is returned.
///
/// Creates a new apply instruction that uses the concrete type instead of the
/// existential type. Type substitution will be performed from all occurrences
/// of CEI.OpenedArchetype to the replacement type CEI.ConcreteType within the
/// applied function type. The single self argument of the apply will be
/// rewritten. This helps the devirtualizer to replace witness_method by
/// class_method instructions and then devirtualize.
///
/// Note that the substituted type, CEI.OpenedArchetype, is the same type as the
/// self argument for nonstatic methods, but for static methods self is the
/// metatype instead. For witness methods, CEI.OpenedArchetype is usually the
/// same as WMI->getLookupType() but differs in the unusual situation in which
/// the witness method is looked up using a different opened archetype.
///
/// FIXME: Protocol methods (witness or default) that return Self will be given
/// a new return type. This implementation fails to update the type signature of
/// SSA uses in those cases. Currently we bail out on methods that return Self.
SILInstruction *SILCombiner::createApplyWithConcreteType(
FullApplySite Apply,
const llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> &COAIs,
SILBuilderContext &BuilderCtx) {
// Ensure that the callee is polymorphic.
assert(Apply.getOrigCalleeType()->isPolymorphic());
// Create the new set of arguments to apply including their substitutions.
SubstitutionMap NewCallSubs = Apply.getSubstitutionMap();
SmallVector<SILValue, 8> NewArgs;
unsigned ArgIdx = 0;
// Push the indirect result arguments.
for (unsigned EndIdx = Apply.getSubstCalleeConv().getSILArgIndexOfFirstParam();
ArgIdx < EndIdx; ++ArgIdx) {
NewArgs.push_back(Apply.getArgument(ArgIdx));
}
// Transform the parameter arguments.
SmallVector<ConcreteArgumentCopy, 4> concreteArgCopies;
for (unsigned EndIdx = Apply.getNumArguments(); ArgIdx < EndIdx; ++ArgIdx) {
auto ArgIt = COAIs.find(ArgIdx);
if (ArgIt == COAIs.end()) {
// Use the old argument if it does not have a valid concrete existential.
NewArgs.push_back(Apply.getArgument(ArgIdx));
continue;
}
const OpenedArchetypeInfo &OAI = ArgIt->second.OAI;
const ConcreteExistentialInfo &CEI = *ArgIt->second.CEI;
assert(CEI.isValid());
// Check for Arg's concrete type propagation legality.
if (!canReplaceArg(Apply, OAI, CEI, ArgIdx)) {
// As on last fall-back try to cast the argument.
if (auto cast = canCastArg(Apply, OAI, CEI, ArgIdx)) {
NewArgs.push_back(cast);
// Form a new set of substitutions where the argument is
// replaced with a concrete type.
NewCallSubs = NewCallSubs.subst(
[&](SubstitutableType *type) -> Type {
if (type == OAI.OpenedArchetype)
return CEI.ConcreteType;
return type;
},
[&](CanType origTy, Type substTy,
ProtocolDecl *proto) -> ProtocolConformanceRef {
if (origTy->isEqual(OAI.OpenedArchetype)) {
assert(substTy->isEqual(CEI.ConcreteType));
// Do a conformance lookup on this witness requirement using the
// existential's conformances. The witness requirement may be a
// base type of the existential's requirements.
return CEI.lookupExistentialConformance(proto);
}
return ProtocolConformanceRef(proto);
});
continue;
}
// Otherwise, use the original argument.
NewArgs.push_back(Apply.getArgument(ArgIdx));
continue;
}
// Ensure that we have a concrete value to propagate.
assert(CEI.ConcreteValue);
auto argSub =
ConcreteArgumentCopy::generate(CEI, Apply, ArgIdx, BuilderCtx);
if (argSub) {
concreteArgCopies.push_back(*argSub);
NewArgs.push_back(argSub->tempArg);
} else {
NewArgs.push_back(CEI.ConcreteValue);
}
// Form a new set of substitutions where the argument is
// replaced with a concrete type.
