Files
swift-mirror/stdlib/public/stubs/Unicode/UnicodeData.cpp
2022-06-01 09:55:09 -07:00

159 lines
5.8 KiB
C++

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SwiftShims/UnicodeData.h"
#include <limits>
// Every 4 byte chunks of data that we need to hash (in this case only ever
// scalars and levels who are all uint32), we need to calculate K. At the end
// of this scramble sequence to get K, directly apply this to the current hash.
static inline __swift_uint32_t scramble(__swift_uint32_t scalar) {
scalar *= 0xCC9E2D51;
scalar = (scalar << 15) | (scalar >> 17);
scalar *= 0x1B873593;
return scalar;
}
// This is a reimplementation of MurMur3 hash with a modulo at the end.
static __swift_uint32_t hash(__swift_uint32_t scalar, __swift_uint32_t level,
__swift_uint32_t seed) {
__swift_uint32_t hash = seed;
hash ^= scramble(scalar);
hash = (hash << 13) | (hash >> 19);
hash = hash * 5 + 0xE6546B64;
hash ^= scramble(level);
hash = (hash << 13) | (hash >> 19);
hash = hash * 5 + 0xE6546B64;
hash ^= 8;
hash ^= hash >> 16;
hash *= 0x85EBCA6B;
hash ^= hash >> 13;
hash *= 0xC2B2AE35;
hash ^= hash >> 16;
return hash % level;
}
// This implementation is based on the minimal perfect hashing strategy found
// here: https://arxiv.org/pdf/1702.03154.pdf
__swift_intptr_t _swift_stdlib_getMphIdx(__swift_uint32_t scalar,
__swift_intptr_t levels,
const __swift_uint64_t * const *keys,
const __swift_uint16_t * const *ranks,
const __swift_uint16_t * const sizes) {
__swift_intptr_t resultIdx = 0;
// Here, levels represent the numbers of bit arrays used for this hash table.
for (int i = 0; i != levels; i += 1) {
auto bitArray = keys[i];
// Get the specific bit that this scalar hashes to in the bit array.
auto idx = (__swift_uint64_t) hash(scalar, sizes[i], i);
auto word = bitArray[idx / 64];
auto mask = (__swift_uint64_t) 1 << (idx % 64);
// If our scalar's bit is turned on in the bit array, it means we no longer
// need to iterate the bit arrays to find where our scalar is located...
// its in this one.
if (word & mask) {
// Our initial rank corresponds to our current level and there are ranks
// within each bit array every 512 bits. Say our level (bit array)
// contains 16 uint64 integers to represent all of the required bits.
// There would be a total of 1024 bits, so our rankings for this level
// would contain two values for precomputed counted bits for both halfs
// of this bit array (1024 / 512 = 2).
auto rank = ranks[i][idx / 512];
// Because ranks are provided every 512 bits (8 uint64s), we still need to
// count the bits of the uints64s before us in our 8 uint64 sequence. So
// for example, if we are bit 576, we are larger than 512, so there is a
// provided rank for the first 8 uint64s, however we're in the second
// 8 uint64 sequence and within said sequence we are the #2 uint64. This
// loop will count the bits set for the first uint64 and terminate.
for (int j = (idx / 64) & ~7; j != idx / 64; j += 1) {
rank += __builtin_popcountll(bitArray[j]);
}
// After counting the other bits set in the uint64s before, its time to
// count our word itself and the bits before us.
if (idx % 64 > 0) {
rank += __builtin_popcountll(word << (64 - (idx % 64)));
}
// Our result is the built up rank value from all of the provided ranks
// and the ones we've manually counted ourselves.
resultIdx = rank;
break;
}
}
return resultIdx;
}
__swift_intptr_t _swift_stdlib_getScalarBitArrayIdx(__swift_uint32_t scalar,
const __swift_uint64_t *bitArrays,
const __swift_uint16_t *ranks) {
auto chunkSize = 0x110000 / 64 / 64;
auto base = scalar / chunkSize;
auto idx = base / 64;
auto chunkBit = base % 64;
auto quickLookSize = bitArrays[0];
// If our chunk index is larger than the quick look indices, then it means
// our scalar appears in chunks who are all 0 and trailing.
if ((__swift_uint64_t) idx > quickLookSize - 1) {
return std::numeric_limits<__swift_intptr_t>::max();
}
auto quickLook = bitArrays[idx + 1];
if ((quickLook & ((__swift_uint64_t) 1 << chunkBit)) == 0) {
return std::numeric_limits<__swift_intptr_t>::max();
}
// Ok, our scalar failed the quick look check. Go lookup our scalar in the
// chunk specific bit array.
auto chunkRank = ranks[idx];
if (chunkBit != 0) {
chunkRank += __builtin_popcountll(quickLook << (64 - chunkBit));
}
auto chunkBA = bitArrays + 1 + quickLookSize + (chunkRank * 5);
auto scalarOverallBit = scalar - (base * chunkSize);
auto scalarSpecificBit = scalarOverallBit % 64;
auto scalarWord = scalarOverallBit / 64;
auto chunkWord = chunkBA[scalarWord];
// If our scalar specifically is not turned on, then we're done.
if ((chunkWord & ((__swift_uint64_t) 1 << scalarSpecificBit)) == 0) {
return std::numeric_limits<__swift_intptr_t>::max();
}
auto scalarRank = ranks[quickLookSize + (chunkRank * 5) + scalarWord];
if (scalarSpecificBit != 0) {
scalarRank += __builtin_popcountll(chunkWord << (64 - scalarSpecificBit));
}
auto chunkDataIdx = chunkBA[4] >> 16;
return chunkDataIdx + scalarRank;
}