Files
swift-mirror/lib/SILOptimizer/Utils/InstOptUtils.cpp
Michael Gottesman 7b55cbc669 [sil-optimizer] Make InstructionDeleter and related APIs to use an InstModCallback instead of a notification callback.
I recently have been running into the issue that many of these APIs perform the
deletion operation themselves and notify the caller it is going to delete
instead of allowing the caller to specify how the instruction is deleted. This
causes interesting semantic issues (see the loop in deleteInstruction I
simplified) and breaks composition since many parts of the optimizer use
InstModCallbacks for this purpose.

To fix this, I added a notify will be deleted construct to InstModCallback. In a
similar way to the rest of it, if the notify is not set, we do not call any code
implying that we should have good predictable performance in loops since we will
always skip the function call.

I also changed InstModCallback::deleteInst() to notify before deleting so we
have a default safe behavior. All previous use sites of this API do not care
about being notified and the only new use sites of this API are in
InstructionDeleter that perform special notification behavior (it notifies for
certain sets of instructions it is going to delete before it deletes any of
them). To work around this, I added a bool to deleteInst to control this
behavior and defaulted to notifying. This should ensure that all other use sites
still compose correctly.
2021-04-26 16:37:43 -07:00

2126 lines
78 KiB
C++

//===--- InstOptUtils.cpp - SILOptimizer instruction utilities ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/ConstExpr.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include <deque>
using namespace swift;
static llvm::cl::opt<bool> EnableExpandAll("enable-expand-all",
llvm::cl::init(false));
static llvm::cl::opt<bool> KeepWillThrowCall(
"keep-will-throw-call", llvm::cl::init(false),
llvm::cl::desc(
"Keep calls to swift_willThrow, even if the throw is optimized away"));
Optional<SILBasicBlock::iterator> swift::getInsertAfterPoint(SILValue val) {
if (auto *inst = val->getDefiningInstruction()) {
return std::next(inst->getIterator());
}
if (isa<SILArgument>(val)) {
return cast<SILArgument>(val)->getParentBlock()->begin();
}
return None;
}
/// Creates an increment on \p Ptr before insertion point \p InsertPt that
/// creates a strong_retain if \p Ptr has reference semantics itself or a
/// retain_value if \p Ptr is a non-trivial value without reference-semantics.
NullablePtr<SILInstruction>
swift::createIncrementBefore(SILValue ptr, SILInstruction *insertPt) {
// Set up the builder we use to insert at our insertion point.
SILBuilder builder(insertPt);
auto loc = RegularLocation::getAutoGeneratedLocation();
// If we have a trivial type, just bail, there is no work to do.
if (ptr->getType().isTrivial(builder.getFunction()))
return nullptr;
// If Ptr is refcounted itself, create the strong_retain and
// return.
if (ptr->getType().isReferenceCounted(builder.getModule())) {
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
if (ptr->getType().is<Name##StorageType>()) \
return builder.create##Name##Retain(loc, ptr, \
builder.getDefaultAtomicity());
#include "swift/AST/ReferenceStorage.def"
return builder.createStrongRetain(loc, ptr,
builder.getDefaultAtomicity());
}
// Otherwise, create the retain_value.
return builder.createRetainValue(loc, ptr, builder.getDefaultAtomicity());
}
/// Creates a decrement on \p ptr before insertion point \p InsertPt that
/// creates a strong_release if \p ptr has reference semantics itself or
/// a release_value if \p ptr is a non-trivial value without
/// reference-semantics.
NullablePtr<SILInstruction>
swift::createDecrementBefore(SILValue ptr, SILInstruction *insertPt) {
// Setup the builder we will use to insert at our insertion point.
SILBuilder builder(insertPt);
auto loc = RegularLocation::getAutoGeneratedLocation();
if (ptr->getType().isTrivial(builder.getFunction()))
return nullptr;
// If ptr has reference semantics itself, create a strong_release.
if (ptr->getType().isReferenceCounted(builder.getModule())) {
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
if (ptr->getType().is<Name##StorageType>()) \
return builder.create##Name##Release(loc, ptr, \
builder.getDefaultAtomicity());
#include "swift/AST/ReferenceStorage.def"
return builder.createStrongRelease(loc, ptr,
builder.getDefaultAtomicity());
}
// Otherwise create a release value.
return builder.createReleaseValue(loc, ptr, builder.getDefaultAtomicity());
}
static bool isOSSAEndScopeWithNoneOperand(SILInstruction *i) {
if (!isa<EndBorrowInst>(i) && !isa<DestroyValueInst>(i))
return false;
return i->getOperand(0).getOwnershipKind() == OwnershipKind::None;
}
/// Perform a fast local check to see if the instruction is dead.
///
/// This routine only examines the state of the instruction at hand.
bool swift::isInstructionTriviallyDead(SILInstruction *inst) {
// At Onone, consider all uses, including the debug_info.
// This way, debug_info is preserved at Onone.
if (inst->hasUsesOfAnyResult()
&& inst->getFunction()->getEffectiveOptimizationMode()
<= OptimizationMode::NoOptimization)
return false;
if (!onlyHaveDebugUsesOfAllResults(inst) || isa<TermInst>(inst))
return false;
if (auto *bi = dyn_cast<BuiltinInst>(inst)) {
// Although the onFastPath builtin has no side-effects we don't want to
// remove it.
if (bi->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath)
return false;
return !bi->mayHaveSideEffects();
}
// condfail instructions that obviously can't fail are dead.
if (auto *cfi = dyn_cast<CondFailInst>(inst))
if (auto *ili = dyn_cast<IntegerLiteralInst>(cfi->getOperand()))
if (!ili->getValue())
return true;
// mark_uninitialized is never dead.
if (isa<MarkUninitializedInst>(inst))
return false;
if (isa<DebugValueInst>(inst) || isa<DebugValueAddrInst>(inst))
return false;
// These invalidate enums so "write" memory, but that is not an essential
// operation so we can remove these if they are trivially dead.
if (isa<UncheckedTakeEnumDataAddrInst>(inst))
return true;
// An ossa end scope instruction is trivially dead if its operand has
// OwnershipKind::None. This can occur after CFG simplification in the
// presence of non-payloaded or trivial payload cases of non-trivial enums.
//
// Examples of ossa end_scope instructions: end_borrow, destroy_value.
if (inst->getFunction()->hasOwnership() &&
isOSSAEndScopeWithNoneOperand(inst))
return true;
if (!inst->mayHaveSideEffects())
return true;
return false;
}
/// Return true if this is a release instruction and the released value
/// is a part of a guaranteed parameter.
bool swift::isIntermediateRelease(SILInstruction *inst,
EpilogueARCFunctionInfo *eafi) {
// Check whether this is a release instruction.
if (!isa<StrongReleaseInst>(inst) && !isa<ReleaseValueInst>(inst))
return false;
// OK. we have a release instruction.
// Check whether this is a release on part of a guaranteed function argument.
SILValue Op = stripValueProjections(inst->getOperand(0));
auto *arg = dyn_cast<SILFunctionArgument>(Op);
if (!arg)
return false;
// This is a release on a guaranteed parameter. Its not the final release.
if (arg->hasConvention(SILArgumentConvention::Direct_Guaranteed))
return true;
// This is a release on an owned parameter and its not the epilogue release.
// Its not the final release.
auto rel = eafi->computeEpilogueARCInstructions(
EpilogueARCContext::EpilogueARCKind::Release, arg);
if (rel.size() && !rel.count(inst))
return true;
// Failed to prove anything.
return false;
}
static bool hasOnlyEndOfScopeOrDestroyUses(SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
bool isDebugUser = user->isDebugInstruction();
if (!isa<DestroyValueInst>(user) && !isEndOfScopeMarker(user) &&
!isDebugUser)
return false;
// Include debug uses only in Onone mode.
if (isDebugUser && inst->getFunction()->getEffectiveOptimizationMode() <=
OptimizationMode::NoOptimization)
return false;
}
}
return true;
}
unsigned swift::getNumInOutArguments(FullApplySite applySite) {
assert(applySite);
auto substConv = applySite.getSubstCalleeConv();
unsigned numIndirectResults = substConv.getNumIndirectSILResults();
unsigned numInOutArguments = 0;
for (unsigned argIndex = 0; argIndex < applySite.getNumArguments();
argIndex++) {
// Skip indirect results.
if (argIndex < numIndirectResults) {
continue;
}
auto paramNumber = argIndex - numIndirectResults;
auto ParamConvention =
substConv.getParameters()[paramNumber].getConvention();
switch (ParamConvention) {
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable: {
++numInOutArguments;
break;
default:
break;
}
}
}
return numInOutArguments;
}
/// Return true iff the \p applySite calls a constant-evaluable function and
/// it is non-generic and read/destroy only, which means that the call can do
/// only the following and nothing else:
/// (1) The call may read any memory location.
/// (2) The call may destroy owned parameters i.e., consume them.
/// (3) The call may write into memory locations newly created by the call.
/// (4) The call may use assertions, which traps at runtime on failure.
/// (5) The call may return a non-generic value.
