mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This may be the cause of a crash and burn on the iOS builders: Assertion failed: (Offset <= PieceOffset && "overlapping or duplicate pieces"), function finalize Swift SVN r29027
4906 lines
187 KiB
C++
4906 lines
187 KiB
C++
//===--- GenEnum.cpp - Swift IR Generation For 'enum' Types -------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for algebraic data types (ADTs,
|
|
// or 'enum' types) in Swift. This includes creating the IR type as
|
|
// well as emitting the basic access operations.
|
|
//
|
|
// The current scheme is that all such types with are represented
|
|
// with an initial word indicating the variant, followed by an enum
|
|
// of all the possibilities. This is obviously completely acceptable
|
|
// to everyone and will not benefit from further refinement.
|
|
//
|
|
// As a completely unimportant premature optimization, we do emit
|
|
// types with only a single variant as simple structs wrapping that
|
|
// variant.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "enum-layout"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "GenEnum.h"
|
|
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
|
|
#include "IRGenModule.h"
|
|
#include "LoadableTypeInfo.h"
|
|
#include "NonFixedTypeInfo.h"
|
|
#include "GenMeta.h"
|
|
#include "GenProto.h"
|
|
#include "GenType.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "ScalarTypeInfo.h"
|
|
#include "StructLayout.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
SpareBitVector getBitVectorFromAPInt(const APInt &bits, unsigned startBit = 0) {
|
|
if (startBit == 0) {
|
|
return SpareBitVector::fromAPInt(bits);
|
|
}
|
|
SpareBitVector result;
|
|
result.appendClearBits(startBit);
|
|
result.append(SpareBitVector::fromAPInt(bits));
|
|
return result;
|
|
}
|
|
|
|
void irgen::EnumImplStrategy::initializeFromParams(IRGenFunction &IGF,
|
|
Explosion ¶ms,
|
|
Address dest,
|
|
SILType T) const {
|
|
if (TIK >= Loadable)
|
|
return initialize(IGF, params, dest);
|
|
Address src = TI->getAddressForPointer(params.claimNext());
|
|
TI->initializeWithTake(IGF, dest, src, T);
|
|
}
|
|
|
|
llvm::Constant *EnumImplStrategy::emitCaseNames(IRGenModule &IGM) const {
|
|
// Build the list of case names, payload followed by no-payload.
|
|
llvm::SmallString<64> fieldNames;
|
|
for (auto &payloadCase : getElementsWithPayload()) {
|
|
fieldNames.append(payloadCase.decl->getName().str());
|
|
fieldNames.push_back('\0');
|
|
}
|
|
for (auto &noPayloadCase : getElementsWithNoPayload()) {
|
|
fieldNames.append(noPayloadCase.decl->getName().str());
|
|
fieldNames.push_back('\0');
|
|
}
|
|
// The final null terminator is provided by getAddrOfGlobalString.
|
|
return IGM.getAddrOfGlobalString(fieldNames);
|
|
}
|
|
|
|
llvm::Value *irgen::EnumImplStrategy::
|
|
loadRefcountedPtr(IRGenFunction &IGF, SourceLoc loc, Address addr) const {
|
|
IGF.IGM.error(loc, "Can only load from an address of an optional "
|
|
"reference.");
|
|
llvm::report_fatal_error("loadRefcountedPtr: Invalid SIL in IRGen");
|
|
}
|
|
|
|
namespace {
|
|
/// Implementation strategy for singleton enums, with zero or one cases.
|
|
class SingletonEnumImplStrategy final : public EnumImplStrategy {
|
|
bool needsPayloadSizeInMetadata() const override { return false; }
|
|
|
|
const TypeInfo *getSingleton() const {
|
|
return ElementsWithPayload.empty() ? nullptr : ElementsWithPayload[0].ti;
|
|
}
|
|
|
|
const FixedTypeInfo *getFixedSingleton() const {
|
|
return cast_or_null<FixedTypeInfo>(getSingleton());
|
|
}
|
|
|
|
const LoadableTypeInfo *getLoadableSingleton() const {
|
|
return cast_or_null<LoadableTypeInfo>(getSingleton());
|
|
}
|
|
|
|
Address getSingletonAddress(IRGenFunction &IGF, Address addr) const {
|
|
return IGF.Builder.CreateBitCast(addr,
|
|
getSingleton()->getStorageType()->getPointerTo());
|
|
}
|
|
|
|
SILType getSingletonType(IRGenModule &IGM, SILType T) const {
|
|
assert(!ElementsWithPayload.empty());
|
|
|
|
return T.getEnumElementType(ElementsWithPayload[0].decl,
|
|
*IGM.SILMod);
|
|
}
|
|
|
|
public:
|
|
SingletonEnumImplStrategy(IRGenModule &IGM,
|
|
TypeInfoKind tik, unsigned NumElements,
|
|
std::vector<Element> &&WithPayload,
|
|
std::vector<Element> &&WithRecursivePayload,
|
|
std::vector<Element> &&WithNoPayload)
|
|
: EnumImplStrategy(IGM, tik, NumElements,
|
|
std::move(WithPayload),
|
|
std::move(WithRecursivePayload),
|
|
std::move(WithNoPayload))
|
|
{
|
|
assert(NumElements <= 1);
|
|
assert(ElementsWithPayload.size() <= 1);
|
|
}
|
|
|
|
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) override;
|
|
|
|
virtual llvm::Value *
|
|
emitValueCaseTest(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
EnumElementDecl *Case) const override {
|
|
value.claim(getExplosionSize());
|
|
return IGF.Builder.getInt1(true);
|
|
}
|
|
virtual llvm::Value *
|
|
emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
|
|
Address enumAddr,
|
|
EnumElementDecl *Case) const override {
|
|
return IGF.Builder.getInt1(true);
|
|
}
|
|
|
|
void emitSingletonSwitch(IRGenFunction &IGF,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const {
|
|
// No dispatch necessary. Branch straight to the destination.
|
|
assert(dests.size() <= 1 && "impossible switch table for singleton enum");
|
|
llvm::BasicBlock *dest = dests.size() == 1
|
|
? dests[0].second : defaultDest;
|
|
IGF.Builder.CreateBr(dest);
|
|
}
|
|
|
|
void emitValueSwitch(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
value.claim(getExplosionSize());
|
|
emitSingletonSwitch(IGF, dests, defaultDest);
|
|
}
|
|
|
|
void emitIndirectSwitch(IRGenFunction &IGF,
|
|
SILType T,
|
|
Address addr,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
emitSingletonSwitch(IGF, dests, defaultDest);
|
|
}
|
|
|
|
void emitValueProject(IRGenFunction &IGF,
|
|
Explosion &in,
|
|
EnumElementDecl *theCase,
|
|
Explosion &out) const override {
|
|
// The projected value is the payload.
|
|
if (getLoadableSingleton())
|
|
getLoadableSingleton()->reexplode(IGF, in, out);
|
|
}
|
|
|
|
void emitValueInjection(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Explosion ¶ms,
|
|
Explosion &out) const override {
|
|
// If the element carries no data, neither does the injection.
|
|
// Otherwise, the result is identical.
|
|
if (getLoadableSingleton())
|
|
getLoadableSingleton()->reexplode(IGF, params, out);
|
|
}
|
|
|
|
Address projectDataForStore(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
return getSingletonAddress(IGF, enumAddr);
|
|
}
|
|
|
|
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
return getSingletonAddress(IGF, enumAddr);
|
|
}
|
|
|
|
void storeTag(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr,
|
|
SILType T) const override {
|
|
// No tag, nothing to do.
|
|
}
|
|
|
|
void getSchema(ExplosionSchema &schema) const override {
|
|
if (!getSingleton()) return;
|
|
// If the payload is loadable, forward its explosion schema.
|
|
if (TIK >= Loadable)
|
|
return getSingleton()->getSchema(schema);
|
|
// Otherwise, use an indirect aggregate schema with our storage
|
|
// type.
|
|
schema.add(ExplosionSchema::Element::forAggregate(getStorageType(),
|
|
getSingleton()->getBestKnownAlignment()));
|
|
}
|
|
|
|
unsigned getExplosionSize() const override {
|
|
if (!getLoadableSingleton()) return 0;
|
|
return getLoadableSingleton()->getExplosionSize();
|
|
}
|
|
|
|
void loadAsCopy(IRGenFunction &IGF, Address addr,
|
|
Explosion &e) const override {
|
|
if (!getLoadableSingleton()) return;
|
|
getLoadableSingleton()->loadAsCopy(IGF, getSingletonAddress(IGF, addr),e);
|
|
}
|
|
|
|
void loadForSwitch(IRGenFunction &IGF, Address addr, Explosion &e) const {
|
|
// Switching on a singleton does not require a value.
|
|
return;
|
|
}
|
|
|
|
void loadAsTake(IRGenFunction &IGF, Address addr,
|
|
Explosion &e) const override {
|
|
if (!getLoadableSingleton()) return;
|
|
getLoadableSingleton()->loadAsTake(IGF, getSingletonAddress(IGF, addr),e);
|
|
}
|
|
|
|
void assign(IRGenFunction &IGF, Explosion &e, Address addr) const override {
|
|
if (!getLoadableSingleton()) return;
|
|
getLoadableSingleton()->assign(IGF, e, getSingletonAddress(IGF, addr));
|
|
}
|
|
|
|
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T) const override {
|
|
if (!getSingleton()) return;
|
|
dest = getSingletonAddress(IGF, dest);
|
|
src = getSingletonAddress(IGF, src);
|
|
getSingleton()->assignWithCopy(IGF, dest, src,
|
|
getSingletonType(IGF.IGM, T));
|
|
}
|
|
|
|
void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T) const override {
|
|
if (!getSingleton()) return;
|
|
dest = getSingletonAddress(IGF, dest);
|
|
src = getSingletonAddress(IGF, src);
|
|
getSingleton()->assignWithTake(IGF, dest, src,
|
|
getSingletonType(IGF.IGM, T));
|
|
}
|
|
|
|
void initialize(IRGenFunction &IGF, Explosion &e,
|
|
Address addr) const override {
|
|
if (!getLoadableSingleton()) return;
|
|
getLoadableSingleton()->initialize(IGF, e, getSingletonAddress(IGF, addr));
|
|
}
|
|
|
|
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
if (!getSingleton()) return;
|
|
dest = getSingletonAddress(IGF, dest);
|
|
src = getSingletonAddress(IGF, src);
|
|
getSingleton()->initializeWithCopy(IGF, dest, src,
|
|
getSingletonType(IGF.IGM, T));
|
|
}
|
|
|
|
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
if (!getSingleton()) return;
|
|
dest = getSingletonAddress(IGF, dest);
|
|
src = getSingletonAddress(IGF, src);
|
|
getSingleton()->initializeWithTake(IGF, dest, src,
|
|
getSingletonType(IGF.IGM, T));
|
|
}
|
|
|
|
void reexplode(IRGenFunction &IGF, Explosion &src, Explosion &dest)
|
|
const override {
|
|
if (getLoadableSingleton()) getLoadableSingleton()->reexplode(IGF, src, dest);
|
|
}
|
|
|
|
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest)
|
|
const override {
|
|
if (getLoadableSingleton()) getLoadableSingleton()->copy(IGF, src, dest);
|
|
}
|
|
|
|
void consume(IRGenFunction &IGF, Explosion &src) const override {
|
|
if (getLoadableSingleton()) getLoadableSingleton()->consume(IGF, src);
|
|
}
|
|
|
|
void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
|
|
if (getLoadableSingleton()) getLoadableSingleton()->fixLifetime(IGF, src);
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address addr, SILType T) const override {
|
|
if (getSingleton() && !getSingleton()->isPOD(ResilienceScope::Local))
|
|
getSingleton()->destroy(IGF, getSingletonAddress(IGF, addr),
|
|
getSingletonType(IGF.IGM, T));
|
|
}
|
|
|
|
void packIntoEnumPayload(IRGenFunction &IGF,
|
|
EnumPayload &payload,
|
|
Explosion &in,
|
|
unsigned offset) const override {
|
|
if (getLoadableSingleton())
|
|
return getLoadableSingleton()->packIntoEnumPayload(IGF, payload,
|
|
in, offset);
|
|
}
|
|
|
|
void unpackFromEnumPayload(IRGenFunction &IGF,
|
|
const EnumPayload &payload,
|
|
Explosion &dest,
|
|
unsigned offset) const override {
|
|
if (!getLoadableSingleton()) return;
|
|
getLoadableSingleton()->unpackFromEnumPayload(IGF, payload, dest, offset);
|
|
}
|
|
|
|
void initializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable,
|
|
SILType T) const override {
|
|
// Fixed-size enums don't need dynamic witness table initialization.
|
|
if (TIK >= Fixed) return;
|
|
|
|
assert(!ElementsWithPayload.empty() &&
|
|
"empty singleton enum should not be dynamic!");
|
|
|
|
// Get the value witness table for the element.
|
|
CanType eltTy
|
|
= ElementsWithPayload[0].decl->getArgumentType()->getCanonicalType();
|
|
llvm::Value *eltVWT
|
|
= IGF.emitValueWitnessTableRef(eltTy);
|
|
|
|
Address vwtAddr(vwtable, IGF.IGM.getPointerAlignment());
|
|
Address eltVWTAddr(eltVWT, IGF.IGM.getPointerAlignment());
|
|
|
|
auto copyWitnessFromElt = [&](ValueWitness witness) -> llvm::Value* {
|
|
Address dest = IGF.Builder.CreateConstArrayGEP(vwtAddr,
|
|
unsigned(witness), IGF.IGM.getPointerSize());
|
|
Address src = IGF.Builder.CreateConstArrayGEP(eltVWTAddr,
|
|
unsigned(witness), IGF.IGM.getPointerSize());
|
|
auto val = IGF.Builder.CreateLoad(src);
|
|
IGF.Builder.CreateStore(val, dest);
|
|
return val;
|
|
};
|
|
|
|
copyWitnessFromElt(ValueWitness::Size);
|
|
auto flags = copyWitnessFromElt(ValueWitness::Flags);
|
|
copyWitnessFromElt(ValueWitness::Stride);
|
|
|
|
// If the original type had extra inhabitants, carry over its
|
|
// extra inhabitant flags.
|
|
auto xiBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
auto noXIBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
|
|
auto xiFlag = IGF.Builder.CreatePtrToInt(flags, IGF.IGM.SizeTy);
|
|
auto xiMask
|
|
= IGF.IGM.getSize(Size(ValueWitnessFlags::Enum_HasExtraInhabitants));
|
|
xiFlag = IGF.Builder.CreateAnd(xiFlag, xiMask);
|
|
auto xiBool = IGF.Builder.CreateICmpNE(xiFlag,
|
|
IGF.IGM.getSize(Size(0)));
|
|
IGF.Builder.CreateCondBr(xiBool, xiBB, noXIBB);
|
|
|
|
IGF.Builder.emitBlock(xiBB);
|
|
copyWitnessFromElt(ValueWitness::ExtraInhabitantFlags);
|
|
IGF.Builder.CreateBr(noXIBB);
|
|
|
|
IGF.Builder.emitBlock(noXIBB);
|
|
}
|
|
|
|
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
|
|
// FIXME: Hold off on registering extra inhabitants for dynamic enums
|
|
// until initializeMetadata handles them.
|
|
if (!getSingleton())
|
|
return false;
|
|
return getSingleton()->mayHaveExtraInhabitants(IGM);
|
|
}
|
|
|
|
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
|
|
Address src, SILType T)
|
|
const override {
|
|
if (!getSingleton()) {
|
|
// Any empty value is a valid value.
|
|
return llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1);
|
|
}
|
|
|
|
return getSingleton()->getExtraInhabitantIndex(IGF,
|
|
getSingletonAddress(IGF, src),
|
|
getSingletonType(IGF.IGM, T));
|
|
}
|
|
|
|
void storeExtraInhabitant(IRGenFunction &IGF,
|
|
llvm::Value *index,
|
|
Address dest, SILType T) const override {
|
|
if (!getSingleton()) {
|
|
// Nothing to store for empty singletons.
|
|
return;
|
|
}
|
|
getSingleton()->storeExtraInhabitant(IGF, index,
|
|
getSingletonAddress(IGF, dest),
|
|
getSingletonType(IGF.IGM, T));
|
|
}
|
|
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
assert(TIK >= Fixed);
|
|
if (!getSingleton())
|
|
return 0;
|
|
return getFixedSingleton()->getFixedExtraInhabitantCount(IGM);
|
|
}
|
|
|
|
APInt
|
|
getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index) const override {
|
|
assert(TIK >= Fixed);
|
|
assert(getSingleton() && "empty singletons have no extra inhabitants");
|
|
return getFixedSingleton()
|
|
->getFixedExtraInhabitantValue(IGM, bits, index);
|
|
}
|
|
|
|
APInt
|
|
getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
|
|
assert(TIK >= Fixed);
|
|
assert(getSingleton() && "empty singletons have no extra inhabitants");
|
|
return getFixedSingleton()->getFixedExtraInhabitantMask(IGM);
|
|
}
|
|
|
|
ClusteredBitVector getTagBitsForPayloads(IRGenModule &IGM) const override {
|
|
// No tag bits, there's only one payload.
|
|
ClusteredBitVector result;
|
|
if (getSingleton())
|
|
result.appendClearBits(
|
|
getFixedSingleton()->getFixedSize().getValueInBits());
|
|
return result;
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitPatternForNoPayloadElement(IRGenModule &IGM,
|
|
EnumElementDecl *theCase) const override {
|
|
// There's only a no-payload element if the type is empty.
|
|
return {};
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitMaskForNoPayloadElements(IRGenModule &IGM) const override {
|
|
// All bits are significant.
|
|
return ClusteredBitVector::getConstant(
|
|
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
|
|
true);
|
|
}
|
|
};
|
|
|
|
/// Implementation strategy for no-payload enums, in other words, 'C-like'
|
|
/// enums where none of the cases have data.
|
|
class NoPayloadEnumImplStrategyBase
|
|
: public SingleScalarTypeInfo<NoPayloadEnumImplStrategyBase,
|
|
EnumImplStrategy>
|
|
{
|
|
protected:
|
|
llvm::IntegerType *getDiscriminatorType() const {
|
|
llvm::StructType *Struct = getStorageType();
|
|
return cast<llvm::IntegerType>(Struct->getElementType(0));
|
|
}
|
|
|
|
/// Map the given element to the appropriate value in the
|
|
/// discriminator type.
