Files
swift-mirror/utils/jobstats/jobstats.py
Alex Hoppen 92073c671e [Stats] Fix a second/nanoseconds bug in process-stats-dir
Times are expected to be represented in nanoseconds in process-stats-dir,
but times with the 'swift.time.' prefix (e.g. times for specific
requests) were not converted.

It appears the reasons that this hasn’t been caught so far, is that
these times are not shown in Swift-CI's please test compiler performance
report.
2021-01-22 10:25:22 +01:00

378 lines
13 KiB
Python

#!/usr/bin/python
#
# ==-- jobstats - support for reading the contents of stats dirs --==#
#
# This source file is part of the Swift.org open source project
#
# Copyright (c) 2014-2017 Apple Inc. and the Swift project authors
# Licensed under Apache License v2.0 with Runtime Library Exception
#
# See https://swift.org/LICENSE.txt for license information
# See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
#
# ==------------------------------------------------------------------------==#
#
# This file contains subroutines for loading object-representations of one or
# more directories generated by `swiftc -stats-output-dir`.
import datetime
import itertools
import json
import os
import platform
import random
import re
class JobData(object):
def __init__(self, jobkind, jobid, module, jobargs):
self.jobkind = jobkind
self.jobid = jobid
self.module = module
self.jobargs = jobargs
(self.input, self.triple, self.out, self.opt) = jobargs[0:4]
def is_driver_job(self):
"""Return true iff self measures a driver job"""
return self.jobkind == 'driver'
def is_frontend_job(self):
"""Return true iff self measures a frontend job"""
return self.jobkind == 'frontend'
class JobProfs(JobData):
"""Object denoting the profile of a single job run during a compilation,
corresponding to a single directory of profiles produced by a single
job process passed -stats-output-dir."""
def __init__(self, jobkind, jobid, module, jobargs, profiles):
self.profiles = profiles
super(JobProfs, self).__init__(jobkind, jobid, module, jobargs)
class JobStats(JobData):
"""Object holding the stats of a single job run during a compilation,
corresponding to a single JSON file produced by a single job process
passed -stats-output-dir."""
def __init__(self, jobkind, jobid, module, start_usec, dur_usec,
jobargs, stats):
self.start_usec = start_usec
self.dur_usec = dur_usec
self.stats = stats
super(JobStats, self).__init__(jobkind, jobid, module, jobargs)
def driver_jobs_ran(self):
"""Return the count of a driver job's ran sub-jobs"""
assert(self.is_driver_job())
return self.stats.get("Driver.NumDriverJobsRun", 0)
def driver_jobs_skipped(self):
"""Return the count of a driver job's skipped sub-jobs"""
assert(self.is_driver_job())
return self.stats.get("Driver.NumDriverJobsSkipped", 0)
def driver_jobs_total(self):
"""Return the total count of a driver job's ran + skipped sub-jobs"""
assert(self.is_driver_job())
return self.driver_jobs_ran() + self.driver_jobs_skipped()
def merged_with(self, other, merge_by="sum"):
"""Return a new JobStats, holding the merger of self and other"""
merged_stats = {}
ops = {"sum": lambda a, b: a + b,
# Because 0 is also a sentinel on counters we do a modified
# "nonzero-min" here. Not ideal but best we can do.
"min": lambda a, b: (min(a, b)
if a != 0 and b != 0
else max(a, b)),
"max": lambda a, b: max(a, b)}
op = ops[merge_by]
for k, v in list(self.stats.items()) + list(other.stats.items()):
if k in merged_stats:
merged_stats[k] = op(v, merged_stats[k])
else:
merged_stats[k] = v
merged_kind = self.jobkind
if other.jobkind != merged_kind:
merged_kind = "<merged>"
merged_module = self.module
if other.module != merged_module:
merged_module = "<merged>"
merged_start = min(self.start_usec, other.start_usec)
merged_end = max(self.start_usec + self.dur_usec,
other.start_usec + other.dur_usec)
merged_dur = merged_end - merged_start
return JobStats(merged_kind, random.randint(0, 1000000000),
merged_module, merged_start, merged_dur,
self.jobargs + other.jobargs, merged_stats)
def prefixed_by(self, prefix):
prefixed_stats = dict([((prefix + "." + k), v)
for (k, v) in self.stats.items()])
return JobStats(self.jobkind, random.randint(0, 1000000000),
self.module, self.start_usec, self.dur_usec,
self.jobargs, prefixed_stats)
def divided_by(self, n):
divided_stats = dict([(k, v / n)
for (k, v) in self.stats.items()])
return JobStats(self.jobkind, random.randint(0, 1000000000),
self.module, self.start_usec, self.dur_usec,
self.jobargs, divided_stats)
def incrementality_percentage(self):
"""Assuming the job is a driver job, return the amount of
jobs that actually ran, as a percentage of the total number."""
