Files
swift-mirror/lib/AST/ProtocolConformance.cpp
Rintaro Ishizaki c6017095c3 [AST] Use invalid conformance for unsatisfied requirement
There is an invariant that SignatureConformances should have the same
size as the number of conformance requirements in the signature.
Previously, since unsatisfied requirements weren't reflected in it,
that caused a crash.

rdar://problem/43625800
2018-10-10 21:03:25 +09:00

1452 lines
50 KiB
C++

//===--- ProtocolConformance.cpp - AST Protocol Conformance ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the protocol conformance data structures.
//
//===----------------------------------------------------------------------===//
#include "ConformanceLookupTable.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Statistic.h"
#include "swift/ClangImporter/ClangModule.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SaveAndRestore.h"
#define DEBUG_TYPE "AST"
STATISTIC(NumConformanceLookupTables, "# of conformance lookup tables built");
using namespace swift;
Witness::Witness(ValueDecl *decl, SubstitutionMap substitutions,
GenericEnvironment *syntheticEnv,
SubstitutionMap reqToSynthesizedEnvSubs) {
if (!syntheticEnv && substitutions.empty() &&
reqToSynthesizedEnvSubs.empty()) {
storage = decl;
return;
}
auto &ctx = decl->getASTContext();
auto declRef = ConcreteDeclRef(decl, substitutions);
auto storedMem = ctx.Allocate(sizeof(StoredWitness), alignof(StoredWitness));
auto stored = new (storedMem) StoredWitness{declRef, syntheticEnv,
reqToSynthesizedEnvSubs};
storage = stored;
}
void Witness::dump() const { dump(llvm::errs()); }
void Witness::dump(llvm::raw_ostream &out) const {
// FIXME: Implement!
}
ProtocolConformanceRef::ProtocolConformanceRef(ProtocolDecl *protocol,
ProtocolConformance *conf) {
assert(protocol != nullptr &&
"cannot construct ProtocolConformanceRef with null protocol");
if (conf) {
assert(protocol == conf->getProtocol() && "protocol conformance mismatch");
Union = conf;
} else {
Union = protocol;
}
}
ProtocolDecl *ProtocolConformanceRef::getRequirement() const {
assert(!isInvalid());
if (isConcrete()) {
return getConcrete()->getProtocol();
} else {
return getAbstract();
}
}
ProtocolConformanceRef
ProtocolConformanceRef::subst(Type origType,
SubstitutionMap subMap) const {
return subst(origType,
QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap));
}
ProtocolConformanceRef
ProtocolConformanceRef::subst(Type origType,
TypeSubstitutionFn subs,
LookupConformanceFn conformances) const {
if (isInvalid())
return *this;
// If we have a concrete conformance, we need to substitute the
// conformance to apply to the new type.
if (isConcrete())
return ProtocolConformanceRef(getConcrete()->subst(subs, conformances));
// Otherwise, compute the substituted type.
auto substType = origType.subst(subs, conformances,
SubstFlags::UseErrorType);
// Opened existentials trivially conform and do not need to go through
// substitution map lookup.
if (substType->isOpenedExistential())
return *this;
// If the substituted type is an existential, we have a self-conforming
// existential being substituted in place of itself. There's no
// conformance information in this case, so just return.
if (substType->isObjCExistentialType())
return *this;
auto *proto = getRequirement();
// Check the conformance map.
if (auto result = conformances(origType->getCanonicalType(),
substType, proto)) {
return *result;
}
llvm_unreachable("Invalid conformance substitution");
}
Type
ProtocolConformanceRef::getTypeWitnessByName(Type type,
ProtocolConformanceRef conformance,
Identifier name,
LazyResolver *resolver) {
assert(!conformance.isInvalid());
// Find the named requirement.
AssociatedTypeDecl *assocType = nullptr;
auto members = conformance.getRequirement()->lookupDirect(name);
for (auto member : members) {
assocType = dyn_cast<AssociatedTypeDecl>(member);
if (assocType)
break;
}
// FIXME: Shouldn't this be a hard error?
if (!assocType)
return nullptr;
if (conformance.isAbstract()) {
// For an archetype, retrieve the nested type with the appropriate
// name. There are no conformance tables.
if (auto archetype = type->getAs<ArchetypeType>()) {
return archetype->getNestedType(name);
}
return DependentMemberType::get(type, assocType);
}
auto concrete = conformance.getConcrete();
if (!concrete->hasTypeWitness(assocType, resolver)) {
return nullptr;
}
return concrete->getTypeWitness(assocType, resolver);
}
void *ProtocolConformance::operator new(size_t bytes, ASTContext &context,
AllocationArena arena,
unsigned alignment) {
return context.Allocate(bytes, alignment, arena);
}
#define CONFORMANCE_SUBCLASS_DISPATCH(Method, Args) \
switch (getKind()) { \
case ProtocolConformanceKind::Normal: \
static_assert(&ProtocolConformance::Method != \
&NormalProtocolConformance::Method, \
"Must override NormalProtocolConformance::" #Method); \
return cast<NormalProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Specialized: \
static_assert(&ProtocolConformance::Method != \
&SpecializedProtocolConformance::Method, \
"Must override SpecializedProtocolConformance::" #Method); \
return cast<SpecializedProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Inherited: \
static_assert(&ProtocolConformance::Method != \
&InheritedProtocolConformance::Method, \
"Must override InheritedProtocolConformance::" #Method); \
return cast<InheritedProtocolConformance>(this)->Method Args; \
} \
llvm_unreachable("bad ProtocolConformanceKind");
/// Get the protocol being conformed to.
