Files
swift-mirror/lib/SILPasses/ConstantPropagation.cpp
Chris Lattner c538feb61d some more minor tidying up: use StringRef instead of std::string in
one place, and use types already available instead of reconstructing
them (to simplify code).



Swift SVN r9583
2013-10-22 10:49:28 +00:00

476 lines
16 KiB
C++

//===--- ConstantPropagation.cpp - Constant fold and diagnose overflows ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "constant-propagation"
#include "swift/Subsystems.h"
#include "swift/AST/Diagnostics.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SILPasses/Utils/Local.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumInstFolded, "Number of constant folded instructions");
template<typename...T, typename...U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc,
diag, std::forward<U>(args)...);
}
/// \brief Fold arithmetic intrinsics with overflow.
static SILInstruction *constantFoldBinaryWithOverflow(ApplyInst *AI,
llvm::Intrinsic::ID ID,
bool ReportOverflow) {
OperandValueArrayRef Args = AI->getArguments();
assert(Args.size() >= 2);
// Check if both arguments are literals.
IntegerLiteralInst *Op1 = dyn_cast<IntegerLiteralInst>(Args[0]);
IntegerLiteralInst *Op2 = dyn_cast<IntegerLiteralInst>(Args[1]);
// We cannot fold a builtin if one of the arguments is not a constant.
if (!Op1 || !Op2)
return nullptr;
// Calculate the result.
APInt LHSInt = Op1->getValue();
APInt RHSInt = Op2->getValue();
APInt Res;
bool Overflow;
bool Signed = false;
StringRef Operator = "+";
switch (ID) {
default: llvm_unreachable("Invalid case");
case llvm::Intrinsic::sadd_with_overflow:
Res = LHSInt.sadd_ov(RHSInt, Overflow);
Signed = true;
break;
case llvm::Intrinsic::uadd_with_overflow:
Res = LHSInt.uadd_ov(RHSInt, Overflow);
break;
case llvm::Intrinsic::ssub_with_overflow:
Res = LHSInt.ssub_ov(RHSInt, Overflow);
Operator = "-";
Signed = true;
break;
case llvm::Intrinsic::usub_with_overflow:
Res = LHSInt.usub_ov(RHSInt, Overflow);
Operator = "-";
break;
case llvm::Intrinsic::smul_with_overflow:
Res = LHSInt.smul_ov(RHSInt, Overflow);
Operator = "*";
Signed = true;
break;
case llvm::Intrinsic::umul_with_overflow:
Res = LHSInt.umul_ov(RHSInt, Overflow);
Operator = "*";
break;
}
// Get the SIL subtypes of the returned tuple type.
SILModule &M = AI->getModule();
SILType FuncResType = AI->getFunctionTypeInfo(M)->getResult().getSILType();
TupleType *T = FuncResType.castTo<TupleType>();
assert(T->getNumElements() == 2);
SILType ResTy1 =
SILType::getPrimitiveType(CanType(T->getElementType(0)),
SILValueCategory::Object);
SILType ResTy2 =
SILType::getPrimitiveType(CanType(T->getElementType(1)),
SILValueCategory::Object);
// Construct the folded instruction - a tuple of two literals, the
// result and overflow.
SILBuilder B(AI);
SILValue Result[] = {
B.createIntegerLiteral(AI->getLoc(), ResTy1, Res),
B.createIntegerLiteral(AI->getLoc(), ResTy2, Overflow)
};
// If we can statically determine that the operation overflows,
// warn about it.
if (Overflow && ReportOverflow) {
// Try to infer the type of the constant expression that the user operates
// on. If the intrinsic was lowered from a call to a function that takes
// two arguments of the same type, use the type of the LHS argument.
// This would detect '+'/'+=' and such.
