Files
swift-mirror/lib/Parse/ParsePattern.cpp
Chris Lattner c57b0d25b7 Implement <rdar://problem/16021869> the first portion of a function selector should allow implicit arg names
This allows us to use implicit names in protocols and asm name functions, as well
as for the first chunk of selectors.  This feature is particularly useful for
delegate methods.



Swift SVN r13751
2014-02-10 17:39:57 +00:00

858 lines
30 KiB
C++

//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Pattern Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ExprHandle.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
/// \brief Determine the kind of a default argument given a parsed
/// expression that has not yet been type-checked.
static DefaultArgumentKind getDefaultArgKind(ExprHandle *init) {
if (!init || !init->getExpr())
return DefaultArgumentKind::None;
auto magic = dyn_cast<MagicIdentifierLiteralExpr>(init->getExpr());
if (!magic)
return DefaultArgumentKind::Normal;
switch (magic->getKind()) {
case MagicIdentifierLiteralExpr::Column:
return DefaultArgumentKind::Column;
case MagicIdentifierLiteralExpr::File:
return DefaultArgumentKind::File;
case MagicIdentifierLiteralExpr::Line:
return DefaultArgumentKind::Line;
}
}
static void recoverFromBadSelectorArgument(Parser &P) {
while (P.Tok.isNot(tok::eof) && P.Tok.isNot(tok::r_paren) &&
P.Tok.isNot(tok::l_brace) && P.Tok.isNot(tok::r_brace) &&
!P.isStartOfStmt(P.Tok) &&
!P.isStartOfDecl(P.Tok, P.peekToken())) {
P.skipSingle();
}
P.consumeIf(tok::r_paren);
}
void Parser::DefaultArgumentInfo::setFunctionContext(DeclContext *DC) {
assert(DC->isLocalContext());
for (auto context : ParsedContexts) {
context->changeFunction(DC);
}
}
static ParserStatus parseDefaultArgument(Parser &P,
Parser::DefaultArgumentInfo *defaultArgs,
unsigned argIndex,
ExprHandle *&init) {
SourceLoc equalLoc = P.consumeToken(tok::equal);
// Enter a fresh default-argument context with a meaningless parent.
// We'll change the parent to the function later after we've created
// that declaration.
auto initDC =
P.Context.createDefaultArgumentContext(P.CurDeclContext, argIndex);
Parser::ParseFunctionBody initScope(P, initDC);
ParserResult<Expr> initR = P.parseExpr(diag::expected_init_value);
// Give back the default-argument context if we didn't need it.
if (!initScope.hasClosures()) {
P.Context.destroyDefaultArgumentContext(initDC);
// Otherwise, record it if we're supposed to accept default
// arguments here.
} else if (defaultArgs) {
defaultArgs->ParsedContexts.push_back(initDC);
}
if (!defaultArgs) {
auto inFlight = P.diagnose(equalLoc, diag::non_func_decl_pattern_init);
if (initR.isNonNull())
inFlight.fixItRemove(SourceRange(equalLoc, initR.get()->getEndLoc()));
}
if (initR.hasCodeCompletion()) {
recoverFromBadSelectorArgument(P);
return makeParserCodeCompletionStatus();
}
if (initR.isNull()) {
recoverFromBadSelectorArgument(P);
return makeParserError();
}
init = ExprHandle::get(P.Context, initR.get());
return ParserStatus();
}
/// Given a pattern "P" based on a pattern atom (either an identifer or _
/// pattern), rebuild and return the nested pattern around another root that
/// replaces the atom.
static Pattern *rebuildImplicitPatternAround(const Pattern *P, Pattern *NewRoot,
ASTContext &C) {
// We'll return a cloned copy of the pattern.