|
|
llvm::ConstantInt *getDiscriminatorIdxConst(EnumElementDecl *target) const {
|
|
int64_t index = getDiscriminatorIndex(target);
|
|
return llvm::ConstantInt::get(getDiscriminatorType(), index);
|
|
}
|
|
|
|
|
|
public:
|
|
NoPayloadEnumImplStrategyBase(IRGenModule &IGM,
|
|
TypeInfoKind tik, unsigned NumElements,
|
|
std::vector<Element> &&WithPayload,
|
|
std::vector<Element> &&WithRecursivePayload,
|
|
std::vector<Element> &&WithNoPayload)
|
|
: SingleScalarTypeInfo(IGM, tik, NumElements,
|
|
std::move(WithPayload),
|
|
std::move(WithRecursivePayload),
|
|
std::move(WithNoPayload))
|
|
{
|
|
assert(ElementsWithPayload.empty());
|
|
assert(!ElementsWithNoPayload.empty());
|
|
}
|
|
|
|
bool needsPayloadSizeInMetadata() const override { return false; }
|
|
|
|
llvm::Value *emitValueCaseTest(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
EnumElementDecl *Case) const override {
|
|
// True if the discriminator matches the specified element.
|
|
llvm::Value *discriminator = value.claimNext();
|
|
return IGF.Builder.CreateICmpEQ(discriminator,
|
|
getDiscriminatorIdxConst(Case));
|
|
}
|
|
|
|
|
|
llvm::Value *emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
|
|
Address enumAddr,
|
|
EnumElementDecl *Case) const override {
|
|
Explosion value;
|
|
loadAsTake(IGF, enumAddr, value);
|
|
return emitValueCaseTest(IGF, value, Case);
|
|
}
|
|
|
|
void emitValueSwitch(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
llvm::Value *discriminator = value.claimNext();
|
|
|
|
// Create an unreachable block for the default if the original SIL
|
|
// instruction had none.
|
|
bool unreachableDefault = false;
|
|
if (!defaultDest) {
|
|
unreachableDefault = true;
|
|
defaultDest = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
}
|
|
|
|
auto *i = IGF.Builder.CreateSwitch(discriminator, defaultDest,
|
|
dests.size());
|
|
for (auto &dest : dests)
|
|
i->addCase(getDiscriminatorIdxConst(dest.first), dest.second);
|
|
|
|
if (unreachableDefault) {
|
|
IGF.Builder.emitBlock(defaultDest);
|
|
IGF.Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
void emitIndirectSwitch(IRGenFunction &IGF,
|
|
SILType T,
|
|
Address addr,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
Explosion value;
|
|
loadAsTake(IGF, addr, value);
|
|
emitValueSwitch(IGF, value, dests, defaultDest);
|
|
}
|
|
|
|
void emitValueProject(IRGenFunction &IGF,
|
|
Explosion &in,
|
|
EnumElementDecl *elt,
|
|
Explosion &out) const override {
|
|
// All of the cases project an empty explosion.
|
|
in.claim(getExplosionSize());
|
|
}
|
|
|
|
void emitValueInjection(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Explosion ¶ms,
|
|
Explosion &out) const override {
|
|
out.add(getDiscriminatorIdxConst(elt));
|
|
}
|
|
|
|
Address projectDataForStore(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
llvm_unreachable("cannot project data for no-payload cases");
|
|
}
|
|
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
llvm_unreachable("cannot project data for no-payload cases");
|
|
}
|
|
|
|
void storeTag(IRGenFunction &IGF, EnumElementDecl *elt, Address enumAddr,
|
|
SILType T)
|
|
const override {
|
|
llvm::Value *discriminator = getDiscriminatorIdxConst(elt);
|
|
Address discriminatorAddr
|
|
= IGF.Builder.CreateStructGEP(enumAddr, 0, Size(0));
|
|
IGF.Builder.CreateStore(discriminator, discriminatorAddr);
|
|
}
|
|
|
|
void initializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable,
|
|
SILType T) const override {
|
|
// No-payload enums are always fixed-size so never need dynamic value
|
|
// witness table initialization.
|
|
}
|
|
|
|
/// \group Required for SingleScalarTypeInfo
|
|
|
|
llvm::Type *getScalarType() const {
|
|
return getDiscriminatorType();
|
|
}
|
|
|
|
static Address projectScalar(IRGenFunction &IGF, Address addr) {
|
|
return IGF.Builder.CreateStructGEP(addr, 0, Size(0));
|
|
}
|
|
|
|
void emitScalarRetain(IRGenFunction &IGF, llvm::Value *value) const {}
|
|
void emitScalarRelease(IRGenFunction &IGF, llvm::Value *value) const {}
|
|
void emitScalarFixLifetime(IRGenFunction &IGF, llvm::Value *value) const {}
|
|
|
|
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
// No-payload enums are always POD, so we can always initialize by
|
|
// primitive copy.
|
|
llvm::Value *val = IGF.Builder.CreateLoad(src);
|
|
IGF.Builder.CreateStore(val, dest);
|
|
}
|
|
|
|
static constexpr IsPOD_t IsScalarPOD = IsPOD;
|
|
|
|
ClusteredBitVector getTagBitsForPayloads(IRGenModule &IGM) const override {
|
|
// No tag bits; no-payload enums always use fixed representations.
|
|
return ClusteredBitVector::getConstant(
|
|
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
|
|
false);
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitPatternForNoPayloadElement(IRGenModule &IGM,
|
|
EnumElementDecl *theCase) const override {
|
|
auto bits
|
|
= getBitVectorFromAPInt(getDiscriminatorIdxConst(theCase)->getValue());
|
|
bits.extendWithClearBits(cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
|
|
return bits;
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitMaskForNoPayloadElements(IRGenModule &IGM) const override {
|
|
// All bits are significant.
|
|
return ClusteredBitVector::getConstant(
|
|
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
|
|
true);
|
|
}
|
|
|
|
APInt
|
|
getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
|
|
return APInt::getAllOnesValue(cast<FixedTypeInfo>(TI)->getFixedSize()
|
|
.getValueInBits());
|
|
}
|
|
};
|
|
|
|
/// Implementation strategy for native Swift no-payload enums.
|
|
class NoPayloadEnumImplStrategy final
|
|
: public NoPayloadEnumImplStrategyBase
|
|
{
|
|
public:
|
|
NoPayloadEnumImplStrategy(IRGenModule &IGM,
|
|
TypeInfoKind tik, unsigned NumElements,
|
|
std::vector<Element> &&WithPayload,
|
|
std::vector<Element> &&WithRecursivePayload,
|
|
std::vector<Element> &&WithNoPayload)
|
|
: NoPayloadEnumImplStrategyBase(IGM, tik, NumElements,
|
|
std::move(WithPayload),
|
|
std::move(WithRecursivePayload),
|
|
std::move(WithNoPayload))
|
|
{
|
|
assert(ElementsWithPayload.empty());
|
|
assert(!ElementsWithNoPayload.empty());
|
|
}
|
|
|
|
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) override;
|
|
|
|
// TODO: Support this function also for other enum implementation strategies.
|
|
int64_t getDiscriminatorIndex(EnumElementDecl *target) const override {
|
|
// The elements are assigned discriminators in declaration order.
|
|
// FIXME: using a linear search here is fairly ridiculous.
|
|
unsigned index = 0;
|
|
for (auto elt : target->getParentEnum()->getAllElements()) {
|
|
if (elt == target) break;
|
|
index++;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
// TODO: Support this function also for other enum implementation strategies.
|
|
llvm::Value *emitExtractDiscriminator(IRGenFunction &IGF,
|
|
Explosion &value) const override {
|
|
return value.claimNext();
|
|
}
|
|
|
|
/// \group Extra inhabitants for no-payload enums.
|
|
|
|
// No-payload enums have all values above their greatest discriminator
|
|
// value that fit inside their storage size available as extra inhabitants.
|
|
|
|
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
|
|
return getFixedExtraInhabitantCount(IGM) > 0;
|
|
}
|
|
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
unsigned bits = cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
|
|
assert(bits < 32 && "freakishly huge no-payload enum");
|
|
return (1U << bits) - ElementsWithNoPayload.size();
|
|
}
|
|
|
|
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index) const override {
|
|
unsigned value = index + ElementsWithNoPayload.size();
|
|
return APInt(bits, value);
|
|
}
|
|
|
|
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
|
|
Address src, SILType T)
|
|
const override {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
|
|
// Load the value.
|
|
auto payloadTy = llvm::IntegerType::get(C,
|
|
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
|
|
src = IGF.Builder.CreateBitCast(src, payloadTy->getPointerTo());
|
|
llvm::Value *val = IGF.Builder.CreateLoad(src);
|
|
|
|
// Convert to i32.
|
|
val = IGF.Builder.CreateZExtOrTrunc(val, IGF.IGM.Int32Ty);
|
|
|
|
// Subtract the number of cases.
|
|
val = IGF.Builder.CreateSub(val,
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size()));
|
|
|
|
// If signed less than zero, we have a valid value. Otherwise, we have
|
|
// an extra inhabitant.
|
|
auto valid
|
|
= IGF.Builder.CreateICmpSLT(val,
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0));
|
|
val = IGF.Builder.CreateSelect(valid,
|
|
llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1), val);
|
|
|
|
return val;
|
|
}
|
|
|
|
void storeExtraInhabitant(IRGenFunction &IGF,
|
|
llvm::Value *index,
|
|
Address dest, SILType T) const override {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
auto payloadTy = llvm::IntegerType::get(C,
|
|
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
|
|
dest = IGF.Builder.CreateBitCast(dest, payloadTy->getPointerTo());
|
|
|
|
index = IGF.Builder.CreateZExtOrTrunc(index, payloadTy);
|
|
index = IGF.Builder.CreateAdd(index,
|
|
llvm::ConstantInt::get(payloadTy, ElementsWithNoPayload.size()));
|
|
IGF.Builder.CreateStore(index, dest);
|
|
}
|
|
};
|
|
|
|
/// Implementation strategy for C-compatible enums, where none of the cases
|
|
/// have data but they all have fixed integer associated values.
|
|
class CCompatibleEnumImplStrategy final
|
|
: public NoPayloadEnumImplStrategyBase
|
|
{
|
|
protected:
|
|
int64_t getDiscriminatorIndex(EnumElementDecl *target) const override {
|
|
// The elements are assigned discriminators ABI-compatible with their
|
|
// raw values from C.
|
|
assert(target->hasRawValueExpr()
|
|
&& "c-compatible enum elt has no raw value?!");
|
|
auto intExpr = cast<IntegerLiteralExpr>(target->getRawValueExpr());
|
|
auto intType = getDiscriminatorType();
|
|
|
|
APInt intValue = IntegerLiteralExpr::getValue(intExpr->getDigitsText(),
|
|
intType->getBitWidth());
|
|
|
|
if (intExpr->isNegative())
|
|
intValue = -intValue;
|
|
|
|
return intValue.getZExtValue();
|
|
}
|
|
|
|
public:
|
|
CCompatibleEnumImplStrategy(IRGenModule &IGM,
|
|
TypeInfoKind tik, unsigned NumElements,
|
|
std::vector<Element> &&WithPayload,
|
|
std::vector<Element> &&WithRecursivePayload,
|
|
std::vector<Element> &&WithNoPayload)
|
|
: NoPayloadEnumImplStrategyBase(IGM, tik, NumElements,
|
|
std::move(WithPayload),
|
|
std::move(WithRecursivePayload),
|
|
std::move(WithNoPayload))
|
|
{
|
|
assert(ElementsWithPayload.empty());
|
|
assert(!ElementsWithNoPayload.empty());
|
|
}
|
|
|
|
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) override;
|
|
|
|
/// \group Extra inhabitants for C-compatible enums.
|
|
|
|
// C-compatible enums have scattered inhabitants. For now, expose no
|
|
// extra inhabitants.
|
|
|
|
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
|
|
return false;
|
|
}
|
|
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
return 0;
|
|
}
|
|
|
|
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index) const override {
|
|
llvm_unreachable("no extra inhabitants");
|
|
}
|
|
|
|
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
|
|
Address src, SILType T) const override {
|
|
llvm_unreachable("no extra inhabitants");
|
|
}
|
|
|
|
void storeExtraInhabitant(IRGenFunction &IGF,
|
|
llvm::Value *index,
|
|
Address dest, SILType T) const override {
|
|
llvm_unreachable("no extra inhabitants");
|
|
}
|
|
|
|
llvm::Constant *emitCaseNames(IRGenModule &IGM) const override {
|
|
// C enums have arbitrary values and we don't preserve the mapping
|
|
// between the case and raw value at runtime, so don't emit any
|
|
// case names at all so that reflection can give up in this case.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
};
|
|
|
|
/// Common base class for enums with one or more cases with data.
|
|
class PayloadEnumImplStrategyBase : public EnumImplStrategy {
|
|
protected:
|
|
EnumPayloadSchema PayloadSchema;
|
|
unsigned PayloadElementCount;
|
|
llvm::IntegerType *extraTagTy = nullptr;
|
|
|
|
// The number of payload bits.
|
|
unsigned PayloadBitCount = 0;
|
|
// The number of extra tag bits outside of the payload required to
|
|
// discriminate enum cases.
|
|
unsigned ExtraTagBitCount = ~0u;
|
|
// The number of possible values for the extra tag bits that are used.
|
|
// Log2(NumExtraTagValues - 1) + 1 == ExtraTagBitCount
|
|
unsigned NumExtraTagValues = ~0u;
|
|
|
|
void setTaggedEnumBody(IRGenModule &IGM,
|
|
llvm::StructType *bodyStruct,
|
|
unsigned payloadBits, unsigned extraTagBits) {
|
|
// LLVM's ABI rules for I.O.U.S. (Integer Of Unusual Size) types is to
|
|
// pad them out as if aligned to the largest native integer type, even
|
|
// inside "packed" structs, so to accurately lay things out, we use
|
|
// i8 arrays for the payload and extra tag bits.
|
|
auto payloadArrayTy = llvm::ArrayType::get(IGM.Int8Ty,
|
|
(payloadBits+7U)/8U);
|
|
|
|
SmallVector<llvm::Type*, 2> body;
|
|
|
|
// Handle the case when the payload has no storage.
|
|
// This may come up when a generic type with payload is instantiated on an
|
|
// empty type.
|
|
if (payloadBits > 0) {
|
|
body.push_back(payloadArrayTy);
|
|
}
|
|
|
|
if (extraTagBits > 0) {
|
|
auto extraTagArrayTy = llvm::ArrayType::get(IGM.Int8Ty,
|
|
(extraTagBits+7U)/8U);
|
|
body.push_back(extraTagArrayTy);
|
|
extraTagTy = llvm::IntegerType::get(IGM.getLLVMContext(),
|
|
extraTagBits);
|
|
} else {
|
|
extraTagTy = nullptr;
|
|
}
|
|
bodyStruct->setBody(body, /*isPacked*/true);
|
|
}
|
|
|
|
public:
|
|
PayloadEnumImplStrategyBase(IRGenModule &IGM,
|
|
TypeInfoKind tik,
|
|
unsigned NumElements,
|
|
std::vector<Element> &&WithPayload,
|
|
std::vector<Element> &&WithRecursivePayload,
|
|
std::vector<Element> &&WithNoPayload,
|
|
EnumPayloadSchema schema)
|
|
: EnumImplStrategy(IGM, tik, NumElements,
|
|
std::move(WithPayload),
|
|
std::move(WithRecursivePayload),
|
|
std::move(WithNoPayload)),
|
|
PayloadSchema(schema),
|
|
PayloadElementCount(0)
|
|
{
|
|
assert(ElementsWithPayload.size() >= 1);
|
|
if (PayloadSchema) {
|
|
PayloadSchema.forEachType(IGM, [&](llvm::Type *t){
|
|
PayloadElementCount++;
|
|
PayloadBitCount += IGM.DataLayout.getTypeSizeInBits(t);
|
|
});
|
|
} else {
|
|
// The bit count is dynamic.
|
|
PayloadBitCount = ~0u;
|
|
}
|
|
}
|
|
|
|
~PayloadEnumImplStrategyBase() {
|
|
if (auto schema = PayloadSchema.getSchema())
|
|
delete schema;
|
|
}
|
|
|
|
void getSchema(ExplosionSchema &schema) const override {
|
|
if (TIK < Loadable) {
|
|
schema.add(ExplosionSchema::Element::forAggregate(getStorageType(),
|
|
TI->getBestKnownAlignment()));
|
|
return;
|
|
}
|
|
|
|
PayloadSchema.forEachType(IGM, [&](llvm::Type *payloadTy) {
|
|
schema.add(ExplosionSchema::Element::forScalar(payloadTy));
|
|
});
|
|
|
|
if (ExtraTagBitCount > 0)
|
|
schema.add(ExplosionSchema::Element::forScalar(extraTagTy));
|
|
}
|
|
|
|
unsigned getExplosionSize() const override {
|
|
return unsigned(ExtraTagBitCount > 0) + PayloadElementCount;
|
|
}
|
|
|
|
Address projectPayload(IRGenFunction &IGF, Address addr) const {
|
|
// The payload is currently always at the address point.