NewCallSubs = NewCallSubs.subst(
[&](SubstitutableType *type) -> Type {
if (type == OAI.OpenedArchetype)
return CEI.ConcreteType;
return type;
},
[&](CanType origTy, Type substTy,
ProtocolDecl *proto) -> ProtocolConformanceRef {
if (origTy->isEqual(OAI.OpenedArchetype)) {
assert(substTy->isEqual(CEI.ConcreteType));
// Do a conformance lookup on this witness requirement using the
// existential's conformances. The witness requirement may be a
// base type of the existential's requirements.
return CEI.lookupExistentialConformance(proto);
}
return ProtocolConformanceRef(proto);
});
}
// We need to make sure that we can a) update Apply to use the new args and b)
// at least one argument has changed. If no arguments have changed, we need
// to return nullptr. Otherwise, we will have an infinite loop.
auto context = Apply.getFunction()->getTypeExpansionContext();
auto substTy = Apply.getCallee()
->getType()
.substGenericArgs(Apply.getModule(), NewCallSubs, context)
.getAs<SILFunctionType>();
SILFunctionConventions conv(substTy,
SILModuleConventions(Apply.getModule()));
bool canUpdateArgs = true;
bool madeUpdate = false;
for (unsigned index = 0; index < conv.getNumSILArguments(); ++index) {
// Make sure that *all* the arguments in both the new substitution function
// and our vector of new arguments have the same type.
canUpdateArgs &=
conv.getSILArgumentType(index, context) == NewArgs[index]->getType();
// Make sure that we have changed at least one argument.
madeUpdate |=
NewArgs[index]->getType() != Apply.getArgument(index)->getType();
}
// If we can't update the args (because of a type mismatch) or the args don't
// change, bail out by removing the instructions we've added and returning
// nullptr.
if (!canUpdateArgs || !madeUpdate) {
// Remove any new instructions created while attempting to optimize this
// apply. Since the apply was never rewritten, if they aren't removed here,
// they will be removed later as dead when visited by SILCombine, causing
// SILCombine to loop infinitely, creating and destroying the casts.
InstructionDeleter deleter;
for (SILInstruction *inst : *Builder.getTrackingList()) {
deleter.trackIfDead(inst);
}
deleter.cleanUpDeadInstructions();
Builder.getTrackingList()->clear();
return nullptr;
}
// Now create the new apply instruction.
SILBuilderWithScope ApplyBuilder(Apply.getInstruction(), BuilderCtx);
FullApplySite NewApply;
if (auto *TAI = dyn_cast<TryApplyInst>(Apply))
NewApply = ApplyBuilder.createTryApply(
Apply.getLoc(), Apply.getCallee(), NewCallSubs, NewArgs,
TAI->getNormalBB(), TAI->getErrorBB(),
TAI->getApplyOptions());
else
NewApply = ApplyBuilder.createApply(
Apply.getLoc(), Apply.getCallee(), NewCallSubs, NewArgs,
cast<ApplyInst>(Apply)->getApplyOptions());
if (auto NewAI = dyn_cast<ApplyInst>(NewApply))
replaceInstUsesWith(*cast<ApplyInst>(Apply.getInstruction()), NewAI);
auto nextI = std::next(NewApply.getInstruction()->getIterator());
eraseInstFromFunction(*Apply.getInstruction(), nextI);
// cleanup immediately after the call on all paths reachable from the call.
SmallVector<SILInstruction *, 2> cleanupPositions;
if (nextI != NewApply.getParent()->end())
cleanupPositions.push_back(&*nextI);
else {
for (auto &succ : NewApply.getParent()->getSuccessors())
cleanupPositions.push_back(&*succ.getBB()->begin());
}
for (SILInstruction *cleanupPos : cleanupPositions) {
// For any argument that was copied from the original value, destroy the old
// argument (was must have been previously consumed by the call) and
// deallocate the temporary copy.