/// Essentially, these are calls whose "effect" is visible only in their return
/// value or through the parameters that are destroyed. The return value
/// is also guaranteed to have value semantics as it is non-generic and
/// reference semantics is not constant evaluable.
static bool isNonGenericReadOnlyConstantEvaluableCall(FullApplySite applySite) {
assert(applySite);
SILFunction *callee = applySite.getCalleeFunction();
if (!callee || !isConstantEvaluable(callee)) {
return false;
}
return !applySite.hasSubstitutions() && !getNumInOutArguments(applySite) &&
!applySite.getNumIndirectSILResults();
}
/// A scope-affecting instruction is an instruction which may end the scope of
/// its operand or may produce scoped results that require cleaning up. E.g.
/// begin_borrow, begin_access, copy_value, a call that produces a owned value
/// are scoped instructions. The scope of the results of the first two
/// instructions end with an end_borrow/acess instruction, while those of the
/// latter two end with a consuming operation like destroy_value instruction.
/// These instruction may also end the scope of its operand e.g. a call could
/// consume owned arguments thereby ending its scope. Dead-code eliminating a
/// scope-affecting instruction requires fixing the lifetime of the non-trivial
/// operands of the instruction and requires cleaning up the end-of-scope uses
/// of non-trivial results.
///
/// \param inst instruction that checked for liveness.
static bool isScopeAffectingInstructionDead(SILInstruction *inst) {
SILFunction *fun = inst->getFunction();
assert(fun && "Instruction has no function.");
// Only support ownership SIL for scoped instructions.
if (!fun->hasOwnership()) {
return false;
}
// If the instruction has any use other than end of scope use or destroy_value
// use, bail out.
if (!hasOnlyEndOfScopeOrDestroyUses(inst)) {
return false;
}
// If inst is a copy or beginning of scope, inst is dead, since we know that
// it is used only in a destroy_value or end-of-scope instruction.
if (getSingleValueCopyOrCast(inst))
return true;
switch (inst->getKind()) {
case SILInstructionKind::LoadBorrowInst: {
// A load_borrow only used in an end_borrow is dead.
return true;
}
case SILInstructionKind::LoadInst: {
LoadOwnershipQualifier loadOwnershipQual =
cast<LoadInst>(inst)->getOwnershipQualifier();
// If the load creates a copy, it is dead, since we know that if at all it
// is used, it is only in a destroy_value instruction.
return (loadOwnershipQual == LoadOwnershipQualifier::Copy ||
loadOwnershipQual == LoadOwnershipQualifier::Trivial);
// TODO: we can handle load [take] but we would have to know that the
// operand has been consumed. Note that OperandOwnershipKind map does not
// say this for load.
}
case SILInstructionKind::PartialApplyInst: {
// Partial applies that are only used in destroys cannot have any effect on
// the program state, provided the values they capture are explicitly
// destroyed.
return true;
}
case SILInstructionKind::StructInst:
case SILInstructionKind::EnumInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst: {
// All these ownership forwarding instructions that are only used in
// destroys are dead provided the values they consume are destroyed
// explicitly.
return true;
}
case SILInstructionKind::ApplyInst: {
// The following property holds for constant-evaluable functions that do
// not take arguments of generic type:
// 1. they do not create objects having deinitializers with global
// side effects, as they can only create objects consisting of trivial
// values, (non-generic) arrays and strings.
// 2. they do not use global variables or call arbitrary functions with
// side effects.
// The above two properties imply that a value returned by a constant
// evaluable function does not have a deinitializer with global side
// effects. Therefore, the deinitializer can be sinked.
//
// A generic, read-only constant evaluable call only reads and/or
// destroys its (non-generic) parameters. It therefore cannot have any
// side effects (note that parameters being non-generic have value
// semantics). Therefore, the constant evaluable call can be removed
// provided the parameter lifetimes are handled correctly, which is taken
// care of by the function: \c deleteInstruction.
FullApplySite applySite(cast<ApplyInst>(inst));
return isNonGenericReadOnlyConstantEvaluableCall(applySite);
}
default: {
return false;
}
}
}
void InstructionDeleter::trackIfDead(SILInstruction *inst) {
if (isInstructionTriviallyDead(inst) ||
isScopeAffectingInstructionDead(inst)) {
assert(!isIncidentalUse(inst) && !isa<DestroyValueInst>(inst) &&
"Incidental uses cannot be removed in isolation. "
"They would be removed iff the operand is dead");
deadInstructions.insert(inst);
}
}
/// Given an \p operand that belongs to an instruction that will be removed,
/// destroy the operand just before the instruction, if the instruction consumes
/// \p operand. This function will result in a double consume, which is expected
/// to be resolved when the caller deletes the original instruction. This
/// function works only on ownership SIL.
static void destroyConsumedOperandOfDeadInst(Operand &operand,
InstModCallbacks callbacks) {
assert(operand.get() && operand.getUser());
SILInstruction *deadInst = operand.getUser();
SILFunction *fun = deadInst->getFunction();
assert(fun->hasOwnership());
SILValue operandValue = operand.get();
if (operandValue->getType().isTrivial(*fun))
return;
// Ignore type-dependent operands which are not real operands but are just
// there to create use-def dependencies.
if (deadInst->isTypeDependentOperand(operand))
return;
// A scope ending instruction cannot be deleted in isolation without removing
// the instruction defining its operand as well.
assert(!isEndOfScopeMarker(deadInst) && !isa<DestroyValueInst>(deadInst) &&
!isa<DestroyAddrInst>(deadInst) &&
"lifetime ending instruction is deleted without its operand");
if (operand.isLifetimeEnding()) {
// Since deadInst cannot be an end-of-scope instruction (asserted above),
// this must be a consuming use of an owned value.
assert(operandValue.getOwnershipKind() == OwnershipKind::Owned);
SILBuilderWithScope builder(deadInst);
auto *dvi = builder.createDestroyValue(deadInst->getLoc(), operandValue);
callbacks.createdNewInst(dvi);
}
}
void InstructionDeleter::deleteInstruction(SILInstruction *inst,
bool fixOperandLifetimes) {
// We cannot fix operand lifetimes in non-ownership SIL.
assert(!fixOperandLifetimes || inst->getFunction()->hasOwnership());
// Collect instruction and its immediate uses and check if they are all
// incidental uses. Also, invoke the callback on the instruction and its uses.
// Note that the Callback is invoked before deleting anything to ensure that
// the SIL is valid at the time of the callback.
SmallVector<SILInstruction *, 4> toDeleteInsts;
toDeleteInsts.push_back(inst);
instModCallbacks.notifyWillBeDeleted(inst);
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
assert(isIncidentalUse(user) || isa<DestroyValueInst>(user));
instModCallbacks.notifyWillBeDeleted(user);
toDeleteInsts.push_back(user);
}
}
// Record definitions of instruction's operands. Also, in case an operand is
// consumed by inst, emit necessary compensation code.
SmallVector<SILInstruction *, 4> operandDefinitions;
for (Operand &operand : inst->getAllOperands()) {
SILValue operandValue = operand.get();
assert(operandValue &&
"Instruction's operand are deleted before the instruction");
SILInstruction *defInst = operandValue->getDefiningInstruction();
// If the operand has a defining instruction, it could be potentially
// dead. Therefore, record the definition.
if (defInst)
operandDefinitions.push_back(defInst);
// The scope of the operand could be ended by inst. Therefore, emit
// any compensating code needed to end the scope of the operand value
// once inst is deleted.
if (fixOperandLifetimes)
destroyConsumedOperandOfDeadInst(operand, instModCallbacks);
}
// First drop all references from all instructions to be deleted and then
// erase the instruction. Note that this is done in this order so that when an
// instruction is deleted, its uses would have dropped their references.
// Note that the toDeleteInsts must also be removed from the tracked
// deadInstructions.
for (SILInstruction *inst : toDeleteInsts) {
deadInstructions.remove(inst);
inst->dropAllReferences();
}
for (SILInstruction *inst : toDeleteInsts) {
// We do not notify when deleting since we already called the notify
// callback earlier for all toDeleteInsts.
instModCallbacks.deleteInst(inst, false /*notify when deleting*/);
}
// Record operand definitions that become dead now.
for (SILInstruction *operandValInst : operandDefinitions) {
trackIfDead(operandValInst);
}
}
void InstructionDeleter::cleanUpDeadInstructions() {
SILFunction *fun = nullptr;
if (!deadInstructions.empty())
fun = deadInstructions.front()->getFunction();
while (!deadInstructions.empty()) {
SmallVector<SILInstruction *, 8> currentDeadInsts(deadInstructions.begin(),
deadInstructions.end());
// Though deadInstructions is cleared here, calls to deleteInstruction may
// append to deadInstructions. So we need to iterate until this it is empty.
deadInstructions.clear();
for (SILInstruction *deadInst : currentDeadInsts) {
// deadInst will not have been deleted in the previous iterations,
// because, by definition, deleteInstruction will only delete an earlier
// instruction and its incidental/destroy uses. The former cannot be
// deadInst as deadInstructions is a set vector, and the latter cannot be
// in deadInstructions as they are incidental uses which are never added
// to deadInstructions.