Pattern *Result = P->clone(C, /*isImplicit*/true);
class ReplaceRoot : public ASTWalker {
Pattern *NewRoot;
public:
ReplaceRoot(Pattern *NewRoot) : NewRoot(NewRoot) {}
// If we find a typed pattern, replace its subpattern with the NewRoot and
// return.
std::pair<bool, Pattern*> walkToPatternPre(Pattern *P) override {
if (auto *TP = dyn_cast<TypedPattern>(P)) {
TP->setSubPattern(NewRoot);
return { false, TP };
}
return { true, P };
}
// If we get down to a named pattern "x" or any pattern "_", replace it
// with our root.
Pattern *walkToPatternPost(Pattern *P) override {
if (isa<NamedPattern>(P) || isa<AnyPattern>(P))
return NewRoot;
return P;
}
};
return Result->walk(ReplaceRoot(NewRoot));
}
/// Parse a single argument, the leading token is expected to be a (.
static ParserResult<Pattern> parseArgument(Parser &P, Identifier leadingIdent,
Parser::DefaultArgumentInfo *defaultArgs) {
// Consume the (.
SourceLoc LPLoc = P.consumeToken(tok::l_paren);
// Decide if this is a singular unnamed argument (e.g. "foo(Int)" or if
// it is a standard tuple body pattern (e.g. "foo(x : Int)"). The former is
// shorthand where the elements get the name of the selector chunk. The
// later includes the names are specified for each piece.
// Before doing a speculative parse, check for the common case of
// "identifier:" (always a tuple) or "identifier)" (always unnamed).
bool isTypeOnlySelectorArg;
if (P.Tok.is(tok::identifier) && P.peekToken().is(tok::colon))
isTypeOnlySelectorArg = false;
else if (P.Tok.is(tok::identifier) && P.peekToken().is(tok::r_paren))
isTypeOnlySelectorArg = true;
else {
// Otherwise, we do a full speculative parse to determine this.
Parser::BacktrackingScope backtrack(P);
// This is type-only if it is a valid type followed by an r_paren.
isTypeOnlySelectorArg = P.canParseType() && P.Tok.is(tok::r_paren);
}
// If this is a standard tuple, parse it.
if (!isTypeOnlySelectorArg)
return P.parsePatternTupleAfterLP(/*IsLet*/true, /*IsArgList*/true,
LPLoc, /*DefArgs=*/defaultArgs);
// If this is a type-only selector chunk, parse the type and r_paren, then
// build this as if it were a parenpattern(typed_pattern(named_pattern)).
SourceLoc TypeLoc = P.Tok.getLoc();
ParserResult<TypeRepr> Ty = P.parseTypeAnnotation();
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (Ty.isNull())
Ty = makeParserResult(new (P.Context) ErrorTypeRepr(TypeLoc));
// This was checked by the speculative parse above.
SourceLoc RPLoc = P.consumeToken(tok::r_paren);
// Create the patterns for the identifier.
Pattern *Name;
if (leadingIdent.empty())
Name = new (P.Context) AnyPattern(TypeLoc, /*Implicit=*/true);
else
Name = P.createBindingFromPattern(TypeLoc, leadingIdent, /*isLet*/true);
Name->setImplicit();
auto TypedPat = new (P.Context) TypedPattern(Name, Ty.get());
return makeParserResult(new (P.Context) ParenPattern(LPLoc, TypedPat, RPLoc));
}
static ParserStatus
parseSelectorArgument(Parser &P,
SmallVectorImpl<TuplePatternElt> &argElts,
SmallVectorImpl<TuplePatternElt> &bodyElts,
Parser::DefaultArgumentInfo &defaultArgs,
SourceLoc &rp) {
ParserResult<Pattern> ArgPatternRes = P.parsePatternIdentifier(true);
assert(ArgPatternRes.isNonNull() &&
"selector argument did not start with an identifier or _!");
Pattern *ArgPattern = ArgPatternRes.get();
ArgPattern->setImplicit();
Identifier leadingIdent;
// Check that a selector name isn't used multiple times, which would
// lead to the function type having multiple arguments with the same name.