ProtocolDecl *ProtocolConformance::getProtocol() const {
CONFORMANCE_SUBCLASS_DISPATCH(getProtocol, ())
}
DeclContext *ProtocolConformance::getDeclContext() const {
CONFORMANCE_SUBCLASS_DISPATCH(getDeclContext, ())
}
/// Retrieve the state of this conformance.
ProtocolConformanceState ProtocolConformance::getState() const {
CONFORMANCE_SUBCLASS_DISPATCH(getState, ())
}
ConformanceEntryKind ProtocolConformance::getSourceKind() const {
CONFORMANCE_SUBCLASS_DISPATCH(getSourceKind, ())
}
NormalProtocolConformance *ProtocolConformance::getImplyingConformance() const {
CONFORMANCE_SUBCLASS_DISPATCH(getImplyingConformance, ())
}
bool
ProtocolConformance::hasTypeWitness(AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
CONFORMANCE_SUBCLASS_DISPATCH(hasTypeWitness, (assocType, resolver));
}
std::pair<Type, TypeDecl *>
ProtocolConformance::getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
LazyResolver *resolver,
SubstOptions options) const {
CONFORMANCE_SUBCLASS_DISPATCH(getTypeWitnessAndDecl,
(assocType, resolver, options))
}
Type ProtocolConformance::getTypeWitness(AssociatedTypeDecl *assocType,
LazyResolver *resolver,
SubstOptions options) const {
return getTypeWitnessAndDecl(assocType, resolver, options).first;
}
ConcreteDeclRef
ProtocolConformance::getWitnessDeclRef(ValueDecl *requirement,
LazyResolver *resolver) const {
CONFORMANCE_SUBCLASS_DISPATCH(getWitnessDeclRef, (requirement, resolver))
}
ValueDecl *ProtocolConformance::getWitnessDecl(ValueDecl *requirement,
LazyResolver *resolver) const {
switch (getKind()) {
case ProtocolConformanceKind::Normal:
return cast<NormalProtocolConformance>(this)->getWitness(requirement,
resolver)
.getDecl();
case ProtocolConformanceKind::Inherited:
return cast<InheritedProtocolConformance>(this)
->getInheritedConformance()->getWitnessDecl(requirement, resolver);
case ProtocolConformanceKind::Specialized:
return cast<SpecializedProtocolConformance>(this)
->getGenericConformance()->getWitnessDecl(requirement, resolver);
}
llvm_unreachable("unhandled kind");
}
/// Determine whether the witness for the given requirement
/// is either the default definition or was otherwise deduced.
bool ProtocolConformance::
usesDefaultDefinition(AssociatedTypeDecl *requirement) const {
CONFORMANCE_SUBCLASS_DISPATCH(usesDefaultDefinition, (requirement))
}
GenericEnvironment *ProtocolConformance::getGenericEnvironment() const {
switch (getKind()) {
case ProtocolConformanceKind::Inherited:
case ProtocolConformanceKind::Normal:
// If we have a normal or inherited protocol conformance, look for its
// generic parameters.
return getDeclContext()->getGenericEnvironmentOfContext();
case ProtocolConformanceKind::Specialized:
// If we have a specialized protocol conformance, since we do not support
// currently partial specialization, we know that it cannot have any open
// type variables.
//
// FIXME: We could return a meaningful GenericEnvironment here
return nullptr;
}
llvm_unreachable("Unhandled ProtocolConformanceKind in switch.");
}
GenericSignature *ProtocolConformance::getGenericSignature() const {
switch (getKind()) {
case ProtocolConformanceKind::Inherited:
case ProtocolConformanceKind::Normal:
// If we have a normal or inherited protocol conformance, look for its
// generic signature.
return getDeclContext()->getGenericSignatureOfContext();
case ProtocolConformanceKind::Specialized:
// If we have a specialized protocol conformance, since we do not support
// currently partial specialization, we know that it cannot have any open
// type variables.
return nullptr;
}
llvm_unreachable("Unhandled ProtocolConformanceKind in switch.");
}
SubstitutionMap ProtocolConformance::getSubstitutions(ModuleDecl *M) const {
// Walk down to the base NormalProtocolConformance.
SubstitutionMap subMap;
const ProtocolConformance *parent = this;
while (!isa<NormalProtocolConformance>(parent)) {
switch (parent->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have exited the loop?!");
case ProtocolConformanceKind::Inherited:
parent =
cast<InheritedProtocolConformance>(parent)->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized: {
auto SC = cast<SpecializedProtocolConformance>(parent);
parent = SC->getGenericConformance();
assert(subMap.empty() && "multiple conformance specializations?!");
subMap = SC->getSubstitutionMap();
break;
}
}
}
// Found something; we're done!
if (!subMap.empty())
return subMap;
// If the normal conformance is for a generic type, and we didn't hit a
// specialized conformance, collect the substitutions from the generic type.
// FIXME: The AST should do this for us.
const NormalProtocolConformance *normalC =
cast<NormalProtocolConformance>(parent);
if (!normalC->getType()->isSpecialized())
return SubstitutionMap();
auto *DC = normalC->getDeclContext();
return normalC->getType()->getContextSubstitutionMap(M, DC);
}
bool ProtocolConformance::isBehaviorConformance() const {
return getRootNormalConformance()->isBehaviorConformance();
}
AbstractStorageDecl *ProtocolConformance::getBehaviorDecl() const {
return getRootNormalConformance()->getBehaviorDecl();
}
bool NormalProtocolConformance::isRetroactive() const {
auto module = getDeclContext()->getParentModule();
// If the conformance occurs in the same module as the protocol definition,
// this is not a retroactive conformance.
auto protocolModule = getProtocol()->getDeclContext()->getParentModule();
if (module == protocolModule)
return false;
// If the conformance occurs in the same module as the conforming type
// definition, this is not a retroactive conformance.