Type OpType;
SILLocation Loc = AI->getLoc();
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
if (CE) {
const TupleExpr *Args = dyn_cast_or_null<TupleExpr>(CE->getArg());
if (Args && Args->getNumElements() == 2) {
CanType LHSTy = Args->getElement(0)->getType()->getCanonicalType();
CanType RHSTy = Args->getElement(0)->getType()->getCanonicalType();
if (LHSTy == RHSTy)
OpType = Args->getElement(1)->getType();
}
}
if (!OpType.isNull()) {
diagnose(AI->getModule().getASTContext(),
AI->getLoc().getSourceLoc(),
diag::arithmetic_operation_overflow,
LHSInt.toString(/*Radix*/ 10, Signed),
Operator,
RHSInt.toString(/*Radix*/ 10, Signed),
OpType);
} else {
// If we cannot get the type info in an expected way, describe the type.
diagnose(AI->getModule().getASTContext(),
AI->getLoc().getSourceLoc(),
diag::arithmetic_operation_overflow_generic_type,
LHSInt.toString(/*Radix*/ 10, Signed),
Operator,
RHSInt.toString(/*Radix*/ 10, Signed),
Signed,
LHSInt.getBitWidth());
}
}
return B.createTuple(AI->getLoc(), FuncResType, Result);
}
static SILInstruction *constantFoldOverflowBuiltin(ApplyInst *AI,
BuiltinValueKind ID) {
OperandValueArrayRef Args = AI->getArguments();
IntegerLiteralInst *ShouldReportFlag = dyn_cast<IntegerLiteralInst>(Args[2]);
return constantFoldBinaryWithOverflow(AI,
getLLVMIntrinsicIDForBuiltinWithOverflow(ID),
ShouldReportFlag && (ShouldReportFlag->getValue() == 1));
}
static SILInstruction *constantFoldIntrinsic(ApplyInst *AI,
llvm::Intrinsic::ID ID) {
switch (ID) {
default: break;
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
return constantFoldBinaryWithOverflow(AI, ID, /*ReportOverflow*/false);
}
return nullptr;
}
static SILInstruction *constantFoldBuiltin(ApplyInst *AI,
BuiltinFunctionRefInst *FR) {
const IntrinsicInfo &Intrinsic = FR->getIntrinsicInfo();
SILModule &M = AI->getModule();
// If it's an llvm intrinsic, fold the intrinsic.
if (Intrinsic.ID != llvm::Intrinsic::not_intrinsic)
return constantFoldIntrinsic(AI, Intrinsic.ID);
// Otherwise, it should be one of the builin functions.
OperandValueArrayRef Args = AI->getArguments();
const BuiltinInfo &Builtin = M.getBuiltinInfo(FR->getReferencedFunction());
switch (Builtin.ID) {
default: break;
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return constantFoldOverflowBuiltin(AI, Builtin.ID);
case BuiltinValueKind::Trunc:
case BuiltinValueKind::ZExt:
case BuiltinValueKind::SExt: {
// We can fold if the value being cast is a constant.
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
if (!V)
return nullptr;
// Get the cast result.
APInt CastResV;
Type DestTy = Builtin.Types.size() == 2 ? Builtin.Types[1] : Type();
uint32_t DestBitWidth =
DestTy->castTo<BuiltinIntegerType>()->getBitWidth();
switch (Builtin.ID) {
default : llvm_unreachable("Invalid case.");
case BuiltinValueKind::Trunc:
CastResV = V->getValue().trunc(DestBitWidth);
break;
case BuiltinValueKind::ZExt:
CastResV = V->getValue().zext(DestBitWidth);
break;
case BuiltinValueKind::SExt:
CastResV = V->getValue().sext(DestBitWidth);
break;
}
// Add the literal instruction to represnet the result of the cast.
SILBuilder B(AI);
return B.createIntegerLiteral(AI->getLoc(), AI->getType(), CastResV);
}
// Fold constant division operations and report div by zero.
case BuiltinValueKind::SDiv:
case BuiltinValueKind::ExactSDiv:
case BuiltinValueKind::SRem:
case BuiltinValueKind::UDiv:
case BuiltinValueKind::ExactUDiv:
case BuiltinValueKind::URem: {
// Get the denominator.