if (NamedPattern *name = dyn_cast<NamedPattern>(ArgPattern)) {
VarDecl *decl = name->getDecl();
decl->setImplicit();
leadingIdent = name->getDecl()->getName();
} else {
// If the selector is named "_", then we ignore it.
assert(isa<AnyPattern>(ArgPattern) && "Unexpected selector pattern");
}
if (!P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok, diag::func_selector_without_paren);
return makeParserError();
}
auto PatternRes = parseArgument(P, leadingIdent, &defaultArgs);
if (PatternRes.hasCodeCompletion())
return PatternRes;
if (PatternRes.isNull()) {
if (PatternRes.isParseError())
recoverFromBadSelectorArgument(P);
return PatternRes;
}
// The result of parsing a '(' pattern is either a ParenPattern or a
// TuplePattern.
if (auto *PP = dyn_cast<ParenPattern>(PatternRes.get())) {
bodyElts.push_back(TuplePatternElt(PP->getSubPattern(), /*init*/nullptr,
DefaultArgumentKind::None));
// Return the ')' location.
rp = PP->getRParenLoc();
} else {
auto *TP = cast<TuplePattern>(PatternRes.get());
// Reject tuple patterns that aren't a single argument.
if (TP->getNumFields() != 1 || TP->hasVararg()) {
P.diagnose(TP->getLParenLoc(), diag::func_selector_with_not_one_argument);
return makeParserError();
}
bodyElts.push_back(TP->getFields()[0]);
// Return the ')' location.
rp = TP->getRParenLoc();
}
TuplePatternElt &TPE = bodyElts.back();
ArgPattern = rebuildImplicitPatternAround(TPE.getPattern(), ArgPattern,
P.Context);
argElts.push_back(TuplePatternElt(ArgPattern, TPE.getInit(),
getDefaultArgKind(TPE.getInit())));
return makeParserSuccess();
}
static Pattern *getFirstSelectorPattern(ASTContext &Context,
const Pattern *argPattern,
SourceLoc loc) {
Pattern *any = new (Context) AnyPattern(loc, /*Implicit=*/true);
return rebuildImplicitPatternAround(argPattern, any, Context);
}
static ParserStatus
parseSelectorFunctionArguments(Parser &P,
SmallVectorImpl<Pattern *> &ArgPatterns,
SmallVectorImpl<Pattern *> &BodyPatterns,
Parser::DefaultArgumentInfo &DefaultArgs,
Pattern *FirstPattern) {
SourceLoc LParenLoc;
SourceLoc RParenLoc;
SmallVector<TuplePatternElt, 8> ArgElts;
SmallVector<TuplePatternElt, 8> BodyElts;
// For the argument pattern, try to convert the first parameter pattern to
// an anonymous AnyPattern of the same type as the body parameter.
if (ParenPattern *FirstParen = dyn_cast<ParenPattern>(FirstPattern)) {
BodyElts.push_back(TuplePatternElt(FirstParen->getSubPattern()));
LParenLoc = FirstParen->getLParenLoc();
RParenLoc = FirstParen->getRParenLoc();
ArgElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
FirstParen->getSubPattern(),
FirstParen->getLoc())));
} else if (TuplePattern *FirstTuple = dyn_cast<TuplePattern>(FirstPattern)) {
LParenLoc = FirstTuple->getLParenLoc();
RParenLoc = FirstTuple->getRParenLoc();
if (FirstTuple->getNumFields() != 1)
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
if (FirstTuple->getNumFields() >= 1) {
const TuplePatternElt &FirstElt = FirstTuple->getFields()[0];
BodyElts.push_back(FirstElt);
ArgElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
FirstElt.getPattern(),
FirstTuple->getLoc()),
FirstElt.getInit(),
FirstElt.getDefaultArgKind()));
} else {
// Recover by creating a '(_: ())' pattern.