if (auto nominal = getType()->getAnyNominal()) {
if (module == nominal->getParentModule())
return false;
}
// Everything else is retroactive.
return true;
}
bool NormalProtocolConformance::isSynthesizedNonUnique() const {
return isa<ClangModuleUnit>(getDeclContext()->getModuleScopeContext());
}
Optional<ArrayRef<Requirement>>
ProtocolConformance::getConditionalRequirementsIfAvailable() const {
CONFORMANCE_SUBCLASS_DISPATCH(getConditionalRequirementsIfAvailable, ());
}
ArrayRef<Requirement> ProtocolConformance::getConditionalRequirements() const {
CONFORMANCE_SUBCLASS_DISPATCH(getConditionalRequirements, ());
}
Optional<ArrayRef<Requirement>>
ProtocolConformanceRef::getConditionalRequirementsIfAvailable() const {
if (isConcrete())
return getConcrete()->getConditionalRequirementsIfAvailable();
else
// An abstract conformance is never conditional: any conditionality in the
// concrete types that will eventually pass through this at runtime is
// completely pre-checked and packaged up.
return ArrayRef<Requirement>();
}
ArrayRef<Requirement>
ProtocolConformanceRef::getConditionalRequirements() const {
if (isConcrete())
return getConcrete()->getConditionalRequirements();
else
// An abstract conformance is never conditional, as above.
return {};
}
ProtocolConformanceRef
ProtocolConformanceRef::getInheritedConformanceRef(ProtocolDecl *base) const {
if (isAbstract()) {
assert(getRequirement()->inheritsFrom(base));
return ProtocolConformanceRef(base);
}
auto concrete = getConcrete();
auto proto = concrete->getProtocol();
auto path =
proto->getGenericSignature()->getConformanceAccessPath(
proto->getProtocolSelfType(), base);
ProtocolConformanceRef result = *this;
Type resultType = concrete->getType();
bool first = true;
for (const auto &step : path) {
if (first) {
assert(step.first->isEqual(proto->getProtocolSelfType()));
assert(step.second == proto);
first = false;
continue;
}
result =
result.getAssociatedConformance(resultType, step.first, step.second);
resultType = result.getAssociatedType(resultType, step.first);
}
return result;
}
void NormalProtocolConformance::differenceAndStoreConditionalRequirements()
const {
switch (CRState) {
case ConditionalRequirementsState::Complete:
// already done!
return;
case ConditionalRequirementsState::Computing:
// recursive
return;
case ConditionalRequirementsState::Uncomputed:
// try to compute it!
break;
};
CRState = ConditionalRequirementsState::Computing;
auto success = [this](ArrayRef<Requirement> reqs) {
ConditionalRequirements = reqs;
assert(CRState == ConditionalRequirementsState::Computing);
CRState = ConditionalRequirementsState::Complete;
};
auto failure = [this] {
assert(CRState == ConditionalRequirementsState::Computing);
CRState = ConditionalRequirementsState::Uncomputed;
};
auto &ctxt = getProtocol()->getASTContext();
auto DC = getDeclContext();
// A non-extension conformance won't have conditional requirements.
if (!isa<ExtensionDecl>(DC)) {
success({});
return;
}
auto *ext = cast<ExtensionDecl>(DC);
auto nominal = ext->getExtendedNominal();
auto typeSig = nominal->getGenericSignature();
// A non-generic type won't have conditional requirements.
if (!typeSig) {
success({});
return;
}
auto extensionSig = ext->getGenericSignature();
if (!extensionSig) {
if (auto lazyResolver = ctxt.getLazyResolver()) {
lazyResolver->resolveExtension(ext);
extensionSig = ext->getGenericSignature();
}
}
// The type is generic, but the extension doesn't have a signature yet, so
// we might be in a recursive validation situation.
if (!extensionSig) {
// If the extension is invalid, it won't ever get a signature, so we
// "succeed" with an empty result instead.
if (ext->isInvalid()) {
success({});
return;
}
// Otherwise we'll try again later.
failure();
return;
}
auto canExtensionSig = extensionSig->getCanonicalSignature();
auto canTypeSig = typeSig->getCanonicalSignature();
if (canTypeSig == canExtensionSig) {
success({});
return;
}
// The extension signature should be a superset of the type signature, meaning
// every thing in the type signature either is included too or is implied by
// something else. The most important bit is having the same type
// parameters. (NB. if/when Swift gets parameterized extensions, this needs to
// change.)
assert(canTypeSig.getGenericParams() == canExtensionSig.getGenericParams());
// Find the requirements in the extension that aren't proved by the original
// type, these are the ones that make the conformance conditional.
success(ctxt.AllocateCopy(extensionSig->requirementsNotSatisfiedBy(typeSig)));
}
void NormalProtocolConformance::setSignatureConformances(
ArrayRef<ProtocolConformanceRef> conformances) {
if (conformances.empty()) {
SignatureConformances = { };
return;
}
auto &ctx = getProtocol()->getASTContext();
SignatureConformances = ctx.AllocateCopy(conformances);
#if !NDEBUG
unsigned idx = 0;
for (const auto &req : getProtocol()->getRequirementSignature()) {
if (req.getKind() == RequirementKind::Conformance) {
assert(!conformances[idx].isConcrete() ||
!conformances[idx].getConcrete()->getType()->hasArchetype() &&
"Should have interface types here");
assert(idx < conformances.size());
assert(conformances[idx].getRequirement() ==
req.getSecondType()->castTo<ProtocolType>()->getDecl());
++idx;
}
}
assert(idx == conformances.size() && "Too many conformances");
#endif
}
std::function<void(ProtocolConformanceRef)>
NormalProtocolConformance::populateSignatureConformances() {
assert(SignatureConformances.empty());
class Writer {
NormalProtocolConformance *self;
ArrayRef<Requirement> requirementSignature;
MutableArrayRef<ProtocolConformanceRef> buffer;
mutable bool owning = true;
/// Skip any non-conformance requirements in the requirement signature.