IntegerLiteralInst *Denom = dyn_cast<IntegerLiteralInst>(Args[1]);
if (!Denom)
return nullptr;
APInt DenomVal = Denom->getValue();
// Reoprt an error if the denominator is zero.
if (DenomVal == 0) {
diagnose(M.getASTContext(),
AI->getLoc().getSourceLoc(),
diag::division_by_zero);
return nullptr;
}
// Get the numerator.
IntegerLiteralInst *Num = dyn_cast<IntegerLiteralInst>(Args[0]);
if (!Num)
return nullptr;
APInt NumVal = Num->getValue();
APInt ResVal;
bool Overflowed = false;
switch (Builtin.ID) {
// We do not cover all the cases below - only the ones that are easily
// computable for APInt.
default : return nullptr;
case BuiltinValueKind::SDiv:
ResVal = NumVal.sdiv_ov(DenomVal, Overflowed);
break;
case BuiltinValueKind::SRem:
ResVal = NumVal.srem(DenomVal);
break;
case BuiltinValueKind::UDiv:
ResVal = NumVal.udiv(DenomVal);
break;
case BuiltinValueKind::URem:
ResVal = NumVal.urem(DenomVal);
break;
}
if (Overflowed) {
diagnose(M.getASTContext(),
AI->getLoc().getSourceLoc(),
diag::division_overflow,
NumVal.toString(/*Radix*/ 10, /*Signed*/true),
"/",
DenomVal.toString(/*Radix*/ 10, /*Signed*/true));
return nullptr;
}
// Add the literal instruction to represnet the result of the division.
SILBuilder B(AI);
return B.createIntegerLiteral(AI->getLoc(), AI->getType(), ResVal);
}
// Deal with special builtins that are designed to check overflows on
// integer literals.
case BuiltinValueKind::STruncWithOverflow:
case BuiltinValueKind::UTruncWithOverflow: {
// Get the value. It should be a constant in most cases.
// Note, this will not always be a constant, for example, when analyzing
// _convertFromBuiltinIntegerLiteral function itself.
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
if (!V)
return nullptr;
APInt SrcVal = V->getValue();
// Get the signedness of the destination.
bool Signed = (Builtin.ID == BuiltinValueKind::STruncWithOverflow);
// Get the source and destination bit width.
assert(Builtin.Types.size() == 2);
uint32_t SrcBitWidth =
Builtin.Types[0]->castTo<BuiltinIntegerType>()->getBitWidth();
Type DestTy = Builtin.Types[1];
uint32_t DestBitWidth =
DestTy->castTo<BuiltinIntegerType>()->getBitWidth();
// Compute the destination:
// truncVal = trunc_IntFrom_IntTo(val)
// strunc_IntFrom_IntTo(val) =
// sext_IntFrom(truncVal) == val ? truncVal : overflow_error
// utrunc_IntFrom_IntTo(val) =
// zext_IntFrom(truncVal) == val ? truncVal : overflow_error
APInt TruncVal = SrcVal.trunc(DestBitWidth);
APInt T = Signed ? TruncVal.sext(SrcBitWidth) : TruncVal.zext(SrcBitWidth);
SILLocation Loc = AI->getLoc();
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
// Check for overflow.
if (SrcVal != T) {
// FIXME: This will prevent hard error in cases the error is comming
// from ObjC interoperability code. Currently, we treat NSUInteger as
// Int.
if (Loc.getSourceLoc().isInvalid()) {
diagnose(M.getASTContext(), Loc.getSourceLoc(),
diag::integer_literal_overflow_warn,
CE ? CE->getType() : DestTy);
return nullptr;
}
diagnose(M.getASTContext(), Loc.getSourceLoc(),
diag::integer_literal_overflow,
CE ? CE->getType() : DestTy);
return nullptr;
}
// The call to the builtin should be replaced with the constant value.
SILBuilder B(AI);
return B.createIntegerLiteral(Loc, AI->getType(), TruncVal);
}
case BuiltinValueKind::IntToFPWithOverflow: {
// Get the value. It should be a constant in most cases.
// Note, this will not always be a constant, for example, when analyzing
// _convertFromBuiltinIntegerLiteral function itself.