|
|
return addr;
|
|
}
|
|
|
|
Address projectExtraTagBits(IRGenFunction &IGF, Address addr) const {
|
|
assert(ExtraTagBitCount > 0 && "does not have extra tag bits");
|
|
|
|
if (PayloadElementCount == 0) {
|
|
return IGF.Builder.CreateBitCast(addr, extraTagTy->getPointerTo());
|
|
}
|
|
|
|
addr = IGF.Builder.CreateStructGEP(addr, 1, Size(PayloadBitCount/8U));
|
|
return IGF.Builder.CreateBitCast(addr, extraTagTy->getPointerTo());
|
|
}
|
|
|
|
void loadForSwitch(IRGenFunction &IGF, Address addr, Explosion &e)
|
|
const {
|
|
assert(TIK >= Fixed);
|
|
auto payload = EnumPayload::load(IGF, projectPayload(IGF, addr),
|
|
PayloadSchema);
|
|
payload.explode(IGF.IGM, e);
|
|
if (ExtraTagBitCount > 0)
|
|
e.add(IGF.Builder.CreateLoad(projectExtraTagBits(IGF, addr)));
|
|
}
|
|
|
|
void loadAsTake(IRGenFunction &IGF, Address addr, Explosion &e)
|
|
const override {
|
|
assert(TIK >= Loadable);
|
|
loadForSwitch(IGF, addr, e);
|
|
}
|
|
|
|
void loadAsCopy(IRGenFunction &IGF, Address addr, Explosion &e)
|
|
const override {
|
|
assert(TIK >= Loadable);
|
|
Explosion tmp;
|
|
loadAsTake(IGF, addr, tmp);
|
|
copy(IGF, tmp, e);
|
|
}
|
|
|
|
void assign(IRGenFunction &IGF, Explosion &e, Address addr) const override {
|
|
assert(TIK >= Loadable);
|
|
Explosion old;
|
|
if (!isPOD(ResilienceScope::Local))
|
|
loadAsTake(IGF, addr, old);
|
|
initialize(IGF, e, addr);
|
|
if (!isPOD(ResilienceScope::Local))
|
|
consume(IGF, old);
|
|
}
|
|
|
|
void initialize(IRGenFunction &IGF, Explosion &e, Address addr)
|
|
const override {
|
|
assert(TIK >= Loadable);
|
|
auto payload = EnumPayload::fromExplosion(IGF.IGM, e, PayloadSchema);
|
|
payload.store(IGF, projectPayload(IGF, addr));
|
|
if (ExtraTagBitCount > 0)
|
|
IGF.Builder.CreateStore(e.claimNext(), projectExtraTagBits(IGF, addr));
|
|
}
|
|
|
|
void reexplode(IRGenFunction &IGF, Explosion &src, Explosion &dest)
|
|
const override {
|
|
assert(TIK >= Loadable);
|
|
dest.add(src.claim(getExplosionSize()));
|
|
}
|
|
|
|
protected:
|
|
/// Do a primitive copy of the enum from one address to another.
|
|
void emitPrimitiveCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T) const {
|
|
// If the layout is fixed, load and store the fixed-size payload and tag.
|
|
if (TIK >= Fixed) {
|
|
EnumPayload payload;
|
|
llvm::Value *extraTag;
|
|
std::tie(payload, extraTag)
|
|
= emitPrimitiveLoadPayloadAndExtraTag(IGF, src);
|
|
emitPrimitiveStorePayloadAndExtraTag(IGF, dest, payload, extraTag);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, do a memcpy of the dynamic size of the type.
|
|
IGF.Builder.CreateMemCpy(dest.getAddress(), src.getAddress(),
|
|
TI->getSize(IGF, T),
|
|
std::min(dest.getAlignment().getValue(),
|
|
src.getAlignment().getValue()));
|
|
}
|
|
|
|
void emitPrimitiveStorePayloadAndExtraTag(IRGenFunction &IGF, Address dest,
|
|
const EnumPayload &payload,
|
|
llvm::Value *extraTag) const {
|
|
payload.store(IGF, projectPayload(IGF, dest));
|
|
if (ExtraTagBitCount > 0)
|
|
IGF.Builder.CreateStore(extraTag, projectExtraTagBits(IGF, dest));
|
|
}
|
|
|
|
std::pair<EnumPayload, llvm::Value*>
|
|
getPayloadAndExtraTagFromExplosion(IRGenFunction &IGF, Explosion &src)
|
|
const {
|
|
auto payload = EnumPayload::fromExplosion(IGF.IGM, src, PayloadSchema);
|
|
llvm::Value *extraTag = ExtraTagBitCount > 0 ? src.claimNext() : nullptr;
|
|
return {payload, extraTag};
|
|
}
|
|
|
|
std::pair<EnumPayload, llvm::Value*>
|
|
emitPrimitiveLoadPayloadAndExtraTag(IRGenFunction &IGF, Address addr) const{
|
|
llvm::Value *extraTag = nullptr;
|
|
auto payload = EnumPayload::load(IGF, projectPayload(IGF, addr),
|
|
PayloadSchema);
|
|
if (ExtraTagBitCount > 0)
|
|
extraTag = IGF.Builder.CreateLoad(projectExtraTagBits(IGF, addr));
|
|
return {std::move(payload), extraTag};
|
|
}
|
|
|
|
void packIntoEnumPayload(IRGenFunction &IGF,
|
|
EnumPayload &outerPayload,
|
|
Explosion &src,
|
|
unsigned offset) const override {
|
|
// Pack payload, if any.
|
|
auto payload = EnumPayload::fromExplosion(IGF.IGM, src, PayloadSchema);
|
|
payload.packIntoEnumPayload(IGF, outerPayload, offset);
|
|
|
|
// Pack tag bits, if any.
|
|
if (ExtraTagBitCount > 0) {
|
|
unsigned extraTagOffset = PayloadBitCount + offset;
|
|
|
|
outerPayload.insertValue(IGF, src.claimNext(), extraTagOffset);
|
|
}
|
|
}
|
|
|
|
void unpackFromEnumPayload(IRGenFunction &IGF,
|
|
const EnumPayload &outerPayload,
|
|
Explosion &dest,
|
|
unsigned offset) const override {
|
|
// Unpack our inner payload, if any.
|
|
auto payload
|
|
= EnumPayload::unpackFromEnumPayload(IGF, outerPayload, offset,
|
|
PayloadSchema);
|
|
|
|
payload.explode(IGF.IGM, dest);
|
|
|
|
// Unpack our extra tag bits, if any.
|
|
if (ExtraTagBitCount > 0) {
|
|
unsigned extraTagOffset = PayloadBitCount + offset;
|
|
|
|
dest.add(outerPayload.extractValue(IGF, extraTagTy, extraTagOffset));
|
|
}
|
|
}
|
|
};
|
|
|
|
class SinglePayloadEnumImplStrategy final
|
|
: public PayloadEnumImplStrategyBase
|
|
{
|
|
// The payload size is readily available from the payload metadata; no
|
|
// need to cache it in the enum metadata.
|
|
bool needsPayloadSizeInMetadata() const override {
|
|
return false;
|
|
}
|
|
|
|
EnumElementDecl *getPayloadElement() const {
|
|
return ElementsWithPayload[0].decl;
|
|
}
|
|
|
|
SILType getPayloadType(IRGenModule &IGM, SILType T) const {
|
|
return T.getEnumElementType(ElementsWithPayload[0].decl,
|
|
*IGM.SILMod);
|
|
}
|
|
|
|
const TypeInfo &getPayloadTypeInfo() const {
|
|
return *ElementsWithPayload[0].ti;
|
|
}
|
|
const FixedTypeInfo &getFixedPayloadTypeInfo() const {
|
|
return cast<FixedTypeInfo>(*ElementsWithPayload[0].ti);
|
|
}
|
|
const LoadableTypeInfo &getLoadablePayloadTypeInfo() const {
|
|
return cast<LoadableTypeInfo>(*ElementsWithPayload[0].ti);
|
|
}
|
|
|
|
llvm::Value *emitPayloadMetadataForLayout(IRGenFunction &IGF,
|
|
SILType T) const {
|
|
return IGF.emitTypeMetadataRefForLayout(getPayloadType(IGF.IGM, T));
|
|
}
|
|
|
|
/// More efficient value semantics implementations for certain enum layouts.
|
|
enum CopyDestroyStrategy {
|
|
/// No special behavior.
|
|
Normal,
|
|
/// The payload is POD, so copying is bitwise, and destruction is a noop.
|
|
POD,
|
|
/// The payload is a single Swift reference-counted value, and we have
|
|
/// a single no-payload case which uses the null extra inhabitant, so
|
|
/// copy and destroy can pass through to swift_retain/swift_release.
|
|
NullableSwiftRefcounted,
|
|
/// The payload is a single unknown-reference-counted value, and we have
|
|
/// a single no-payload case which uses the null extra inhabitant, so
|
|
/// copy and destroy can pass through to
|
|
/// swift_unknownRetain/swift_unknownRelease.
|
|
NullableUnknownRefcounted,
|
|
};
|
|
|
|
CopyDestroyStrategy CopyDestroyKind;
|
|
|
|
unsigned NumExtraInhabitantTagValues = ~0U;
|
|
|
|
static EnumPayloadSchema getPreferredPayloadSchema(Element payloadElement) {
|
|
// TODO: If the payload type info provides a preferred explosion schema,
|
|
// use it. For now, just use a generic word-chunked schema.
|
|
if (auto fixedTI = dyn_cast<FixedTypeInfo>(payloadElement.ti))
|
|
return EnumPayloadSchema(fixedTI->getFixedSize().getValueInBits());
|
|
return EnumPayloadSchema();
|
|
}
|
|
|
|
public:
|
|
SinglePayloadEnumImplStrategy(IRGenModule &IGM,
|
|
TypeInfoKind tik, unsigned NumElements,
|
|
std::vector<Element> &&WithPayload,
|
|
std::vector<Element> &&WithRecursivePayload,
|
|
std::vector<Element> &&WithNoPayload)
|
|
: PayloadEnumImplStrategyBase(IGM, tik, NumElements,
|
|
std::move(WithPayload),
|
|
std::move(WithRecursivePayload),
|
|
std::move(WithNoPayload),
|
|
getPreferredPayloadSchema(WithPayload.front())),
|
|
CopyDestroyKind(Normal)
|
|
{
|
|
assert(ElementsWithPayload.size() == 1);
|
|
|
|
// If the payload is POD, then we can use POD value semantics.
|
|
auto &payloadTI = *ElementsWithPayload[0].ti;
|
|
if (payloadTI.isPOD(ResilienceScope::Component)) {
|
|
CopyDestroyKind = POD;
|
|
// If the payload is a single refcounted pointer and we have a single
|
|
// empty case, then the layout will be a nullable pointer, and we can
|
|
// pass enum values directly into swift_retain/swift_release as-is.
|
|
} else if (tik >= TypeInfoKind::Loadable
|
|
&& payloadTI.isSingleUnknownRetainablePointer(
|
|
ResilienceScope::Component)
|
|
&& ElementsWithNoPayload.size() == 1
|
|
// FIXME: All single-retainable-pointer types should eventually have
|
|
// extra inhabitants.
|
|
&& cast<FixedTypeInfo>(payloadTI)
|
|
.getFixedExtraInhabitantCount(IGM) > 0) {
|
|
CopyDestroyKind = payloadTI.isSingleSwiftRetainablePointer(
|
|
ResilienceScope::Component)
|
|
? NullableSwiftRefcounted
|
|
: NullableUnknownRefcounted;
|
|
}
|
|
}
|
|
|
|
/// Return the number of tag values represented with extra
|
|
/// inhabitants in the payload.
|
|
unsigned getNumExtraInhabitantTagValues() const {
|
|
assert(NumExtraInhabitantTagValues != ~0U);
|
|
return NumExtraInhabitantTagValues;
|
|
}
|
|
|
|
/// The payload for a single-payload enum is always placed in front and
|
|
/// will never have interleaved tag bits, so we can just bitcast the enum
|
|
/// address to the payload type for either injection or projection of the
|
|
/// enum.
|
|
Address projectPayloadData(IRGenFunction &IGF, Address addr) const {
|
|
return IGF.Builder.CreateBitCast(addr,
|
|
getPayloadTypeInfo().getStorageType()->getPointerTo());
|
|
}
|
|
Address projectDataForStore(IRGenFunction &IGF, EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
assert(elt == getPayloadElement() && "cannot project no-data case");
|
|
return projectPayloadData(IGF, enumAddr);
|
|
}
|
|
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
assert(elt == getPayloadElement() && "cannot project no-data case");
|
|
return projectPayloadData(IGF, enumAddr);
|
|
}
|
|
|
|
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) override;
|
|
private:
|
|
TypeInfo *completeFixedLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy);
|
|
TypeInfo *completeDynamicLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy);
|
|
|
|
public:
|
|
virtual llvm::Value *
|
|
emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
|
|
Address enumAddr,
|
|
EnumElementDecl *Case) const override {
|
|
if (TIK >= Fixed) {
|
|
// Load the fixed-size representation and switch directly.
|
|
Explosion value;
|
|
loadForSwitch(IGF, enumAddr, value);
|
|
return emitValueCaseTest(IGF, value, Case);
|
|
}
|
|
|
|
// Just fall back to emitting a switch.
|
|
// FIXME: This could likely be implemented directly.
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
auto curBlock = IGF.Builder.GetInsertBlock();
|
|
auto caseBlock = llvm::BasicBlock::Create(C);
|
|
auto contBlock = llvm::BasicBlock::Create(C);
|
|
emitIndirectSwitch(IGF, T, enumAddr, {{Case, caseBlock}}, contBlock);
|
|
|
|
// Emit the case block.
|
|
IGF.Builder.emitBlock(caseBlock);
|
|
IGF.Builder.CreateBr(contBlock);
|
|
|
|
// Emit the continuation block and generate a PHI to produce the value.
|
|
IGF.Builder.emitBlock(contBlock);
|
|
auto Phi = IGF.Builder.CreatePHI(IGF.IGM.Int1Ty, 2);
|
|
Phi->addIncoming(IGF.Builder.getInt1(true), caseBlock);
|
|
Phi->addIncoming(IGF.Builder.getInt1(false), curBlock);
|
|
return Phi;
|
|
}
|
|
|
|
virtual llvm::Value *
|
|
emitValueCaseTest(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
EnumElementDecl *Case) const override {
|
|
// If we're testing for the payload element, we cannot directly check to
|
|
// see whether it is present (in full generality) without doing a switch.
|
|
// Try some easy cases, then bail back to the general case.
|
|
if (Case == getPayloadElement()) {
|
|
// If the Enum only contains two cases, test for the non-payload case
|
|
// and invert the result.
|
|
assert(ElementsWithPayload.size() == 1 && "Should have one payload");
|
|
if (ElementsWithNoPayload.size() == 1 &&
|
|
ElementsWithRecursivePayload.empty()) {
|
|
auto *InvertedResult = emitValueCaseTest(IGF, value,
|
|
ElementsWithNoPayload[0].decl);
|
|
return IGF.Builder.CreateNot(InvertedResult);
|
|
}
|
|
|
|
// Otherwise, just fall back to emitting a switch to decide. Maybe LLVM
|
|
// will be able to simplify it further.
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
auto caseBlock = llvm::BasicBlock::Create(C);
|
|
auto contBlock = llvm::BasicBlock::Create(C);
|
|
emitValueSwitch(IGF, value, {{Case, caseBlock}}, contBlock);
|
|
|
|
// Emit the case block.
|
|
IGF.Builder.emitBlock(caseBlock);
|
|
IGF.Builder.CreateBr(contBlock);
|
|
|
|
// Emit the continuation block and generate a PHI to produce the value.
|
|
IGF.Builder.emitBlock(contBlock);
|
|
auto Phi = IGF.Builder.CreatePHI(IGF.IGM.Int1Ty, 2);
|
|
Phi->addIncoming(IGF.Builder.getInt1(true), caseBlock);
|
|
for (auto I = llvm::pred_begin(contBlock),
|
|
E = llvm::pred_end(contBlock); I != E; ++I)
|
|
if (*I != caseBlock)
|
|
Phi->addIncoming(IGF.Builder.getInt1(false), *I);
|
|
return Phi;
|
|
}
|
|
|
|
assert(Case != getPayloadElement());
|
|
|
|
// Destructure the value into its payload + tag bit components, each is
|
|
// optional.
|
|
auto payload = EnumPayload::fromExplosion(IGF.IGM, value, PayloadSchema);
|
|
|
|
// If there are extra tag bits, test them first.
|
|
llvm::Value *tagBits = nullptr;
|
|
if (ExtraTagBitCount > 0)
|
|
tagBits = value.claimNext();
|
|
|
|
|
|
// Non-payload cases use extra inhabitants, if any, or are discriminated
|
|
// by setting the tag bits.
|
|
APInt payloadTag, extraTag;
|
|
std::tie(payloadTag, extraTag) = getNoPayloadCaseValue(IGF.IGM, Case);
|
|
llvm::Value *payloadResult = payload.emitCompare(IGF,
|
|
getFixedPayloadTypeInfo().getFixedExtraInhabitantMask(IGF.IGM),
|
|
payloadTag);
|
|
|
|
// If any tag bits are present, they must match.
|
|
llvm::Value *tagResult = nullptr;
|
|
if (tagBits) {
|
|
if (ExtraTagBitCount == 1) {
|
|
if (extraTag == 1)
|
|
tagResult = tagBits;
|
|
else
|
|
tagResult = IGF.Builder.CreateNot(tagBits);
|
|
} else {
|
|
tagResult = IGF.Builder.CreateICmpEQ(tagBits,
|
|
llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), extraTag));
|
|
}
|
|
}
|
|
|
|
if (tagResult && payloadResult)
|
|
return IGF.Builder.CreateAnd(tagResult, payloadResult);
|
|
if (tagResult)
|
|
return tagResult;
|
|
assert(payloadResult && "No tag or payload?");
|
|
return payloadResult;
|
|
}
|
|
|
|
|
|
void emitValueSwitch(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
|
|
// Create a map of the destination blocks for quicker lookup.
|
|
llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
|
|
dests.end());
|
|
// Create an unreachable branch for unreachable switch defaults.
|
|
auto *unreachableBB = llvm::BasicBlock::Create(C);
|
|
|
|
// If there was no default branch in SIL, use the unreachable branch as
|
|
// the default.
|
|
if (!defaultDest)
|
|
defaultDest = unreachableBB;
|
|
|
|
auto blockForCase = [&](EnumElementDecl *theCase) -> llvm::BasicBlock* {
|
|
auto found = destMap.find(theCase);
|
|
if (found == destMap.end())
|
|
return defaultDest;
|
|
else
|
|
return found->second;
|
|
};
|
|
|
|
auto payload = EnumPayload::fromExplosion(IGF.IGM, value, PayloadSchema);
|
|
llvm::BasicBlock *payloadDest = blockForCase(getPayloadElement());
|
|
unsigned extraInhabitantCount = getNumExtraInhabitantTagValues();
|
|
|
|
// If there are extra tag bits, switch over them first.
|
|
SmallVector<llvm::BasicBlock*, 2> tagBitBlocks;
|
|
if (ExtraTagBitCount > 0) {
|
|
llvm::Value *tagBits = value.claimNext();
|
|
|
|
auto *swi = IGF.Builder.CreateSwitch(tagBits, unreachableBB,
|
|
NumExtraTagValues);
|
|
|
|
// If we have extra inhabitants, we need to check for them in the
|
|
// zero-tag case. Otherwise, we switch directly to the payload case.
