Files
swift-mirror/lib/SIL/Utils/InstructionUtils.cpp
Yuta Saito c5314bd3af Centralize KeyPath accessor calling convention logic to IRGen
KeyPath's getter/setter/hash/equals functions have their own calling
convention, which receives generic arguments and embedded indices from a
given KeyPath argument buffer.
The convention was previously implemented by:
1. Accepting an argument buffer as an UnsafeRawPointer and casting it to
   indices tuple pointer in SIL.
2. Bind generic arguments info from the given argument buffer while emitting
   prologue in IRGen by creating a new forwarding thunk.

This 2-phase lowering approach was not ideal, as it blocked KeyPath
projection optimization [^1], and also required having a target arch
specific signature lowering logic in SIL-level [^2].

This patch centralizes the KeyPath accessor calling convention logic to
IRGen, by introducing `@convention(keypath_accessor_XXX)` convention in
SIL and lowering it in IRGen. This change unblocks the KeyPath projection
optimization while capturing subscript indices, and also makes it easier
to support WebAssembly target.

[^1]: https://github.com/apple/swift/pull/28799
[^2]: https://forums.swift.org/t/wasm-support/16087/21
2023-09-20 11:25:39 -07:00

1292 lines
47 KiB
C++

//===--- InstructionUtils.cpp - Utilities for SIL instructions ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-inst-utils"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/NullablePtr.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
using namespace swift;
SILValue swift::lookThroughOwnershipInsts(SILValue v) {
while (true) {
switch (v->getKind()) {
default:
return v;
case ValueKind::MoveValueInst:
case ValueKind::CopyValueInst:
case ValueKind::BeginBorrowInst:
v = cast<SingleValueInstruction>(v)->getOperand(0);
}
}
}
bool swift::visitNonOwnershipUses(SILValue value,
function_ref<bool(Operand *)> visitor) {
// All ownership insts have a single operand, so a recursive walk is
// sufficient and cannot revisit operands.
for (Operand *use : value->getUses()) {
auto *user = use->getUser();
switch (user->getKind()) {
default:
if (!visitor(use))
return false;
break;
case SILInstructionKind::MoveValueInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::BeginBorrowInst:
if (!visitNonOwnershipUses(cast<SingleValueInstruction>(user), visitor))
return false;
break;
}
}
return true;
}
SILValue swift::lookThroughCopyValueInsts(SILValue val) {
while (auto *cvi =
dyn_cast_or_null<CopyValueInst>(val->getDefiningInstruction())) {
val = cvi->getOperand();
}
return val;
}
/// Strip off casts/indexing insts/address projections from V until there is
/// nothing left to strip.
///
/// FIXME: Why don't we strip projections after stripping indexes?
SILValue swift::getUnderlyingObject(SILValue v) {
while (true) {
SILValue v2 = stripCasts(v);
v2 = stripAddressProjections(v2);
v2 = stripIndexingInsts(v2);
v2 = lookThroughOwnershipInsts(v2);
if (auto *ecm = dyn_cast<EndCOWMutationInst>(v2)) {
v2 = ecm->getOperand();
} else if (auto *eir = dyn_cast<EndInitLetRefInst>(v2)) {
v2 = eir->getOperand();
} else if (auto *mvr = dyn_cast<MultipleValueInstructionResult>(v2)) {
if (auto *bci = dyn_cast<BeginCOWMutationInst>(mvr->getParent()))
v2 = bci->getOperand();
}
if (v2 == v)
return v2;
v = v2;
}
}
/// Return the underlying SILValue after stripping off identity SILArguments if
/// we belong to a BB with one predecessor.
SILValue swift::stripSinglePredecessorArgs(SILValue V) {
while (true) {
auto *A = dyn_cast<SILArgument>(V);
if (!A)
return V;
SILBasicBlock *BB = A->getParent();
// First try and grab the single predecessor of our parent BB. If we don't
// have one, bail.
SILBasicBlock *Pred = BB->getSinglePredecessorBlock();
if (!Pred)
return V;
// Then grab the terminator of Pred...
TermInst *PredTI = Pred->getTerminator();
// And attempt to find our matching argument.
//
// *NOTE* We can only strip things here if we know that there is no semantic
// change in terms of upcasts/downcasts/enum extraction since this is used
// by other routines here. This means that we can only look through
// cond_br/br.
//
// For instance, routines that use stripUpcasts() do not want to strip off a
// downcast that results from checked_cast_br.