deleteInstruction(deadInst, /*Fix lifetime of operands*/
fun->hasOwnership());
}
}
}
static bool hasOnlyIncidentalUses(SILInstruction *inst,
bool disallowDebugUses = false) {
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
if (!isIncidentalUse(user))
return false;
if (disallowDebugUses && user->isDebugInstruction())
return false;
}
}
return true;
}
void InstructionDeleter::deleteIfDead(SILInstruction *inst) {
if (isInstructionTriviallyDead(inst) ||
isScopeAffectingInstructionDead(inst)) {
deleteInstruction(
inst,
/*Fix lifetime of operands*/ inst->getFunction()->hasOwnership());
}
}
void InstructionDeleter::forceDeleteAndFixLifetimes(SILInstruction *inst) {
SILFunction *fun = inst->getFunction();
assert(fun->hasOwnership());
bool disallowDebugUses =
fun->getEffectiveOptimizationMode() <= OptimizationMode::NoOptimization;
assert(hasOnlyIncidentalUses(inst, disallowDebugUses));
deleteInstruction(inst, /*Fix lifetime of operands*/ true);
}
void InstructionDeleter::forceDelete(SILInstruction *inst) {
bool disallowDebugUses =
inst->getFunction()->getEffectiveOptimizationMode() <=
OptimizationMode::NoOptimization;
assert(hasOnlyIncidentalUses(inst, disallowDebugUses));
deleteInstruction(inst, /*Fix lifetime of operands*/ false);
}
void InstructionDeleter::forceTrackAsDead(SILInstruction *inst) {
bool disallowDebugUses =
inst->getFunction()->getEffectiveOptimizationMode() <=
OptimizationMode::NoOptimization;
assert(hasOnlyIncidentalUses(inst, disallowDebugUses));
deadInstructions.insert(inst);
}
void InstructionDeleter::recursivelyDeleteUsersIfDead(SILInstruction *inst) {
SmallVector<SILInstruction *, 8> users;
for (SILValue result : inst->getResults())
for (Operand *use : result->getUses())
users.push_back(use->getUser());
for (SILInstruction *user : users)
recursivelyDeleteUsersIfDead(user);
deleteIfDead(inst);
}
void InstructionDeleter::recursivelyForceDeleteUsersAndFixLifetimes(
SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
while (!result->use_empty()) {
SILInstruction *user = result->use_begin()->getUser();
recursivelyForceDeleteUsersAndFixLifetimes(user);
}
}
if (isIncidentalUse(inst) || isa<DestroyValueInst>(inst)) {
forceDelete(inst);
return;
}
forceDeleteAndFixLifetimes(inst);
}
void swift::eliminateDeadInstruction(SILInstruction *inst,
InstModCallbacks callbacks) {
InstructionDeleter deleter(callbacks);
deleter.trackIfDead(inst);
deleter.cleanUpDeadInstructions();
}
void swift::recursivelyDeleteTriviallyDeadInstructions(
ArrayRef<SILInstruction *> ia, bool force, InstModCallbacks callbacks) {
// Delete these instruction and others that become dead after it's deleted.
llvm::SmallPtrSet<SILInstruction *, 8> deadInsts;
for (auto *inst : ia) {
// If the instruction is not dead and force is false, do nothing.
if (force || isInstructionTriviallyDead(inst))
deadInsts.insert(inst);
}
llvm::SmallPtrSet<SILInstruction *, 8> nextInsts;
while (!deadInsts.empty()) {
for (auto inst : deadInsts) {
// Call the callback before we mutate the to be deleted instruction in any
// way.
callbacks.notifyWillBeDeleted(inst);
// Check if any of the operands will become dead as well.
MutableArrayRef<Operand> operands = inst->getAllOperands();
for (Operand &operand : operands) {
SILValue operandVal = operand.get();
if (!operandVal)
continue;
// Remove the reference from the instruction being deleted to this
// operand.
operand.drop();
// If the operand is an instruction that is only used by the instruction
// being deleted, delete it.
if (auto *operandValInst = operandVal->getDefiningInstruction())
if (!deadInsts.count(operandValInst) &&
isInstructionTriviallyDead(operandValInst))
nextInsts.insert(operandValInst);
}
// If we have a function ref inst, we need to especially drop its function
// argument so that it gets a proper ref decrement.
if (auto *fri = dyn_cast<FunctionRefBaseInst>(inst))
fri->dropReferencedFunction();
}
for (auto inst : deadInsts) {
// This will remove this instruction and all its uses.
eraseFromParentWithDebugInsts(inst, callbacks);
}
nextInsts.swap(deadInsts);
nextInsts.clear();
}
}
/// If the given instruction is dead, delete it along with its dead
/// operands.
///
/// \param inst The instruction to be deleted.
/// \param force If force is set, don't check if the top level instruction is
/// considered dead - delete it regardless.
void swift::recursivelyDeleteTriviallyDeadInstructions(
SILInstruction *inst, bool force, InstModCallbacks callbacks) {
ArrayRef<SILInstruction *> ai = ArrayRef<SILInstruction *>(inst);
recursivelyDeleteTriviallyDeadInstructions(ai, force, callbacks);
}
void swift::eraseUsesOfInstruction(SILInstruction *inst,
InstModCallbacks callbacks) {
for (auto result : inst->getResults()) {
while (!result->use_empty()) {
auto ui = result->use_begin();
auto *user = ui->getUser();
assert(user && "User should never be NULL!");
// If the instruction itself has any uses, recursively zap them so that
// nothing uses this instruction.
eraseUsesOfInstruction(user, callbacks);
// Walk through the operand list and delete any random instructions that
// will become trivially dead when this instruction is removed.
for (auto &operand : user->getAllOperands()) {
if (auto *operandI = operand.get()->getDefiningInstruction()) {
// Don't recursively delete the instruction we're working on.
// FIXME: what if we're being recursively invoked?
if (operandI != inst) {
operand.drop();
recursivelyDeleteTriviallyDeadInstructions(operandI, false,
callbacks);
}
}
}
callbacks.deleteInst(user);
}
}
}
void swift::collectUsesOfValue(SILValue v,
llvm::SmallPtrSetImpl<SILInstruction *> &insts) {
for (auto ui = v->use_begin(), E = v->use_end(); ui != E; ++ui) {
auto *user = ui->getUser();
// Instruction has been processed.
if (!insts.insert(user).second)
continue;
// Collect the users of this instruction.
for (auto result : user->getResults())
collectUsesOfValue(result, insts);
}
}
void swift::eraseUsesOfValue(SILValue v) {
llvm::SmallPtrSet<SILInstruction *, 4> insts;
// Collect the uses.
collectUsesOfValue(v, insts);
// Erase the uses, we can have instructions that become dead because
// of the removal of these instructions, leave to DCE to cleanup.
// Its not safe to do recursively delete here as some of the SILInstruction
// maybe tracked by this set.
for (auto inst : insts) {
inst->replaceAllUsesOfAllResultsWithUndef();
inst->eraseFromParent();
}
}
SILValue swift::
getConcreteValueOfExistentialBox(AllocExistentialBoxInst *existentialBox,
SILInstruction *ignoreUser) {
StoreInst *singleStore = nullptr;
SmallPtrSetVector<Operand *, 32> worklist;
for (auto *use : getNonDebugUses(existentialBox)) {
worklist.insert(use);
}
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::EndBorrowInst:
break;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::BeginBorrowInst:
// Look through copy_value, begin_borrow
for (SILValue result : user->getResults())
for (auto *transitiveUse : result->getUses())
worklist.insert(transitiveUse);
break;
case SILInstructionKind::ProjectExistentialBoxInst: {
auto *projectedAddr = cast<ProjectExistentialBoxInst>(user);
for (Operand *addrUse : getNonDebugUses(projectedAddr)) {
if (auto *store = dyn_cast<StoreInst>(addrUse->getUser())) {
assert(store->getSrc() != projectedAddr && "cannot store an address");
// Bail if there are multiple stores.
if (singleStore)
return SILValue();
singleStore = store;
continue;
}
// If there are other users to the box value address then bail out.
return SILValue();
}
break;
}
case SILInstructionKind::BuiltinInst: {
auto *builtin = cast<BuiltinInst>(user);
if (KeepWillThrowCall ||
builtin->getBuiltinInfo().ID != BuiltinValueKind::WillThrow) {
return SILValue();
}
break;
}
default:
if (user != ignoreUser)
return SILValue();
break;
}
}
if (!singleStore)
return SILValue();
return singleStore->getSrc();
}
SILValue swift::
getConcreteValueOfExistentialBoxAddr(SILValue addr, SILInstruction *ignoreUser) {
auto *stackLoc = dyn_cast<AllocStackInst>(addr);
if (!stackLoc)
return SILValue();
StoreInst *singleStackStore = nullptr;
for (Operand *stackUse : stackLoc->getUses()) {
SILInstruction *stackUser = stackUse->getUser();
switch (stackUser->getKind()) {
case SILInstructionKind::DestroyAddrInst: {
// Make sure the destroy_addr is the instruction before one of our
// dealloc_stack insts and is directly on the stack location.
auto next = std::next(stackUser->getIterator());
if (auto *dsi = dyn_cast<DeallocStackInst>(next))
if (dsi->getOperand() != stackLoc)
return SILValue();
break;
}
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::DebugValueAddrInst:
case SILInstructionKind::LoadInst:
break;
case SILInstructionKind::StoreInst: {
auto *store = cast<StoreInst>(stackUser);
assert(store->getSrc() != stackLoc && "cannot store an address");
// Bail if there are multiple stores.
if (singleStackStore)
return SILValue();
singleStackStore = store;
break;
}
default:
if (stackUser != ignoreUser)
return SILValue();
break;
}
}
if (!singleStackStore)
return SILValue();
// Look through copy value insts.