|
|
if (extraInhabitantCount > 0) {
|
|
auto bb = llvm::BasicBlock::Create(C);
|
|
tagBitBlocks.push_back(bb);
|
|
swi->addCase(llvm::ConstantInt::get(C,APInt(ExtraTagBitCount,0)), bb);
|
|
} else {
|
|
tagBitBlocks.push_back(payloadDest);
|
|
swi->addCase(llvm::ConstantInt::get(C,APInt(ExtraTagBitCount,0)),
|
|
payloadDest);
|
|
}
|
|
|
|
for (unsigned i = 1; i < NumExtraTagValues; ++i) {
|
|
auto bb = llvm::BasicBlock::Create(C);
|
|
tagBitBlocks.push_back(bb);
|
|
swi->addCase(llvm::ConstantInt::get(C,APInt(ExtraTagBitCount,i)), bb);
|
|
}
|
|
|
|
// Continue by emitting the extra inhabitant dispatch, if any.
|
|
if (extraInhabitantCount > 0)
|
|
IGF.Builder.emitBlock(tagBitBlocks[0]);
|
|
}
|
|
|
|
auto elements = getPayloadElement()->getParentEnum()->getAllElements();
|
|
auto elti = elements.begin(), eltEnd = elements.end();
|
|
if (*elti == getPayloadElement())
|
|
++elti;
|
|
|
|
// Advance the enum element iterator, skipping the payload case.
|
|
auto nextCase = [&]() -> EnumElementDecl* {
|
|
assert(elti != eltEnd);
|
|
auto result = *elti;
|
|
++elti;
|
|
if (elti != eltEnd && *elti == getPayloadElement())
|
|
++elti;
|
|
return result;
|
|
};
|
|
|
|
// If there are no extra tag bits, or they're set to zero, then we either
|
|
// have a payload, or an empty case represented using an extra inhabitant.
|
|
// Check the extra inhabitant cases if we have any.
|
|
auto &fpTypeInfo = getFixedPayloadTypeInfo();
|
|
unsigned payloadBits = fpTypeInfo.getFixedSize().getValueInBits();
|
|
if (extraInhabitantCount > 0) {
|
|
// Switch over the extra inhabitant patterns we used.
|
|
APInt mask = fpTypeInfo.getFixedExtraInhabitantMask(IGF.IGM);
|
|
|
|
SmallVector<std::pair<APInt, llvm::BasicBlock *>, 4> cases;
|
|
for (auto i = 0U; i < extraInhabitantCount && elti != eltEnd; ++i) {
|
|
cases.push_back({
|
|
fpTypeInfo.getFixedExtraInhabitantValue(IGF.IGM, payloadBits, i),
|
|
blockForCase(nextCase())
|
|
});
|
|
}
|
|
|
|
payload.emitSwitch(IGF, mask, cases, payloadDest);
|
|
}
|
|
|
|
// We should have handled the payload case either in extra inhabitant
|
|
// or in extra tag dispatch by now.
|
|
assert(IGF.Builder.hasPostTerminatorIP() &&
|
|
"did not handle payload case");
|
|
|
|
// If there's an empty payload, each tag value corresponds to a single
|
|
// empty case.
|
|
// TODO: Skip the waypoint blocks here.
|
|
if (payloadBits == 0) {
|
|
for (unsigned i = 1, e = tagBitBlocks.size(); i < e; ++i) {
|
|
assert(elti != eltEnd &&
|
|
"ran out of cases before running out of extra tags?");
|
|
IGF.Builder.emitBlock(tagBitBlocks[i]);
|
|
IGF.Builder.CreateBr(blockForCase(nextCase()));
|
|
}
|
|
} else {
|
|
// Handle the cases covered by each tag bit value.
|
|
unsigned casesPerTag = payloadBits >= 32 ? UINT_MAX : 1U << payloadBits;
|
|
for (unsigned i = 1, e = tagBitBlocks.size(); i < e; ++i) {
|
|
assert(elti != eltEnd &&
|
|
"ran out of cases before running out of extra tags?");
|
|
IGF.Builder.emitBlock(tagBitBlocks[i]);
|
|
|
|
SmallVector<std::pair<APInt, llvm::BasicBlock *>, 4> cases;
|
|
for (unsigned tag = 0; tag < casesPerTag && elti != eltEnd; ++tag) {
|
|
cases.push_back({APInt(payloadBits, tag),
|
|
blockForCase(nextCase())});
|
|
}
|
|
|
|
// FIXME: Provide a mask for
|
|
payload.emitSwitch(IGF, APInt::getAllOnesValue(payloadBits), cases,
|
|
unreachableBB);
|
|
}
|
|
}
|
|
|
|
// Delete the unreachable default block if we didn't use it, or emit it
|
|
// if we did.
|
|
if (unreachableBB->use_empty()) {
|
|
delete unreachableBB;
|
|
} else {
|
|
IGF.Builder.emitBlock(unreachableBB);
|
|
IGF.Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
void emitDynamicSwitch(IRGenFunction &IGF,
|
|
SILType T,
|
|
Address addr,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const {
|
|
auto payloadMetadata = emitPayloadMetadataForLayout(IGF, T);
|
|
auto numEmptyCases = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
|
|
ElementsWithNoPayload.size());
|
|
auto opaqueAddr = IGF.Builder.CreateBitCast(addr.getAddress(),
|
|
IGF.IGM.OpaquePtrTy);
|
|
|
|
// Create a map of the destination blocks for quicker lookup.
|
|
llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
|
|
dests.end());
|
|
|
|
// If there was no default branch in SIL, use an unreachable branch as
|
|
// the default.
|
|
llvm::BasicBlock *unreachableBB = nullptr;
|
|
if (!defaultDest) {
|
|
unreachableBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
defaultDest = unreachableBB;
|
|
}
|
|
|
|
// Ask the runtime to find the case index.
|
|
auto caseIndex = IGF.Builder.CreateCall3(
|
|
IGF.IGM.getGetEnumCaseSinglePayloadFn(),
|
|
opaqueAddr, payloadMetadata, numEmptyCases);
|
|
|
|
// Switch on the index.
|
|
auto *swi = IGF.Builder.CreateSwitch(caseIndex, defaultDest);
|
|
|
|
// Add the payload case.
|
|
auto payloadCase = destMap.find(getPayloadElement());
|
|
if (payloadCase != destMap.end())
|
|
swi->addCase(llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1),
|
|
payloadCase->second);
|
|
|
|
// Add the empty cases.
|
|
unsigned emptyCaseIndex = 0;
|
|
for (auto &empty : ElementsWithNoPayload) {
|
|
auto emptyCase = destMap.find(empty.decl);
|
|
if (emptyCase != destMap.end())
|
|
swi->addCase(llvm::ConstantInt::get(IGF.IGM.Int32Ty, emptyCaseIndex),
|
|
emptyCase->second);
|
|
++emptyCaseIndex;
|
|
}
|
|
|
|
// Emit the unreachable block, if any.
|
|
if (unreachableBB) {
|
|
IGF.Builder.emitBlock(unreachableBB);
|
|
IGF.Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
void emitIndirectSwitch(IRGenFunction &IGF,
|
|
SILType T,
|
|
Address addr,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
if (TIK >= Fixed) {
|
|
// Load the fixed-size representation and switch directly.
|
|
Explosion value;
|
|
loadForSwitch(IGF, addr, value);
|
|
return emitValueSwitch(IGF, value, dests, defaultDest);
|
|
}
|
|
|
|
// Use the runtime to dynamically switch.
|
|
emitDynamicSwitch(IGF, T, addr, dests, defaultDest);
|
|
}
|
|
|
|
void emitValueProject(IRGenFunction &IGF,
|
|
Explosion &inEnum,
|
|
EnumElementDecl *theCase,
|
|
Explosion &out) const override {
|
|
// Only the payload case has anything to project. The other cases are
|
|
// empty.
|
|
if (theCase != getPayloadElement()) {
|
|
inEnum.claim(getExplosionSize());
|
|
return;
|
|
}
|
|
|
|
auto payload = EnumPayload::fromExplosion(IGF.IGM, inEnum, PayloadSchema);
|
|
getLoadablePayloadTypeInfo()
|
|
.unpackFromEnumPayload(IGF, payload, out, 0);
|
|
if (ExtraTagBitCount > 0)
|
|
inEnum.claimNext();
|
|
}
|
|
|
|
private:
|
|
// Get the index of an enum element among the non-payload cases.
|
|
unsigned getSimpleElementTagIndex(EnumElementDecl *elt) const {
|
|
assert(elt != getPayloadElement() && "is payload element");
|
|
unsigned i = 0;
|
|
// FIXME: linear search
|
|
for (auto *enumElt : elt->getParentEnum()->getAllElements()) {
|
|
if (elt == enumElt)
|
|
return i;
|
|
if (enumElt != getPayloadElement())
|
|
++i;
|
|
}
|
|
llvm_unreachable("element was not a member of enum");
|
|
}
|
|
|
|
// Get the payload and extra tag (if any) parts of the discriminator for
|
|
// a no-data case.
|
|
std::pair<APInt, APInt>
|
|
getNoPayloadCaseValue(IRGenModule &IGM, EnumElementDecl *elt) const {
|
|
assert(elt != getPayloadElement());
|
|
|
|
unsigned payloadSize
|
|
= getFixedPayloadTypeInfo().getFixedSize().getValueInBits();
|
|
|
|
// Non-payload cases use extra inhabitants, if any, or are discriminated
|
|
// by setting the tag bits.
|
|
unsigned tagIndex = getSimpleElementTagIndex(elt);
|
|
unsigned numExtraInhabitants = getNumExtraInhabitantTagValues();
|
|
APInt payload;
|
|
unsigned extraTagValue;
|
|
if (tagIndex < numExtraInhabitants) {
|
|
payload = getFixedPayloadTypeInfo().getFixedExtraInhabitantValue(
|
|
IGM, payloadSize, tagIndex);
|
|
extraTagValue = 0;
|
|
} else {
|
|
tagIndex -= numExtraInhabitants;
|
|
|
|
// Factor the extra tag value from the payload value.
|
|
unsigned payloadValue;
|
|
if (payloadSize >= 32) {
|
|
payloadValue = tagIndex;
|
|
extraTagValue = 1U;
|
|
} else {
|
|
payloadValue = tagIndex & ((1U << payloadSize) - 1U);
|
|
extraTagValue = (tagIndex >> payloadSize) + 1U;
|
|
}
|
|
|
|
if (payloadSize > 0)
|
|
payload = APInt(payloadSize, payloadValue);
|
|
}
|
|
|
|
APInt extraTag;
|
|
if (ExtraTagBitCount > 0) {
|
|
extraTag = APInt(ExtraTagBitCount, extraTagValue);
|
|
} else {
|
|
assert(extraTagValue == 0 &&
|
|
"non-zero extra tag value with no tag bits");
|
|
}
|
|
return {payload, extraTag};
|
|
}
|
|
|
|
public:
|
|
void emitValueInjection(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Explosion ¶ms,
|
|
Explosion &out) const override {
|
|
// The payload case gets its native representation. If there are extra
|
|
// tag bits, set them to zero.
|
|
if (elt == getPayloadElement()) {
|
|
auto payload = EnumPayload::zero(IGF.IGM, PayloadSchema);
|
|
auto &loadablePayloadTI = getLoadablePayloadTypeInfo();
|
|
loadablePayloadTI.packIntoEnumPayload(IGF, payload, params, 0);
|
|
payload.explode(IGF.IGM, out);
|
|
if (ExtraTagBitCount > 0)
|
|
out.add(getZeroExtraTagConstant(IGF.IGM));
|
|
return;
|
|
}
|
|
|
|
// Non-payload cases use extra inhabitants, if any, or are discriminated
|
|
// by setting the tag bits.
|
|
APInt payloadPattern, extraTag;
|
|
std::tie(payloadPattern, extraTag) = getNoPayloadCaseValue(IGF.IGM, elt);
|
|
auto payload = EnumPayload::fromBitPattern(IGF.IGM, payloadPattern,
|
|
PayloadSchema);
|
|
payload.explode(IGF.IGM, out);
|
|
if (ExtraTagBitCount > 0) {
|
|
out.add(llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), extraTag));
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Emits the test(s) that determine whether the fixed-size enum contains a
|
|
/// payload or an empty case. Emits the basic block for the "true" case and
|
|
/// returns the unemitted basic block for the "false" case.
|
|
llvm::BasicBlock *
|
|
testFixedEnumContainsPayload(IRGenFunction &IGF,
|
|
const EnumPayload &payload,
|
|
llvm::Value *extraBits) const {
|
|
auto *falseBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
|
|
// We only need to apply the payload operation if the enum contains a
|
|
// value of the payload case.
|
|
|
|
// If we have extra tag bits, they will be zero if we contain a payload.
|
|
if (ExtraTagBitCount > 0) {
|
|
assert(extraBits);
|
|
llvm::Value *zero = llvm::ConstantInt::get(extraBits->getType(), 0);
|
|
llvm::Value *isZero = IGF.Builder.CreateICmp(llvm::CmpInst::ICMP_EQ,
|
|
extraBits, zero);
|
|
|
|
auto *trueBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
IGF.Builder.CreateCondBr(isZero, trueBB, falseBB);
|
|
|
|
IGF.Builder.emitBlock(trueBB);
|
|
}
|
|
|
|
// If we used extra inhabitants to represent empty case discriminators,
|
|
// weed them out.
|
|
unsigned numExtraInhabitants = getNumExtraInhabitantTagValues();
|
|
if (numExtraInhabitants > 0) {
|
|
unsigned bitWidth =
|
|
getFixedPayloadTypeInfo().getFixedSize().getValueInBits();
|
|
|
|
auto *payloadBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
|
|
SmallVector<std::pair<APInt, llvm::BasicBlock*>, 4> cases;
|
|
|
|
auto elements = getPayloadElement()->getParentEnum()->getAllElements();
|
|
unsigned inhabitant = 0;
|
|
for (auto i = elements.begin(), end = elements.end();
|
|
i != end && inhabitant < numExtraInhabitants;
|
|
++i, ++inhabitant) {
|
|
auto xi = getFixedPayloadTypeInfo()
|
|
.getFixedExtraInhabitantValue(IGF.IGM, bitWidth, inhabitant);
|
|
cases.push_back({xi, falseBB});
|
|
}
|
|
|
|
auto mask
|
|
= getFixedPayloadTypeInfo().getFixedExtraInhabitantMask(IGF.IGM);
|
|
payload.emitSwitch(IGF, mask, cases, payloadBB);
|
|
IGF.Builder.emitBlock(payloadBB);
|
|
}
|
|
|
|
return falseBB;
|
|
}
|
|
|
|
/// Emits the test(s) that determine whether the enum contains a payload
|
|
/// or an empty case. For a fixed-size enum, this does a primitive load
|
|
/// of the representation and calls down to testFixedEnumContainsPayload.
|
|
/// For a dynamic enum, this queries the value witness table of the payload
|
|
/// type. Emits the basic block for the "true" case and
|
|
/// returns the unemitted basic block for the "false" case.
|
|
llvm::BasicBlock *
|
|
testEnumContainsPayload(IRGenFunction &IGF,
|
|
Address addr,
|
|
SILType T) const {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
|
|
if (TIK >= Fixed) {
|
|
EnumPayload payload;
|
|
llvm::Value *extraTag;
|
|
std::tie(payload, extraTag)
|
|
= emitPrimitiveLoadPayloadAndExtraTag(IGF, addr);
|
|
return testFixedEnumContainsPayload(IGF, payload, extraTag);
|
|
}
|
|
|
|
auto *payloadBB = llvm::BasicBlock::Create(C);
|
|
auto *noPayloadBB = llvm::BasicBlock::Create(C);
|
|
|
|
// Look up the metadata for the payload.
|
|
llvm::Value *metadata = emitPayloadMetadataForLayout(IGF, T);
|
|
|
|
// Ask the runtime what case we have.
|
|
llvm::Value *opaqueAddr = IGF.Builder.CreateBitCast(addr.getAddress(),
|
|
IGF.IGM.OpaquePtrTy);
|
|
llvm::Value *numCases = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
|
|
ElementsWithNoPayload.size());
|
|
llvm::Value *which = IGF.Builder.CreateCall3(
|
|
IGF.IGM.getGetEnumCaseSinglePayloadFn(),
|
|
opaqueAddr, metadata, numCases);
|
|
|
|
// If it's -1 then we have the payload.
|
|
llvm::Value *hasPayload = IGF.Builder.CreateICmpEQ(which,
|
|
llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1));
|
|
IGF.Builder.CreateCondBr(hasPayload, payloadBB, noPayloadBB);
|
|
|
|
IGF.Builder.emitBlock(payloadBB);
|
|
return noPayloadBB;
|
|
}
|
|
|
|
llvm::Type *getRefcountedPtrType(IRGenModule &IGM) const {
|
|
switch (CopyDestroyKind) {
|
|
case NullableSwiftRefcounted:
|
|
return IGM.RefCountedPtrTy;
|
|
case NullableUnknownRefcounted:
|
|
return IGM.UnknownRefCountedPtrTy;
|
|
case POD:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
void retainRefcountedPayload(IRGenFunction &IGF,
|
|
llvm::Value *ptr) const {
|
|
switch (CopyDestroyKind) {
|
|
case NullableSwiftRefcounted: {
|
|
IGF.emitRetainCall(ptr);
|
|
return;
|
|
}
|
|
case NullableUnknownRefcounted: {
|
|
IGF.emitUnknownRetainCall(ptr);
|
|
return;
|
|
}
|
|
case POD:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
void fixLifetimeOfRefcountedPayload(IRGenFunction &IGF,
|
|
llvm::Value *ptr) const {
|
|
switch (CopyDestroyKind) {
|
|
case NullableSwiftRefcounted:
|
|
case NullableUnknownRefcounted: {
|
|
IGF.emitFixLifetime(ptr);
|
|
return;
|
|
}
|
|
case POD:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
void releaseRefcountedPayload(IRGenFunction &IGF,
|
|
llvm::Value *ptr) const {
|
|
switch (CopyDestroyKind) {
|
|
case NullableSwiftRefcounted: {
|
|
IGF.emitRelease(ptr);
|
|
return;
|
|
}
|
|
case NullableUnknownRefcounted: {
|
|
IGF.emitUnknownRelease(ptr);
|
|
return;
|
|
}
|
|
case POD:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
public:
|
|
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest)
|
|
const override {
|
|
assert(TIK >= Loadable);
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
reexplode(IGF, src, dest);
|
|
return;
|
|
|
|
case Normal: {
|
|
// Copy the payload, if we have it.