void skipNonConformanceRequirements() {
while (!requirementSignature.empty() &&
requirementSignature.front().getKind()
!= RequirementKind::Conformance)
requirementSignature = requirementSignature.drop_front();
}
public:
Writer(NormalProtocolConformance *self) : self(self) {
requirementSignature = self->getProtocol()->getRequirementSignature();
// Determine the number of conformance requirements we need.
unsigned numConformanceRequirements = 0;
for (const auto &req : requirementSignature) {
if (req.getKind() == RequirementKind::Conformance)
++numConformanceRequirements;
}
// Allocate the buffer of conformance requirements.
auto &ctx = self->getProtocol()->getASTContext();
buffer = ctx.AllocateUninitialized<ProtocolConformanceRef>(
numConformanceRequirements);
// Skip over any non-conformance requirements in the requirement
// signature.
skipNonConformanceRequirements();
};
Writer(Writer &&other)
: self(other.self),
requirementSignature(other.requirementSignature),
buffer(other.buffer)
{
other.owning = false;
}
Writer(const Writer &other)
: self(other.self),
requirementSignature(other.requirementSignature),
buffer(other.buffer) {
other.owning = false;
}
~Writer() {
if (!owning)
return;
while (!requirementSignature.empty())
(*this)(ProtocolConformanceRef::forInvalid());
}
void operator()(ProtocolConformanceRef conformance){
// Make sure we have the right conformance.
assert(!requirementSignature.empty() && "Too many conformances?");
assert(conformance.isInvalid() ||
conformance.getRequirement() ==
requirementSignature.front().getSecondType()
->castTo<ProtocolType>()->getDecl());
assert((!conformance.isConcrete() ||
!conformance.getConcrete()->getType()->hasArchetype()) &&
"signature conformances must use interface types");
// Add this conformance to the known signature conformances.
requirementSignature = requirementSignature.drop_front();
new (&buffer[self->SignatureConformances.size()])
ProtocolConformanceRef(conformance);
self->SignatureConformances =
buffer.slice(0, self->SignatureConformances.size() + 1);
// Skip over any non-conformance requirements.
skipNonConformanceRequirements();
}
};
return Writer(this);
}
void NormalProtocolConformance::resolveLazyInfo() const {
assert(Loader);
auto *loader = Loader;
auto *mutableThis = const_cast<NormalProtocolConformance *>(this);
mutableThis->Loader = nullptr;
loader->finishNormalConformance(mutableThis, LoaderContextData);
}
void NormalProtocolConformance::setLazyLoader(LazyConformanceLoader *loader,
uint64_t contextData) {
assert(!Loader && "already has a loader");
Loader = loader;
LoaderContextData = contextData;
}
namespace {
class PrettyStackTraceRequirement : public llvm::PrettyStackTraceEntry {
const char *Action;
const ProtocolConformance *Conformance;
ValueDecl *Requirement;
public:
PrettyStackTraceRequirement(const char *action,
const ProtocolConformance *conformance,
ValueDecl *requirement)
: Action(action), Conformance(conformance), Requirement(requirement) { }
void print(llvm::raw_ostream &out) const override {
out << "While " << Action << " requirement ";
Requirement->dumpRef(out);
out << " in conformance ";
Conformance->printName(out);
out << "\n";
}
};
} // end anonymous namespace
bool NormalProtocolConformance::hasTypeWitness(AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
if (Loader)
resolveLazyInfo();
auto found = TypeWitnesses.find(assocType);
if (found != TypeWitnesses.end()) {
return !found->getSecond().first.isNull();
}
if (resolver) {
PrettyStackTraceRequirement trace("resolving", this, assocType);
resolver->resolveTypeWitness(this, assocType);
if (TypeWitnesses.find(assocType) != TypeWitnesses.end()) {
return true;
}
}
return false;
}
using TypeWitnessAndDecl = std::pair<Type, TypeDecl *>;
TypeWitnessAndDecl
NormalProtocolConformance::getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
LazyResolver *resolver,
SubstOptions options) const {
if (Loader)
resolveLazyInfo();
// Check whether we already have a type witness.
auto known = TypeWitnesses.find(assocType);
if (known != TypeWitnesses.end())
return known->second;
// If there is a tentative-type-witness function, use it.
if (options.getTentativeTypeWitness) {
if (Type witnessType =
Type(options.getTentativeTypeWitness(this, assocType)))
return { witnessType, nullptr };
}
// If this conformance is in a state where it is inferring type witnesses but
// we didn't find anything, fail.
if (getState() == ProtocolConformanceState::CheckingTypeWitnesses) {
return { Type(), nullptr };
}
// If the conditional requirements aren't known, we can't properly run
// inference.
if (!getConditionalRequirementsIfAvailable()) {
return {Type(), nullptr};
}
// Otherwise, resolve the type witness.
PrettyStackTraceRequirement trace("resolving", this, assocType);
if (!resolver) resolver = assocType->getASTContext().getLazyResolver();
assert(resolver && "Unable to resolve type witness");
// Block recursive resolution of this type witness.