SILBuilder cleanupBuilder(cleanupPos, NewApply.getDebugScope(), BuilderCtx);
auto cleanupLoc = RegularLocation::getAutoGeneratedLocation();
for (ConcreteArgumentCopy &argCopy : llvm::reverse(concreteArgCopies)) {
cleanupBuilder.createDestroyAddr(cleanupLoc, argCopy.origArg);
cleanupBuilder.createDeallocStack(cleanupLoc, argCopy.tempArg);
}
}
return NewApply.getInstruction();
}
/// Rewrite a witness method's lookup type from an archetype to a concrete type.
/// Example:
/// %existential = alloc_stack $Protocol
/// %value = init_existential_addr %existential : $Concrete
/// copy_addr ... to %value
/// %witness = witness_method $@opened
/// apply %witness<T : Protocol>(%existential)
///
/// ==> apply %witness<Concrete : Protocol>(%existential)
SILInstruction *
SILCombiner::propagateConcreteTypeOfInitExistential(FullApplySite Apply,
WitnessMethodInst *WMI) {
// We do not perform this optimization in OSSA. In OSSA, we will have opaque
// values we will redo this.
if (WMI->getFunction()->hasOwnership())
return nullptr;
// Check if it is legal to perform the propagation.
if (WMI->getConformance().isConcrete())
return nullptr;
// If the lookup type is not an opened existential type,
// it cannot be made more concrete.
if (!WMI->getLookupType()->isOpenedExistential())
return nullptr;
// Try to derive the concrete type and the related conformance of self and
// other existential arguments by searching either for a preceding
// init_existential or looking up sole conforming type.
//
// buildConcreteOpenedExistentialInfo takes a SILBuilderContext because it may
// insert an uncheched cast to the concrete type, and it tracks the defintion
// of any opened archetype needed to use the concrete type.
SILBuilderContext BuilderCtx(Builder.getModule(), Builder.getTrackingList());
llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> COEIs;
buildConcreteOpenedExistentialInfos(Apply, COEIs, BuilderCtx);
// Bail, if no argument has a concrete existential to propagate.
if (COEIs.empty())
return nullptr;
auto SelfCOEIIt =
COEIs.find(Apply.getCalleeArgIndex(Apply.getSelfArgumentOperand()));
// If no SelfCOEI is found, then just update the Apply with new COEIs for
// other arguments.
if (SelfCOEIIt == COEIs.end())
return createApplyWithConcreteType(Apply, COEIs, BuilderCtx);
auto &SelfCOEI = SelfCOEIIt->second;
assert(SelfCOEI.isValid());
const ConcreteExistentialInfo &SelfCEI = *SelfCOEI.CEI;
assert(SelfCEI.isValid());
// Get the conformance of the init_existential type, which is passed as the
// self argument, on the witness' protocol.
ProtocolConformanceRef SelfConformance =
SelfCEI.lookupExistentialConformance(WMI->getLookupProtocol());
// Propagate the concrete type into a callee-operand, which is a
// witness_method instruction. It's ok to rewrite the witness method in terms
// of a concrete type without rewriting the apply itself. In fact, doing so
// may allow the Devirtualizer pass to finish the job.
//
// If we create a new instruction thats the same as the old one well
// cause an infinite loop:
// NewWMI will be added to the Builders tracker list.
// SILCombine, in turn, uses the tracker list to populate the worklist
// As such, if we dont remove the witness method later on in the pass, we
// are stuck:
// We will re-create the same instruction and re-populate the worklist
// with it.
if (SelfCEI.ConcreteType != WMI->getLookupType() ||
SelfConformance != WMI->getConformance()) {
replaceWitnessMethodInst(WMI, BuilderCtx, SelfCEI.ConcreteType,
SelfConformance);
}
/// Create the new apply instruction using concrete types for arguments.
return createApplyWithConcreteType(Apply, COEIs, BuilderCtx);
}
/// Rewrite a protocol extension lookup type from an archetype to a concrete
/// type.