|
|
EnumPayload payload; llvm::Value *extraTag;
|
|
std::tie(payload, extraTag)
|
|
= getPayloadAndExtraTagFromExplosion(IGF, src);
|
|
|
|
llvm::BasicBlock *endBB = testFixedEnumContainsPayload(IGF, payload, extraTag);
|
|
|
|
if (PayloadBitCount > 0) {
|
|
Explosion payloadValue;
|
|
Explosion payloadCopy;
|
|
auto &loadableTI = getLoadablePayloadTypeInfo();
|
|
loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
|
|
loadableTI.copy(IGF, payloadValue, payloadCopy);
|
|
payloadCopy.claimAll(); // FIXME: repack if not bit-identical
|
|
}
|
|
|
|
IGF.Builder.CreateBr(endBB);
|
|
IGF.Builder.emitBlock(endBB);
|
|
|
|
// Copy to the new explosion.
|
|
payload.explode(IGF.IGM, dest);
|
|
if (extraTag) dest.add(extraTag);
|
|
return;
|
|
}
|
|
|
|
case NullableSwiftRefcounted:
|
|
case NullableUnknownRefcounted: {
|
|
// Bitcast to swift.refcounted*, and retain the pointer.
|
|
llvm::Value *val = src.claimNext();
|
|
llvm::Value *ptr = IGF.Builder.CreateBitOrPointerCast(val,
|
|
getRefcountedPtrType(IGF.IGM));
|
|
retainRefcountedPayload(IGF, ptr);
|
|
dest.add(val);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void consume(IRGenFunction &IGF, Explosion &src) const override {
|
|
assert(TIK >= Loadable);
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
src.claim(getExplosionSize());
|
|
return;
|
|
|
|
case Normal: {
|
|
// Check that we have a payload.
|
|
EnumPayload payload; llvm::Value *extraTag;
|
|
std::tie(payload, extraTag)
|
|
= getPayloadAndExtraTagFromExplosion(IGF, src);
|
|
|
|
llvm::BasicBlock *endBB
|
|
= testFixedEnumContainsPayload(IGF, payload, extraTag);
|
|
|
|
// If we did, consume it.
|
|
if (PayloadBitCount > 0) {
|
|
Explosion payloadValue;
|
|
auto &loadableTI = getLoadablePayloadTypeInfo();
|
|
loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
|
|
loadableTI.consume(IGF, payloadValue);
|
|
}
|
|
|
|
IGF.Builder.CreateBr(endBB);
|
|
IGF.Builder.emitBlock(endBB);
|
|
return;
|
|
}
|
|
|
|
case NullableSwiftRefcounted:
|
|
case NullableUnknownRefcounted: {
|
|
// Bitcast to swift.refcounted*, and hand to swift_release.
|
|
llvm::Value *val = src.claimNext();
|
|
llvm::Value *ptr = IGF.Builder.CreateBitOrPointerCast(val,
|
|
getRefcountedPtrType(IGF.IGM));
|
|
releaseRefcountedPayload(IGF, ptr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
|
|
assert(TIK >= Loadable);
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
src.claim(getExplosionSize());
|
|
return;
|
|
|
|
case Normal: {
|
|
// Check that we have a payload.
|
|
EnumPayload payload; llvm::Value *extraTag;
|
|
std::tie(payload, extraTag)
|
|
= getPayloadAndExtraTagFromExplosion(IGF, src);
|
|
|
|
llvm::BasicBlock *endBB
|
|
= testFixedEnumContainsPayload(IGF, payload, extraTag);
|
|
|
|
// If we did, consume it.
|
|
if (PayloadBitCount > 0) {
|
|
Explosion payloadValue;
|
|
auto &loadableTI = getLoadablePayloadTypeInfo();
|
|
loadableTI.unpackFromEnumPayload(IGF, payload, payloadValue, 0);
|
|
loadableTI.fixLifetime(IGF, payloadValue);
|
|
}
|
|
|
|
IGF.Builder.CreateBr(endBB);
|
|
IGF.Builder.emitBlock(endBB);
|
|
return;
|
|
}
|
|
|
|
case NullableSwiftRefcounted:
|
|
case NullableUnknownRefcounted: {
|
|
// Bitcast to swift.refcounted*, and hand to swift_release.
|
|
llvm::Value *val = src.claimNext();
|
|
llvm::Value *ptr = IGF.Builder.CreateIntToPtr(val,
|
|
getRefcountedPtrType(IGF.IGM));
|
|
fixLifetimeOfRefcountedPayload(IGF, ptr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address addr, SILType T) const override {
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
return;
|
|
|
|
case Normal: {
|
|
// Check that there is a payload at the address.
|
|
llvm::BasicBlock *endBB = testEnumContainsPayload(IGF, addr, T);
|
|
|
|
// If there is, project and destroy it.
|
|
Address payloadAddr = projectPayloadData(IGF, addr);
|
|
getPayloadTypeInfo().destroy(IGF, payloadAddr,
|
|
getPayloadType(IGF.IGM, T));
|
|
|
|
IGF.Builder.CreateBr(endBB);
|
|
IGF.Builder.emitBlock(endBB);
|
|
return;
|
|
}
|
|
|
|
case NullableSwiftRefcounted:
|
|
case NullableUnknownRefcounted: {
|
|
// Load the value as swift.refcounted, then hand to swift_release.
|
|
addr = IGF.Builder.CreateBitCast(addr,
|
|
getRefcountedPtrType(IGF.IGM)->getPointerTo());
|
|
llvm::Value *ptr = IGF.Builder.CreateLoad(addr);
|
|
releaseRefcountedPayload(IGF, ptr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::Value *loadRefcountedPtr(IRGenFunction &IGF, SourceLoc loc,
|
|
Address addr) const override {
|
|
// There is no need to bitcast from the enum address. Loading from the
|
|
// reference type emits a bitcast to the proper reference type first.
|
|
return cast<LoadableTypeInfo>(getPayloadTypeInfo()).loadRefcountedPtr(
|
|
IGF, loc, addr).getValue();
|
|
}
|
|
private:
|
|
llvm::ConstantInt *getZeroExtraTagConstant(IRGenModule &IGM) const {
|
|
assert(TIK >= Fixed && "not fixed layout");
|
|
assert(ExtraTagBitCount > 0 && "no extra tag bits?!");
|
|
return llvm::ConstantInt::get(IGM.getLLVMContext(),
|
|
APInt(ExtraTagBitCount, 0));
|
|
}
|
|
|
|
/// Initialize the extra tag bits, if any, to zero to indicate a payload.
|
|
void emitInitializeExtraTagBitsForPayload(IRGenFunction &IGF,
|
|
Address dest,
|
|
SILType T) const {
|
|
if (TIK >= Fixed) {
|
|
// We statically know whether we have extra tag bits.
|
|
// Store zero directly to the fixed-layout extra tag field.
|
|
if (ExtraTagBitCount > 0) {
|
|
auto *zeroTag = getZeroExtraTagConstant(IGF.IGM);
|
|
IGF.Builder.CreateStore(zeroTag, projectExtraTagBits(IGF, dest));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Ask the runtime to store the tag.
|
|
llvm::Value *opaqueAddr = IGF.Builder.CreateBitCast(dest.getAddress(),
|
|
IGF.IGM.OpaquePtrTy);
|
|
llvm::Value *metadata = emitPayloadMetadataForLayout(IGF, T);
|
|
IGF.Builder.CreateCall4(IGF.IGM.getStoreEnumTagSinglePayloadFn(),
|
|
opaqueAddr, metadata,
|
|
llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1),
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty,
|
|
ElementsWithNoPayload.size()));
|
|
}
|
|
|
|
/// Emit an reassignment sequence from an enum at one address to another.
|
|
void emitIndirectAssign(IRGenFunction &IGF,
|
|
Address dest, Address src, SILType T,
|
|
IsTake_t isTake)
|
|
const {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
auto PayloadT = getPayloadType(IGF.IGM, T);
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
return emitPrimitiveCopy(IGF, dest, src, T);
|
|
|
|
case Normal: {
|
|
llvm::BasicBlock *endBB = llvm::BasicBlock::Create(C);
|
|
|
|
Address destData = projectPayloadData(IGF, dest);
|
|
Address srcData = projectPayloadData(IGF, src);
|
|
// See whether the current value at the destination has a payload.
|
|
|
|
llvm::BasicBlock *noDestPayloadBB
|
|
= testEnumContainsPayload(IGF, dest, T);
|
|
|
|
// Here, the destination has a payload. Now see if the source also has
|
|
// one.
|
|
llvm::BasicBlock *destNoSrcPayloadBB
|
|
= testEnumContainsPayload(IGF, src, T);
|
|
|
|
// Here, both source and destination have payloads. Do the reassignment
|
|
// of the payload in-place.
|
|
if (isTake)
|
|
getPayloadTypeInfo().assignWithTake(IGF, destData, srcData, PayloadT);
|
|
else
|
|
getPayloadTypeInfo().assignWithCopy(IGF, destData, srcData, PayloadT);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
// If the destination has a payload but the source doesn't, we can destroy
|
|
// the payload and primitive-store the new no-payload value.
|
|
IGF.Builder.emitBlock(destNoSrcPayloadBB);
|
|
getPayloadTypeInfo().destroy(IGF, destData, PayloadT);
|
|
emitPrimitiveCopy(IGF, dest, src, T);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
// Now, if the destination has no payload, check if the source has one.
|
|
IGF.Builder.emitBlock(noDestPayloadBB);
|
|
llvm::BasicBlock *noDestNoSrcPayloadBB
|
|
= testEnumContainsPayload(IGF, src, T);
|
|
|
|
// Here, the source has a payload but the destination doesn't. We can
|
|
// copy-initialize the source over the destination, then primitive-store
|
|
// the zero extra tag (if any).
|
|
if (isTake)
|
|
getPayloadTypeInfo().initializeWithTake(IGF, destData, srcData, PayloadT);
|
|
else
|
|
getPayloadTypeInfo().initializeWithCopy(IGF, destData, srcData, PayloadT);
|
|
emitInitializeExtraTagBitsForPayload(IGF, dest, T);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
// If neither destination nor source have payloads, we can just primitive-
|
|
// store the new empty-case value.
|
|
IGF.Builder.emitBlock(noDestNoSrcPayloadBB);
|
|
emitPrimitiveCopy(IGF, dest, src, T);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
IGF.Builder.emitBlock(endBB);
|
|
return;
|
|
}
|
|
|
|
case NullableSwiftRefcounted:
|
|
case NullableUnknownRefcounted: {
|
|
// Do the assignment as for a refcounted pointer.
|
|
auto refCountedTy = getRefcountedPtrType(IGF.IGM);
|
|
Address destAddr = IGF.Builder.CreateBitCast(dest,
|
|
refCountedTy->getPointerTo());
|
|
Address srcAddr = IGF.Builder.CreateBitCast(src,
|
|
refCountedTy->getPointerTo());
|
|
// Load the old pointer at the destination.
|
|
llvm::Value *oldPtr = IGF.Builder.CreateLoad(destAddr);
|
|
// Store the new pointer.
|
|
llvm::Value *srcPtr = IGF.Builder.CreateLoad(srcAddr);
|
|
if (!isTake)
|
|
retainRefcountedPayload(IGF, srcPtr);
|
|
IGF.Builder.CreateStore(srcPtr, destAddr);
|
|
// Release the old value.
|
|
releaseRefcountedPayload(IGF, oldPtr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/// Emit an initialization sequence, initializing an enum at one address
|
|
/// with another at a different address.
|
|
void emitIndirectInitialize(IRGenFunction &IGF,
|
|
Address dest, Address src, SILType T,
|
|
IsTake_t isTake)
|
|
const {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
return emitPrimitiveCopy(IGF, dest, src, T);
|
|
|
|
case Normal: {
|
|
llvm::BasicBlock *endBB = llvm::BasicBlock::Create(C);
|
|
|
|
Address destData = projectPayloadData(IGF, dest);
|
|
Address srcData = projectPayloadData(IGF, src);
|
|
|
|
// See whether the source value has a payload.
|
|
llvm::BasicBlock *noSrcPayloadBB
|
|
= testEnumContainsPayload(IGF, src, T);
|
|
|
|
// Here, the source value has a payload. Initialize the destination with
|
|
// it, and set the extra tag if any to zero.
|
|
if (isTake)
|
|
getPayloadTypeInfo().initializeWithTake(IGF, destData, srcData,
|
|
getPayloadType(IGF.IGM, T));
|
|
else
|
|
getPayloadTypeInfo().initializeWithCopy(IGF, destData, srcData,
|
|
getPayloadType(IGF.IGM, T));
|
|
emitInitializeExtraTagBitsForPayload(IGF, dest, T);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
// If the source value has no payload, we can primitive-store the
|
|
// empty-case value.
|
|
IGF.Builder.emitBlock(noSrcPayloadBB);
|
|
emitPrimitiveCopy(IGF, dest, src, T);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
IGF.Builder.emitBlock(endBB);
|
|
return;
|
|
}
|
|
|
|
case NullableSwiftRefcounted:
|
|
case NullableUnknownRefcounted: {
|
|
auto refCountedTy = getRefcountedPtrType(IGF.IGM);
|
|
|
|
// Do the initialization as for a refcounted pointer.
|
|
Address destAddr = IGF.Builder.CreateBitCast(dest,
|
|
refCountedTy->getPointerTo());
|
|
Address srcAddr = IGF.Builder.CreateBitCast(src,
|
|
refCountedTy->getPointerTo());
|
|
|
|
llvm::Value *srcPtr = IGF.Builder.CreateLoad(srcAddr);
|
|
if (!isTake)
|
|
retainRefcountedPayload(IGF, srcPtr);
|
|
IGF.Builder.CreateStore(srcPtr, destAddr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectAssign(IGF, dest, src, T, IsNotTake);
|
|
}
|
|
|
|
void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectAssign(IGF, dest, src, T, IsTake);
|
|
}
|
|
|
|
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectInitialize(IGF, dest, src, T, IsNotTake);
|
|
}
|
|
|
|
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectInitialize(IGF, dest, src, T, IsTake);
|
|
}
|
|
|
|
void storeTag(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr,
|
|
SILType T) const override {
|
|
if (TIK < Fixed) {
|
|
// If the enum isn't fixed-layout, get the runtime to do this for us.
|
|
llvm::Value *payload = emitPayloadMetadataForLayout(IGF, T);
|
|
llvm::Value *caseIndex;
|
|
if (elt == getPayloadElement()) {
|
|
caseIndex = llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1);
|
|
} else {
|
|
auto found = std::find_if(ElementsWithNoPayload.begin(),
|
|
ElementsWithNoPayload.end(),
|
|
[&](Element a) { return a.decl == elt; });
|
|
assert(found != ElementsWithNoPayload.end() &&
|
|
"case not in enum?!");
|
|
unsigned caseIndexVal = found - ElementsWithNoPayload.begin();
|
|
caseIndex = llvm::ConstantInt::get(IGF.IGM.Int32Ty, caseIndexVal);
|
|
}
|
|
|
|
llvm::Value *numEmptyCases = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
|
|
ElementsWithNoPayload.size());
|
|
|
|
llvm::Value *opaqueAddr
|
|
= IGF.Builder.CreateBitCast(enumAddr.getAddress(),
|
|
IGF.IGM.OpaquePtrTy);
|
|
|
|
IGF.Builder.CreateCall4(IGF.IGM.getStoreEnumTagSinglePayloadFn(),
|
|
opaqueAddr, payload, caseIndex, numEmptyCases);
|
|
|
|
return;
|
|
}
|
|
|
|
if (elt == getPayloadElement()) {
|
|
// The data occupies the entire payload. If we have extra tag bits,
|
|
// zero them out.
|
|
if (ExtraTagBitCount > 0)
|
|
IGF.Builder.CreateStore(getZeroExtraTagConstant(IGF.IGM),
|
|
projectExtraTagBits(IGF, enumAddr));
|
|
return;
|
|
}
|
|
|
|
// Store the discriminator for the no-payload case.
|
|
APInt payloadValue, extraTag;
|
|
std::tie(payloadValue, extraTag) = getNoPayloadCaseValue(IGF.IGM, elt);
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
auto payload = EnumPayload::fromBitPattern(IGF.IGM, payloadValue,
|
|
PayloadSchema);
|
|
payload.store(IGF, projectPayload(IGF, enumAddr));
|
|
if (ExtraTagBitCount > 0)
|
|
IGF.Builder.CreateStore(llvm::ConstantInt::get(C, extraTag),
|
|
projectExtraTagBits(IGF, enumAddr));
|
|
}
|
|
|
|
void initializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable,
|
|
SILType T) const override {
|
|
// Fixed-size enums don't need dynamic witness table initialization.
|
|
if (TIK >= Fixed) return;
|
|
|
|
// Ask the runtime to do our layout using the payload metadata and number
|
|
// of empty cases.
|
|
auto payloadMetadata = emitPayloadMetadataForLayout(IGF, T);
|
|
auto emptyCasesVal = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
|
|
ElementsWithNoPayload.size());
|
|
|
|
IGF.Builder.CreateCall3(
|
|
IGF.IGM.getInitEnumValueWitnessTableSinglePayloadFn(),
|
|
vwtable, payloadMetadata, emptyCasesVal);
|
|
}
|
|
|
|
/// \group Extra inhabitants
|
|
|
|
// Extra inhabitants from the payload that we didn't use for our empty cases
|
|
// are available to outer enums.
|
|
// FIXME: If we spilled extra tag bits, we could offer spare bits from the
|
|
// tag.
|
|
|
|
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
|
|
if (TIK >= Fixed)
|
|
return getFixedExtraInhabitantCount(IGM) > 0;
|
|
|
|
return getPayloadTypeInfo().mayHaveExtraInhabitants(IGM);
|
|
}
|
|
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
return getFixedPayloadTypeInfo().getFixedExtraInhabitantCount(IGM)
|
|
- getNumExtraInhabitantTagValues();
|
|
}
|
|
|
|
APInt
|
|
getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index) const override {
|
|
return getFixedPayloadTypeInfo()
|
|
.getFixedExtraInhabitantValue(IGM, bits,
|
|
index + getNumExtraInhabitantTagValues());
|
|
}
|
|
|
|
llvm::Value *
|
|
getExtraInhabitantIndex(IRGenFunction &IGF,
|
|
Address src, SILType T) const override {
|
|
auto payload = projectPayloadData(IGF, src);
|
|
llvm::Value *index
|
|
= getPayloadTypeInfo().getExtraInhabitantIndex(IGF, payload,
|
|
getPayloadType(IGF.IGM, T));
|
|
|
|
// Offset the payload extra inhabitant index by the number of inhabitants
|
|
// we used. If less than zero, it's a valid value of the enum type.