SILValue val = singleStackStore->getSrc();
while (auto *cvi = dyn_cast<CopyValueInst>(val))
val = cvi->getOperand();
auto *box = dyn_cast<AllocExistentialBoxInst>(val);
if (!box)
return SILValue();
return getConcreteValueOfExistentialBox(box, singleStackStore);
}
bool swift::mayBindDynamicSelf(SILFunction *F) {
if (!F->hasDynamicSelfMetadata())
return false;
SILValue mdArg = F->getDynamicSelfMetadata();
for (Operand *mdUse : mdArg->getUses()) {
SILInstruction *mdUser = mdUse->getUser();
for (Operand &typeDepOp : mdUser->getTypeDependentOperands()) {
if (typeDepOp.get() == mdArg)
return true;
}
}
return false;
}
static SILValue skipAddrProjections(SILValue v) {
for (;;) {
switch (v->getKind()) {
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
v = cast<SingleValueInstruction>(v)->getOperand(0);
break;
default:
return v;
}
}
llvm_unreachable("there is no escape from an infinite loop");
}
/// Check whether the \p addr is an address of a tail-allocated array element.
bool swift::isAddressOfArrayElement(SILValue addr) {
addr = stripAddressProjections(addr);
if (auto *md = dyn_cast<MarkDependenceInst>(addr))
addr = stripAddressProjections(md->getValue());
// High-level SIL: check for an get_element_address array semantics call.
if (auto *ptrToAddr = dyn_cast<PointerToAddressInst>(addr))
if (auto *sei = dyn_cast<StructExtractInst>(ptrToAddr->getOperand())) {
ArraySemanticsCall call(sei->getOperand());
if (call && call.getKind() == ArrayCallKind::kGetElementAddress)
return true;
}
// Check for an tail-address (of an array buffer object).
if (isa<RefTailAddrInst>(skipAddrProjections(addr)))
return true;
return false;
}
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
/// use. Not that FunctionRefInsts may be shared by multiple ApplyInsts.
void swift::placeFuncRef(ApplyInst *ai, DominanceInfo *domInfo) {
FunctionRefInst *funcRef = cast<FunctionRefInst>(ai->getCallee());
SILBasicBlock *domBB = domInfo->findNearestCommonDominator(
ai->getParent(), funcRef->getParent());
if (domBB == ai->getParent() && domBB != funcRef->getParent())
// Prefer to place the FuncRef immediately before the call. Since we're
// moving FuncRef up, this must be the only call to it in the block.
funcRef->moveBefore(ai);
else
// Otherwise, conservatively stick it at the beginning of the block.
funcRef->moveBefore(&*domBB->begin());
}
/// Add an argument, \p val, to the branch-edge that is pointing into
/// block \p Dest. Return a new instruction and do not erase the old
/// instruction.
TermInst *swift::addArgumentToBranch(SILValue val, SILBasicBlock *dest,
TermInst *branch) {
SILBuilderWithScope builder(branch);
if (auto *cbi = dyn_cast<CondBranchInst>(branch)) {
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
for (auto arg : cbi->getTrueArgs())
trueArgs.push_back(arg);
for (auto arg : cbi->getFalseArgs())
falseArgs.push_back(arg);
if (dest == cbi->getTrueBB()) {
trueArgs.push_back(val);
assert(trueArgs.size() == dest->getNumArguments());
} else {
falseArgs.push_back(val);
assert(falseArgs.size() == dest->getNumArguments());
}
return builder.createCondBranch(
cbi->getLoc(), cbi->getCondition(), cbi->getTrueBB(), trueArgs,
cbi->getFalseBB(), falseArgs, cbi->getTrueBBCount(),
cbi->getFalseBBCount());
}
if (auto *bi = dyn_cast<BranchInst>(branch)) {
SmallVector<SILValue, 8> args;
for (auto arg : bi->getArgs())
args.push_back(arg);
args.push_back(val);
assert(args.size() == dest->getNumArguments());
return builder.createBranch(bi->getLoc(), bi->getDestBB(), args);
}
llvm_unreachable("unsupported terminator");
}
SILLinkage swift::getSpecializedLinkage(SILFunction *f, SILLinkage linkage) {
if (hasPrivateVisibility(linkage) && !f->isSerialized()) {
// Specializations of private symbols should remain so, unless
// they were serialized, which can only happen when specializing
// definitions from a standard library built with -sil-serialize-all.
return SILLinkage::Private;
}
return SILLinkage::Shared;
}
/// Cast a value into the expected, ABI compatible type if necessary.
/// This may happen e.g. when:
/// - a type of the return value is a subclass of the expected return type.
/// - actual return type and expected return type differ in optionality.
/// - both types are tuple-types and some of the elements need to be casted.
/// Return the cast value and true if a CFG modification was required
/// NOTE: We intentionally combine the checking of the cast's handling
/// possibility and the transformation performing the cast in the same function,
/// to avoid any divergence between the check and the implementation in the
/// future.
///
/// \p usePoints are required when \p value has guaranteed ownership. It must be
/// the last users of the returned, casted value. A usePoint cannot be a
/// BranchInst (a phi is never the last guaranteed user). \p builder's current
/// insertion point must dominate all \p usePoints. \p usePoints must
/// collectively post-dominate \p builder's current insertion point.
///
/// NOTE: The implementation of this function is very closely related to the
/// rules checked by SILVerifier::requireABICompatibleFunctionTypes. It must
/// handle all cases recognized by SILFunctionType::isABICompatibleWith (see
/// areABICompatibleParamsOrReturns()).
std::pair<SILValue, bool /* changedCFG */>
swift::castValueToABICompatibleType(SILBuilder *builder, SILLocation loc,
SILValue value, SILType srcTy,
SILType destTy,
ArrayRef<SILInstruction *> usePoints) {
assert(value.getOwnershipKind() != OwnershipKind::Guaranteed
|| !usePoints.empty() && "guaranteed value must have use points");
// No cast is required if types are the same.
if (srcTy == destTy)
return {value, false};
if (srcTy.isAddress() && destTy.isAddress()) {
// Cast between two addresses and that's it.
return {builder->createUncheckedAddrCast(loc, value, destTy), false};
}
// If both types are classes and dest is the superclass of src,
// simply perform an upcast.
if (destTy.isExactSuperclassOf(srcTy)) {
return {builder->createUpcast(loc, value, destTy), false};
}
if (srcTy.isHeapObjectReferenceType() && destTy.isHeapObjectReferenceType()) {
return {builder->createUncheckedRefCast(loc, value, destTy), false};
}
if (auto mt1 = srcTy.getAs<AnyMetatypeType>()) {
if (auto mt2 = destTy.getAs<AnyMetatypeType>()) {
if (mt1->getRepresentation() == mt2->getRepresentation()) {
// If builder.Type needs to be casted to A.Type and
// A is a superclass of builder, then it can be done by means
// of a simple upcast.
if (mt2.getInstanceType()->isExactSuperclassOf(mt1.getInstanceType())) {
return {builder->createUpcast(loc, value, destTy), false};
}
// Cast between two metatypes and that's it.
return {builder->createUncheckedReinterpretCast(loc, value, destTy),
false};
}
}
}
// Check if src and dest types are optional.
auto optionalSrcTy = srcTy.getOptionalObjectType();
auto optionalDestTy = destTy.getOptionalObjectType();
// Both types are optional.
if (optionalDestTy && optionalSrcTy) {
// If both wrapped types are classes and dest is the superclass of src,
// simply perform an upcast.
if (optionalDestTy.isExactSuperclassOf(optionalSrcTy)) {
// Insert upcast.
return {builder->createUpcast(loc, value, destTy), false};
}
// Unwrap the original optional value.
auto *someDecl = builder->getASTContext().getOptionalSomeDecl();
auto *curBB = builder->getInsertionPoint()->getParent();
auto *contBB = curBB->split(builder->getInsertionPoint());
auto *someBB = builder->getFunction().createBasicBlockAfter(curBB);
auto *noneBB = builder->getFunction().createBasicBlockAfter(someBB);
auto *phi = contBB->createPhiArgument(destTy, value.getOwnershipKind());
if (phi->getOwnershipKind() == OwnershipKind::Guaranteed) {
auto createEndBorrow = [&](SILBasicBlock::iterator insertPt) {
builder->setInsertionPoint(insertPt);
builder->createEndBorrow(loc, phi);
};
for (SILInstruction *user : usePoints) {
if (isa<TermInst>(user)) {
assert(!isa<BranchInst>(user) && "no branch as guaranteed use point");
for (auto *succBB : user->getParent()->getSuccessorBlocks()) {
createEndBorrow(succBB->begin());
}
continue;
}
createEndBorrow(std::next(user->getIterator()));
}
}
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 1> caseBBs;
caseBBs.push_back(std::make_pair(someDecl, someBB));
builder->setInsertionPoint(curBB);
builder->createSwitchEnum(loc, value, noneBB, caseBBs);
// In OSSA switch_enum destinations have terminator results.