TuplePatternElt FirstElt(
new (P.Context) TypedPattern(
new (P.Context) AnyPattern(FirstTuple->getLParenLoc()),
TupleTypeRepr::create(P.Context, {},
FirstTuple->getSourceRange(),
SourceLoc())));
BodyElts.push_back(FirstElt);
ArgElts.push_back(FirstElt);
}
} else
llvm_unreachable("unexpected function argument pattern!");
assert(!ArgElts.empty() && !BodyElts.empty());
// Parse additional selectors as long as we can.
ParserStatus Status;
for (;;) {
if (P.isAtStartOfBindingName()) {
Status |= parseSelectorArgument(P, ArgElts, BodyElts, DefaultArgs,
RParenLoc);
continue;
}
if (P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok, diag::func_selector_with_curry);
// FIXME: better recovery: just parse a tuple instead of skipping tokens.
P.skipUntilDeclRBrace(tok::l_brace);
Status.setIsParseError();
}
break;
}
ArgPatterns.push_back(
TuplePattern::create(P.Context, LParenLoc, ArgElts, RParenLoc,
/*hasVarArg=*/false,SourceLoc(), /*Implicit=*/true));
BodyPatterns.push_back(
TuplePattern::create(P.Context, LParenLoc, BodyElts, RParenLoc));
return Status;
}
/// Parse function arguments.
/// func-arguments:
/// curried-arguments | selector-arguments
/// curried-arguments:
/// pattern-tuple+
/// selector-arguments:
/// '(' selector-element ')' (identifier '(' selector-element ')')+
/// selector-element:
/// identifier '(' pattern-atom (':' type-annotation)? ('=' expr)? ')'
///
ParserStatus
Parser::parseFunctionArguments(Identifier functionName,
SmallVectorImpl<Pattern *> &ArgPatterns,
SmallVectorImpl<Pattern *> &BodyPatterns,
DefaultArgumentInfo &DefaultArgs,
bool &HasSelectorStyleSignature) {
// Parse all of the selector arguments or curried argument pieces.
// Parse the first function argument clause.
ParserResult<Pattern> ArgPattern =
parseArgument(*this, functionName, &DefaultArgs);
if (ArgPattern.isNull() || ArgPattern.hasCodeCompletion())
return ArgPattern;
// If we've reached the end of the first argument, decide whether this is
// a curried argument list, a selector style argument list, or if we're
// done.
HasSelectorStyleSignature = isAtStartOfBindingName();
if (HasSelectorStyleSignature) {
// This looks like a selector-style argument. Try to convert the first
// argument pattern into a single argument type and parse subsequent
// selector forms.
return ParserStatus(ArgPattern) |
parseSelectorFunctionArguments(*this, ArgPatterns, BodyPatterns,
DefaultArgs, ArgPattern.get());
}
ParserStatus Result;
while (1) {
ArgPatterns.push_back(ArgPattern.get());
BodyPatterns.push_back(ArgPattern.get());
Result |= ArgPattern;
// If we're out of pieces, we're done.
if (Tok.isNot(tok::l_paren))
break;
ArgPattern = parsePatternTuple(/*IsLet*/true, /*IsArgList*/true, nullptr);
if (ArgPattern.isNull() || ArgPattern.hasCodeCompletion())
return ArgPattern;
}
return Result;
}
/// parseFunctionSignature - Parse a function definition signature.
/// func-signature:
/// func-arguments func-signature-result?
/// func-signature-result:
/// '->' type-annotation
///
/// Note that this leaves retType as null if unspecified.