TypeWitnesses[assocType] = { Type(), nullptr };
resolver->resolveTypeWitness(this, assocType);
known = TypeWitnesses.find(assocType);
assert(known != TypeWitnesses.end() && "Didn't resolve witness?");
return known->second;
}
void NormalProtocolConformance::setTypeWitness(AssociatedTypeDecl *assocType,
Type type,
TypeDecl *typeDecl) const {
assert(getProtocol() == cast<ProtocolDecl>(assocType->getDeclContext()) &&
"associated type in wrong protocol");
assert((TypeWitnesses.count(assocType) == 0 ||
TypeWitnesses[assocType].first.isNull()) &&
"Type witness already known");
assert((!isComplete() || isInvalid()) && "Conformance already complete?");
assert(!type->hasArchetype() && "type witnesses must be interface types");
TypeWitnesses[assocType] = std::make_pair(type, typeDecl);
}
Type ProtocolConformance::getAssociatedType(Type assocType,
LazyResolver *resolver) const {
assert(assocType->isTypeParameter() &&
"associated type must be a type parameter");
ProtocolConformanceRef ref(const_cast<ProtocolConformance*>(this));
return ref.getAssociatedType(getType(), assocType, resolver);
}
Type ProtocolConformanceRef::getAssociatedType(Type conformingType,
Type assocType,
LazyResolver *resolver) const {
assert(!isConcrete() || getConcrete()->getType()->isEqual(conformingType));
auto type = assocType->getCanonicalType();
auto proto = getRequirement();
// Fast path for generic parameters.
if (isa<GenericTypeParamType>(type)) {
assert(type->isEqual(proto->getSelfInterfaceType()) &&
"type parameter in protocol was not Self");
return conformingType;
}
// Fast path for dependent member types on 'Self' of our associated types.
auto memberType = cast<DependentMemberType>(type);
if (memberType.getBase()->isEqual(proto->getProtocolSelfType()) &&
memberType->getAssocType()->getProtocol() == proto &&
isConcrete())
return getConcrete()->getTypeWitness(memberType->getAssocType(), resolver);
// General case: consult the substitution map.
auto substMap =
SubstitutionMap::getProtocolSubstitutions(proto, conformingType, *this);
return type.subst(substMap);
}
ProtocolConformanceRef
ProtocolConformanceRef::getAssociatedConformance(Type conformingType,
Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
// If this is a concrete conformance, look up the associated conformance.
if (isConcrete()) {
auto conformance = getConcrete();
assert(conformance->getType()->isEqual(conformingType));
return conformance->getAssociatedConformance(assocType, protocol, resolver);
}
// Otherwise, apply the substitution {self -> conformingType}
// to the abstract conformance requirement laid upon the dependent type
// by the protocol.
auto subMap =
SubstitutionMap::getProtocolSubstitutions(getRequirement(),
conformingType, *this);
auto abstractConf = ProtocolConformanceRef(protocol);
return abstractConf.subst(assocType, subMap);
}
ProtocolConformanceRef
ProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
CONFORMANCE_SUBCLASS_DISPATCH(getAssociatedConformance,
(assocType, protocol, resolver))
}
ProtocolConformanceRef
NormalProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
assert(assocType->isTypeParameter() &&
"associated type must be a type parameter");
assert(!getSignatureConformances().empty() &&
"signature conformances not yet computed");
unsigned conformanceIndex = 0;
for (const auto &reqt : getProtocol()->getRequirementSignature()) {
if (reqt.getKind() == RequirementKind::Conformance) {
// Is this the conformance we're looking for?
if (reqt.getFirstType()->isEqual(assocType) &&
reqt.getSecondType()->castTo<ProtocolType>()->getDecl() == protocol)
return getSignatureConformances()[conformanceIndex];
++conformanceIndex;
}
}
llvm_unreachable(
"requested conformance was not a direct requirement of the protocol");
}
/// Retrieve the value witness corresponding to the given requirement.
Witness NormalProtocolConformance::getWitness(ValueDecl *requirement,
LazyResolver *resolver) const {
assert(!isa<AssociatedTypeDecl>(requirement) && "Request type witness");
assert(requirement->isProtocolRequirement() && "Not a requirement");
if (Loader)
resolveLazyInfo();
auto known = Mapping.find(requirement);
if (known == Mapping.end()) {
if (!resolver) resolver = requirement->getASTContext().getLazyResolver();
assert(resolver && "Unable to resolve witness without resolver");
resolver->resolveWitness(this, requirement);
known = Mapping.find(requirement);
}
if (known != Mapping.end()) {
return known->second;
} else {
assert((!isComplete() || isInvalid()) &&
"Resolver did not resolve requirement");
return Witness();
}
}
ConcreteDeclRef
NormalProtocolConformance::getWitnessDeclRef(ValueDecl *requirement,
LazyResolver *resolver) const {
if (auto witness = getWitness(requirement, resolver))
return witness.getDeclRef();
return ConcreteDeclRef();
}
void NormalProtocolConformance::setWitness(ValueDecl *requirement,
Witness witness) const {
assert(!isa<AssociatedTypeDecl>(requirement) && "Request type witness");
assert(getProtocol() == cast<ProtocolDecl>(requirement->getDeclContext()) &&
"requirement in wrong protocol");
assert(Mapping.count(requirement) == 0 && "Witness already known");
assert((!isComplete() || isInvalid() ||
requirement->getAttrs().hasAttribute<OptionalAttr>() ||
requirement->getAttrs().isUnavailable(
requirement->getASTContext())) &&
"Conformance already complete?");
Mapping[requirement] = witness;
}
SpecializedProtocolConformance::SpecializedProtocolConformance(
Type conformingType,
ProtocolConformance *genericConformance,
SubstitutionMap substitutions)
: ProtocolConformance(ProtocolConformanceKind::Specialized, conformingType),
GenericConformance(genericConformance),
GenericSubstitutions(substitutions)
{
assert(genericConformance->getKind() != ProtocolConformanceKind::Specialized);
}
void SpecializedProtocolConformance::computeConditionalRequirements() const {
// already computed?