|
|
index = IGF.Builder.CreateSub(index,
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size()));
|
|
auto valid = IGF.Builder.CreateICmpSLT(index,
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0));
|
|
index = IGF.Builder.CreateSelect(valid,
|
|
llvm::ConstantInt::getSigned(IGF.IGM.Int32Ty, -1),
|
|
index);
|
|
return index;
|
|
}
|
|
|
|
void storeExtraInhabitant(IRGenFunction &IGF,
|
|
llvm::Value *index,
|
|
Address dest, SILType T) const override {
|
|
// Offset the index to skip the extra inhabitants we used.
|
|
index = IGF.Builder.CreateAdd(index,
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty, ElementsWithNoPayload.size()));
|
|
|
|
auto payload = projectPayloadData(IGF, dest);
|
|
getPayloadTypeInfo().storeExtraInhabitant(IGF, index, payload,
|
|
getPayloadType(IGF.IGM, T));
|
|
}
|
|
|
|
APInt
|
|
getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
|
|
auto &payloadTI = getFixedPayloadTypeInfo();
|
|
unsigned totalSize
|
|
= cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
|
|
if (payloadTI.isKnownEmpty())
|
|
return APInt::getAllOnesValue(totalSize);
|
|
auto baseMask =
|
|
getFixedPayloadTypeInfo().getFixedExtraInhabitantMask(IGM);
|
|
|
|
if (baseMask.getBitWidth() < totalSize)
|
|
baseMask = baseMask.zext(totalSize)
|
|
| APInt::getHighBitsSet(totalSize, totalSize - baseMask.getBitWidth());
|
|
|
|
return baseMask;
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitPatternForNoPayloadElement(IRGenModule &IGM,
|
|
EnumElementDecl *theCase) const override {
|
|
APInt payloadPart, extraPart;
|
|
std::tie(payloadPart, extraPart) = getNoPayloadCaseValue(IGM, theCase);
|
|
ClusteredBitVector bits;
|
|
|
|
if (PayloadBitCount > 0)
|
|
bits = getBitVectorFromAPInt(payloadPart);
|
|
|
|
unsigned totalSize
|
|
= cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
|
|
if (ExtraTagBitCount > 0) {
|
|
ClusteredBitVector extraBits = getBitVectorFromAPInt(extraPart,
|
|
bits.size());
|
|
bits.extendWithClearBits(totalSize);
|
|
extraBits.extendWithClearBits(totalSize);
|
|
bits |= extraBits;
|
|
} else {
|
|
assert(totalSize == bits.size());
|
|
}
|
|
return bits;
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitMaskForNoPayloadElements(IRGenModule &IGM) const override {
|
|
// Use the extra inhabitants mask from the payload.
|
|
auto &payloadTI = getFixedPayloadTypeInfo();
|
|
ClusteredBitVector extraInhabitantsMask;
|
|
|
|
if (!payloadTI.isKnownEmpty())
|
|
extraInhabitantsMask =
|
|
getBitVectorFromAPInt(payloadTI.getFixedExtraInhabitantMask(IGM));
|
|
// Extend to include the extra tag bits, which are always significant.
|
|
unsigned totalSize
|
|
= cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
|
|
extraInhabitantsMask.extendWithSetBits(totalSize);
|
|
return extraInhabitantsMask;
|
|
}
|
|
|
|
ClusteredBitVector getTagBitsForPayloads(IRGenModule &IGM) const override {
|
|
// We only have tag bits if we spilled extra bits.
|
|
ClusteredBitVector result;
|
|
unsigned payloadSize
|
|
= getFixedPayloadTypeInfo().getFixedSize().getValueInBits();
|
|
result.appendClearBits(payloadSize);
|
|
|
|
unsigned totalSize
|
|
= cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
|
|
|
|
if (ExtraTagBitCount) {
|
|
result.appendSetBits(ExtraTagBitCount);
|
|
result.extendWithClearBits(totalSize);
|
|
} else {
|
|
assert(payloadSize == totalSize);
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
|
|
class MultiPayloadEnumImplStrategy final
|
|
: public PayloadEnumImplStrategyBase
|
|
{
|
|
// The spare bits shared by all payloads, if any.
|
|
// Invariant: The size of the bit vector is the size of the payload in bits,
|
|
// rounded up to a byte boundary.
|
|
SpareBitVector CommonSpareBits;
|
|
|
|
// The common spare bits actually used for a tag in the payload area.
|
|
SpareBitVector PayloadTagBits;
|
|
|
|
// The number of tag values used for no-payload cases.
|
|
unsigned NumEmptyElementTags = ~0u;
|
|
|
|
/// More efficient value semantics implementations for certain enum layouts.
|
|
enum CopyDestroyStrategy {
|
|
/// No special behavior.
|
|
Normal,
|
|
/// The payloads are all POD, so copying is bitwise, and destruction is a
|
|
/// noop.
|
|
POD,
|
|
/// The payloads are all bitwise-takable, but have no other special
|
|
/// shared layout.
|
|
BitwiseTakable,
|
|
/// The payloads are all Swift-reference-counted values, and there is at
|
|
/// most one no-payload case with the tagged-zero representation. Copy
|
|
/// and destroy can just mask out the tag bits and pass the result to
|
|
/// swift_retain/swift_release.
|
|
/// This implies BitwiseTakable.
|
|
TaggedSwiftRefcounted,
|
|
/// The payloads are all reference-counted values, and there is at
|
|
/// most one no-payload case with the tagged-zero representation. Copy
|
|
/// and destroy can just mask out the tag bits and pass the result to
|
|
/// swift_unknownRetain/swift_unknownRelease.
|
|
/// This implies BitwiseTakable.
|
|
TaggedUnknownRefcounted,
|
|
};
|
|
|
|
CopyDestroyStrategy CopyDestroyKind;
|
|
|
|
bool ConstrainedByRuntimeLayout : 1;
|
|
|
|
static EnumPayloadSchema getPayloadSchema(ArrayRef<Element> payloads) {
|
|
// TODO: We might be able to form a nicer schema if the payload elements
|
|
// share a schema. For now just use a generic schema.
|
|
unsigned maxBitSize = 0;
|
|
for (auto payload : payloads) {
|
|
auto fixedTI = dyn_cast<FixedTypeInfo>(payload.ti);
|
|
if (!fixedTI)
|
|
return EnumPayloadSchema();
|
|
maxBitSize = std::max(maxBitSize,
|
|
unsigned(fixedTI->getFixedSize().getValueInBits()));
|
|
}
|
|
return EnumPayloadSchema(maxBitSize);
|
|
}
|
|
|
|
public:
|
|
MultiPayloadEnumImplStrategy(IRGenModule &IGM,
|
|
TypeInfoKind tik, unsigned NumElements,
|
|
std::vector<Element> &&WithPayload,
|
|
std::vector<Element> &&WithRecursivePayload,
|
|
std::vector<Element> &&WithNoPayload,
|
|
bool constrainedByRuntimeLayout)
|
|
: PayloadEnumImplStrategyBase(IGM, tik, NumElements,
|
|
std::move(WithPayload),
|
|
std::move(WithRecursivePayload),
|
|
std::move(WithNoPayload),
|
|
getPayloadSchema(WithPayload)),
|
|
CopyDestroyKind(Normal),
|
|
ConstrainedByRuntimeLayout(constrainedByRuntimeLayout)
|
|
{
|
|
assert(ElementsWithPayload.size() > 1);
|
|
|
|
// Check the payloads to see if we can take advantage of common layout to
|
|
// optimize our value semantics.
|
|
bool allPOD = true;
|
|
bool allBitwiseTakable = true;
|
|
bool allSingleSwiftRefcount = true;
|
|
bool allSingleUnknownRefcount = true;
|
|
for (auto &elt : ElementsWithPayload) {
|
|
if (!elt.ti->isPOD(ResilienceScope::Component))
|
|
allPOD = false;
|
|
if (!elt.ti->isBitwiseTakable(ResilienceScope::Component))
|
|
allBitwiseTakable = false;
|
|
if (!elt.ti->isSingleSwiftRetainablePointer(ResilienceScope::Component))
|
|
allSingleSwiftRefcount = false;
|
|
if (!elt.ti->isSingleUnknownRetainablePointer(ResilienceScope::Component))
|
|
allSingleUnknownRefcount = false;
|
|
}
|
|
|
|
if (allPOD) {
|
|
assert(!allSingleSwiftRefcount && !allSingleUnknownRefcount
|
|
&& "pod *and* refcounted?!");
|
|
CopyDestroyKind = POD;
|
|
} else if (allSingleSwiftRefcount
|
|
&& ElementsWithNoPayload.size() <= 1) {
|
|
CopyDestroyKind = TaggedSwiftRefcounted;
|
|
}
|
|
// FIXME: Memory corruption issues arise when enabling this for mixed
|
|
// Swift/ObjC enums.
|
|
else if (allSingleUnknownRefcount
|
|
&& ElementsWithNoPayload.size() <= 1) {
|
|
CopyDestroyKind = TaggedUnknownRefcounted;
|
|
} else if (allBitwiseTakable) {
|
|
CopyDestroyKind = BitwiseTakable;
|
|
}
|
|
}
|
|
|
|
bool needsPayloadSizeInMetadata() const override {
|
|
// For dynamic multi-payload enums, it would be expensive to recalculate
|
|
// the payload area size from all of the cases, so cache it in the
|
|
// metadata. For fixed-layout cases this isn't necessary (except for
|
|
// reflection, but it's OK if reflection is a little slow).
|
|
return TIK < Fixed;
|
|
}
|
|
|
|
TypeInfo *completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) override;
|
|
|
|
private:
|
|
TypeInfo *completeFixedLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy);
|
|
TypeInfo *completeDynamicLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy);
|
|
|
|
unsigned getNumCaseBits() const {
|
|
return CommonSpareBits.size() - CommonSpareBits.count();
|
|
}
|
|
|
|
/// The number of empty cases representable by each tag value.
|
|
/// Equal to the size of the payload minus the spare bits used for tags.
|
|
unsigned getNumCasesPerTag() const {
|
|
unsigned numCaseBits = getNumCaseBits();
|
|
return numCaseBits >= 32
|
|
? 0x80000000 : 1 << numCaseBits;
|
|
}
|
|
|
|
/// Extract the payload-discriminating tag from a payload and optional
|
|
/// extra tag value.
|
|
llvm::Value *extractPayloadTag(IRGenFunction &IGF,
|
|
const EnumPayload &payload,
|
|
llvm::Value *extraTagBits) const {
|
|
unsigned numSpareBits = PayloadTagBits.count();
|
|
llvm::Value *tag = nullptr;
|
|
unsigned numTagBits = numSpareBits + ExtraTagBitCount;
|
|
|
|
// Get the tag bits from spare bits, if any.
|
|
if (numSpareBits > 0) {
|
|
tag = payload.emitGatherSpareBits(IGF, PayloadTagBits, 0, numTagBits);
|
|
}
|
|
|
|
// Get the extra tag bits, if any.
|
|
if (ExtraTagBitCount > 0) {
|
|
assert(extraTagBits);
|
|
if (!tag) {
|
|
return extraTagBits;
|
|
} else {
|
|
extraTagBits = IGF.Builder.CreateZExt(extraTagBits, tag->getType());
|
|
extraTagBits = IGF.Builder.CreateShl(extraTagBits,
|
|
numTagBits - ExtraTagBitCount);
|
|
return IGF.Builder.CreateOr(tag, extraTagBits);
|
|
}
|
|
}
|
|
assert(!extraTagBits);
|
|
return tag;
|
|
}
|
|
|
|
llvm::Type *getRefcountedPtrType(IRGenModule &IGM) const {
|
|
switch (CopyDestroyKind) {
|
|
case TaggedSwiftRefcounted:
|
|
return IGM.RefCountedPtrTy;
|
|
case TaggedUnknownRefcounted:
|
|
return IGM.UnknownRefCountedPtrTy;
|
|
case POD:
|
|
case BitwiseTakable:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
void retainRefcountedPayload(IRGenFunction &IGF,
|
|
llvm::Value *ptr) const {
|
|
switch (CopyDestroyKind) {
|
|
case TaggedSwiftRefcounted: {
|
|
IGF.emitRetainCall(ptr);
|
|
return;
|
|
}
|
|
case TaggedUnknownRefcounted: {
|
|
IGF.emitUnknownRetainCall(ptr);
|
|
return;
|
|
}
|
|
case POD:
|
|
case BitwiseTakable:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
void fixLifetimeOfRefcountedPayload(IRGenFunction &IGF,
|
|
llvm::Value *ptr) const {
|
|
switch (CopyDestroyKind) {
|
|
case TaggedSwiftRefcounted:
|
|
case TaggedUnknownRefcounted: {
|
|
IGF.emitFixLifetime(ptr);
|
|
return;
|
|
}
|
|
case POD:
|
|
case BitwiseTakable:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
void releaseRefcountedPayload(IRGenFunction &IGF,
|
|
llvm::Value *ptr) const {
|
|
switch (CopyDestroyKind) {
|
|
case TaggedSwiftRefcounted: {
|
|
IGF.emitRelease(ptr);
|
|
return;
|
|
}
|
|
case TaggedUnknownRefcounted: {
|
|
IGF.emitUnknownRelease(ptr);
|
|
return;
|
|
}
|
|
case POD:
|
|
case BitwiseTakable:
|
|
case Normal:
|
|
llvm_unreachable("not a refcounted payload");
|
|
}
|
|
}
|
|
|
|
APInt getEmptyCasePayload(IRGenModule &IGM,
|
|
unsigned tagIndex, unsigned idx) const {
|
|
// The payload may be empty.
|
|
if (CommonSpareBits.size() == 0)
|
|
return APInt();
|
|
|
|
APInt v = interleaveSpareBits(IGM, PayloadTagBits,
|
|
PayloadTagBits.size(),
|
|
tagIndex, 0);
|
|
v |= interleaveSpareBits(IGM, CommonSpareBits,
|
|
CommonSpareBits.size(),
|
|
0, idx);
|
|
return v;
|
|
}
|
|
|
|
struct DestructuredLoadableEnum {
|
|
EnumPayload payload;
|
|
llvm::Value *extraTagBits;
|
|
};
|
|
DestructuredLoadableEnum
|
|
destructureLoadableEnum(IRGenFunction &IGF, Explosion &src) const {
|
|
auto payload = EnumPayload::fromExplosion(IGF.IGM, src, PayloadSchema);
|
|
llvm::Value *extraTagBits
|
|
= ExtraTagBitCount > 0 ? src.claimNext() : nullptr;
|
|
|
|
return {payload, extraTagBits};
|
|
}
|
|
|
|
struct DestructuredAndTaggedLoadableEnum {
|
|
EnumPayload payload;
|
|
llvm::Value *extraTagBits, *tag;
|
|
};
|
|
DestructuredAndTaggedLoadableEnum
|
|
destructureAndTagLoadableEnum(IRGenFunction &IGF, Explosion &src) const {
|
|
auto destructured = destructureLoadableEnum(IGF, src);
|
|
|
|
llvm::Value *tag = extractPayloadTag(IGF, destructured.payload,
|
|
destructured.extraTagBits);
|
|
|
|
return {destructured.payload, destructured.extraTagBits, tag};
|
|
}
|
|
|
|
llvm::Value *
|
|
loadDynamicTag(IRGenFunction &IGF, Address addr, SILType T) const {
|
|
addr = IGF.Builder.CreateBitCast(addr, IGF.IGM.OpaquePtrTy);
|
|
auto metadata = IGF.emitTypeMetadataRef(T.getSwiftRValueType());
|
|
auto call = IGF.Builder.CreateCall2(IGF.IGM.getGetEnumCaseMultiPayloadFn(),
|
|
addr.getAddress(), metadata);
|
|
call->setDoesNotThrow();
|
|
call->addAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::ReadOnly);
|
|
|
|
return call;
|
|
}
|
|
|
|
llvm::Value *
|
|
loadPayloadTag(IRGenFunction &IGF, Address addr, SILType T) const {
|
|
if (TIK >= Fixed) {
|
|
// Load the fixed-size representation and derive the tags.
|
|
EnumPayload payload; llvm::Value *extraTagBits;
|
|
std::tie(payload, extraTagBits)
|
|
= emitPrimitiveLoadPayloadAndExtraTag(IGF, addr);
|
|
return extractPayloadTag(IGF, payload, extraTagBits);
|
|
}
|
|
|
|
// Otherwise, ask the runtime to extract the dynamically-placed tag.
|
|
return loadDynamicTag(IGF, addr, T);
|
|
}
|
|
|
|
public:
|
|
|
|
virtual llvm::Value *
|
|
emitIndirectCaseTest(IRGenFunction &IGF, SILType T,
|
|
Address enumAddr,
|
|
EnumElementDecl *Case) const override {
|
|
if (TIK >= Fixed) {
|
|
// Load the fixed-size representation and switch directly.
|
|
Explosion value;
|
|
loadForSwitch(IGF, enumAddr, value);
|
|
return emitValueCaseTest(IGF, value, Case);
|
|
}
|
|
|
|
// Use the runtime to dynamically switch.
|
|
auto tag = loadDynamicTag(IGF, enumAddr, T);
|
|
// Test the tag. Payload cases come first, followed by no-payload cases.
|
|
// The runtime handles distinguishing empty cases for us.
|
|
unsigned tagIndex = 0;
|
|
for (auto &payload : ElementsWithPayload) {
|
|
if (payload.decl == Case)
|
|
goto found_case;
|
|
++tagIndex;
|
|
}
|
|
for (auto &payload : ElementsWithNoPayload) {
|
|
if (payload.decl == Case)
|
|
goto found_case;
|
|
++tagIndex;
|
|
}
|
|
llvm_unreachable("couldn't find case");
|
|
|
|
found_case:
|
|
llvm::Value *expectedTag
|
|
= llvm::ConstantInt::get(IGF.IGM.Int32Ty, tagIndex);
|
|
return IGF.Builder.CreateICmpEQ(tag, expectedTag);
|
|
}
|
|
|
|
virtual llvm::Value *
|
|
emitValueCaseTest(IRGenFunction &IGF, Explosion &value,
|
|
EnumElementDecl *Case) const override {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
auto parts = destructureAndTagLoadableEnum(IGF, value);
|
|
unsigned numTagBits
|
|
= cast<llvm::IntegerType>(parts.tag->getType())->getBitWidth();
|
|
|
|
// Cases with payloads are numbered consecutively, and only required
|
|
// testing the tag. Scan until we find the right one.