//
// TODO: This should be in a switchEnum utility.
SILValue unwrappedValue;
if (builder->hasOwnership()) {
// Create a terminator result, NOT a phi, despite the API name.
noneBB->createPhiArgument(value->getType(), OwnershipKind::None);
unwrappedValue =
someBB->createPhiArgument(optionalSrcTy, value.getOwnershipKind());
builder->setInsertionPoint(someBB);
} else {
builder->setInsertionPoint(someBB);
unwrappedValue = builder->createUncheckedEnumData(loc, value, someDecl);
}
// Cast the unwrapped value.
SILValue castedUnwrappedValue;
std::tie(castedUnwrappedValue, std::ignore) = castValueToABICompatibleType(
builder, loc, unwrappedValue, optionalSrcTy, optionalDestTy, usePoints);
// Wrap into optional. An owned value is forwarded through the cast and into
// the Optional. A borrowed value will have a nested borrow for the
// rewrapped Optional.
SILValue someValue =
builder->createOptionalSome(loc, castedUnwrappedValue, destTy);
if (phi->getOwnershipKind() == OwnershipKind::Guaranteed) {
someValue = builder->createBeginBorrow(loc, someValue);
}
builder->createBranch(loc, contBB, {someValue});
// Handle the None case.
builder->setInsertionPoint(noneBB);
SILValue noneValue = builder->createOptionalNone(loc, destTy);
if (phi->getOwnershipKind() == OwnershipKind::Guaranteed) {
noneValue = builder->createBeginBorrow(loc, noneValue);
}
builder->createBranch(loc, contBB, {noneValue});
builder->setInsertionPoint(contBB->begin());
return {phi, true};
}
// Src is not optional, but dest is optional.
if (!optionalSrcTy && optionalDestTy) {
auto optionalSrcCanTy =
OptionalType::get(srcTy.getASTType())->getCanonicalType();
auto loweredOptionalSrcType =
SILType::getPrimitiveObjectType(optionalSrcCanTy);
// Wrap the source value into an optional first.
SILValue wrappedValue =
builder->createOptionalSome(loc, value, loweredOptionalSrcType);
// Cast the wrapped value.
return castValueToABICompatibleType(builder, loc, wrappedValue,
wrappedValue->getType(), destTy,
usePoints);
}
// Handle tuple types.
// Extract elements, cast each of them, create a new tuple.
if (auto srcTupleTy = srcTy.getAs<TupleType>()) {
SmallVector<SILValue, 8> expectedTuple;
bool changedCFG = false;
auto castElement = [&](unsigned idx, SILValue element) {
// Cast the value if necessary.
bool neededCFGChange;
std::tie(element, neededCFGChange) = castValueToABICompatibleType(
builder, loc, element, srcTy.getTupleElementType(idx),
destTy.getTupleElementType(idx), usePoints);
changedCFG |= neededCFGChange;
expectedTuple.push_back(element);
};
builder->emitDestructureValueOperation(loc, value, castElement);
return {builder->createTuple(loc, destTy, expectedTuple), changedCFG};
}
// Function types are interchangeable if they're also ABI-compatible.
if (srcTy.is<SILFunctionType>()) {
if (destTy.is<SILFunctionType>()) {
assert(srcTy.getAs<SILFunctionType>()->isNoEscape()
== destTy.getAs<SILFunctionType>()->isNoEscape()
|| srcTy.getAs<SILFunctionType>()->getRepresentation()
!= SILFunctionType::Representation::Thick
&& "Swift thick functions that differ in escapeness are "
"not ABI "
"compatible");
// Insert convert_function.
return {builder->createConvertFunction(loc, value, destTy,
/*WithoutActuallyEscaping=*/false),
false};
}
}
llvm::errs() << "Source type: " << srcTy << "\n";
llvm::errs() << "Destination type: " << destTy << "\n";
llvm_unreachable("Unknown combination of types for casting");
}
ProjectBoxInst *swift::getOrCreateProjectBox(AllocBoxInst *abi,
unsigned index) {
SILBasicBlock::iterator iter(abi);
++iter;
assert(iter != abi->getParent()->end()
&& "alloc_box cannot be the last instruction of a block");
SILInstruction *nextInst = &*iter;
if (auto *pbi = dyn_cast<ProjectBoxInst>(nextInst)) {
if (pbi->getOperand() == abi && pbi->getFieldIndex() == index)
return pbi;
}
SILBuilder builder(nextInst);
return builder.createProjectBox(abi->getLoc(), abi, index);
}
// Peek through trivial Enum initialization, typically for pointless
// Optionals.
//
// Given an UncheckedTakeEnumDataAddrInst, check that there are no
// other uses of the Enum value and return the address used to initialized the
// enum's payload:
//
// %stack_adr = alloc_stack
// %data_adr = init_enum_data_addr %stk_adr
// %enum_adr = inject_enum_addr %stack_adr
// %copy_src = unchecked_take_enum_data_addr %enum_adr
// dealloc_stack %stack_adr
// (No other uses of %stack_adr.)
InitEnumDataAddrInst *
swift::findInitAddressForTrivialEnum(UncheckedTakeEnumDataAddrInst *utedai) {
auto *asi = dyn_cast<AllocStackInst>(utedai->getOperand());
if (!asi)
return nullptr;
SILInstruction *singleUser = nullptr;
for (auto use : asi->getUses()) {
auto *user = use->getUser();
if (user == utedai)
continue;
// As long as there's only one UncheckedTakeEnumDataAddrInst and one
// InitEnumDataAddrInst, we don't care how many InjectEnumAddr and
// DeallocStack users there are.
if (isa<InjectEnumAddrInst>(user) || isa<DeallocStackInst>(user))
continue;
if (singleUser)
return nullptr;
singleUser = user;
}
if (!singleUser)
return nullptr;
// Assume, without checking, that the returned InitEnumDataAddr dominates the
// given UncheckedTakeEnumDataAddrInst, because that's how SIL is defined. I
// don't know where this is actually verified.
return dyn_cast<InitEnumDataAddrInst>(singleUser);
}
//===----------------------------------------------------------------------===//
// Closure Deletion
//===----------------------------------------------------------------------===//
/// NOTE: Instructions with transitive ownership kind are assumed to not keep
/// the underlying value alive as well. This is meant for instructions only
/// with non-transitive users.
static bool useDoesNotKeepValueAlive(const SILInstruction *inst) {
switch (inst->getKind()) {
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::EndBorrowInst:
return true;
default:
return false;
}
}
static bool useHasTransitiveOwnership(const SILInstruction *inst) {
// convert_escape_to_noescape is used to convert to a @noescape function type.
// It does not change ownership of the function value.
if (isa<ConvertEscapeToNoEscapeInst>(inst))
return true;
// Look through copy_value, begin_borrow. They are inert for our purposes, but
// we need to look through it.
return isa<CopyValueInst>(inst) || isa<BeginBorrowInst>(inst);
}
static bool shouldDestroyPartialApplyCapturedArg(SILValue arg,
SILParameterInfo paramInfo,
const SILFunction &F) {
// If we have a non-trivial type and the argument is passed in @inout, we do
// not need to destroy it here. This is something that is implicit in the
// partial_apply design that will be revisited when partial_apply is
// redesigned.
if (paramInfo.isIndirectMutating())
return false;
// If we have a trivial type, we do not need to put in any extra releases.
if (arg->getType().isTrivial(F))
return false;
// We handle all other cases.
return true;
}
void swift::emitDestroyOperation(SILBuilder &builder, SILLocation loc,
SILValue operand, InstModCallbacks callbacks) {
// If we have an address, we insert a destroy_addr and return. Any live range
// issues must have been dealt with by our caller.
if (operand->getType().isAddress()) {
// Then emit the destroy_addr for this operand. This function does not
// delete any instructions
SILInstruction *newInst = builder.emitDestroyAddrAndFold(loc, operand);
if (newInst != nullptr)
callbacks.createdNewInst(newInst);
return;
}
// Otherwise, we have an object. We emit the most optimized form of release
// possible for that value.