if (auto *BI = dyn_cast<BranchInst>(PredTI)) {
V = BI->getArg(A->getIndex());
continue;
}
if (auto *CBI = dyn_cast<CondBranchInst>(PredTI)) {
if (SILValue Arg = CBI->getArgForDestBB(BB, A)) {
V = Arg;
continue;
}
}
return V;
}
}
SILValue swift::stripCastsWithoutMarkDependence(SILValue v) {
while (true) {
v = stripSinglePredecessorArgs(v);
if (isa<MarkDependenceInst>(v))
return v;
if (auto *svi = dyn_cast<SingleValueInstruction>(v)) {
if (isIdentityPreservingRefCast(svi) ||
isa<UncheckedTrivialBitCastInst>(v) || isa<BeginAccessInst>(v) ||
isa<EndInitLetRefInst>(v) || isa<EndCOWMutationInst>(v)) {
v = svi->getOperand(0);
continue;
}
}
return v;
}
}
SILValue swift::stripCasts(SILValue v) {
while (true) {
v = stripSinglePredecessorArgs(v);
if (auto *svi = dyn_cast<SingleValueInstruction>(v)) {
if (isIdentityPreservingRefCast(svi) ||
isa<UncheckedTrivialBitCastInst>(v) || isa<MarkDependenceInst>(v) ||
isa<BeginAccessInst>(v)) {
v = cast<SingleValueInstruction>(v)->getOperand(0);
continue;
}
}
SILValue v2 = lookThroughOwnershipInsts(v);
if (v2 != v) {
v = v2;
continue;
}
return v;
}
}
SILValue swift::stripUpCasts(SILValue v) {
assert(v->getType().isClassOrClassMetatype() &&
"Expected class or class metatype!");
v = stripSinglePredecessorArgs(v);
while (true) {
if (auto *ui = dyn_cast<UpcastInst>(v)) {
v = ui->getOperand();
continue;
}
SILValue v2 = stripSinglePredecessorArgs(v);
v2 = lookThroughOwnershipInsts(v2);
if (v2 == v) {
return v2;
}
v = v2;
}
}
SILValue swift::stripClassCasts(SILValue v) {
while (true) {
if (auto *ui = dyn_cast<UpcastInst>(v)) {
v = ui->getOperand();
continue;
}
if (auto *ucci = dyn_cast<UnconditionalCheckedCastInst>(v)) {
v = ucci->getOperand();
continue;
}
SILValue v2 = lookThroughOwnershipInsts(v);
if (v2 != v) {
v = v2;
continue;
}
return v;
}
}
SILValue swift::stripAddressProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isAddressProjection(V))
return V;
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
SILValue swift::lookThroughAddressToAddressProjections(SILValue v) {
while (true) {
v = stripSinglePredecessorArgs(v);
if (!Projection::isAddressToAddressProjection(v))
return v;
v = cast<SingleValueInstruction>(v)->getOperand(0);
}
}
SILValue swift::stripValueProjections(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (!Projection::isObjectProjection(V))
return V;
V = cast<SingleValueInstruction>(V)->getOperand(0);
}
}
SILValue swift::stripIndexingInsts(SILValue V) {
while (true) {
if (!isa<IndexingInst>(V))
return V;
V = cast<IndexingInst>(V)->getBase();
}
}
SILValue swift::stripExpectIntrinsic(SILValue V) {
auto *BI = dyn_cast<BuiltinInst>(V);
if (!BI)
return V;
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::expect)
return V;
return BI->getArguments()[0];
}
SILValue swift::stripBorrow(SILValue V) {
if (auto *BBI = dyn_cast<BeginBorrowInst>(V))
return BBI->getOperand();
return V;
}
// All instructions handled here must propagate their first operand into their
// single result.
//
// This is guaranteed to handle all function-type conversions: ThinToThick,
// ConvertFunction, and ConvertEscapeToNoEscapeInst.
SingleValueInstruction *swift::getSingleValueCopyOrCast(SILInstruction *I) {
if (auto convert = ConversionOperation(I))
return *convert;
switch (I->getKind()) {
default:
return nullptr;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::CopyBlockInst:
case SILInstructionKind::CopyBlockWithoutEscapingInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::BeginAccessInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MoveValueInst:
return cast<SingleValueInstruction>(I);
}
}
// Does this instruction terminate a SIL-level scope?
bool swift::isEndOfScopeMarker(SILInstruction *user) {
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::EndAccessInst:
case SILInstructionKind::EndBorrowInst:
return true;
}
}
bool swift::isIncidentalUse(SILInstruction *user) {
return isEndOfScopeMarker(user) || user->isDebugInstruction() ||
isa<FixLifetimeInst>(user) || isa<EndLifetimeInst>(user);
}
bool swift::onlyAffectsRefCount(SILInstruction *user) {
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::AutoreleaseValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::UnmanagedAutoreleaseValueInst:
#define UNCHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##RetainValueInst: \
case SILInstructionKind::Name##ReleaseValueInst: \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##RetainInst: \
case SILInstructionKind::Name##ReleaseInst: \
case SILInstructionKind::StrongRetain##Name##Inst: \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#include "swift/AST/ReferenceStorage.def"
return true;
}
}
bool swift::mayCheckRefCount(SILInstruction *User) {
return isa<IsUniqueInst>(User) || isa<IsEscapingClosureInst>(User) ||
isa<BeginCOWMutationInst>(User);
}
bool swift::isSanitizerInstrumentation(SILInstruction *Instruction) {
auto *BI = dyn_cast<BuiltinInst>(Instruction);
if (!BI)
return false;
Identifier Name = BI->getName();
if (Name == BI->getModule().getASTContext().getIdentifier("tsanInoutAccess"))
return true;
return false;
}
// Instrumentation instructions should not affect the correctness of the
// program. That is, they should not affect the observable program state.
// The constant evaluator relies on this property to skip instructions.
bool swift::isInstrumentation(SILInstruction *Instruction) {
if (isSanitizerInstrumentation(Instruction))
return true;
if (isa<IncrementProfilerCounterInst>(Instruction))
return true;
return false;
}
SILValue swift::isPartialApplyOfReabstractionThunk(PartialApplyInst *PAI) {
// A partial_apply of a reabstraction thunk either has a single capture
// (a function) or two captures (function and dynamic Self type).
if (PAI->getNumArguments() != 1 &&
PAI->getNumArguments() != 2)
return SILValue();
auto *Fun = PAI->getReferencedFunctionOrNull();
if (!Fun)
return SILValue();
// Make sure we have a reabstraction thunk.
if (Fun->isThunk() != IsReabstractionThunk)
return SILValue();
// The argument should be a closure.
auto Arg = PAI->getArgument(0);
if (!Arg->getType().is<SILFunctionType>() ||
(!Arg->getType().isReferenceCounted(PAI->getFunction()->getModule()) &&
Arg->getType().getAs<SILFunctionType>()->getRepresentation() !=
SILFunctionType::Representation::Thick))
return SILValue();
// Look through copies.