/// Example:
/// %ref = alloc_ref $C
/// %existential = init_existential_ref %ref : $C : $C, $P
/// %opened = open_existential_ref %existential : $P to $@opened
/// %f = function_ref @defaultMethod
/// apply %f<@opened P>(%opened)
///
/// ==> apply %f<C : P>(%ref)
SILInstruction *
SILCombiner::propagateConcreteTypeOfInitExistential(FullApplySite Apply) {
if (Apply.getFunction()->hasOwnership())
return nullptr;
// This optimization requires a generic argument.
if (!Apply.hasSubstitutions())
return nullptr;
// Try to derive the concrete type and the related conformance of self and
// other existential arguments by searching either for a preceding
// init_existential or looking up sole conforming type.
llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> COEIs;
SILBuilderContext BuilderCtx(Builder.getModule(), Builder.getTrackingList());
buildConcreteOpenedExistentialInfos(Apply, COEIs, BuilderCtx);
// Bail, if no argument has a concrete existential to propagate.
if (COEIs.empty())
return nullptr;
// At least one COEI is present, so cast instructions may already have been
// inserted. We must either rewrite the apply or delete the casts and reset
// the Builder's tracking list.
return createApplyWithConcreteType(Apply, COEIs, BuilderCtx);
}
/// Check that all users of the apply are retain/release ignoring one
/// user.
static bool
hasOnlyRecursiveOwnershipUsers(ApplyInst *ai, SILInstruction *ignoreUser,
SmallVectorImpl<SILInstruction *> &foundUsers) {
SmallVector<Operand *, 32> worklist(getNonDebugUses(ai));
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
auto *user = use->getUser();
if (user == ignoreUser)
continue;
if (!isa<RetainValueInst>(user) && !isa<ReleaseValueInst>(user) &&
!isa<StrongRetainInst>(user) && !isa<StrongReleaseInst>(user) &&
!isa<CopyValueInst>(user) && !isa<DestroyValueInst>(user) &&
!isa<BeginBorrowInst>(user) && !isa<EndBorrowInst>(user) &&
!user->isDebugInstruction())
return false;
if (auto *cvi = dyn_cast<CopyValueInst>(user))
for (auto *use : cvi->getUses())
worklist.push_back(use);
if (auto *bbi = dyn_cast<BeginBorrowInst>(user))
for (auto *use : bbi->getUses())
worklist.push_back(use);
foundUsers.push_back(user);
}
return true;
};
/// We only know how to simulate reference call effects for unary
/// function calls that take their argument @owned or @guaranteed and return an
/// @owned value.
static bool knowHowToEmitReferenceCountInsts(ApplyInst *Call) {
if (Call->getNumArguments() != 1)
return false;
// FIXME: We could handle dynamic_function_ref instructions here because the
// code only looks at the function type.
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(Call->getCallee());
if (!FRI)
return false;
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
// Look at the result type.
if (FnTy->getNumResults() != 1)
return false;
auto ResultInfo = FnTy->getResults()[0];
if (ResultInfo.getConvention() != ResultConvention::Owned)
return false;
// Look at the parameter.
auto Params = FnTy->getParameters();
(void) Params;
assert(Params.size() == 1 && "Expect one parameter");
auto ParamConv = FnTy->getParameters()[0].getConvention();
return ParamConv == ParameterConvention::Direct_Owned ||
ParamConv == ParameterConvention::Direct_Guaranteed;
}
/// Add reference counting operations equal to the effect of the call.
static void emitMatchingRCAdjustmentsForCall(ApplyInst *Call, SILValue OnX) {
FunctionRefInst *FRI = cast<FunctionRefInst>(Call->getCallee());
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
assert(FnTy->getNumResults() == 1);
auto ResultInfo = FnTy->getResults()[0];
(void) ResultInfo;
assert(ResultInfo.getConvention() == ResultConvention::Owned &&
"Expect a @owned return");
assert(Call->getNumArguments() == 1 && "Expect a unary call");
// Emit a copy for the @owned return.