ParserStatus
Parser::parseFunctionSignature(Identifier Name,
SmallVectorImpl<Pattern *> &argPatterns,
SmallVectorImpl<Pattern *> &bodyPatterns,
DefaultArgumentInfo &defaultArgs,
TypeRepr *&retType,
bool &HasSelectorStyleSignature) {
HasSelectorStyleSignature = false;
ParserStatus Status;
// We force first type of a func declaration to be a tuple for consistency.
if (Tok.is(tok::l_paren)) {
Status = parseFunctionArguments(Name, argPatterns, bodyPatterns,
defaultArgs, HasSelectorStyleSignature);
if (bodyPatterns.empty()) {
// If we didn't get anything, add a () pattern to avoid breaking
// invariants.
assert(Status.hasCodeCompletion() || Status.isError());
bodyPatterns.push_back(TuplePattern::create(Context, Tok.getLoc(),
{}, Tok.getLoc()));
argPatterns.push_back(bodyPatterns.back());
}
} else {
diagnose(Tok, diag::func_decl_without_paren);
Status = makeParserError();
// Recover by creating a '() -> ?' signature.
auto *EmptyTuplePattern =
TuplePattern::create(Context, Tok.getLoc(), {}, Tok.getLoc());
argPatterns.push_back(EmptyTuplePattern);
bodyPatterns.push_back(EmptyTuplePattern);
}
// If there's a trailing arrow, parse the rest as the result type.
if (Tok.is(tok::arrow) || Tok.is(tok::colon)) {
if (!consumeIf(tok::arrow)) {
// FixIt ':' to '->'.
diagnose(Tok, diag::func_decl_expected_arrow)
.fixItReplace(SourceRange(Tok.getLoc()), "->");
consumeToken(tok::colon);
}
ParserResult<TypeRepr> ResultType =
parseTypeAnnotation(diag::expected_type_function_result);
if (ResultType.hasCodeCompletion())
return ResultType;
retType = ResultType.getPtrOrNull();
if (!retType) {
Status.setIsParseError();
return Status;
}
} else {
// Otherwise, we leave retType null.
retType = nullptr;
}
return Status;
}
ParserStatus
Parser::parseConstructorArguments(Pattern *&ArgPattern, Pattern *&BodyPattern,
DefaultArgumentInfo &DefaultArgs,
bool &HasSelectorStyleSignature) {
HasSelectorStyleSignature = false;
// It's just a pattern. Parse it.
if (Tok.is(tok::l_paren)) {
ParserResult<Pattern> Params =
parsePatternTuple(/*IsLet*/ true, /*IsArgList*/ true, &DefaultArgs);
// If we failed to parse the pattern, create an empty tuple to recover.
if (Params.isNull()) {
Params = makeParserResult(Params,
TuplePattern::createSimple(Context, Tok.getLoc(), {}, Tok.getLoc()));
}
ArgPattern = Params.get();
BodyPattern = ArgPattern->clone(Context);
return Params;
}
if (!isAtStartOfBindingName()) {
// Complain that we expected '(' or a parameter name.
{
auto diag = diagnose(Tok, diag::expected_lparen_initializer);
if (Tok.is(tok::l_brace))
diag.fixItInsert(Tok.getLoc(), "() ");
}
// Create an empty tuple to recover.
ArgPattern = TuplePattern::createSimple(Context, Tok.getLoc(), {},
Tok.getLoc());
BodyPattern = ArgPattern->clone(Context);
return makeParserError();
}
// We have the start of a binding name, so this is a selector-style
// declaration.
HasSelectorStyleSignature = true;
// This is not a parenthesis, but we should provide a reasonable source range
// for parameters.
SourceLoc LParenLoc = Tok.getLoc();
// Parse additional selectors as long as we can.