if (auto copy = dyn_cast<CopyValueInst>(Arg)) {
Arg = copy->getOperand();
}
return Arg;
}
bool swift::onlyUsedByAssignByWrapper(PartialApplyInst *PAI) {
bool usedByAssignByWrapper = false;
for (Operand *Op : PAI->getUses()) {
SILInstruction *User = Op->getUser();
if (isa<AssignByWrapperInst>(User) && Op->getOperandNumber() >= 2) {
usedByAssignByWrapper = true;
continue;
}
if (isa<DestroyValueInst>(User))
continue;
return false;
}
return usedByAssignByWrapper;
}
bool swift::onlyUsedByAssignOrInit(PartialApplyInst *PAI) {
bool usedByAssignOrInit = false;
for (Operand *Op : PAI->getUses()) {
SILInstruction *user = Op->getUser();
if (isa<AssignOrInitInst>(user)) {
usedByAssignOrInit = true;
continue;
}
if (isa<DestroyValueInst>(user)) {
continue;
}
return false;
}
return usedByAssignOrInit;
}
static RuntimeEffect metadataEffect(SILType ty) {
ClassDecl *cl = ty.getClassOrBoundGenericClass();
if (cl && !cl->hasKnownSwiftImplementation())
return RuntimeEffect::MetaData | RuntimeEffect::ObjectiveC;
return RuntimeEffect::MetaData;
}
RuntimeEffect swift::getRuntimeEffect(SILInstruction *inst, SILType &impactType) {
auto ifNonTrivial = [&](SILType type, RuntimeEffect effect) -> RuntimeEffect {
// Nonescaping closures are modeled with ownership to track borrows, but
// copying and destroying them has no actual runtime effect since they
// are trivial after lowering.
if (auto sft = type.getAs<SILFunctionType>()) {
if (sft->isTrivialNoEscape()) {
return RuntimeEffect::NoEffect;
}
}
return effect;
};
switch (inst->getKind()) {
case SILInstructionKind::TailAddrInst:
case SILInstructionKind::IndexRawPointerInst:
case SILInstructionKind::FunctionRefInst:
case SILInstructionKind::DynamicFunctionRefInst:
case SILInstructionKind::PreviousDynamicFunctionRefInst:
case SILInstructionKind::GlobalAddrInst:
case SILInstructionKind::BaseAddrForOffsetInst:
case SILInstructionKind::IntegerLiteralInst:
case SILInstructionKind::FloatLiteralInst:
case SILInstructionKind::StringLiteralInst:
case SILInstructionKind::ClassMethodInst:
case SILInstructionKind::ObjCMethodInst:
case SILInstructionKind::ObjCSuperMethodInst:
case SILInstructionKind::UpcastInst:
case SILInstructionKind::AddressToPointerInst:
case SILInstructionKind::PointerToAddressInst:
case SILInstructionKind::UncheckedRefCastInst:
case SILInstructionKind::UncheckedAddrCastInst:
case SILInstructionKind::UncheckedTrivialBitCastInst:
case SILInstructionKind::UncheckedBitwiseCastInst:
case SILInstructionKind::UncheckedValueCastInst:
case SILInstructionKind::RefToRawPointerInst:
case SILInstructionKind::RawPointerToRefInst:
#define LOADABLE_REF_STORAGE(Name, ...) \
case SILInstructionKind::RefTo##Name##Inst: \
case SILInstructionKind::Name##ToRefInst:
#include "swift/AST/ReferenceStorage.def"
#undef LOADABLE_REF_STORAGE_HELPER
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
case SILInstructionKind::RefToBridgeObjectInst:
case SILInstructionKind::BridgeObjectToRefInst:
case SILInstructionKind::BridgeObjectToWordInst:
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::ThickToObjCMetatypeInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableAddrInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperAddrInst:
case SILInstructionKind::ObjCMetatypeToObjectInst:
case SILInstructionKind::ObjCExistentialMetatypeToObjectInst:
case SILInstructionKind::ClassifyBridgeObjectInst:
case SILInstructionKind::ValueToBridgeObjectInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MoveValueInst:
case SILInstructionKind::DropDeinitInst:
case SILInstructionKind::MarkUnresolvedNonCopyableValueInst:
case SILInstructionKind::MarkUnresolvedReferenceBindingInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperValueInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableValueInst:
case SILInstructionKind::UncheckedOwnershipConversionInst:
case SILInstructionKind::LoadInst:
case SILInstructionKind::LoadBorrowInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::StoreBorrowInst:
case SILInstructionKind::MarkUninitializedInst:
case SILInstructionKind::ProjectExistentialBoxInst:
case SILInstructionKind::ObjCProtocolInst:
case SILInstructionKind::ObjectInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::StructInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::EnumInst:
case SILInstructionKind::UncheckedEnumDataInst:
case SILInstructionKind::InitEnumDataAddrInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
case SILInstructionKind::SelectEnumInst:
case SILInstructionKind::SelectEnumAddrInst:
case SILInstructionKind::ProjectBlockStorageInst:
case SILInstructionKind::UnreachableInst:
case SILInstructionKind::ReturnInst:
case SILInstructionKind::ThrowInst:
case SILInstructionKind::YieldInst:
case SILInstructionKind::UnwindInst:
case SILInstructionKind::BranchInst:
case SILInstructionKind::CondBranchInst:
case SILInstructionKind::SwitchValueInst:
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::DeallocStackRefInst:
case SILInstructionKind::DeallocPackInst:
// This instruction just destroys stack allocations where metadata pointers
// have been stored.