|
|
unsigned tagIndex = 0;
|
|
for (auto &payloadCasePair : ElementsWithPayload) {
|
|
if (payloadCasePair.decl == Case) {
|
|
llvm::Value *caseValue
|
|
= llvm::ConstantInt::get(C, APInt(numTagBits,tagIndex));
|
|
return IGF.Builder.CreateICmpEQ(parts.tag, caseValue);
|
|
}
|
|
++tagIndex;
|
|
}
|
|
// Elements without payloads are numbered after the payload elts.
|
|
// Multiple empty elements are packed into the payload for each tag
|
|
// value.
|
|
unsigned casesPerTag = getNumCasesPerTag();
|
|
|
|
auto elti = ElementsWithNoPayload.begin(),
|
|
eltEnd = ElementsWithNoPayload.end();
|
|
|
|
llvm::Value *tagValue = nullptr;
|
|
APInt payloadValue;
|
|
for (unsigned i = 0; i < NumEmptyElementTags; ++i) {
|
|
assert(elti != eltEnd &&
|
|
"ran out of cases before running out of extra tags?");
|
|
|
|
// Look through the cases for this tag.
|
|
for (unsigned idx = 0; idx < casesPerTag && elti != eltEnd; ++idx) {
|
|
if (elti->decl == Case) {
|
|
tagValue = llvm::ConstantInt::get(C, APInt(numTagBits,tagIndex));
|
|
payloadValue = getEmptyCasePayload(IGF.IGM, tagIndex, idx);
|
|
goto found_empty_case;
|
|
}
|
|
++elti;
|
|
}
|
|
++tagIndex;
|
|
}
|
|
|
|
llvm_unreachable("Didn't find case decl");
|
|
|
|
found_empty_case:
|
|
llvm::Value *match = IGF.Builder.CreateICmpEQ(parts.tag, tagValue);
|
|
if (CommonSpareBits.size() > 0) {
|
|
auto payloadMatch = parts.payload
|
|
.emitCompare(IGF, APInt::getAllOnesValue(CommonSpareBits.size()),
|
|
payloadValue);
|
|
match = IGF.Builder.CreateAnd(match, payloadMatch);
|
|
}
|
|
return match;
|
|
}
|
|
|
|
void emitValueSwitch(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
|
|
// Create a map of the destination blocks for quicker lookup.
|
|
llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
|
|
dests.end());
|
|
|
|
// Create an unreachable branch for unreachable switch defaults.
|
|
auto *unreachableBB = llvm::BasicBlock::Create(C);
|
|
|
|
// If there was no default branch in SIL, use the unreachable branch as
|
|
// the default.
|
|
if (!defaultDest)
|
|
defaultDest = unreachableBB;
|
|
|
|
auto blockForCase = [&](EnumElementDecl *theCase) -> llvm::BasicBlock* {
|
|
auto found = destMap.find(theCase);
|
|
if (found == destMap.end())
|
|
return defaultDest;
|
|
else
|
|
return found->second;
|
|
};
|
|
|
|
auto parts = destructureAndTagLoadableEnum(IGF, value);
|
|
|
|
// Extract and switch on the tag bits.
|
|
unsigned numTagBits
|
|
= cast<llvm::IntegerType>(parts.tag->getType())->getBitWidth();
|
|
|
|
auto *tagSwitch = IGF.Builder.CreateSwitch(parts.tag, unreachableBB,
|
|
ElementsWithPayload.size() + NumEmptyElementTags);
|
|
|
|
// Switch over the tag bits for payload cases.
|
|
unsigned tagIndex = 0;
|
|
for (auto &payloadCasePair : ElementsWithPayload) {
|
|
EnumElementDecl *payloadCase = payloadCasePair.decl;
|
|
tagSwitch->addCase(llvm::ConstantInt::get(C,APInt(numTagBits,tagIndex)),
|
|
blockForCase(payloadCase));
|
|
++tagIndex;
|
|
}
|
|
|
|
// Switch over the no-payload cases.
|
|
unsigned casesPerTag = getNumCasesPerTag();
|
|
|
|
auto elti = ElementsWithNoPayload.begin(),
|
|
eltEnd = ElementsWithNoPayload.end();
|
|
|
|
for (unsigned i = 0; i < NumEmptyElementTags; ++i) {
|
|
assert(elti != eltEnd &&
|
|
"ran out of cases before running out of extra tags?");
|
|
|
|
auto tagVal = llvm::ConstantInt::get(C, APInt(numTagBits, tagIndex));
|
|
|
|
// If the payload is empty, there's only one case per tag.
|
|
if (CommonSpareBits.size() == 0) {
|
|
tagSwitch->addCase(tagVal, blockForCase(elti->decl));
|
|
|
|
++elti;
|
|
++tagIndex;
|
|
continue;
|
|
}
|
|
|
|
auto *tagBB = llvm::BasicBlock::Create(C);
|
|
tagSwitch->addCase(tagVal, tagBB);
|
|
|
|
// Switch over the cases for this tag.
|
|
IGF.Builder.emitBlock(tagBB);
|
|
SmallVector<std::pair<APInt, llvm::BasicBlock *>, 4> cases;
|
|
|
|
for (unsigned idx = 0; idx < casesPerTag && elti != eltEnd; ++idx) {
|
|
auto val = getEmptyCasePayload(IGF.IGM, tagIndex, idx);
|
|
cases.push_back({val, blockForCase(elti->decl)});
|
|
++elti;
|
|
}
|
|
|
|
parts.payload.emitSwitch(IGF, APInt::getAllOnesValue(PayloadBitCount),
|
|
cases, unreachableBB);
|
|
++tagIndex;
|
|
}
|
|
|
|
// Delete the unreachable default block if we didn't use it, or emit it
|
|
// if we did.
|
|
if (unreachableBB->use_empty()) {
|
|
delete unreachableBB;
|
|
} else {
|
|
IGF.Builder.emitBlock(unreachableBB);
|
|
IGF.Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
private:
|
|
void emitDynamicSwitch(IRGenFunction &IGF,
|
|
SILType T,
|
|
Address addr,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const {
|
|
// Ask the runtime to derive the tag index.
|
|
auto tag = loadDynamicTag(IGF, addr, T);
|
|
|
|
// Switch on the tag value.
|
|
|
|
// Create a map of the destination blocks for quicker lookup.
|
|
llvm::DenseMap<EnumElementDecl*,llvm::BasicBlock*> destMap(dests.begin(),
|
|
dests.end());
|
|
|
|
// Create an unreachable branch for unreachable switch defaults.
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
auto *unreachableBB = llvm::BasicBlock::Create(C);
|
|
|
|
// If there was no default branch in SIL, use the unreachable branch as
|
|
// the default.
|
|
if (!defaultDest)
|
|
defaultDest = unreachableBB;
|
|
|
|
auto blockForCase = [&](EnumElementDecl *theCase) -> llvm::BasicBlock* {
|
|
auto found = destMap.find(theCase);
|
|
if (found == destMap.end())
|
|
return defaultDest;
|
|
else
|
|
return found->second;
|
|
};
|
|
|
|
auto *tagSwitch = IGF.Builder.CreateSwitch(tag, unreachableBB,
|
|
ElementsWithPayload.size() + ElementsWithNoPayload.size());
|
|
|
|
unsigned tagIndex = 0;
|
|
|
|
// Payload tags come first.
|
|
for (auto &elt : ElementsWithPayload) {
|
|
auto tagVal = llvm::ConstantInt::get(IGF.IGM.Int32Ty, tagIndex);
|
|
tagSwitch->addCase(tagVal, blockForCase(elt.decl));
|
|
++tagIndex;
|
|
}
|
|
|
|
// Next come empty tags.
|
|
for (auto &elt : ElementsWithNoPayload) {
|
|
auto tagVal = llvm::ConstantInt::get(IGF.IGM.Int32Ty, tagIndex);
|
|
tagSwitch->addCase(tagVal, blockForCase(elt.decl));
|
|
++tagIndex;
|
|
}
|
|
|
|
assert(tagIndex ==
|
|
ElementsWithPayload.size()+ElementsWithNoPayload.size());
|
|
|
|
// Delete the unreachable default block if we didn't use it, or emit it
|
|
// if we did.
|
|
if (unreachableBB->use_empty()) {
|
|
delete unreachableBB;
|
|
} else {
|
|
IGF.Builder.emitBlock(unreachableBB);
|
|
IGF.Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
public:
|
|
void emitIndirectSwitch(IRGenFunction &IGF,
|
|
SILType T,
|
|
Address addr,
|
|
ArrayRef<std::pair<EnumElementDecl*,
|
|
llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) const override {
|
|
if (TIK >= Fixed) {
|
|
// Load the fixed-size representation and switch directly.
|
|
Explosion value;
|
|
loadForSwitch(IGF, addr, value);
|
|
return emitValueSwitch(IGF, value, dests, defaultDest);
|
|
}
|
|
|
|
// Use the runtime to dynamically switch.
|
|
return emitDynamicSwitch(IGF, T, addr, dests, defaultDest);
|
|
}
|
|
|
|
private:
|
|
void projectPayloadValue(IRGenFunction &IGF,
|
|
EnumPayload payload,
|
|
unsigned payloadTag,
|
|
const LoadableTypeInfo &payloadTI,
|
|
Explosion &out) const {
|
|
// If the payload is empty, so is the explosion.
|
|
if (CommonSpareBits.size() == 0)
|
|
return;
|
|
|
|
// If we have spare bits, we have to mask out any set tag bits packed
|
|
// there.
|
|
if (PayloadTagBits.any()) {
|
|
unsigned spareBitCount = PayloadTagBits.count();
|
|
if (spareBitCount < 32)
|
|
payloadTag &= (1U << spareBitCount) - 1U;
|
|
if (payloadTag != 0) {
|
|
APInt mask = ~PayloadTagBits.asAPInt();
|
|
payload.emitApplyAndMask(IGF, mask);
|
|
}
|
|
}
|
|
|
|
// Unpack the payload.
|
|
payloadTI.unpackFromEnumPayload(IGF, payload, out, 0);
|
|
}
|
|
|
|
public:
|
|
void emitValueProject(IRGenFunction &IGF,
|
|
Explosion &inValue,
|
|
EnumElementDecl *theCase,
|
|
Explosion &out) const override {
|
|
auto foundPayload = std::find_if(ElementsWithPayload.begin(),
|
|
ElementsWithPayload.end(),
|
|
[&](const Element &e) { return e.decl == theCase; });
|
|
|
|
// Non-payload cases project to an empty explosion.
|
|
if (foundPayload == ElementsWithPayload.end()) {
|
|
inValue.claim(getExplosionSize());
|
|
return;
|
|
}
|
|
|
|
auto parts = destructureLoadableEnum(IGF, inValue);
|
|
|
|
// Unpack the payload.
|
|
projectPayloadValue(IGF, parts.payload,
|
|
foundPayload - ElementsWithPayload.begin(),
|
|
cast<LoadableTypeInfo>(*foundPayload->ti), out);
|
|
}
|
|
|
|
void packIntoEnumPayload(IRGenFunction &IGF,
|
|
EnumPayload &outerPayload,
|
|
Explosion &src,
|
|
unsigned offset) const override {
|
|
auto innerPayload = EnumPayload::fromExplosion(IGF.IGM, src,
|
|
PayloadSchema);
|
|
// Pack the payload, if any.
|
|
innerPayload.packIntoEnumPayload(IGF, outerPayload, offset);
|
|
// Pack the extra bits, if any.
|
|
if (ExtraTagBitCount > 0)
|
|
outerPayload.insertValue(IGF, src.claimNext(),
|
|
CommonSpareBits.size() + offset);
|
|
}
|
|
|
|
void unpackFromEnumPayload(IRGenFunction &IGF,
|
|
const EnumPayload &outerPayload,
|
|
Explosion &dest,
|
|
unsigned offset) const override {
|
|
// Unpack the payload.
|
|
auto inner
|
|
= EnumPayload::unpackFromEnumPayload(IGF, outerPayload, offset,
|
|
PayloadSchema);
|
|
inner.explode(IGF.IGM, dest);
|
|
// Unpack the extra bits, if any.
|
|
if (ExtraTagBitCount > 0)
|
|
dest.add(outerPayload.extractValue(IGF, extraTagTy,
|
|
CommonSpareBits.size() + offset));
|
|
}
|
|
|
|
private:
|
|
void emitPayloadInjection(IRGenFunction &IGF,
|
|
const FixedTypeInfo &payloadTI,
|
|
Explosion ¶ms, Explosion &out,
|
|
unsigned tag) const {
|
|
// Pack the payload.
|
|
auto &loadablePayloadTI = cast<LoadableTypeInfo>(payloadTI); // FIXME
|
|
|
|
auto payload = EnumPayload::zero(IGF.IGM, PayloadSchema);
|
|
loadablePayloadTI.packIntoEnumPayload(IGF, payload, params, 0);
|
|
|
|
// If we have spare bits, pack tag bits into them.
|
|
unsigned numSpareBits = PayloadTagBits.count();
|
|
if (numSpareBits > 0) {
|
|
APInt tagMaskVal
|
|
= interleaveSpareBits(IGF.IGM, PayloadTagBits,
|
|
PayloadTagBits.size(), tag, 0);
|
|
payload.emitApplyOrMask(IGF, tagMaskVal);
|
|
}
|
|
|
|
payload.explode(IGF.IGM, out);
|
|
|
|
// If we have extra tag bits, pack the remaining tag bits into them.
|
|
if (ExtraTagBitCount > 0) {
|
|
tag >>= numSpareBits;
|
|
auto extra = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
|
|
APInt(ExtraTagBitCount, tag));
|
|
out.add(extra);
|
|
}
|
|
}
|
|
|
|
std::pair<APInt, APInt>
|
|
getNoPayloadCaseValue(IRGenModule &IGM, unsigned index) const {
|
|
// Figure out the tag and payload for the empty case.
|
|
unsigned numCaseBits = getNumCaseBits();
|
|
unsigned tag, tagIndex;
|
|
if (numCaseBits >= 32) {
|
|
tag = ElementsWithPayload.size();
|
|
tagIndex = index;
|
|
} else {
|
|
tag = (index >> numCaseBits) + ElementsWithPayload.size();
|
|
tagIndex = index & ((1 << numCaseBits) - 1);
|
|
}
|
|
|
|
APInt payload;
|
|
APInt extraTag;
|
|
unsigned numSpareBits = CommonSpareBits.count();
|
|
if (numSpareBits > 0) {
|
|
// If we have spare bits, pack tag bits into them.
|
|
payload = getEmptyCasePayload(IGM, tag, tagIndex);
|
|
} else if (CommonSpareBits.size() > 0) {
|
|
// Otherwise the payload is just the index.
|
|
payload = APInt(CommonSpareBits.size(), tagIndex);
|
|
}
|
|
|
|
// If we have extra tag bits, pack the remaining tag bits into them.
|
|
if (ExtraTagBitCount > 0) {
|
|
tag >>= numSpareBits;
|
|
extraTag = APInt(ExtraTagBitCount, tag);
|
|
}
|
|
return {payload, extraTag};
|
|
}
|
|
|
|
void emitNoPayloadInjection(IRGenFunction &IGF, Explosion &out,
|
|
unsigned index) const {
|
|
APInt payloadVal, extraTag;
|
|
std::tie(payloadVal, extraTag) = getNoPayloadCaseValue(IGF.IGM, index);
|
|
|
|
auto payload = EnumPayload::fromBitPattern(IGF.IGM, payloadVal,
|
|
PayloadSchema);
|
|
payload.explode(IGF.IGM, out);
|
|
if (ExtraTagBitCount > 0) {
|
|
out.add(llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), extraTag));
|
|
}
|
|
}
|
|
|
|
void forNontrivialPayloads(IRGenFunction &IGF, llvm::Value *tag,
|
|
std::function<void (unsigned, EnumImplStrategy::Element)> f)
|
|
const {
|
|
auto *endBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
|
|
auto *swi = IGF.Builder.CreateSwitch(tag, endBB);
|
|
auto *tagTy = cast<llvm::IntegerType>(tag->getType());
|
|
|
|
// Handle nontrivial tags.
|
|
unsigned tagIndex = 0;
|
|
for (auto &payloadCasePair : ElementsWithPayload) {
|
|
auto &payloadTI = *payloadCasePair.ti;
|
|
|
|
// Trivial payloads don't need any work.
|
|
if (payloadTI.isPOD(ResilienceScope::Local)) {
|
|
++tagIndex;
|
|
continue;
|
|
}
|
|
|
|
// Unpack and handle nontrivial payloads.
|
|
auto *caseBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
swi->addCase(llvm::ConstantInt::get(tagTy, tagIndex), caseBB);
|
|
|
|
IGF.Builder.emitBlock(caseBB);
|
|
f(tagIndex, payloadCasePair);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
++tagIndex;
|
|
}
|
|
|
|
IGF.Builder.emitBlock(endBB);
|
|
}
|
|
|
|
void maskTagBitsFromPayload(IRGenFunction &IGF,
|
|
EnumPayload &payload) const {
|
|
if (PayloadTagBits.none())
|
|
return;
|
|
|
|
APInt mask = ~PayloadTagBits.asAPInt();
|
|
payload.emitApplyAndMask(IGF, mask);
|
|
}
|
|
|
|
public:
|
|
void emitValueInjection(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Explosion ¶ms,
|
|
Explosion &out) const override {
|
|
// See whether this is a payload or empty case we're emitting.
|
|
auto payloadI = std::find_if(ElementsWithPayload.begin(),
|
|
ElementsWithPayload.end(),
|
|
[&](const Element &e) { return e.decl == elt; });
|
|
if (payloadI != ElementsWithPayload.end())
|
|
return emitPayloadInjection(IGF, cast<FixedTypeInfo>(*payloadI->ti),
|
|
params, out,
|
|
payloadI - ElementsWithPayload.begin());
|
|
|
|
auto emptyI = std::find_if(ElementsWithNoPayload.begin(),
|
|
ElementsWithNoPayload.end(),
|
|
[&](const Element &e) { return e.decl == elt; });
|
|
assert(emptyI != ElementsWithNoPayload.end() && "case not in enum");
|
|
emitNoPayloadInjection(IGF, out, emptyI - ElementsWithNoPayload.begin());
|
|
}
|
|
|
|
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest)
|
|
const override {
|
|
assert(TIK >= Loadable);
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
reexplode(IGF, src, dest);
|
|
return;
|
|
|
|
case BitwiseTakable:
|
|
case Normal: {
|
|
auto parts = destructureAndTagLoadableEnum(IGF, src);
|
|
|
|
forNontrivialPayloads(IGF, parts.tag,
|
|
[&](unsigned tagIndex, EnumImplStrategy::Element elt) {
|
|
auto <i = cast<LoadableTypeInfo>(*elt.ti);
|
|
Explosion value;
|
|
projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);
|
|
|
|
Explosion tmp;
|
|
lti.copy(IGF, value, tmp);
|
|
tmp.claimAll(); // FIXME: repack if not bit-identical
|
|
});
|
|
|
|
parts.payload.explode(IGF.IGM, dest);
|
|
if (parts.extraTagBits)
|
|
dest.add(parts.extraTagBits);
|
|
return;
|
|
}
|
|
|
|
case TaggedSwiftRefcounted:
|
|
case TaggedUnknownRefcounted: {
|
|
auto parts = destructureLoadableEnum(IGF, src);
|
|
|
|
// Mask the tag bits out of the payload, if any.