SILBuilderWithScope Builder(Call);
OnX = Builder.emitCopyValueOperation(Call->getLoc(), OnX);
// Emit a destroy for the @owned parameter, or none for a @guaranteed
// parameter.
auto Params = FnTy->getParameters();
(void) Params;
assert(Params.size() == 1 && "Expect one parameter");
auto ParamInfo = FnTy->getParameters()[0].getConvention();
assert(ParamInfo == ParameterConvention::Direct_Owned ||
ParamInfo == ParameterConvention::Direct_Guaranteed);
if (ParamInfo == ParameterConvention::Direct_Owned)
Builder.emitDestroyValueOperation(Call->getLoc(), OnX);
}
// Replace an application of a cast composition f_inverse(f(x)) by x.
//
// NOTE: The instruction we are actually folding is f_inverse.
bool SILCombiner::optimizeIdentityCastComposition(ApplyInst *fInverseApply,
StringRef fInverseName,
StringRef fName) {
// Needs to have a known semantics.
if (!fInverseApply->hasSemantics(fInverseName))
return false;
// We need to know how to replace the call by reference counting instructions.
if (!knowHowToEmitReferenceCountInsts(fInverseApply))
return false;
// Need to have a matching 'f'.
auto fInverseArg0 = lookThroughOwnershipInsts(fInverseApply->getArgument(0));
auto *fApply = dyn_cast<ApplyInst>(fInverseArg0);
if (!fApply)
return false;
if (!fApply->hasSemantics(fName))
return false;
if (!knowHowToEmitReferenceCountInsts(fApply))
return false;
// The types must match.
if (fApply->getArgument(0)->getType() != fInverseApply->getType())
return false;
// Gather up all retain
SmallVector<SILInstruction *, 16> foundOwnershipUsers;
if (!hasOnlyRecursiveOwnershipUsers(fApply, fInverseApply /*user to ignore*/,
foundOwnershipUsers))
return false;
// Okay, now we know we can remove the calls.
auto arg0 = fApply->getArgument(0);
if (fApply->getFunction()->hasOwnership()) {
// First perform an ownership RAUW+erase of arg0 and inverse apply. The OSSA
// RAUW helper will copy arg0 if needed. We need to do this before anything
// else since the utility assumes OSSA is in correct form.
OwnershipRAUWHelper helper(ownershipFixupContext, fInverseApply, arg0);
if (!helper)
return false;
helper.perform();
// Now remove the apply, inserting a destroy_value if we need to it arg0.
if (fApply->getArgumentRef(0).isLifetimeEnding()) {
SILBuilderWithScope b(fApply, Builder);
if (arg0.getOwnershipKind() == OwnershipKind::Owned) {
b.emitDestroyValueOperation(fApply->getLoc(), arg0);
} else if (arg0.getOwnershipKind() == OwnershipKind::Guaranteed) {
b.emitEndBorrowOperation(fApply->getLoc(), arg0);
}
}
eraseInstIncludingUsers(fApply);
return true;
}
// Redirect f's result's retains/releases to affect x.
//
// NOTE: This part of the code is only used in non-ownership SIL since we
// represent ARC operations there with copy_value, destroy_value that work
// with all types.
for (auto *ownershipUser : foundOwnershipUsers) {
// X might not be strong_retain/release'able. Replace it by a
// retain/release_value on X instead.
if (isa<StrongRetainInst>(ownershipUser)) {
SILBuilderWithScope b(ownershipUser, Builder);
b.createRetainValue(
ownershipUser->getLoc(), arg0,
cast<StrongRetainInst>(ownershipUser)->getAtomicity());
eraseInstFromFunction(*ownershipUser);
continue;
}
if (isa<StrongReleaseInst>(ownershipUser)) {
SILBuilderWithScope b(ownershipUser, Builder);
b.createReleaseValue(
ownershipUser->getLoc(), arg0,
cast<StrongReleaseInst>(ownershipUser)->getAtomicity());
eraseInstFromFunction(*ownershipUser);
continue;
}
ownershipUser->setOperand(0, arg0);
// Simulate the reference count effects of the calls before removing
// them.