case SILInstructionKind::DeallocPackMetadataInst:
case SILInstructionKind::AutoreleaseValueInst:
case SILInstructionKind::BindMemoryInst:
case SILInstructionKind::RebindMemoryInst:
case SILInstructionKind::FixLifetimeInst:
case SILInstructionKind::EndBorrowInst:
case SILInstructionKind::AssignInst:
case SILInstructionKind::AssignByWrapperInst:
case SILInstructionKind::AssignOrInitInst:
case SILInstructionKind::MarkFunctionEscapeInst:
case SILInstructionKind::EndLifetimeInst:
case SILInstructionKind::EndApplyInst:
case SILInstructionKind::AbortApplyInst:
case SILInstructionKind::CondFailInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst:
case SILInstructionKind::DifferentiableFunctionInst:
case SILInstructionKind::DifferentiableFunctionExtractInst:
case SILInstructionKind::LinearFunctionInst:
case SILInstructionKind::LinearFunctionExtractInst:
case SILInstructionKind::DifferentiabilityWitnessFunctionInst:
case SILInstructionKind::IncrementProfilerCounterInst:
case SILInstructionKind::EndCOWMutationInst:
case SILInstructionKind::HasSymbolInst:
case SILInstructionKind::DynamicPackIndexInst:
case SILInstructionKind::PackPackIndexInst:
case SILInstructionKind::ScalarPackIndexInst:
case SILInstructionKind::PackElementGetInst:
case SILInstructionKind::PackElementSetInst:
case SILInstructionKind::PackLengthInst:
case SILInstructionKind::DebugStepInst:
return RuntimeEffect::NoEffect;
case SILInstructionKind::OpenExistentialMetatypeInst:
case SILInstructionKind::OpenExistentialBoxInst:
case SILInstructionKind::OpenExistentialValueInst:
case SILInstructionKind::OpenExistentialBoxValueInst:
return RuntimeEffect::Existential;
case SILInstructionKind::DebugValueInst:
// Ignore runtime calls of debug_value
return RuntimeEffect::NoEffect;
case SILInstructionKind::TestSpecificationInst:
// Ignore runtime calls of test-only instructions
return RuntimeEffect::NoEffect;
case SILInstructionKind::GetAsyncContinuationInst:
case SILInstructionKind::GetAsyncContinuationAddrInst:
case SILInstructionKind::AwaitAsyncContinuationInst:
case SILInstructionKind::HopToExecutorInst:
case SILInstructionKind::ExtractExecutorInst:
return RuntimeEffect::Concurrency;
case SILInstructionKind::KeyPathInst:
return RuntimeEffect::Allocating | RuntimeEffect::Releasing |
RuntimeEffect::MetaData;
case SILInstructionKind::TuplePackExtractInst:
case SILInstructionKind::TuplePackElementAddrInst:
return RuntimeEffect::MetaData;
case SILInstructionKind::SwitchEnumAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::IndexAddrInst:
// TODO: hasArchetype() ?
if (!inst->getOperand(0)->getType().isLoadable(*inst->getFunction())) {
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
case SILInstructionKind::RefTailAddrInst:
if (!cast<RefTailAddrInst>(inst)->getTailType().isLoadable(*inst->getFunction())) {
impactType = cast<RefTailAddrInst>(inst)->getTailType();
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
case SILInstructionKind::BeginAccessInst:
if (cast<BeginAccessInst>(inst)->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::EndAccessInst:
if (cast<EndAccessInst>(inst)->getBeginAccess()->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::BeginUnpairedAccessInst:
if (cast<BeginUnpairedAccessInst>(inst)->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::EndUnpairedAccessInst:
if (cast<EndUnpairedAccessInst>(inst)->getEnforcement() ==
SILAccessEnforcement::Dynamic)
return RuntimeEffect::ExclusivityChecking;
return RuntimeEffect::NoEffect;
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitExistentialValueInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Allocating | RuntimeEffect::Releasing |
RuntimeEffect::MetaData | RuntimeEffect::Existential;
case SILInstructionKind::InitExistentialRefInst:
case SILInstructionKind::InitExistentialMetatypeInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
case SILInstructionKind::ObjCToThickMetatypeInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::MetaData;
case SILInstructionKind::OpenPackElementInst:
// We do potentially have to build type metadata as part of this
// instruction (if we have to materialize a concrete pack).
// The interface doesn't let us be specific about what metadata,
// though.
impactType = SILType();
return RuntimeEffect::MetaData;
case SILInstructionKind::OpenExistentialAddrInst:
if (cast<OpenExistentialAddrInst>(inst)->getAccessKind() ==
OpenedExistentialAccess::Mutable)
return RuntimeEffect::Allocating | RuntimeEffect::Existential;
return RuntimeEffect::Existential;
case SILInstructionKind::OpenExistentialRefInst: {
SILType opType = cast<OpenExistentialRefInst>(inst)->getOperand()->getType();
impactType = opType;
if (opType.getASTType()->isObjCExistentialType()) {
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
}
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
// TODO: should be Existential
//return RuntimeEffect::Existential;
}
case SILInstructionKind::UnconditionalCheckedCastInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Casting | metadataEffect(impactType) |
metadataEffect(cast<SingleValueInstruction>(inst)->getType());
case SILInstructionKind::UnconditionalCheckedCastAddrInst:
case SILInstructionKind::CheckedCastAddrBranchInst:
case SILInstructionKind::UncheckedRefCastAddrInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Casting | metadataEffect(impactType) |
metadataEffect(inst->getOperand(1)->getType());
case SILInstructionKind::CheckedCastBranchInst:
impactType = inst->getOperand(0)->getType();
return RuntimeEffect::Casting | metadataEffect(impactType) |
metadataEffect(cast<CheckedCastBranchInst>(inst)->getTargetLoweredType());
case SILInstructionKind::AllocPackInst:
// Just conservatively assume this has metadata impact.
return RuntimeEffect::MetaData;
case SILInstructionKind::AllocPackMetadataInst:
// Currently this instruction has no effect but in the fullness of time it
// will have a metadata effect.