ParserStatus Status;
SmallVector<TuplePatternElt, 4> ArgElts;
SmallVector<TuplePatternElt, 4> BodyElts;
SourceLoc RParenLoc;
for (;;) {
if (isAtStartOfBindingName()) {
Status |= parseSelectorArgument(*this, ArgElts, BodyElts,
DefaultArgs, RParenLoc);
continue;
}
if (Tok.is(tok::l_paren)) {
// FIXME: Should we assume this is '_'?
diagnose(Tok, diag::func_selector_with_curry);
// FIXME: better recovery: just parse a tuple instead of skipping tokens.
skipUntilDeclRBrace(tok::l_brace);
Status.setIsParseError();
}
break;
}
ArgPattern = TuplePattern::create(Context, LParenLoc, ArgElts, RParenLoc);
BodyPattern = TuplePattern::create(Context, LParenLoc, BodyElts,
RParenLoc);
return Status;
}
/// Parse a pattern.
/// pattern ::= pattern-atom
/// pattern ::= pattern-atom ':' type-annotation
/// pattern ::= 'var' pattern
/// pattern ::= 'let' pattern
ParserResult<Pattern> Parser::parsePattern(bool isLet) {
// If this is a let or var pattern parse it.
if (Tok.is(tok::kw_let) || Tok.is(tok::kw_var))
return parsePatternVarOrLet();
// First, parse the pattern atom.
ParserResult<Pattern> Result = parsePatternAtom(isLet);
// Now parse an optional type annotation.
if (consumeIf(tok::colon)) {
if (Result.isNull()) {
// Recover by creating AnyPattern.
Result = makeParserErrorResult(new (Context) AnyPattern(PreviousLoc));
}
ParserResult<TypeRepr> Ty = parseTypeAnnotation();
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (Ty.isNull())
Ty = makeParserResult(new (Context) ErrorTypeRepr(PreviousLoc));
Result = makeParserResult(Result,
new (Context) TypedPattern(Result.get(), Ty.get()));
}
return Result;
}
ParserResult<Pattern> Parser::parsePatternVarOrLet() {
assert((Tok.is(tok::kw_let) || Tok.is(tok::kw_var)) && "expects let or var");
bool isLet = Tok.is(tok::kw_let);
SourceLoc varLoc = consumeToken();
// 'var' and 'let' patterns shouldn't nest.
if (InVarOrLetPattern)
diagnose(varLoc, diag::var_pattern_in_var, unsigned(isLet));
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar);
ParserResult<Pattern> subPattern = parsePattern(isLet);
if (subPattern.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (subPattern.isNull())
return nullptr;
return makeParserResult(new (Context) VarPattern(varLoc, subPattern.get()));
}
/// \brief Determine whether this token can start a binding name, whether an
/// identifier or the special discard-value binding '_'.
bool Parser::isAtStartOfBindingName() {
return Tok.is(tok::kw__)
|| (Tok.is(tok::identifier) && !isStartOfDecl(Tok, peekToken()));
}
Pattern *Parser::createBindingFromPattern(SourceLoc loc, Identifier name,
bool isLet) {
auto *var = new (Context) VarDecl(/*static*/ false, /*IsLet*/ isLet,
loc, name, Type(), CurDeclContext);
return new (Context) NamedPattern(var);
}
/// Parse an identifier as a pattern.
ParserResult<Pattern> Parser::parsePatternIdentifier(bool isLet) {
SourceLoc loc = Tok.getLoc();
if (consumeIf(tok::kw__)) {
return makeParserResult(new (Context) AnyPattern(loc));
}
StringRef text = Tok.getText();
if (consumeIf(tok::identifier)) {
Identifier ident = Context.getIdentifier(text);
return makeParserResult(createBindingFromPattern(loc, ident, isLet));
}
return nullptr;
}
/// Parse a pattern "atom", meaning the part that precedes the
/// optional type annotation.