IntegerLiteralInst *V = dyn_cast<IntegerLiteralInst>(Args[0]);
if (!V)
return nullptr;
APInt SrcVal = V->getValue();
Type DestTy = Builtin.Types[1];
APFloat TruncVal(
DestTy->castTo<BuiltinFloatType>()->getAPFloatSemantics());
APFloat::opStatus ConversionStatus = TruncVal.convertFromAPInt(
SrcVal, /*isSigned=*/true, APFloat::rmNearestTiesToEven);
SILLocation Loc = AI->getLoc();
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
// Check for overflow.
if (ConversionStatus & APFloat::opOverflow) {
diagnose(M.getASTContext(), Loc.getSourceLoc(),
diag::integer_literal_overflow,
CE ? CE->getType() : DestTy);
return nullptr;
}
// The call to the builtin should be replaced with the constant value.
SILBuilder B(AI);
return B.createFloatLiteral(Loc, AI->getType(), TruncVal);
}
}
return nullptr;
}
static SILValue constantFoldInstruction(SILInstruction &I) {
// Constant fold function calls.
if (ApplyInst *AI = dyn_cast<ApplyInst>(&I)) {
// Constant fold calls to builtins.
if (BuiltinFunctionRefInst *FR =
dyn_cast<BuiltinFunctionRefInst>(AI->getCallee().getDef())) {
return constantFoldBuiltin(AI, FR);
}
return SILValue();
}
// Constant fold extraction of a constant element.
if (TupleExtractInst *TEI = dyn_cast<TupleExtractInst>(&I)) {
if (TupleInst *TheTuple = dyn_cast<TupleInst>(TEI->getOperand().getDef()))
return TheTuple->getElements()[TEI->getFieldNo()];
}
// Constant fold extraction of a constant struct element.
if (StructExtractInst *SEI = dyn_cast<StructExtractInst>(&I)) {
if (StructInst *Struct = dyn_cast<StructInst>(SEI->getOperand().getDef()))
return Struct->getOperandForField(SEI->getField())->get();
}
return SILValue();
}
static bool CCPFunctionBody(SILFunction &F) {
DEBUG(llvm::errs() << "*** ConstPropagation processing: " << F.getName()
<< "\n");
// Initialize the worklist to all of the instructions ready to process.
llvm::SetVector<SILInstruction*> WorkList;
for (auto &BB : F) {
for (auto &I : BB) {
if (!I.use_empty())
WorkList.insert(&I);
}
}
// Try to fold instructions in the list one by one.
bool Folded = false;
while (!WorkList.empty()) {
SILInstruction *I = *WorkList.begin();
WorkList.remove(I);
if (I->use_empty()) continue;
// Try to fold the instruction.
SILValue C = constantFoldInstruction(*I);
if (!C) continue;
// The users could be constant propagatable now.
for (auto Use : I->getUses()) {
SILInstruction *User = cast<SILInstruction>(Use->getUser());
WorkList.insert(User);
// TODO: This is handling folding of tupleelement/tuple and
// structelement/structs inline with constant folding. This should
// probably handle them in the prepass, instead of handling them in the
// worklist loop. They are conceptually very different operations and
// are technically not constant folding.
// Some constant users may indirectly cause folding of their users.
if (isa<StructInst>(User) || isa<TupleInst>(User)) {
for (auto UseUseI = User->use_begin(),
UseUseE = User->use_end(); UseUseI != UseUseE; ++UseUseI) {
WorkList.insert(cast<SILInstruction>(UseUseI.getUser()));
}
}
}
// We were able to fold, so all users should use the new folded value.
assert(I->getTypes().size() == 1 &&
"Currently, we only support single result instructions");
SILValue(I).replaceAllUsesWith(C);
// Remove the unused instruction.
WorkList.remove(I);
// Eagerly DCE.
recursivelyDeleteTriviallyDeadInstructions(I);
Folded = true;
++NumInstFolded;
}
return false;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
void swift::performSILConstantPropagation(SILModule *M) {
for (auto &Fn : *M)
CCPFunctionBody(Fn);
}