if (ConditionalRequirements)
return;
auto parentCondReqs =
GenericConformance->getConditionalRequirementsIfAvailable();
if (!parentCondReqs)
return;
if (!parentCondReqs->empty()) {
// Substitute the conditional requirements so that they're phrased in
// terms of the specialized types, not the conformance-declaring decl's
// types.
auto nominal = GenericConformance->getType()->getAnyNominal();
auto module = nominal->getModuleContext();
auto subMap = getType()->getContextSubstitutionMap(module, nominal);
SmallVector<Requirement, 4> newReqs;
for (auto oldReq : *parentCondReqs) {
if (auto newReq = oldReq.subst(QuerySubstitutionMap{subMap},
LookUpConformanceInModule(module)))
newReqs.push_back(*newReq);
}
auto &ctxt = getProtocol()->getASTContext();
ConditionalRequirements = ctxt.AllocateCopy(newReqs);
} else {
ConditionalRequirements = ArrayRef<Requirement>();
}
}
bool SpecializedProtocolConformance::hasTypeWitness(
AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
return TypeWitnesses.find(assocType) != TypeWitnesses.end() ||
GenericConformance->hasTypeWitness(assocType, resolver);
}
std::pair<Type, TypeDecl *>
SpecializedProtocolConformance::getTypeWitnessAndDecl(
AssociatedTypeDecl *assocType,
LazyResolver *resolver,
SubstOptions options) const {
// If we've already created this type witness, return it.
auto known = TypeWitnesses.find(assocType);
if (known != TypeWitnesses.end()) {
return known->second;
}
// Otherwise, perform substitutions to create this witness now.
// Local function to determine whether we will end up referring to a
// tentative witness that may not be chosen.
auto normal = GenericConformance->getRootNormalConformance();
auto isTentativeWitness = [&] {
if (normal->getState() != ProtocolConformanceState::CheckingTypeWitnesses)
return false;
return !normal->hasTypeWitness(assocType, nullptr);
};
auto genericWitnessAndDecl
= GenericConformance->getTypeWitnessAndDecl(assocType, resolver, options);
auto genericWitness = genericWitnessAndDecl.first;
if (!genericWitness)
return { Type(), nullptr };
auto *typeDecl = genericWitnessAndDecl.second;
// Form the substitution.
auto substitutionMap = getSubstitutionMap();
if (substitutionMap.empty())
return {Type(), nullptr};
// Apply the substitution we computed above
auto specializedType = genericWitness.subst(substitutionMap, options);
if (!specializedType) {
if (isTentativeWitness())
return { Type(), nullptr };
specializedType = ErrorType::get(genericWitness);
}
// If we aren't in a case where we used the tentative type witness
// information, cache the result.
auto specializedWitnessAndDecl = std::make_pair(specializedType, typeDecl);
if (!isTentativeWitness() && !specializedType->hasError())
TypeWitnesses[assocType] = specializedWitnessAndDecl;
return specializedWitnessAndDecl;
}
ProtocolConformanceRef
SpecializedProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
ProtocolConformanceRef conformance =
GenericConformance->getAssociatedConformance(assocType, protocol, resolver);
auto subMap = getSubstitutionMap();
Type origType =
(conformance.isConcrete()
? conformance.getConcrete()->getType()
: GenericConformance->getAssociatedType(assocType, resolver));
return conformance.subst(origType, subMap);
}
ConcreteDeclRef
SpecializedProtocolConformance::getWitnessDeclRef(
ValueDecl *requirement,
LazyResolver *resolver) const {
auto baseWitness = GenericConformance->getWitnessDeclRef(requirement, resolver);
if (!baseWitness || !baseWitness.isSpecialized())
return baseWitness;
auto specializationMap = getSubstitutionMap();
auto witnessDecl = baseWitness.getDecl();
auto witnessMap = baseWitness.getSubstitutions();
auto combinedMap = witnessMap.subst(specializationMap);
// Fast path if the substitutions didn't change.
if (combinedMap == baseWitness.getSubstitutions())
return baseWitness;
return ConcreteDeclRef(witnessDecl, combinedMap);
}
ProtocolConformanceRef
InheritedProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
auto underlying =
InheritedConformance->getAssociatedConformance(assocType, protocol,
resolver);
// If the conformance is for Self, return an inherited conformance.
if (underlying.isConcrete() &&
assocType->isEqual(getProtocol()->getSelfInterfaceType())) {
auto subclassType = getType();
ASTContext &ctx = subclassType->getASTContext();
return ProtocolConformanceRef(
ctx.getInheritedConformance(subclassType,
underlying.getConcrete()));
}
return underlying;
}
ConcreteDeclRef
InheritedProtocolConformance::getWitnessDeclRef(ValueDecl *requirement,
LazyResolver *resolver) const {
// FIXME: substitutions?
return InheritedConformance->getWitnessDeclRef(requirement, resolver);
}
const NormalProtocolConformance *
ProtocolConformance::getRootNormalConformance() const {
const ProtocolConformance *C = this;
while (!isa<NormalProtocolConformance>(C)) {
switch (C->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have broken out of loop");
case ProtocolConformanceKind::Inherited:
C = cast<InheritedProtocolConformance>(C)
->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized:
C = cast<SpecializedProtocolConformance>(C)
->getGenericConformance();
break;
}
}
return cast<NormalProtocolConformance>(C);
}
bool ProtocolConformance::witnessTableAccessorRequiresArguments() const {
return getRootNormalConformance()->getDeclContext()->isGenericContext();
}
bool ProtocolConformance::isVisibleFrom(const DeclContext *dc) const {
// FIXME: Implement me!