// If we have qualified ownership, we should just emit a destroy value.
if (builder.getFunction().hasOwnership()) {
callbacks.createdNewInst(builder.createDestroyValue(loc, operand));
return;
}
if (operand->getType().hasReferenceSemantics()) {
auto u = builder.emitStrongRelease(loc, operand);
if (u.isNull())
return;
if (auto *SRI = u.dyn_cast<StrongRetainInst *>()) {
callbacks.deleteInst(SRI);
return;
}
callbacks.createdNewInst(u.get<StrongReleaseInst *>());
return;
}
auto u = builder.emitReleaseValue(loc, operand);
if (u.isNull())
return;
if (auto *rvi = u.dyn_cast<RetainValueInst *>()) {
callbacks.deleteInst(rvi);
return;
}
callbacks.createdNewInst(u.get<ReleaseValueInst *>());
}
// *HEY YOU, YES YOU, PLEASE READ*. Even though a textual partial apply is
// printed with the convention of the closed over function upon it, all
// non-inout arguments to a partial_apply are passed at +1. This includes
// arguments that will eventually be passed as guaranteed or in_guaranteed to
// the closed over function. This is because the partial apply is building up a
// boxed aggregate to send off to the closed over function. Of course when you
// call the function, the proper conventions will be used.
void swift::releasePartialApplyCapturedArg(SILBuilder &builder, SILLocation loc,
SILValue arg,
SILParameterInfo paramInfo,
InstModCallbacks callbacks) {
if (!shouldDestroyPartialApplyCapturedArg(arg, paramInfo,
builder.getFunction()))
return;
emitDestroyOperation(builder, loc, arg, callbacks);
}
void swift::deallocPartialApplyCapturedArg(SILBuilder &builder, SILLocation loc,
SILValue arg,
SILParameterInfo paramInfo) {
if (!paramInfo.isIndirectInGuaranteed())
return;
builder.createDeallocStack(loc, arg);
}
static bool
deadMarkDependenceUser(SILInstruction *inst,
SmallVectorImpl<SILInstruction *> &deleteInsts) {
if (!isa<MarkDependenceInst>(inst))
return false;
deleteInsts.push_back(inst);
for (auto *use : cast<SingleValueInstruction>(inst)->getUses()) {
if (!deadMarkDependenceUser(use->getUser(), deleteInsts))
return false;
}
return true;
}
void swift::getConsumedPartialApplyArgs(PartialApplyInst *pai,
SmallVectorImpl<Operand *> &argOperands,
bool includeTrivialAddrArgs) {
ApplySite applySite(pai);
SILFunctionConventions calleeConv = applySite.getSubstCalleeConv();
unsigned firstCalleeArgIdx = applySite.getCalleeArgIndexOfFirstAppliedArg();
auto argList = pai->getArgumentOperands();
SILFunction *F = pai->getFunction();
for (unsigned i : indices(argList)) {
auto argConv = calleeConv.getSILArgumentConvention(firstCalleeArgIdx + i);
if (argConv.isInoutConvention())
continue;
Operand &argOp = argList[i];
SILType ty = argOp.get()->getType();
if (!ty.isTrivial(*F) || (includeTrivialAddrArgs && ty.isAddress()))
argOperands.push_back(&argOp);
}
}
bool swift::collectDestroys(SingleValueInstruction *inst,
SmallVectorImpl<SILInstruction *> &destroys) {
bool isDead = true;
for (Operand *use : inst->getUses()) {
SILInstruction *user = use->getUser();
if (useHasTransitiveOwnership(user)) {
if (!collectDestroys(cast<SingleValueInstruction>(user), destroys))
isDead = false;
destroys.push_back(user);
} else if (useDoesNotKeepValueAlive(user)) {
destroys.push_back(user);
} else {
isDead = false;
}
}
return isDead;
}
/// Move the original arguments of the partial_apply into newly created
/// temporaries to extend the lifetime of the arguments until the partial_apply
/// is finally destroyed.
///
/// TODO: figure out why this is needed at all. Probably because of some
/// weirdness of the old retain/release ARC model. Most likely this will
/// not be needed anymore with OSSA.
static bool keepArgsOfPartialApplyAlive(PartialApplyInst *pai,
ArrayRef<SILInstruction *> paiUsers,
SILBuilderContext &builderCtxt,
InstModCallbacks callbacks) {
SmallVector<Operand *, 8> argsToHandle;
getConsumedPartialApplyArgs(pai, argsToHandle,
/*includeTrivialAddrArgs*/ false);
if (argsToHandle.empty())
return true;
// Compute the set of endpoints, which will be used to insert destroys of
// temporaries. This may fail if the frontier is located on a critical edge
// which we may not split.
ValueLifetimeAnalysis vla(pai, paiUsers);
ValueLifetimeAnalysis::Frontier partialApplyFrontier;
if (!vla.computeFrontier(partialApplyFrontier,
ValueLifetimeAnalysis::DontModifyCFG)) {
return false;
}
for (Operand *argOp : argsToHandle) {
SILValue arg = argOp->get();
int argIdx = argOp->getOperandNumber() - pai->getArgumentOperandNumber();
SILDebugVariable dbgVar(/*Constant*/ true, argIdx);
SILValue tmp = arg;
if (arg->getType().isAddress()) {
// Move the value to a stack-allocated temporary.
SILBuilderWithScope builder(pai, builderCtxt);
tmp = builder.createAllocStack(pai->getLoc(), arg->getType(), dbgVar);
builder.createCopyAddr(pai->getLoc(), arg, tmp, IsTake_t::IsTake,
IsInitialization_t::IsInitialization);
}
// Delay the destroy of the value (either as SSA value or in the stack-
// allocated temporary) at the end of the partial_apply's lifetime.
endLifetimeAtFrontier(tmp, partialApplyFrontier, builderCtxt, callbacks);
}
return true;
}
bool swift::tryDeleteDeadClosure(SingleValueInstruction *closure,
InstModCallbacks callbacks,
bool needKeepArgsAlive) {
auto *pa = dyn_cast<PartialApplyInst>(closure);
// We currently only handle locally identified values that do not escape. We
// also assume that the partial apply does not capture any addresses.
if (!pa && !isa<ThinToThickFunctionInst>(closure))
return false;
// A stack allocated partial apply does not have any release users. Delete it
// if the only users are the dealloc_stack and mark_dependence instructions.
if (pa && pa->isOnStack()) {
SmallVector<SILInstruction *, 8> deleteInsts;
for (auto *use : pa->getUses()) {
if (isa<DeallocStackInst>(use->getUser())
|| isa<DebugValueInst>(use->getUser()))
deleteInsts.push_back(use->getUser());
else if (!deadMarkDependenceUser(use->getUser(), deleteInsts))
return false;
}
for (auto *inst : reverse(deleteInsts))
callbacks.deleteInst(inst);
callbacks.deleteInst(pa);
// Note: the lifetime of the captured arguments is managed outside of the
// trivial closure value i.e: there will already be releases for the
// captured arguments. Releasing captured arguments is not necessary.
return true;
}
// Collect all destroys of the closure (transitively including destorys of
// copies) and check if those are the only uses of the closure.
SmallVector<SILInstruction *, 16> closureDestroys;
if (!collectDestroys(closure, closureDestroys))
return false;
// If we have a partial_apply, release each captured argument at each one of
// the final release locations of the partial apply.
if (auto *pai = dyn_cast<PartialApplyInst>(closure)) {
assert(!pa->isOnStack() &&
"partial_apply [stack] should have been handled before");
SILBuilderContext builderCtxt(pai->getModule());
if (needKeepArgsAlive) {
if (!keepArgsOfPartialApplyAlive(pai, closureDestroys, builderCtxt,
callbacks))
return false;
} else {
// A preceeding partial_apply -> apply conversion (done in
// tryOptimizeApplyOfPartialApply) already ensured that the arguments are
// kept alive until the end of the partial_apply's lifetime.
SmallVector<Operand *, 8> argsToHandle;
getConsumedPartialApplyArgs(pai, argsToHandle,
/*includeTrivialAddrArgs*/ false);
// We can just destroy the arguments at the point of the partial_apply
// (remember: partial_apply consumes all arguments).
for (Operand *argOp : argsToHandle) {
SILValue arg = argOp->get();
SILBuilderWithScope builder(pai, builderCtxt);
emitDestroyOperation(builder, pai->getLoc(), arg, callbacks);
}
}
}
// Delete all copy and destroy instructions in order so that leaf uses are
// deleted first.
for (SILInstruction *user : closureDestroys) {
assert(
(useDoesNotKeepValueAlive(user) || useHasTransitiveOwnership(user)) &&
"We expect only ARC operations without "
"results or a cast from escape to noescape without users");
callbacks.deleteInst(user);
}
callbacks.deleteInst(closure);
return true;
}
bool swift::simplifyUsers(SingleValueInstruction *inst) {
bool changed = false;
InstModCallbacks callbacks;
for (auto ui = inst->use_begin(), ue = inst->use_end(); ui != ue;) {
SILInstruction *user = ui->getUser();
++ui;
auto svi = dyn_cast<SingleValueInstruction>(user);
if (!svi)
continue;
callbacks.resetHadCallbackInvocation();
simplifyAndReplaceAllSimplifiedUsesAndErase(svi, callbacks);
changed |= callbacks.hadCallbackInvocation();
}
return changed;
}
/// True if a type can be expanded without a significant increase to code size.
bool swift::shouldExpand(SILModule &module, SILType ty) {
// FIXME: Expansion
auto expansion = TypeExpansionContext::minimal();
if (module.Types.getTypeLowering(ty, expansion).isAddressOnly()) {
return false;
}
if (EnableExpandAll) {
return true;
}
unsigned numFields = module.Types.countNumberOfFields(ty, expansion);
return (numFields <= 6);
}
/// Some support functions for the global-opt and let-properties-opts
// Encapsulate the state used for recursive analysis of a static
// initializer. Discover all the instruction in a use-def graph and return them
// in topological order.