///
/// pattern-atom ::= identifier
/// pattern-atom ::= '_'
/// pattern-atom ::= pattern-tuple
ParserResult<Pattern> Parser::parsePatternAtom(bool isLet) {
switch (Tok.getKind()) {
case tok::l_paren:
return parsePatternTuple(isLet, /*IsArgList*/false,/*DefaultArgs*/nullptr);
case tok::identifier:
case tok::kw__:
return parsePatternIdentifier(isLet);
case tok::code_complete:
// Just eat the token and return an error status, *not* the code completion
// status. We can not code complete anything here -- we expect an
// identifier.
consumeToken(tok::code_complete);
return nullptr;
default:
if (Tok.isKeyword() &&
(peekToken().is(tok::colon) || peekToken().is(tok::equal))) {
diagnose(Tok, diag::expected_pattern_is_keyword, Tok.getText());
SourceLoc Loc = Tok.getLoc();
consumeToken();
return makeParserErrorResult(new (Context) AnyPattern(Loc));
}
diagnose(Tok, diag::expected_pattern);
return nullptr;
}
}
std::pair<ParserStatus, Optional<TuplePatternElt>>
Parser::parsePatternTupleElement(bool isLet, bool isArgumentList,
DefaultArgumentInfo *defaultArgs) {
// Function argument lists can have "inout" applied to TypedPatterns in their
// arguments.
SourceLoc InOutLoc;
if (isArgumentList && Tok.isContextualKeyword("inout"))
InOutLoc = consumeToken(tok::identifier);
unsigned defaultArgIndex = (defaultArgs ? defaultArgs->NextIndex++ : 0);
// Parse the pattern.
ParserResult<Pattern> pattern = parsePattern(isLet);
if (pattern.hasCodeCompletion())
return std::make_pair(makeParserCodeCompletionStatus(), Nothing);
if (pattern.isNull())
return std::make_pair(makeParserError(), Nothing);
// Parse the optional initializer.
ExprHandle *init = nullptr;
if (Tok.is(tok::equal))
parseDefaultArgument(*this, defaultArgs, defaultArgIndex, init);
// If this is an inout function argument, validate that the sub-pattern is
// a TypedPattern.
if (InOutLoc.isValid()) {
if (auto *TP = dyn_cast<TypedPattern>(pattern.get())) {
// Change the TypeRep of the underlying typed pattern to be an inout
// typerep.
TypeLoc &LocInfo = TP->getTypeLoc();
LocInfo = TypeLoc(new (Context) InOutTypeRepr(LocInfo.getTypeRepr(),
InOutLoc));
} else if (isa<VarPattern>(pattern.get())) {
diagnose(InOutLoc, diag::inout_varpattern);
} else {
diagnose(InOutLoc, diag::inout_must_have_type);
}
}
return std::make_pair(
makeParserSuccess(),
TuplePatternElt(pattern.get(), init, getDefaultArgKind(init)));
}
ParserResult<Pattern> Parser::parsePatternTuple(bool isLet, bool isArgumentList,
DefaultArgumentInfo *defaults) {
SourceLoc LPLoc = consumeToken(tok::l_paren);
return parsePatternTupleAfterLP(isLet, isArgumentList, LPLoc, defaults);
}
/// Parse a tuple pattern. The leading left paren has already been consumed and
/// we are looking at the next token. LPLoc specifies its location.
///
/// pattern-tuple:
/// '(' pattern-tuple-body? ')'
/// pattern-tuple-body:
/// pattern-tuple-element (',' pattern-tuple-body)*
ParserResult<Pattern>
Parser::parsePatternTupleAfterLP(bool isLet, bool isArgumentList,
SourceLoc LPLoc,
DefaultArgumentInfo *defaults) {
SourceLoc RPLoc, EllipsisLoc;
// Parse all the elements.
SmallVector<TuplePatternElt, 8> elts;
ParserStatus ListStatus = parseList(tok::r_paren, LPLoc, RPLoc,
tok::comma, /*OptionalSep=*/false,
/*AllowSepAfterLast=*/false,
diag::expected_rparen_tuple_pattern_list,
[&] () -> ParserStatus {
// Parse the pattern tuple element.