return true;
}
ProtocolConformance *
ProtocolConformance::subst(SubstitutionMap subMap) const {
return subst(QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap));
}
ProtocolConformance *
ProtocolConformance::subst(TypeSubstitutionFn subs,
LookupConformanceFn conformances) const {
switch (getKind()) {
case ProtocolConformanceKind::Normal: {
auto origType = getType();
if (!origType->hasTypeParameter() &&
!origType->hasArchetype())
return const_cast<ProtocolConformance *>(this);
auto subMap = SubstitutionMap::get(getGenericSignature(),
subs, conformances);
auto substType = origType.subst(subMap, SubstFlags::UseErrorType);
if (substType->isEqual(origType))
return const_cast<ProtocolConformance *>(this);
return substType->getASTContext()
.getSpecializedConformance(substType,
const_cast<ProtocolConformance *>(this),
subMap);
}
case ProtocolConformanceKind::Inherited: {
// Substitute the base.
auto inheritedConformance
= cast<InheritedProtocolConformance>(this)->getInheritedConformance();
auto origType = getType();
if (!origType->hasTypeParameter() &&
!origType->hasArchetype()) {
return const_cast<ProtocolConformance *>(this);
}
auto origBaseType = inheritedConformance->getType();
if (origBaseType->hasTypeParameter() ||
origBaseType->hasArchetype()) {
// Substitute into the superclass.
inheritedConformance = inheritedConformance->subst(subs, conformances);
}
auto substType = origType.subst(subs, conformances,
SubstFlags::UseErrorType);
return substType->getASTContext()
.getInheritedConformance(substType, inheritedConformance);
}
case ProtocolConformanceKind::Specialized: {
// Substitute the substitutions in the specialized conformance.
auto spec = cast<SpecializedProtocolConformance>(this);
auto genericConformance = spec->getGenericConformance();
auto subMap = spec->getSubstitutionMap();
auto origType = getType();
auto substType = origType.subst(subs, conformances,
SubstFlags::UseErrorType);
return substType->getASTContext()
.getSpecializedConformance(substType, genericConformance,
subMap.subst(subs, conformances));
}
}
llvm_unreachable("bad ProtocolConformanceKind");
}
ProtocolConformance *
ProtocolConformance::getInheritedConformance(ProtocolDecl *protocol) const {
auto result =
getAssociatedConformance(getProtocol()->getSelfInterfaceType(), protocol);
return result.isConcrete() ? result.getConcrete() : nullptr;
}
#pragma mark Protocol conformance lookup
void NominalTypeDecl::prepareConformanceTable() const {
if (ConformanceTable)
return;
auto mutableThis = const_cast<NominalTypeDecl *>(this);
ASTContext &ctx = getASTContext();
ConformanceTable = new (ctx) ConformanceLookupTable(ctx);
++NumConformanceLookupTables;
// If this type declaration was not parsed from source code or introduced
// via the Clang importer, don't add any synthesized conformances.
auto *file = cast<FileUnit>(getModuleScopeContext());
if (file->getKind() != FileUnitKind::Source &&
file->getKind() != FileUnitKind::ClangModule) {
return;
}
SmallPtrSet<ProtocolDecl *, 2> protocols;
auto addSynthesized = [&](KnownProtocolKind kind) {
if (auto *proto = getASTContext().getProtocol(kind)) {
if (protocols.count(proto) == 0) {
ConformanceTable->addSynthesizedConformance(mutableThis, proto);
protocols.insert(proto);
}
}
};
// Add protocols for any synthesized protocol attributes.
for (auto attr : getAttrs().getAttributes<SynthesizedProtocolAttr>()) {
addSynthesized(attr->getProtocolKind());
}
// Add any implicit conformances.
if (auto theEnum = dyn_cast<EnumDecl>(mutableThis)) {
if (theEnum->hasCases() && theEnum->hasOnlyCasesWithoutAssociatedValues()) {
// Simple enumerations conform to Equatable.
addSynthesized(KnownProtocolKind::Equatable);
// Simple enumerations conform to Hashable.
addSynthesized(KnownProtocolKind::Hashable);
}
// Enumerations with a raw type conform to RawRepresentable.
if (theEnum->hasRawType()) {
addSynthesized(KnownProtocolKind::RawRepresentable);
}
}
}
bool NominalTypeDecl::lookupConformance(
ModuleDecl *module, ProtocolDecl *protocol,
SmallVectorImpl<ProtocolConformance *> &conformances) const {
prepareConformanceTable();
return ConformanceTable->lookupConformance(
module,
const_cast<NominalTypeDecl *>(this),
protocol,
conformances);
}
SmallVector<ProtocolDecl *, 2> NominalTypeDecl::getAllProtocols() const {
prepareConformanceTable();
SmallVector<ProtocolDecl *, 2> result;
ConformanceTable->getAllProtocols(const_cast<NominalTypeDecl *>(this),
result);
return result;
}
SmallVector<ProtocolConformance *, 2> NominalTypeDecl::getAllConformances(
bool sorted) const
{
prepareConformanceTable();
SmallVector<ProtocolConformance *, 2> result;
ConformanceTable->getAllConformances(const_cast<NominalTypeDecl *>(this),
sorted,
result);
return result;
}
void NominalTypeDecl::getImplicitProtocols(
SmallVectorImpl<ProtocolDecl *> &protocols) {
prepareConformanceTable();
ConformanceTable->getImplicitProtocols(this, protocols);
}
void NominalTypeDecl::registerProtocolConformance(
ProtocolConformance *conformance) {
prepareConformanceTable();
ConformanceTable->registerProtocolConformance(conformance);
}
ArrayRef<ValueDecl *>
NominalTypeDecl::getSatisfiedProtocolRequirementsForMember(
const ValueDecl *member,
bool sorted) const {
assert(member->getDeclContext()->getSelfNominalTypeDecl() == this);
assert(!isa<ProtocolDecl>(this));
prepareConformanceTable();
return ConformanceTable->getSatisfiedProtocolRequirementsForMember(member,
const_cast<NominalTypeDecl *>(this),
sorted);
}
SmallVector<ProtocolDecl *, 2>
DeclContext::getLocalProtocols(
ConformanceLookupKind lookupKind,
SmallVectorImpl<ConformanceDiagnostic> *diagnostics,
bool sorted) const
{
SmallVector<ProtocolDecl *, 2> result;
// Dig out the nominal type.