return RuntimeEffect::MetaData;
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::ProjectBoxInst:
if (!cast<SingleValueInstruction>(inst)->getType().
isLoadable(*inst->getFunction())) {
impactType = cast<SingleValueInstruction>(inst)->getType();
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
case SILInstructionKind::AllocGlobalInst: {
SILType glTy = cast<AllocGlobalInst>(inst)->getReferencedGlobal()->
getLoweredType();
if (glTy.isLoadable(*inst->getFunction()))
return RuntimeEffect::NoEffect;
if (glTy.hasOpaqueArchetype()) {
impactType = glTy;
return RuntimeEffect::Allocating | RuntimeEffect::MetaData;
}
return RuntimeEffect::Allocating;
}
case SILInstructionKind::AllocExistentialBoxInst:
impactType = cast<SingleValueInstruction>(inst)->getType();
return RuntimeEffect::Allocating | RuntimeEffect::MetaData |
RuntimeEffect::Releasing | RuntimeEffect::Existential;
case SILInstructionKind::AllocBoxInst:
case SILInstructionKind::AllocRefInst:
case SILInstructionKind::AllocRefDynamicInst:
impactType = cast<SingleValueInstruction>(inst)->getType();
return RuntimeEffect::Allocating | RuntimeEffect::MetaData |
// TODO: why Releasing?
RuntimeEffect::Releasing;
case SILInstructionKind::DeallocRefInst:
case SILInstructionKind::DeallocPartialRefInst:
case SILInstructionKind::DeallocBoxInst:
case SILInstructionKind::DeallocExistentialBoxInst:
case SILInstructionKind::DeinitExistentialAddrInst:
case SILInstructionKind::DeinitExistentialValueInst:
return RuntimeEffect::Deallocating;
case SILInstructionKind::CopyAddrInst: {
auto *ca = cast<CopyAddrInst>(inst);
impactType = ca->getSrc()->getType();
if (!ca->isInitializationOfDest())
return RuntimeEffect::MetaData | RuntimeEffect::Releasing;
if (!ca->isTakeOfSrc())
return RuntimeEffect::MetaData | RuntimeEffect::RefCounting;
return RuntimeEffect::MetaData;
}
case SILInstructionKind::ExplicitCopyAddrInst: {
auto *ca = cast<ExplicitCopyAddrInst>(inst);
impactType = ca->getSrc()->getType();
if (!ca->isInitializationOfDest())
return RuntimeEffect::MetaData | RuntimeEffect::Releasing;
if (!ca->isTakeOfSrc())
return RuntimeEffect::MetaData | RuntimeEffect::RefCounting;
return RuntimeEffect::MetaData;
}
// Equivalent to a copy_addr [init]
case SILInstructionKind::MarkUnresolvedMoveAddrInst: {
return RuntimeEffect::MetaData | RuntimeEffect::RefCounting;
}
case SILInstructionKind::StoreInst:
switch (cast<StoreInst>(inst)->getOwnershipQualifier()) {
case StoreOwnershipQualifier::Unqualified:
case StoreOwnershipQualifier::Trivial:
return RuntimeEffect::NoEffect;
case StoreOwnershipQualifier::Init:
return RuntimeEffect::RefCounting;
case StoreOwnershipQualifier::Assign:
return RuntimeEffect::Releasing;
}
case SILInstructionKind::DestroyAddrInst:
impactType = inst->getOperand(0)->getType();
if (impactType.isTrivial(*inst->getFunction()))
return RuntimeEffect::NoEffect;
if (!impactType.isLoadable(*inst->getFunction()))
return RuntimeEffect::Releasing | RuntimeEffect::MetaData;
return RuntimeEffect::Releasing;
case SILInstructionKind::ValueMetatypeInst:
case SILInstructionKind::MetatypeInst: {
auto metaTy = cast<SingleValueInstruction>(inst)->getType().castTo<MetatypeType>();
if (metaTy->getRepresentation() != MetatypeRepresentation::Thin) {
Type instTy = metaTy->getInstanceType();
if (instTy->isLegalSILType())
impactType = SILType::getPrimitiveObjectType(CanType(instTy));
if (auto selfType = instTy->getAs<DynamicSelfType>())
instTy = selfType->getSelfType();
auto *cl = instTy->getClassOrBoundGenericClass();
bool isForeign = cl && (cl->getObjectModel() == ReferenceCounting::ObjC ||
cl->isForeign());
if (isForeign || instTy->isAnyObject())
return RuntimeEffect::MetaData | RuntimeEffect::ObjectiveC;
return RuntimeEffect::MetaData;
}
return RuntimeEffect::NoEffect;
}
case SILInstructionKind::ExistentialMetatypeInst: {
SILType opType = cast<ExistentialMetatypeInst>(inst)->getOperand()->getType();
impactType = opType;
switch (opType.getPreferredExistentialRepresentation()) {
case ExistentialRepresentation::Metatype:
case ExistentialRepresentation::Boxed:
case ExistentialRepresentation::Opaque:
return RuntimeEffect::MetaData;
case ExistentialRepresentation::Class: {
if (opType.isAnyObject()) {
if (inst->getModule().getASTContext().LangOpts.EnableObjCInterop) {
return RuntimeEffect::MetaData | RuntimeEffect::Existential |
RuntimeEffect::ObjectiveC;
} else {
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
}
}
auto *cl = opType.getClassOrBoundGenericClass();
bool usesObjCModel =
cl && cl->getObjectModel() == ReferenceCounting::ObjC;
if (usesObjCModel)
return RuntimeEffect::MetaData | RuntimeEffect::ObjectiveC |
RuntimeEffect::Existential;
return RuntimeEffect::MetaData | RuntimeEffect::Existential;
}
case ExistentialRepresentation::None:
return RuntimeEffect::NoEffect;
}
llvm_unreachable("Bad existential representation");
}
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::UnmanagedRetainValueInst:
case SILInstructionKind::RetainValueAddrInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::BeginCOWMutationInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::ExplicitCopyValueInst:
case SILInstructionKind::BeginDeallocRefInst:
case SILInstructionKind::EndInitLetRefInst:
case SILInstructionKind::IsUniqueInst:
case SILInstructionKind::IsEscapingClosureInst:
case SILInstructionKind::CopyBlockInst:
case SILInstructionKind::CopyBlockWithoutEscapingInst:
return ifNonTrivial(inst->getOperand(0)->getType(),
RuntimeEffect::RefCounting);