ParserStatus EltStatus;
Optional<TuplePatternElt> elt;
std::tie(EltStatus, elt) = parsePatternTupleElement(isLet, isArgumentList,
defaults);
if (EltStatus.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (!elt)
return makeParserError();
// Add this element to the list.
elts.push_back(*elt);
// If there is no ellipsis, we're done with the element.
if (Tok.isNotEllipsis())
return makeParserSuccess();
SourceLoc ellLoc = consumeToken();
// An element cannot have both an initializer and an ellipsis.
if (elt->getInit()) {
diagnose(ellLoc, diag::tuple_ellipsis_init)
.highlight(elt->getInit()->getExpr()->getSourceRange());
// Return success since the error was semantic, and the caller should not
// attempt recovery.
return makeParserSuccess();
}
// An ellipsis element shall have a specified element type.
// FIXME: This seems unnecessary.
TypedPattern *typedPattern = dyn_cast<TypedPattern>(elt->getPattern());
if (!typedPattern) {
diagnose(ellLoc, diag::untyped_pattern_ellipsis)
.highlight(elt->getPattern()->getSourceRange());
// Return success so that the caller does not attempt recovery -- it
// should have already happened when we were parsing the tuple element.
return makeParserSuccess();
}
// Variadic elements must come last.
// FIXME: Unnecessary restriction. It makes conversion more interesting,
// but is not complicated to support.
if (Tok.is(tok::r_paren)) {
EllipsisLoc = ellLoc;
} else {
diagnose(ellLoc, diag::ellipsis_pattern_not_at_end);
}
return makeParserSuccess();
});
return makeParserResult(ListStatus, TuplePattern::createSimple(
Context, LPLoc, elts, RPLoc,
EllipsisLoc.isValid(), EllipsisLoc));
}
ParserResult<Pattern> Parser::parseMatchingPattern() {
// TODO: Since we expect a pattern in this position, we should optimistically
// parse pattern nodes for productions shared by pattern and expression
// grammar. For short-term ease of initial implementation, we always go
// through the expr parser for ambiguious productions.
// Parse productions that can only be patterns.
// matching-pattern ::= matching-pattern-var
if (Tok.is(tok::kw_var) || Tok.is(tok::kw_let))
return parseMatchingPatternVarOrLet();
// matching-pattern ::= 'is' type
if (Tok.is(tok::kw_is))
return parseMatchingPatternIs();
// matching-pattern ::= expr
// Fall back to expression parsing for ambiguous forms. Name lookup will
// disambiguate.
ParserResult<Expr> subExpr = parseExpr(diag::expected_pattern);
if (subExpr.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (subExpr.isNull())
return nullptr;
return makeParserResult(new (Context) ExprPattern(subExpr.get()));
}
ParserResult<Pattern> Parser::parseMatchingPatternVarOrLet() {
assert((Tok.is(tok::kw_let) || Tok.is(tok::kw_var)) && "expects let or var");
bool isLet = Tok.is(tok::kw_let);
SourceLoc varLoc = consumeToken();
// 'var' and 'let' patterns shouldn't nest.
if (InVarOrLetPattern)
diagnose(varLoc, diag::var_pattern_in_var, unsigned(isLet));
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar);
ParserResult<Pattern> subPattern = parseMatchingPattern();
if (subPattern.isNull())
return nullptr;
return makeParserResult(new (Context) VarPattern(varLoc, subPattern.get()));
}
// matching-pattern ::= 'is' type
ParserResult<Pattern> Parser::parseMatchingPatternIs() {
SourceLoc isLoc = consumeToken(tok::kw_is);
ParserResult<TypeRepr> castType = parseType();
if (castType.isNull() || castType.hasCodeCompletion())
return nullptr;
return makeParserResult(new (Context) IsaPattern(isLoc, castType.get()));
}
bool Parser::isOnlyStartOfMatchingPattern() {
return Tok.is(tok::kw_var) || Tok.is(tok::kw_let) || Tok.is(tok::kw_is);
}