assert(self.is_driver_job())
ran = self.driver_jobs_ran()
total = self.driver_jobs_total()
return round((float(ran) / float(total)) * 100.0, 2)
def to_catapult_trace_obj(self):
"""Return a JSON-formattable object fitting chrome's
'catapult' trace format"""
return {"name": self.module,
"cat": self.jobkind,
"ph": "X", # "X" == "complete event"
"pid": self.jobid,
"tid": 1,
"ts": self.start_usec,
"dur": self.dur_usec,
"args": self.jobargs}
def start_timestr(self):
"""Return a formatted timestamp of the job's start-time"""
t = datetime.datetime.fromtimestamp(self.start_usec / 1000000.0)
return t.strftime("%Y-%m-%d %H:%M:%S")
def end_timestr(self):
"""Return a formatted timestamp of the job's end-time"""
t = datetime.datetime.fromtimestamp((self.start_usec +
self.dur_usec) / 1000000.0)
return t.strftime("%Y-%m-%d %H:%M:%S")
def pick_lnt_metric_suffix(self, metric_name):
"""Guess an appropriate LNT metric type for a given metric name"""
if "BytesOutput" in metric_name:
return "code_size"
if "RSS" in metric_name or "BytesAllocated" in metric_name:
return "mem"
return "compile"
def to_lnt_test_obj(self, args):
"""Return a JSON-formattable object fitting LNT's 'submit' format"""
run_info = {
"run_order": str(args.lnt_order),
"tag": str(args.lnt_tag),
}
run_info.update(dict(args.lnt_run_info))
stats = self.stats
return {
"Machine":
{
"Name": args.lnt_machine,
"Info": dict(args.lnt_machine_info)
},
"Run":
{
"Start Time": self.start_timestr(),
"End Time": self.end_timestr(),
"Info": run_info
},
"Tests":
[
{
"Data": [v],
"Info": {},
"Name": "%s.%s.%s.%s" % (args.lnt_tag, self.module,
k, self.pick_lnt_metric_suffix(k))
}
for (k, v) in stats.items()
]
}
AUXPATSTR = (r"(?P<module>[^-]+)-(?P<input>[^-]+)-(?P<triple>[^-]+)" +
r"-(?P<out>[^-]*)-(?P<opt>[^-]+)")
AUXPAT = re.compile(AUXPATSTR)
TIMERPATSTR = (r"time\.swift-(?P<jobkind>\w+)\." + AUXPATSTR +
r"\.(?P<timerkind>\w+)$")
TIMERPAT = re.compile(TIMERPATSTR)
FILEPATSTR = (r"^stats-(?P<start>\d+)-swift-(?P<kind>\w+)-" +
AUXPATSTR +
r"-(?P<pid>\d+)(-.*)?.json$")
FILEPAT = re.compile(FILEPATSTR)
PROFILEPATSTR = (r"^profile-(?P<start>\d+)-swift-(?P<kind>\w+)-" +
AUXPATSTR +
r"-(?P<pid>\d+)(-.*)?.dir$")
PROFILEPAT = re.compile(PROFILEPATSTR)
def match_auxpat(s):
m = AUXPAT.match(s)
if m is not None:
return m.groupdict()
else:
return None
def match_timerpat(s):
m = TIMERPAT.match(s)
if m is not None:
return m.groupdict()
else:
return None
def match_filepat(s):
m = FILEPAT.match(s)
if m is not None:
return m.groupdict()
else:
return None
def match_profilepat(s):
m = PROFILEPAT.match(s)
if m is not None:
return m.groupdict()
else:
return None
def find_profiles_in(profiledir, select_stat=[]):
sre = re.compile('.*' if len(select_stat) == 0 else
'|'.join(select_stat))
profiles = None
for profile in os.listdir(profiledir):
if profile.endswith(".svg"):
continue
if sre.search(profile) is None:
continue
fullpath = os.path.join(profiledir, profile)
s = os.stat(fullpath)
if s.st_size != 0:
if profiles is None:
profiles = dict()
try:
(counter, profiletype) = os.path.splitext(profile)
# drop leading period from extension
profiletype = profiletype[1:]
if profiletype not in profiles:
profiles[profiletype] = dict()
profiles[profiletype][counter] = fullpath
except Exception:
pass
return profiles
def list_stats_dir_profiles(path, select_module=[], select_stat=[], **kwargs):
"""Finds all stats-profiles in path, returning list of JobProfs objects"""
jobprofs = []
for root, dirs, files in os.walk(path):
for d in dirs:
mg = match_profilepat(d)
if not mg:
continue
# NB: "pid" in fpat is a random number, not unix pid.
jobkind = mg['kind']
jobid = int(mg['pid'])
module = mg["module"]
if len(select_module) != 0 and module not in select_module:
continue
jobargs = [mg["input"], mg["triple"], mg["out"], mg["opt"]]
e = JobProfs(jobkind=jobkind, jobid=jobid,
module=module, jobargs=jobargs,
profiles=find_profiles_in(os.path.join(root, d),
select_stat))
jobprofs.append(e)
return jobprofs
def load_stats_dir(path, select_module=[], select_stat=[],
exclude_timers=False, merge_timers=False, **kwargs):
"""Loads all stats-files found in path into a list of JobStats objects"""
jobstats = []
sre = re.compile('.*' if len(select_stat) == 0 else
'|'.join(select_stat))
for root, dirs, files in os.walk(path):
for f in files:
mg = match_filepat(f)
if not mg:
continue
# NB: "pid" in fpat is a random number, not unix pid.
jobkind = mg['kind']
jobid = int(mg['pid'])
start_usec = int(mg['start'])
module = mg["module"]
if len(select_module) != 0 and module not in select_module:
continue
jobargs = [mg["input"], mg["triple"], mg["out"], mg["opt"]]
if platform.system() == 'Windows':
p = str(u"\\\\?\\%s" % os.path.abspath(os.path.join(root, f)))
else:
p = os.path.join(root, f)
with open(p) as fp:
j = json.load(fp)
dur_usec = 1
stats = dict()
for (k, v) in j.items():
if sre.search(k) is None:
continue
if k.startswith('time.'):
v = int(1000000.0 * float(v))
if k.startswith('time.') and exclude_timers:
continue
tm = match_timerpat(k)
if tm:
if tm['jobkind'] == jobkind and \
tm['timerkind'] == 'wall':
dur_usec = v
if merge_timers:
k = "time.swift-%s.%s" % (tm['jobkind'],
tm['timerkind'])
stats[k] = v
e = JobStats(jobkind=jobkind, jobid=jobid,
module=module, start_usec=start_usec,
dur_usec=dur_usec, jobargs=jobargs,
stats=stats)
jobstats.append(e)
return jobstats
def merge_all_jobstats(jobstats, select_module=[], group_by_module=False,
merge_by="sum", divide_by=1, **kwargs):
"""Does a pairwise merge of the elements of list of jobs"""
m = None
if len(select_module) > 0:
jobstats = filter(lambda j: j.module in select_module, jobstats)
if group_by_module:
def keyfunc(j):
return j.module
jobstats = list(jobstats)
jobstats.sort(key=keyfunc)
prefixed = []
for mod, group in itertools.groupby(jobstats, keyfunc):
groupmerge = merge_all_jobstats(group, merge_by=merge_by,
divide_by=divide_by)
prefixed.append(groupmerge.prefixed_by(mod))
jobstats = prefixed
for j in jobstats:
if m is None:
m = j
else:
m = m.merged_with(j, merge_by=merge_by)
if m is None:
return m
return m.divided_by(divide_by)