case SILInstructionKind::InitBlockStorageHeaderInst:
return RuntimeEffect::Releasing;
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::UnmanagedReleaseValueInst:
case SILInstructionKind::UnmanagedAutoreleaseValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::ReleaseValueAddrInst:
case SILInstructionKind::DestroyValueInst:
impactType = inst->getOperand(0)->getType();
if (impactType.isBlockPointerCompatible())
return RuntimeEffect::ObjectiveC | RuntimeEffect::Releasing;
return ifNonTrivial(inst->getOperand(0)->getType(),
RuntimeEffect::Releasing);
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongRetain##Name##Inst: \
case SILInstructionKind::Name##RetainInst: \
return RuntimeEffect::RefCounting; \
case SILInstructionKind::Name##ReleaseInst: \
return RuntimeEffect::Releasing;
#include "swift/AST/ReferenceStorage.def"
#undef ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
case SILInstructionKind::UnownedCopyValueInst:
case SILInstructionKind::WeakCopyValueInst:
return RuntimeEffect::RefCounting;
#define REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst: \
return RuntimeEffect::RefCounting;
#include "swift/AST/ReferenceStorage.def"
#undef UNCHECKED_REF_STORAGE
#undef ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
return RuntimeEffect::Releasing;
#include "swift/AST/ReferenceStorage.def"
#undef NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
case SILInstructionKind::Load##Name##Inst: \
return RuntimeEffect::RefCounting;
#include "swift/AST/ReferenceStorage.def"
#undef NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE
case SILInstructionKind::GlobalValueInst:
return RuntimeEffect::Locking | RuntimeEffect::MetaData;
case SILInstructionKind::DynamicMethodBranchInst:
return RuntimeEffect::ObjectiveC;
case SILInstructionKind::PartialApplyInst:
case SILInstructionKind::ApplyInst:
case SILInstructionKind::TryApplyInst:
case SILInstructionKind::BeginApplyInst: {
RuntimeEffect rt = RuntimeEffect::NoEffect;
auto as = ApplySite(inst);
switch (as.getSubstCalleeType()->getRepresentation()) {
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::Block:
rt |= RuntimeEffect::ObjectiveC | RuntimeEffect::MetaData;
break;
case SILFunctionTypeRepresentation::WitnessMethod:
rt |= RuntimeEffect::MetaData | RuntimeEffect::Existential;
break;
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::CXXMethod:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::KeyPathAccessorGetter:
case SILFunctionTypeRepresentation::KeyPathAccessorSetter:
case SILFunctionTypeRepresentation::KeyPathAccessorEquals:
case SILFunctionTypeRepresentation::KeyPathAccessorHash:
break;
}
if (isa<BeginApplyInst>(inst))
rt |= RuntimeEffect::Allocating;
if (auto *pa = dyn_cast<PartialApplyInst>(inst)) {
if (pa->isOnStack()) {
for (SILValue arg : pa->getArguments()) {
if (!arg->getType().isTrivial(*pa->getFunction()))
rt |= ifNonTrivial(arg->getType(), RuntimeEffect::RefCounting);
}
} else {
rt |= RuntimeEffect::Allocating | RuntimeEffect::Releasing;
}
}
if (!as.getSubstitutionMap().empty())
rt |= RuntimeEffect::MetaData;
if (auto *pa = dyn_cast<PartialApplyInst>(inst)) {
if (!pa->isOnStack())
rt |= RuntimeEffect::MetaData;
}
return rt;
}
case SILInstructionKind::WitnessMethodInst: {
return RuntimeEffect::MetaData;
}
case SILInstructionKind::SuperMethodInst: {
auto method = cast<SuperMethodInst>(inst)->getMember().getOverriddenVTableEntry();
auto *classDecl = cast<ClassDecl>(method.getDecl()->getDeclContext());
if (classDecl->hasResilientMetadata())
return RuntimeEffect::MetaData;
return RuntimeEffect::NoEffect;
}
case SILInstructionKind::BuiltinInst:
switch (cast<BuiltinInst>(inst)->getBuiltinInfo().ID) {
case BuiltinValueKind::Once:
case BuiltinValueKind::OnceWithContext:
return RuntimeEffect::Locking;
case BuiltinValueKind::IsUnique:
return RuntimeEffect::RefCounting;
case BuiltinValueKind::IsOptionalType:
return RuntimeEffect::Casting;
case BuiltinValueKind::AllocRaw:
return RuntimeEffect::Allocating;
case BuiltinValueKind::DeallocRaw:
return RuntimeEffect::Deallocating;
case BuiltinValueKind::Fence:
case BuiltinValueKind::CmpXChg:
case BuiltinValueKind::AtomicLoad:
case BuiltinValueKind::AtomicStore:
case BuiltinValueKind::AtomicRMW:
return RuntimeEffect::Locking;
case BuiltinValueKind::DestroyArray:
return RuntimeEffect::Releasing;
case BuiltinValueKind::CopyArray:
return RuntimeEffect::RefCounting;
case BuiltinValueKind::AssignCopyArrayNoAlias:
case BuiltinValueKind::AssignCopyArrayFrontToBack:
case BuiltinValueKind::AssignCopyArrayBackToFront:
case BuiltinValueKind::AssignTakeArray:
return RuntimeEffect::RefCounting | RuntimeEffect::Deallocating;
case BuiltinValueKind::Swift3ImplicitObjCEntrypoint:
return RuntimeEffect::ObjectiveC | RuntimeEffect::Allocating;
case BuiltinValueKind::BuildOrdinarySerialExecutorRef:
case BuiltinValueKind::BuildComplexEqualitySerialExecutorRef:
case BuiltinValueKind::BuildDefaultActorExecutorRef:
case BuiltinValueKind::BuildMainActorExecutorRef:
case BuiltinValueKind::StartAsyncLet:
case BuiltinValueKind::StartAsyncLetWithLocalBuffer:
return RuntimeEffect::MetaData;
default:
break;
}
return RuntimeEffect::NoEffect;
}
}
/// Given a block used as a noescape function argument, attempt to find all
/// Swift closures that invoking the block will call. The StoredClosures may not
/// actually be partial_apply instructions. They may be copied, block arguments,
/// or conversions. The caller must continue searching up the use-def chain.