NominalTypeDecl *nominal = getSelfNominalTypeDecl();
if (!nominal)
return result;
// Update to record all potential conformances.
nominal->prepareConformanceTable();
nominal->ConformanceTable->lookupConformances(
nominal,
const_cast<DeclContext *>(this),
lookupKind,
&result,
nullptr,
diagnostics);
// Sort if required.
if (sorted) {
llvm::array_pod_sort(result.begin(), result.end(), TypeDecl::compare);
}
return result;
}
SmallVector<ProtocolConformance *, 2>
DeclContext::getLocalConformances(
ConformanceLookupKind lookupKind,
SmallVectorImpl<ConformanceDiagnostic> *diagnostics,
bool sorted) const
{
SmallVector<ProtocolConformance *, 2> result;
// Dig out the nominal type.
NominalTypeDecl *nominal = getSelfNominalTypeDecl();
if (!nominal)
return result;
// Protocols don't have conformances.
if (isa<ProtocolDecl>(nominal))
return { };
// Update to record all potential conformances.
nominal->prepareConformanceTable();
nominal->ConformanceTable->lookupConformances(
nominal,
const_cast<DeclContext *>(this),
lookupKind,
nullptr,
&result,
diagnostics);
// If requested, sort the results.
if (sorted) {
llvm::array_pod_sort(result.begin(), result.end(),
&ConformanceLookupTable::compareProtocolConformances);
}
return result;
}
/// Check of all types used by the conformance are canonical.
bool ProtocolConformance::isCanonical() const {
// Normal conformances are always canonical by construction.
if (getKind() == ProtocolConformanceKind::Normal)
return true;
if (!getType()->isCanonical())
return false;
switch (getKind()) {
case ProtocolConformanceKind::Normal: {
return true;
}
case ProtocolConformanceKind::Inherited: {
// Substitute the base.
auto inheritedConformance
= cast<InheritedProtocolConformance>(this);
return inheritedConformance->getInheritedConformance()->isCanonical();
}
case ProtocolConformanceKind::Specialized: {
// Substitute the substitutions in the specialized conformance.
auto spec = cast<SpecializedProtocolConformance>(this);
auto genericConformance = spec->getGenericConformance();
if (!genericConformance->isCanonical())
return false;
if (!spec->getSubstitutionMap().isCanonical()) return false;
return true;
}
}
llvm_unreachable("bad ProtocolConformanceKind");
}
/// Check of all types used by the conformance are canonical.
ProtocolConformance *ProtocolConformance::getCanonicalConformance() {
if (isCanonical())
return this;
switch (getKind()) {
case ProtocolConformanceKind::Normal: {
// Normal conformances are always canonical by construction.
return this;
}
case ProtocolConformanceKind::Inherited: {
auto &Ctx = getType()->getASTContext();
auto inheritedConformance = cast<InheritedProtocolConformance>(this);
return Ctx.getInheritedConformance(
getType()->getCanonicalType(),
inheritedConformance->getInheritedConformance()
->getCanonicalConformance());
}
case ProtocolConformanceKind::Specialized: {
auto &Ctx = getType()->getASTContext();
// Substitute the substitutions in the specialized conformance.
auto spec = cast<SpecializedProtocolConformance>(this);
auto genericConformance = spec->getGenericConformance();
return Ctx.getSpecializedConformance(
getType()->getCanonicalType(),
genericConformance->getCanonicalConformance(),
spec->getSubstitutionMap().getCanonical());
}
}
llvm_unreachable("bad ProtocolConformanceKind");
}
/// Check of all types used by the conformance are canonical.
bool ProtocolConformanceRef::isCanonical() const {
if (isAbstract() || isInvalid())
return true;
return getConcrete()->isCanonical();
}
ProtocolConformanceRef
ProtocolConformanceRef::getCanonicalConformanceRef() const {
if (isAbstract() || isInvalid())
return *this;
return ProtocolConformanceRef(getConcrete()->getCanonicalConformance());
}
// See swift/Basic/Statistic.h for declaration: this enables tracing
// ProtocolConformances, is defined here to avoid too much layering violation /
// circular linkage dependency.
struct ProtocolConformanceTraceFormatter
: public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const {
if (!Entity)
return;
const ProtocolConformance *C =
static_cast<const ProtocolConformance *>(Entity);
C->printName(OS);
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const {
if (!Entity)
return;
const ProtocolConformance *C =
static_cast<const ProtocolConformance *>(Entity);
if (auto const *NPC = dyn_cast<NormalProtocolConformance>(C)) {
NPC->getLoc().print(OS, *SM);
} else if (auto const *DC = C->getDeclContext()) {
if (auto const *D = DC->getAsDecl())
D->getLoc().print(OS, *SM);
}
}
};
static ProtocolConformanceTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const ProtocolConformance *>() {
return &TF;
}