//
// TODO: We should have a DFS utility for this sort of thing so it isn't
// recursive.
class StaticInitializerAnalysis {
SmallVectorImpl<SILInstruction *> &postOrderInstructions;
llvm::SmallDenseSet<SILValue, 8> visited;
int recursionLevel = 0;
public:
StaticInitializerAnalysis(
SmallVectorImpl<SILInstruction *> &postOrderInstructions)
: postOrderInstructions(postOrderInstructions) {}
// Perform a recursive DFS on on the use-def graph rooted at `V`. Insert
// values in the `visited` set in preorder. Insert values in
// `postOrderInstructions` in postorder so that the instructions are
// topologically def-use ordered (in execution order).
bool analyze(SILValue rootValue) {
return recursivelyAnalyzeOperand(rootValue);
}
protected:
bool recursivelyAnalyzeOperand(SILValue v) {
if (!visited.insert(v).second)
return true;
if (++recursionLevel > 50)
return false;
// TODO: For multi-result instructions, we could simply insert all result
// values in the visited set here.
auto *inst = dyn_cast<SingleValueInstruction>(v);
if (!inst)
return false;
if (!recursivelyAnalyzeInstruction(inst))
return false;
postOrderInstructions.push_back(inst);
--recursionLevel;
return true;
}
bool recursivelyAnalyzeInstruction(SILInstruction *inst) {
if (auto *si = dyn_cast<StructInst>(inst)) {
// If it is not a struct which is a simple type, bail.
if (!si->getType().isTrivial(*si->getFunction()))
return false;
return llvm::all_of(si->getAllOperands(), [&](Operand &operand) -> bool {
return recursivelyAnalyzeOperand(operand.get());
});
}
if (auto *ti = dyn_cast<TupleInst>(inst)) {
// If it is not a tuple which is a simple type, bail.
if (!ti->getType().isTrivial(*ti->getFunction()))
return false;
return llvm::all_of(ti->getAllOperands(), [&](Operand &operand) -> bool {
return recursivelyAnalyzeOperand(operand.get());
});
}
if (auto *bi = dyn_cast<BuiltinInst>(inst)) {
switch (bi->getBuiltinInfo().ID) {
case BuiltinValueKind::FPTrunc:
if (auto *li = dyn_cast<LiteralInst>(bi->getArguments()[0])) {
return recursivelyAnalyzeOperand(li);
}
return false;
default:
return false;
}
}
return isa<IntegerLiteralInst>(inst) || isa<FloatLiteralInst>(inst)
|| isa<StringLiteralInst>(inst);
}
};
/// Check if the value of v is computed by means of a simple initialization.
/// Populate `forwardInstructions` with references to all the instructions
/// that participate in the use-def graph required to compute `V`. The
/// instructions will be in def-use topological order.
bool swift::analyzeStaticInitializer(
SILValue v, SmallVectorImpl<SILInstruction *> &forwardInstructions) {
return StaticInitializerAnalysis(forwardInstructions).analyze(v);
}
/// FIXME: This must be kept in sync with replaceLoadSequence()
/// below. What a horrible design.
bool swift::canReplaceLoadSequence(SILInstruction *inst) {
if (auto *cai = dyn_cast<CopyAddrInst>(inst))
return true;
if (auto *li = dyn_cast<LoadInst>(inst))
return true;
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
for (auto seaiUse : seai->getUses()) {
if (!canReplaceLoadSequence(seaiUse->getUser()))
return false;
}
return true;
}
if (auto *teai = dyn_cast<TupleElementAddrInst>(inst)) {
for (auto teaiUse : teai->getUses()) {
if (!canReplaceLoadSequence(teaiUse->getUser()))
return false;
}
return true;
}
if (auto *ba = dyn_cast<BeginAccessInst>(inst)) {
for (auto use : ba->getUses()) {
if (!canReplaceLoadSequence(use->getUser()))
return false;
}
return true;
}
// Incidental uses of an address are meaningless with regard to the loaded
// value.
if (isIncidentalUse(inst) || isa<BeginUnpairedAccessInst>(inst))
return true;
return false;
}
/// Replace load sequence which may contain
/// a chain of struct_element_addr followed by a load.
/// The sequence is traversed inside out, i.e.
/// starting with the innermost struct_element_addr
/// Move into utils.
///
/// FIXME: this utility does not make sense as an API. How can the caller
/// guarantee that the only uses of `I` are struct_element_addr and
/// tuple_element_addr?
void swift::replaceLoadSequence(SILInstruction *inst, SILValue value) {
if (auto *cai = dyn_cast<CopyAddrInst>(inst)) {
SILBuilder builder(cai);
builder.createStore(cai->getLoc(), value, cai->getDest(),
StoreOwnershipQualifier::Unqualified);
return;
}
if (auto *li = dyn_cast<LoadInst>(inst)) {
li->replaceAllUsesWith(value);
return;
}
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
SILBuilder builder(seai);
auto *sei =
builder.createStructExtract(seai->getLoc(), value, seai->getField());
for (auto seaiUse : seai->getUses()) {
replaceLoadSequence(seaiUse->getUser(), sei);
}
return;
}
if (auto *teai = dyn_cast<TupleElementAddrInst>(inst)) {
SILBuilder builder(teai);
auto *tei =
builder.createTupleExtract(teai->getLoc(), value, teai->getFieldIndex());
for (auto teaiUse : teai->getUses()) {
replaceLoadSequence(teaiUse->getUser(), tei);
}
return;
}
if (auto *ba = dyn_cast<BeginAccessInst>(inst)) {
for (auto use : ba->getUses()) {
replaceLoadSequence(use->getUser(), value);
}
return;
}
// Incidental uses of an addres are meaningless with regard to the loaded
// value.
if (isIncidentalUse(inst) || isa<BeginUnpairedAccessInst>(inst))
return;
llvm_unreachable("Unknown instruction sequence for reading from a global");
}
/// Are the callees that could be called through Decl statically
/// knowable based on the Decl and the compilation mode?
bool swift::calleesAreStaticallyKnowable(SILModule &module, SILDeclRef decl) {
if (decl.isForeign)
return false;
return calleesAreStaticallyKnowable(module, decl.getDecl());
}
/// Are the callees that could be called through Decl statically
/// knowable based on the Decl and the compilation mode?
bool swift::calleesAreStaticallyKnowable(SILModule &module, ValueDecl *vd) {
assert(isa<AbstractFunctionDecl>(vd) || isa<EnumElementDecl>(vd));
// Only handle members defined within the SILModule's associated context.
if (!cast<DeclContext>(vd)->isChildContextOf(module.getAssociatedContext()))
return false;
if (vd->isDynamic()) {
return false;
}
if (!vd->hasAccess())
return false;
// Only consider 'private' members, unless we are in whole-module compilation.
switch (vd->getEffectiveAccess()) {
case AccessLevel::Open:
return false;
case AccessLevel::Public:
if (isa<ConstructorDecl>(vd)) {
// Constructors are special: a derived class in another module can
// "override" a constructor if its class is "open", although the
// constructor itself is not open.
auto *nd = vd->getDeclContext()->getSelfNominalTypeDecl();
if (nd->getEffectiveAccess() == AccessLevel::Open)
return false;
}
LLVM_FALLTHROUGH;
case AccessLevel::Internal:
return module.isWholeModule();
case AccessLevel::FilePrivate:
case AccessLevel::Private:
return true;
}
llvm_unreachable("Unhandled access level in switch.");
}
Optional<FindLocalApplySitesResult>
swift::findLocalApplySites(FunctionRefBaseInst *fri) {
SmallVector<Operand *, 32> worklist(fri->use_begin(), fri->use_end());
Optional<FindLocalApplySitesResult> f;
f.emplace();
// Optimistically state that we have no escapes before our def-use dataflow.
f->escapes = false;
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
auto *user = op->getUser();
// If we have a full apply site as our user.
if (auto apply = FullApplySite::isa(user)) {
if (apply.getCallee() == op->get()) {
f->fullApplySites.push_back(apply);
continue;
}
}
// If we have a partial apply as a user, start tracking it, but also look at
// its users.
if (auto *pai = dyn_cast<PartialApplyInst>(user)) {
if (pai->getCallee() == op->get()) {
// Track the partial apply that we saw so we can potentially eliminate
// dead closure arguments.
f->partialApplySites.push_back(pai);
// Look to see if we can find a full application of this partial apply
// as well.
llvm::copy(pai->getUses(), std::back_inserter(worklist));
continue;
}
}
// Otherwise, see if we have any function casts to look through...
switch (user->getKind()) {
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
llvm::copy(cast<SingleValueInstruction>(user)->getUses(),
std::back_inserter(worklist));
continue;
// A partial_apply [stack] marks its captured arguments with
// mark_dependence.
case SILInstructionKind::MarkDependenceInst:
llvm::copy(cast<SingleValueInstruction>(user)->getUses(),
std::back_inserter(worklist));
continue;
// Look through any reference count instructions since these are not
// escapes:
case SILInstructionKind::CopyValueInst:
llvm::copy(cast<CopyValueInst>(user)->getUses(),
std::back_inserter(worklist));
continue;
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DestroyValueInst:
// A partial_apply [stack] is deallocated with a dealloc_stack.
case SILInstructionKind::DeallocStackInst:
continue;
default:
break;
}
// But everything else is considered an escape.
f->escapes = true;
}
// If we did escape and didn't find any apply sites, then we have no
// information for our users that is interesting.
if (f->escapes && f->partialApplySites.empty() && f->fullApplySites.empty())
return None;
return f;
}
/// Insert destroys of captured arguments of partial_apply [stack].