emitMatchingRCAdjustmentsForCall(fApply, arg0);
emitMatchingRCAdjustmentsForCall(fInverseApply, arg0);
}
// Replace users of f_inverse by x.
replaceInstUsesWith(*fInverseApply, arg0);
// Remove the calls.
eraseInstFromFunction(*fInverseApply);
eraseInstFromFunction(*fApply);
return true;
}
SILInstruction *SILCombiner::visitApplyInst(ApplyInst *AI) {
Builder.setCurrentDebugScope(AI->getDebugScope());
// apply{partial_apply(x,y)}(z) -> apply(z,x,y) is triggered
// from visitPartialApplyInst(), so bail here.
if (isa<PartialApplyInst>(AI->getCallee()))
return nullptr;
if (auto *CFI = dyn_cast<ConvertFunctionInst>(AI->getCallee()))
return optimizeApplyOfConvertFunctionInst(AI, CFI);
if (tryOptimizeKeypath(AI))
return nullptr;
// Optimize readonly functions with no meaningful users.
SILFunction *SF = AI->getReferencedFunctionOrNull();
if (SF && SF->getEffectsKind() < EffectsKind::ReleaseNone) {
UserListTy Users;
if (recursivelyCollectARCUsers(Users, AI)) {
if (eraseApply(AI, Users))
return nullptr;
}
// We found a user that we can't handle.
}
if (SF) {
if (SF->hasSemanticsAttr(semantics::ARRAY_UNINITIALIZED)) {
UserListTy Users;
// If the uninitialized array is only written into then it can be removed.
if (recursivelyCollectARCUsers(Users, AI)) {
if (eraseApply(AI, Users))
return nullptr;
}
}
}
// (apply (thin_to_thick_function f)) to (apply f)
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(AI->getCallee())) {
// We currently don't remove any possible retain associated with the thick
// function when rewriting the callsite. This should be ok because the
// ABI normally expects a guaranteed callee.
if (!AI->getOrigCalleeType()->isCalleeConsumed())
return cloneFullApplySiteReplacingCallee(AI, TTTFI->getOperand(),
Builder.getBuilderContext())
.getInstruction();
}
// (apply (witness_method)) -> propagate information about
// a concrete type from init_existential_addr or init_existential_ref.
if (auto *WMI = dyn_cast<WitnessMethodInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI, WMI)) {
return nullptr;
}
}
// (apply (function_ref method_from_protocol_extension)) ->
// propagate information about a concrete type from init_existential_addr or
// init_existential_ref.
if (isa<FunctionRefInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI)) {
return nullptr;
}
}
// Optimize f_inverse(f(x)) -> x.
if (optimizeIdentityCastComposition(AI, "convertFromObjectiveC",
"convertToObjectiveC"))
return nullptr;
if (optimizeIdentityCastComposition(AI, "convertToObjectiveC",
"convertFromObjectiveC"))
return nullptr;
return nullptr;
}
SILInstruction *SILCombiner::visitBeginApplyInst(BeginApplyInst *BAI) {
if (tryOptimizeInoutKeypath(BAI))
return nullptr;
return nullptr;
}
bool SILCombiner::
isTryApplyResultNotUsed(UserListTy &AcceptedUses, TryApplyInst *TAI) {
SILBasicBlock *NormalBB = TAI->getNormalBB();
SILBasicBlock *ErrorBB = TAI->getErrorBB();
// The results of a try_apply are not only the normal and error return values,
// but also the decision whether it throws or not. Therefore we have to check
// if both, the normal and the error block, are empty and lead to a common
// destination block.