static SILValue findClosureStoredIntoBlock(SILValue V) {
auto FnType = V->getType().castTo<SILFunctionType>();
assert(FnType->getRepresentation() == SILFunctionTypeRepresentation::Block);
(void)FnType;
// Given a no escape block argument to a function,
// pattern match to find the noescape closure that invoking the block
// will call:
// %noescape_closure = ...
// %wae_Thunk = function_ref @$withoutActuallyEscapingThunk
// %sentinel =
// partial_apply [callee_guaranteed] %wae_thunk(%noescape_closure)
// %noescaped_wrapped = mark_dependence %sentinel on %noescape_closure
// %storage = alloc_stack
// %storage_address = project_block_storage %storage
// store %noescaped_wrapped to [init] %storage_address
// %block = init_block_storage_header %storage invoke %thunk
// %arg = copy_block %block
InitBlockStorageHeaderInst *IBSHI = dyn_cast<InitBlockStorageHeaderInst>(V);
if (!IBSHI)
return nullptr;
SILValue BlockStorage = IBSHI->getBlockStorage();
auto *PBSI = BlockStorage->getSingleUserOfType<ProjectBlockStorageInst>();
assert(PBSI && "Couldn't find block storage projection");
auto *SI = PBSI->getSingleUserOfType<StoreInst>();
assert(SI && "Couldn't find single store of function into block storage");
auto *CV = dyn_cast<CopyValueInst>(SI->getSrc());
if (!CV)
return nullptr;
auto *WrappedNoEscape = dyn_cast<MarkDependenceInst>(CV->getOperand());
if (!WrappedNoEscape)
return nullptr;
auto Sentinel = dyn_cast<PartialApplyInst>(WrappedNoEscape->getValue());
if (!Sentinel)
return nullptr;
auto NoEscapeClosure = isPartialApplyOfReabstractionThunk(Sentinel);
if (WrappedNoEscape->getBase() != NoEscapeClosure)
return nullptr;
// This is the value of the closure to be invoked. To find the partial_apply
// itself, the caller must search the use-def chain.
return NoEscapeClosure;
}
/// Find all closures that may be propagated into the given function-type value.
///
/// Searches the use-def chain from the given value upward until a partial_apply
/// is reached. Populates `results` with the set of partial_apply instructions.
///
/// `funcVal` may be either a function type or an Optional function type. This
/// might be called on a directly applied value or on a call argument, which may
/// in turn be applied within the callee.
void swift::findClosuresForFunctionValue(
SILValue funcVal, TinyPtrVector<PartialApplyInst *> &results) {
SILType funcTy = funcVal->getType();
// Handle `Optional<@convention(block) @noescape (_)->(_)>`
if (auto optionalObjTy = funcTy.getOptionalObjectType())
funcTy = optionalObjTy;
assert(funcTy.is<SILFunctionType>());
SmallVector<SILValue, 4> worklist;
// Avoid exponential path exploration and prevent duplicate results.
llvm::SmallDenseSet<SILValue, 8> visited;
auto worklistInsert = [&](SILValue V) {
if (visited.insert(V).second)
worklist.push_back(V);
};
worklistInsert(funcVal);
while (!worklist.empty()) {
SILValue V = worklist.pop_back_val();
if (auto *I = V->getDefiningInstruction()) {
// Look through copies, borrows, and conversions.
//
// Handle copy_block and copy_block_without_actually_escaping before
// calling findClosureStoredIntoBlock.
if (SingleValueInstruction *SVI = getSingleValueCopyOrCast(I)) {
worklistInsert(SVI->getOperand(0));
continue;
}
// Look through `differentiable_function` operands, which are all
// function-typed.
if (auto *DFI = dyn_cast<DifferentiableFunctionInst>(I)) {
for (auto &fn : DFI->getAllOperands())
worklistInsert(fn.get());
continue;
}
}
// Look through Optionals.
if (V->getType().getOptionalObjectType()) {
auto *EI = dyn_cast<EnumInst>(V);
if (EI && EI->hasOperand()) {
worklistInsert(EI->getOperand());
}
// Ignore the .None case.
continue;
}
// Look through Phis.
//
// This should be done before calling findClosureStoredIntoBlock.
if (auto *arg = dyn_cast<SILPhiArgument>(V)) {
SmallVector<std::pair<SILBasicBlock *, SILValue>, 2> blockArgs;
arg->getIncomingPhiValues(blockArgs);
for (auto &blockAndArg : blockArgs)
worklistInsert(blockAndArg.second);
continue;
}
// Look through ObjC closures.
auto fnType = V->getType().getAs<SILFunctionType>();
if (fnType
&& fnType->getRepresentation() == SILFunctionTypeRepresentation::Block) {
if (SILValue storedClosure = findClosureStoredIntoBlock(V))
worklistInsert(storedClosure);
continue;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(V)) {
SILValue thunkArg = isPartialApplyOfReabstractionThunk(PAI);
if (thunkArg) {
// Handle reabstraction thunks recursively. This may reabstract over
// @convention(block).
worklistInsert(thunkArg);
continue;
}
results.push_back(PAI);
continue;
}
// Ignore other unrecognized values that feed this applied argument.