void swift::insertDestroyOfCapturedArguments(
PartialApplyInst *pai, SILBuilder &builder,
llvm::function_ref<bool(SILValue)> shouldInsertDestroy) {
assert(pai->isOnStack());
ApplySite site(pai);
SILFunctionConventions calleeConv(site.getSubstCalleeType(),
pai->getModule());
auto loc = RegularLocation::getAutoGeneratedLocation();
for (auto &arg : pai->getArgumentOperands()) {
if (!shouldInsertDestroy(arg.get()))
continue;
unsigned calleeArgumentIndex = site.getCalleeArgIndex(arg);
assert(calleeArgumentIndex >= calleeConv.getSILArgIndexOfFirstParam());
auto paramInfo = calleeConv.getParamInfoForSILArg(calleeArgumentIndex);
releasePartialApplyCapturedArg(builder, loc, arg.get(), paramInfo);
}
}
void swift::insertDeallocOfCapturedArguments(
PartialApplyInst *pai, SILBuilder &builder) {
assert(pai->isOnStack());
ApplySite site(pai);
SILFunctionConventions calleeConv(site.getSubstCalleeType(),
pai->getModule());
auto loc = RegularLocation::getAutoGeneratedLocation();
for (auto &arg : pai->getArgumentOperands()) {
unsigned calleeArgumentIndex = site.getCalleeArgIndex(arg);
assert(calleeArgumentIndex >= calleeConv.getSILArgIndexOfFirstParam());
auto paramInfo = calleeConv.getParamInfoForSILArg(calleeArgumentIndex);
deallocPartialApplyCapturedArg(builder, loc, arg.get(), paramInfo);
}
}
AbstractFunctionDecl *swift::getBaseMethod(AbstractFunctionDecl *FD) {
while (FD->getOverriddenDecl()) {
FD = FD->getOverriddenDecl();
}
return FD;
}
FullApplySite
swift::cloneFullApplySiteReplacingCallee(FullApplySite applySite,
SILValue newCallee,
SILBuilderContext &builderCtx) {
SmallVector<SILValue, 16> arguments;
llvm::copy(applySite.getArguments(), std::back_inserter(arguments));
SILBuilderWithScope builder(applySite.getInstruction(), builderCtx);
switch (applySite.getKind()) {
case FullApplySiteKind::TryApplyInst: {
auto *tai = cast<TryApplyInst>(applySite.getInstruction());
return builder.createTryApply(tai->getLoc(), newCallee,
tai->getSubstitutionMap(), arguments,
tai->getNormalBB(), tai->getErrorBB(),
tai->getApplyOptions());
}
case FullApplySiteKind::ApplyInst: {
auto *ai = cast<ApplyInst>(applySite);
auto fTy = newCallee->getType().getAs<SILFunctionType>();
auto options = ai->getApplyOptions();
// The optimizer can generate a thin_to_thick_function from a throwing thin
// to a non-throwing thick function (in case it can prove that the function
// is not throwing).
// Therefore we have to check if the new callee (= the argument of the
// thin_to_thick_function) is a throwing function and set the not-throwing
// flag in this case.
if (fTy->hasErrorResult())
options |= ApplyFlags::DoesNotThrow;
return builder.createApply(applySite.getLoc(), newCallee,
applySite.getSubstitutionMap(), arguments,
options);
}
case FullApplySiteKind::BeginApplyInst: {
llvm_unreachable("begin_apply support not implemented?!");
}
}
llvm_unreachable("Unhandled case?!");
}
SILBasicBlock::iterator
swift::replaceAllUsesAndErase(SingleValueInstruction *svi, SILValue newValue,
InstModCallbacks &callbacks) {
assert(svi != newValue && "Cannot RAUW a value with itself");
SILBasicBlock::iterator nextii = std::next(svi->getIterator());
// Only SingleValueInstructions are currently simplified.
while (!svi->use_empty()) {
Operand *use = *svi->use_begin();
SILInstruction *user = use->getUser();
// Erase the end of scope marker.
if (isEndOfScopeMarker(user)) {
if (&*nextii == user)
++nextii;
callbacks.deleteInst(user);
continue;
}
callbacks.setUseValue(use, newValue);
}
callbacks.deleteInst(svi);
return nextii;
}
/// Given that we are going to replace use's underlying value, if the use is a
/// lifetime ending use, insert an end scope scope use for the underlying value
/// before we RAUW.
static void cleanupUseOldValueBeforeRAUW(Operand *use, SILBuilder &builder,
SILLocation loc,
InstModCallbacks &callbacks) {
if (!use->isLifetimeEnding()) {
return;
}
switch (use->get().getOwnershipKind()) {
case OwnershipKind::Any:
llvm_unreachable("Invalid ownership for value");
case OwnershipKind::Owned: {
auto *dvi = builder.createDestroyValue(loc, use->get());
callbacks.createdNewInst(dvi);
return;
}
case OwnershipKind::Guaranteed: {
// Should only happen once we model destructures as true reborrows.
auto *ebi = builder.createEndBorrow(loc, use->get());
callbacks.createdNewInst(ebi);
return;
}
case OwnershipKind::None:
return;
case OwnershipKind::Unowned:
llvm_unreachable("Unowned object can never be consumed?!");
}
llvm_unreachable("Covered switch isn't covered");
}
SILBasicBlock::iterator swift::replaceSingleUse(Operand *use, SILValue newValue,
InstModCallbacks &callbacks) {
auto oldValue = use->get();
assert(oldValue != newValue && "Cannot RAUW a value with itself");
auto *user = use->getUser();
auto nextII = std::next(user->getIterator());
// If we have an end of scope marker, just return next. We are done.
if (isEndOfScopeMarker(user)) {
return nextII;
}
// Otherwise, first insert clean up our use's value if we need to and then set
// use to have a new value.
SILBuilderWithScope builder(user);
cleanupUseOldValueBeforeRAUW(use, builder, user->getLoc(), callbacks);
callbacks.setUseValue(use, newValue);
return nextII;
}
SILValue swift::makeCopiedValueAvailable(SILValue value, SILBasicBlock *inBlock) {
if (!value->getFunction()->hasOwnership())
return value;
if (value.getOwnershipKind() == OwnershipKind::None)
return value;
auto insertPt = getInsertAfterPoint(value).getValue();
SILBuilderWithScope builder(insertPt);
auto *copy = builder.createCopyValue(
RegularLocation::getAutoGeneratedLocation(), value);
return makeNewValueAvailable(copy, inBlock);
}
SILValue swift::makeNewValueAvailable(SILValue value, SILBasicBlock *inBlock) {
if (!value->getFunction()->hasOwnership())
return value;
if (value.getOwnershipKind() == OwnershipKind::None)
return value;
assert(value->getUses().empty() &&
value.getOwnershipKind() == OwnershipKind::Owned);
// Use \p jointPostDomComputer to:
// 1. Create a control equivalent copy at \p inBlock if needed
// 2. Insert destroy_value at leaking blocks
SILValue controlEqCopy;
findJointPostDominatingSet(
value->getParentBlock(), inBlock,
[&](SILBasicBlock *loopBlock) {
assert(loopBlock == inBlock);
auto front = loopBlock->begin();
SILBuilderWithScope newBuilder(front);
controlEqCopy = newBuilder.createCopyValue(
RegularLocation::getAutoGeneratedLocation(), value);
},
[&](SILBasicBlock *postDomBlock) {
// Insert a destroy_value in the leaking block
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
newBuilder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(), value);
});
return controlEqCopy ? controlEqCopy : value;
}
bool swift::tryEliminateOnlyOwnershipUsedForwardingInst(
SingleValueInstruction *forwardingInst, InstModCallbacks &callbacks) {
if (!OwnershipForwardingMixin::isa(forwardingInst) ||
isa<AllArgOwnershipForwardingSingleValueInst>(forwardingInst))
return false;
SmallVector<Operand *, 32> worklist(getNonDebugUses(forwardingInst));
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
auto *user = use->getUser();
if (isa<EndBorrowInst>(user) || isa<DestroyValueInst>(user) ||
isa<RefCountingInst>(user))
continue;
if (isa<CopyValueInst>(user) || isa<BeginBorrowInst>(user)) {
for (auto result : user->getResults())
for (auto *resultUse : getNonDebugUses(result))
worklist.push_back(resultUse);
continue;
}
return false;
}
// Now that we know we can perform our transform, set all uses of
// forwardingInst to be used of its operand and then delete \p forwardingInst.
auto newValue = forwardingInst->getOperand(0);
while (!forwardingInst->use_empty()) {
auto *use = *(forwardingInst->use_begin());
use->set(newValue);
}
callbacks.deleteInst(forwardingInst);
return true;
}
// The consuming use blocks are assumed either not to inside a loop relative to
// \p value or they must have their own copies.
void swift::endLifetimeAtLeakingBlocks(SILValue value,
ArrayRef<SILBasicBlock *> uses) {
if (!value->getFunction()->hasOwnership())
return;
if (value.getOwnershipKind() != OwnershipKind::Owned)
return;
findJointPostDominatingSet(
value->getParentBlock(), uses, [&](SILBasicBlock *loopBlock) {},
[&](SILBasicBlock *postDomBlock) {
// Insert a destroy_value in the leaking block
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
newBuilder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(), value);
});
}