// Check if the normal and error blocks have a common single successor.
auto *NormalBr = dyn_cast<BranchInst>(NormalBB->getTerminator());
if (!NormalBr)
return false;
auto *ErrorBr = dyn_cast<BranchInst>(ErrorBB->getTerminator());
if (!ErrorBr || ErrorBr->getDestBB() != NormalBr->getDestBB())
return false;
assert(NormalBr->getNumArgs() == ErrorBr->getNumArgs() &&
"mismatching number of arguments for the same destination block");
// Check if both blocks pass the same arguments to the common destination.
for (unsigned Idx = 0, End = NormalBr->getNumArgs(); Idx < End; ++Idx) {
if (NormalBr->getArg(Idx) != ErrorBr->getArg(Idx))
return false;
}
// Check if the normal and error results only have ARC operations as uses.
if (!recursivelyCollectARCUsers(AcceptedUses, NormalBB->getArgument(0)))
return false;
if (!recursivelyCollectARCUsers(AcceptedUses, ErrorBB->getArgument(0)))
return false;
SmallPtrSet<SILInstruction *, 8> UsesSet;
for (auto *I : AcceptedUses)
UsesSet.insert(I);
// Check if the normal and error blocks are empty, except the ARC uses.
for (auto &I : *NormalBB) {
if (!UsesSet.count(&I) && !isa<TermInst>(&I))
return false;
}
for (auto &I : *ErrorBB) {
if (!UsesSet.count(&I) && !isa<TermInst>(&I))
return false;
}
return true;
}
SILInstruction *SILCombiner::visitTryApplyInst(TryApplyInst *AI) {
// apply{partial_apply(x,y)}(z) -> apply(z,x,y) is triggered
// from visitPartialApplyInst(), so bail here.
if (isa<PartialApplyInst>(AI->getCallee()))
return nullptr;
// Optimize readonly functions with no meaningful users.
SILFunction *Fn = AI->getReferencedFunctionOrNull();
if (Fn && Fn->getEffectsKind() < EffectsKind::ReleaseNone) {
UserListTy Users;
if (isTryApplyResultNotUsed(Users, AI)) {
SILBasicBlock *BB = AI->getParent();
SILBasicBlock *NormalBB = AI->getNormalBB();
SILBasicBlock *ErrorBB = AI->getErrorBB();
SILLocation Loc = AI->getLoc();
const SILDebugScope *DS = AI->getDebugScope();
if (eraseApply(AI, Users)) {
// Replace the try_apply with a cond_br false, which will be removed by
// SimplifyCFG. We don't want to modify the CFG in SILCombine.
Builder.setInsertionPoint(BB);
Builder.setCurrentDebugScope(DS);
auto *TrueLit = Builder.createIntegerLiteral(Loc,
SILType::getBuiltinIntegerType(1, Builder.getASTContext()), 0);
Builder.createCondBranch(Loc, TrueLit, NormalBB, ErrorBB);
NormalBB->eraseArgument(0);
ErrorBB->eraseArgument(0);
return nullptr;
}
}
// We found a user that we can't handle.
}
// (try_apply (thin_to_thick_function f)) to (try_apply f)
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(AI->getCallee())) {
// We currently don't remove any possible retain associated with the thick
// function when rewriting the callsite. This should be ok because the
// ABI normally expects a guaranteed callee.
if (!AI->getOrigCalleeType()->isCalleeConsumed())
return cloneFullApplySiteReplacingCallee(AI, TTTFI->getOperand(),
Builder.getBuilderContext())
.getInstruction();
}
// (apply (witness_method)) -> propagate information about
// a concrete type from init_existential_addr or init_existential_ref.
if (auto *WMI = dyn_cast<WitnessMethodInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI, WMI)) {
return nullptr;
}
}
// (apply (function_ref method_from_protocol_extension)) ->
// propagate information about a concrete type from init_existential_addr or
// init_existential_ref.
if (isa<FunctionRefInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI)) {
return nullptr;
}
}
return nullptr;
}