}
}
bool PolymorphicBuiltinSpecializedOverloadInfo::init(
SILFunction *fn, BuiltinValueKind builtinKind,
ArrayRef<SILType> oldOperandTypes, SILType oldResultType) {
assert(!isInitialized && "Expected uninitialized info");
SWIFT_DEFER { isInitialized = true; };
if (!isPolymorphicBuiltin(builtinKind))
return false;
// Ok, at this point we know that we have a true polymorphic builtin. See if
// we have an overload for its current operand type.
StringRef name = getBuiltinName(builtinKind);
StringRef prefix = "generic_";
assert(name.startswith(prefix) &&
"Invalid polymorphic builtin name! Prefix should be Generic$OP?!");
SmallString<32> staticOverloadName;
staticOverloadName.append(name.drop_front(prefix.size()));
// If our first argument is an address, we know we have an indirect @out
// parameter by convention since all of these polymorphic builtins today never
// take indirect parameters without an indirect out result parameter. We stash
// this information and validate that if we have an out param, that our result
// is equal to the empty tuple type.
if (oldOperandTypes[0].isAddress()) {
if (oldResultType != fn->getModule().Types.getEmptyTupleType())
return false;
hasOutParam = true;
SILType firstType = oldOperandTypes.front();
// We only handle polymorphic builtins with trivial types today.
if (!firstType.is<BuiltinType>() || !firstType.isTrivial(*fn)) {
return false;
}
resultType = firstType.getObjectType();
oldOperandTypes = oldOperandTypes.drop_front();
} else {
resultType = oldResultType;
}
// Then go through all of our values and bail if any after substitution are
// not concrete builtin types. Otherwise, stash each of them in the argTypes
// array as objects. We will convert them as appropriate.
for (SILType ty : oldOperandTypes) {
// If after specialization, we do not have a trivial builtin type, bail.
if (!ty.is<BuiltinType>() || !ty.isTrivial(*fn)) {
return false;
}
// Otherwise, we have an object builtin type ready to go.
argTypes.push_back(ty.getObjectType());
}
// Ok, we have all builtin types. Infer the underlying polymorphic builtin
// name form our first argument.
CanBuiltinType builtinType = argTypes.front().getAs<BuiltinType>();
SmallString<32> builtinTypeNameStorage;
StringRef typeName = builtinType->getTypeName(builtinTypeNameStorage, false);
staticOverloadName.append("_");
staticOverloadName.append(typeName);
auto &ctx = fn->getASTContext();
staticOverloadIdentifier = ctx.getIdentifier(staticOverloadName);
// Ok, we have our overload identifier. Grab the builtin info from the
// cache. If we did not actually found a valid builtin value kind for our
// overload, then we do not have a static overload for the passed in types, so
// return false.
builtinInfo = &fn->getModule().getBuiltinInfo(staticOverloadIdentifier);
return true;
}
bool PolymorphicBuiltinSpecializedOverloadInfo::init(BuiltinInst *bi) {
assert(!isInitialized && "Can not init twice?!");
SWIFT_DEFER { isInitialized = true; };
// First quickly make sure we have a /real/ BuiltinValueKind, not an intrinsic
// or None.
auto kind = bi->getBuiltinKind();
if (!kind)
return false;
SmallVector<SILType, 8> oldOperandTypes;
copy(bi->getOperandTypes(), std::back_inserter(oldOperandTypes));
assert(bi->getNumResults() == 1 &&
"We expect a tuple here instead of real args");
SILType oldResultType = bi->getResult(0)->getType();
return init(bi->getFunction(), *kind, oldOperandTypes, oldResultType);
}
SILValue
swift::getStaticOverloadForSpecializedPolymorphicBuiltin(BuiltinInst *bi) {
PolymorphicBuiltinSpecializedOverloadInfo info;
if (!info.init(bi))
return SILValue();
SmallVector<SILValue, 8> rawArgsData;
copy(bi->getOperandValues(), std::back_inserter(rawArgsData));
SILValue result = bi->getResult(0);
MutableArrayRef<SILValue> rawArgs = rawArgsData;
if (info.hasOutParam) {
result = rawArgs.front();
rawArgs = rawArgs.drop_front();
}
assert(bi->getNumResults() == 1 &&
"We assume that builtins have a single result today. If/when this "
"changes, this code needs to be updated");
SILBuilderWithScope builder(bi);
// Ok, now we know that we can convert this to our specialized
// builtin. Prepare the arguments for the specialized value, loading the
// values if needed and storing the result into an out parameter if needed.
//
// NOTE: We only support polymorphic builtins with trivial types today, so we
// use load/store trivial as a result.
SmallVector<SILValue, 8> newArgs;
for (SILValue arg : rawArgs) {
if (arg->getType().isObject()) {
newArgs.push_back(arg);
continue;
}
SILValue load = builder.emitLoadValueOperation(
bi->getLoc(), arg, LoadOwnershipQualifier::Trivial);
newArgs.push_back(load);
}
BuiltinInst *newBI =
builder.createBuiltin(bi->getLoc(), info.staticOverloadIdentifier,
info.resultType, {}, newArgs);
// If we have an out parameter initialize it now.
if (info.hasOutParam) {
builder.emitStoreValueOperation(newBI->getLoc(), newBI->getResult(0),
result, StoreOwnershipQualifier::Trivial);
}
return newBI;
}