|
|
maskTagBitsFromPayload(IGF, parts.payload);
|
|
|
|
// Retain the pointer.
|
|
auto ptr = parts.payload.extractValue(IGF,
|
|
getRefcountedPtrType(IGF.IGM), 0);
|
|
retainRefcountedPayload(IGF, ptr);
|
|
|
|
parts.payload.explode(IGF.IGM, dest);
|
|
if (parts.extraTagBits)
|
|
dest.add(parts.extraTagBits);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void consume(IRGenFunction &IGF, Explosion &src) const override {
|
|
assert(TIK >= Loadable);
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
src.claim(getExplosionSize());
|
|
return;
|
|
|
|
case BitwiseTakable:
|
|
case Normal: {
|
|
auto parts = destructureAndTagLoadableEnum(IGF, src);
|
|
|
|
forNontrivialPayloads(IGF, parts.tag,
|
|
[&](unsigned tagIndex, EnumImplStrategy::Element elt) {
|
|
auto <i = cast<LoadableTypeInfo>(*elt.ti);
|
|
Explosion value;
|
|
projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);
|
|
|
|
lti.consume(IGF, value);
|
|
});
|
|
return;
|
|
}
|
|
|
|
case TaggedSwiftRefcounted:
|
|
case TaggedUnknownRefcounted: {
|
|
auto parts = destructureLoadableEnum(IGF, src);
|
|
// Mask the tag bits out of the payload, if any.
|
|
maskTagBitsFromPayload(IGF, parts.payload);
|
|
|
|
// Release the pointer.
|
|
auto ptr = parts.payload.extractValue(IGF,
|
|
getRefcountedPtrType(IGF.IGM), 0);
|
|
releaseRefcountedPayload(IGF, ptr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
|
|
assert(TIK >= Loadable);
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
src.claim(getExplosionSize());
|
|
return;
|
|
|
|
case BitwiseTakable:
|
|
case Normal: {
|
|
auto parts = destructureAndTagLoadableEnum(IGF, src);
|
|
|
|
forNontrivialPayloads(IGF, parts.tag,
|
|
[&](unsigned tagIndex, EnumImplStrategy::Element elt) {
|
|
auto <i = cast<LoadableTypeInfo>(*elt.ti);
|
|
Explosion value;
|
|
projectPayloadValue(IGF, parts.payload, tagIndex, lti, value);
|
|
|
|
lti.fixLifetime(IGF, value);
|
|
});
|
|
return;
|
|
}
|
|
|
|
case TaggedSwiftRefcounted:
|
|
case TaggedUnknownRefcounted: {
|
|
auto parts = destructureLoadableEnum(IGF, src);
|
|
// Mask the tag bits out of the payload, if any.
|
|
maskTagBitsFromPayload(IGF, parts.payload);
|
|
|
|
// Fix the pointer.
|
|
auto ptr = parts.payload.extractValue(IGF,
|
|
getRefcountedPtrType(IGF.IGM), 0);
|
|
fixLifetimeOfRefcountedPayload(IGF, ptr);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Emit a reassignment sequence from an enum at one address to another.
|
|
void emitIndirectAssign(IRGenFunction &IGF,
|
|
Address dest, Address src, SILType T,
|
|
IsTake_t isTake) const {
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
return emitPrimitiveCopy(IGF, dest, src, T);
|
|
|
|
case BitwiseTakable:
|
|
case TaggedSwiftRefcounted:
|
|
case TaggedUnknownRefcounted:
|
|
case Normal: {
|
|
// If the enum is loadable, it's better to do this directly using
|
|
// values, so we don't need to RMW tag bits in place.
|
|
if (TI->isLoadable()) {
|
|
Explosion tmpSrc, tmpOld;
|
|
if (isTake)
|
|
loadAsTake(IGF, src, tmpSrc);
|
|
else
|
|
loadAsCopy(IGF, src, tmpSrc);
|
|
|
|
loadAsTake(IGF, dest, tmpOld);
|
|
initialize(IGF, tmpSrc, dest);
|
|
consume(IGF, tmpOld);
|
|
return;
|
|
}
|
|
|
|
auto *endBB = llvm::BasicBlock::Create(C);
|
|
|
|
// Check whether the source and destination alias.
|
|
llvm::Value *alias = IGF.Builder.CreateICmpEQ(dest.getAddress(),
|
|
src.getAddress());
|
|
auto *noAliasBB = llvm::BasicBlock::Create(C);
|
|
IGF.Builder.CreateCondBr(alias, endBB, noAliasBB);
|
|
IGF.Builder.emitBlock(noAliasBB);
|
|
|
|
// Destroy the old value.
|
|
destroy(IGF, dest, T);
|
|
|
|
// Reinitialize with the new value.
|
|
emitIndirectInitialize(IGF, dest, src, T, isTake);
|
|
|
|
IGF.Builder.CreateBr(endBB);
|
|
IGF.Builder.emitBlock(endBB);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void emitIndirectInitialize(IRGenFunction &IGF,
|
|
Address dest, Address src,
|
|
SILType T,
|
|
IsTake_t isTake) const{
|
|
auto &C = IGF.IGM.getLLVMContext();
|
|
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
return emitPrimitiveCopy(IGF, dest, src, T);
|
|
|
|
case BitwiseTakable:
|
|
case TaggedSwiftRefcounted:
|
|
case TaggedUnknownRefcounted:
|
|
// Takes can be done by primitive copy in these case.
|
|
if (isTake)
|
|
return emitPrimitiveCopy(IGF, dest, src, T);
|
|
SWIFT_FALLTHROUGH;
|
|
|
|
case Normal: {
|
|
// If the enum is loadable, it's better to do this directly using values,
|
|
// so we don't need to RMW tag bits in place.
|
|
if (TI->isLoadable()) {
|
|
Explosion tmpSrc;
|
|
if (isTake)
|
|
loadAsTake(IGF, src, tmpSrc);
|
|
else
|
|
loadAsCopy(IGF, src, tmpSrc);
|
|
initialize(IGF, tmpSrc, dest);
|
|
return;
|
|
}
|
|
|
|
llvm::Value *tag = loadPayloadTag(IGF, src, T);
|
|
|
|
auto *endBB = llvm::BasicBlock::Create(C);
|
|
|
|
/// Switch out nontrivial payloads.
|
|
auto *trivialBB = llvm::BasicBlock::Create(C);
|
|
auto *swi = IGF.Builder.CreateSwitch(tag, trivialBB);
|
|
auto *tagTy = cast<llvm::IntegerType>(tag->getType());
|
|
|
|
unsigned tagIndex = 0;
|
|
for (auto &payloadCasePair : ElementsWithPayload) {
|
|
SILType PayloadT = T.getEnumElementType(payloadCasePair.decl,
|
|
*IGF.IGM.SILMod);
|
|
auto &payloadTI = *payloadCasePair.ti;
|
|
// Trivial and, in the case of a take, bitwise-takable payloads,
|
|
// can all share the default path.
|
|
if (payloadTI.isPOD(ResilienceScope::Local)
|
|
|| (isTake && payloadTI.isBitwiseTakable(ResilienceScope::Local))) {
|
|
++tagIndex;
|
|
continue;
|
|
}
|
|
|
|
// For nontrivial payloads, we need to copy/take the payload using its
|
|
// value semantics.
|
|
auto *caseBB = llvm::BasicBlock::Create(C);
|
|
swi->addCase(llvm::ConstantInt::get(tagTy, tagIndex), caseBB);
|
|
IGF.Builder.emitBlock(caseBB);
|
|
|
|
// Temporarily clear the tag bits from the source so we can use the
|
|
// data.
|
|
// FIXME: This is totally broken if someone concurrently accesses
|
|
// a supposedly-immutable value as we're copying it.
|
|
preparePayloadForLoad(IGF, src, tagIndex);
|
|
|
|
// Do the take/copy of the payload.
|
|
Address srcData = IGF.Builder.CreateBitCast(src,
|
|
payloadTI.getStorageType()->getPointerTo());
|
|
Address destData = IGF.Builder.CreateBitCast(dest,
|
|
payloadTI.getStorageType()->getPointerTo());
|
|
|
|
if (isTake) {
|
|
payloadTI.initializeWithTake(IGF, destData, srcData, PayloadT);
|
|
// We don't need to preserve the old value.
|
|
} else {
|
|
payloadTI.initializeWithCopy(IGF, destData, srcData, PayloadT);
|
|
// Replant the tag bits, if any, in the source.
|
|
if (PayloadTagBits.count() > 0)
|
|
storePayloadTag(IGF, src, tagIndex, T);
|
|
}
|
|
|
|
// Plant spare bit tag bits, if any, into the new value.
|
|
storePayloadTag(IGF, dest, tagIndex, T);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
++tagIndex;
|
|
}
|
|
|
|
// For trivial payloads (including no-payload cases), we can just
|
|
// primitive-copy to the destination.
|
|
IGF.Builder.emitBlock(trivialBB);
|
|
emitPrimitiveCopy(IGF, dest, src, T);
|
|
IGF.Builder.CreateBr(endBB);
|
|
|
|
IGF.Builder.emitBlock(endBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectAssign(IGF, dest, src, T, IsNotTake);
|
|
}
|
|
|
|
void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectAssign(IGF, dest, src, T, IsTake);
|
|
}
|
|
|
|
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectInitialize(IGF, dest, src, T, IsNotTake);
|
|
}
|
|
|
|
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
SILType T)
|
|
const override {
|
|
emitIndirectInitialize(IGF, dest, src, T, IsTake);
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address addr, SILType T)
|
|
const override {
|
|
switch (CopyDestroyKind) {
|
|
case POD:
|
|
return;
|
|
|
|
case BitwiseTakable:
|
|
case Normal:
|
|
case TaggedSwiftRefcounted:
|
|
case TaggedUnknownRefcounted: {
|
|
// If loadable, it's better to do this directly to the value than
|
|
// in place, so we don't need to RMW out the tag bits in memory.
|
|
if (TI->isLoadable()) {
|
|
Explosion tmp;
|
|
loadAsTake(IGF, addr, tmp);
|
|
consume(IGF, tmp);
|
|
return;
|
|
}
|
|
|
|
auto tag = loadPayloadTag(IGF, addr, T);
|
|
|
|
forNontrivialPayloads(IGF, tag,
|
|
[&](unsigned tagIndex, EnumImplStrategy::Element elt) {
|
|
// Clear tag bits out of the payload area, if any.
|
|
preparePayloadForLoad(IGF, addr, tagIndex);
|
|
// Destroy the data.
|
|
Address dataAddr = IGF.Builder.CreateBitCast(addr,
|
|
elt.ti->getStorageType()->getPointerTo());
|
|
SILType payloadT = T.getEnumElementType(elt.decl, *IGF.IGM.SILMod);
|
|
elt.ti->destroy(IGF, dataAddr, payloadT);
|
|
});
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Clear any tag bits stored in the payload area of the given address.
|
|
void preparePayloadForLoad(IRGenFunction &IGF, Address enumAddr,
|
|
unsigned tagIndex) const {
|
|
// If the case has non-zero tag bits stored in spare bits, we need to
|
|
// mask them out before the data can be read.
|
|
unsigned numSpareBits = PayloadTagBits.count();
|
|
if (numSpareBits > 0) {
|
|
unsigned spareTagBits = numSpareBits >= 32
|
|
? tagIndex : tagIndex & ((1U << numSpareBits) - 1U);
|
|
|
|
if (spareTagBits != 0) {
|
|
Address payloadAddr = projectPayload(IGF, enumAddr);
|
|
auto payload = EnumPayload::load(IGF, payloadAddr, PayloadSchema);
|
|
auto spareBitMask = ~PayloadTagBits.asAPInt();
|
|
payload.emitApplyAndMask(IGF, spareBitMask);
|
|
payload.store(IGF, payloadAddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
Address projectDataForStore(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
auto payloadI = std::find_if(ElementsWithPayload.begin(),
|
|
ElementsWithPayload.end(),
|
|
[&](const Element &e) { return e.decl == elt; });
|
|
|
|
assert(payloadI != ElementsWithPayload.end() &&
|
|
"cannot project a no-payload case");
|
|
|
|
// Payloads are all placed at the beginning of the value.
|
|
return IGF.Builder.CreateBitCast(enumAddr,
|
|
payloadI->ti->getStorageType()->getPointerTo());
|
|
}
|
|
|
|
private:
|
|
void storePayloadTag(IRGenFunction &IGF,
|
|
Address enumAddr, unsigned index,
|
|
SILType T) const {
|
|
// Use the runtime to initialize dynamic cases.
|
|
if (TIK < Fixed) {
|
|
return storeDynamicTag(IGF, enumAddr, index, T);
|
|
}
|
|
|
|
// If the tag has spare bits, we need to mask them into the
|
|
// payload area.
|
|
unsigned numSpareBits = PayloadTagBits.count();
|
|
if (numSpareBits > 0) {
|
|
unsigned spareTagBits = numSpareBits >= 32
|
|
? index : index & ((1U << numSpareBits) - 1U);
|
|
|
|
// Mask the spare bits into the payload area.
|
|
Address payloadAddr = projectPayload(IGF, enumAddr);
|
|
auto payload = EnumPayload::load(IGF, payloadAddr, PayloadSchema);
|
|
|
|
auto spareBitMask = ~PayloadTagBits.asAPInt();
|
|
APInt tagBitMask
|
|
= interleaveSpareBits(IGF.IGM, PayloadTagBits, PayloadTagBits.size(),
|
|
spareTagBits, 0);
|
|
|
|
payload.emitApplyAndMask(IGF, spareBitMask);
|
|
payload.emitApplyOrMask(IGF, tagBitMask);
|
|
payload.store(IGF, payloadAddr);
|
|
}
|
|
|
|
// Initialize the extra tag bits, if we have them.
|
|
if (ExtraTagBitCount > 0) {
|
|
unsigned extraTagBits = index >> numSpareBits;
|
|
auto *extraTagValue = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(),
|
|
APInt(ExtraTagBitCount, extraTagBits));
|
|
IGF.Builder.CreateStore(extraTagValue,
|
|
projectExtraTagBits(IGF, enumAddr));
|
|
}
|
|
}
|
|
|
|
void storeNoPayloadTag(IRGenFunction &IGF, Address enumAddr,
|
|
unsigned index, SILType T) const {
|
|
// Use the runtime to initialize dynamic cases.
|
|
if (TIK < Fixed) {
|
|
// Dynamic case indexes start after the payload cases.
|
|
return storeDynamicTag(IGF, enumAddr,
|
|
index + ElementsWithPayload.size(), T);
|
|
}
|
|
|
|
// We can just primitive-store the representation for the empty case.
|
|
APInt payloadValue, extraTag;
|
|
std::tie(payloadValue, extraTag) = getNoPayloadCaseValue(IGF.IGM, index);
|
|
|
|
auto payload = EnumPayload::fromBitPattern(IGF.IGM, payloadValue,
|
|
PayloadSchema);
|
|
payload.store(IGF, projectPayload(IGF, enumAddr));
|
|
if (ExtraTagBitCount > 0) {
|
|
IGF.Builder.CreateStore(
|
|
llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), extraTag),
|
|
projectExtraTagBits(IGF, enumAddr));
|
|
}
|
|
}
|
|
|
|
void storeDynamicTag(IRGenFunction &IGF, Address enumAddr, unsigned index,
|
|
SILType T) const {
|
|
// Invoke the runtime to store the tag.
|
|
enumAddr = IGF.Builder.CreateBitCast(enumAddr, IGF.IGM.OpaquePtrTy);
|
|
auto indexVal = llvm::ConstantInt::get(IGF.IGM.Int32Ty, index);
|
|
auto metadata = IGF.emitTypeMetadataRef(T.getSwiftRValueType());
|
|
|
|
auto call = IGF.Builder.CreateCall3(
|
|
IGF.IGM.getStoreEnumTagMultiPayloadFn(),
|
|
enumAddr.getAddress(), metadata, indexVal);
|
|
call->setDoesNotThrow();
|
|
}
|
|
|
|
public:
|
|
|
|
void storeTag(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr,
|
|
SILType T) const override {
|
|
// See whether this is a payload or empty case we're emitting.
|
|
auto payloadI = std::find_if(ElementsWithPayload.begin(),
|
|
ElementsWithPayload.end(),
|
|
[&](const Element &e) { return e.decl == elt; });
|
|
if (payloadI != ElementsWithPayload.end()) {
|
|
unsigned index = payloadI - ElementsWithPayload.begin();
|
|
|
|
return storePayloadTag(IGF, enumAddr, index, T);
|
|
}
|
|
|
|
auto emptyI = std::find_if(ElementsWithNoPayload.begin(),
|
|
ElementsWithNoPayload.end(),
|
|
[&](const Element &e) { return e.decl == elt; });
|
|
assert(emptyI != ElementsWithNoPayload.end() && "case not in enum");
|
|
unsigned index = emptyI - ElementsWithNoPayload.begin();
|
|
|
|
// Use the runtime to store a dynamic tag. Empty tag values always follow
|
|
// the payloads.
|
|
storeNoPayloadTag(IGF, enumAddr, index, T);
|
|
}
|
|
|
|
Address destructiveProjectDataForLoad(IRGenFunction &IGF,
|
|
EnumElementDecl *elt,
|
|
Address enumAddr) const override {
|
|
auto payloadI = std::find_if(ElementsWithPayload.begin(),
|
|
ElementsWithPayload.end(),
|
|
[&](const Element &e) { return e.decl == elt; });
|
|
|
|
assert(payloadI != ElementsWithPayload.end() &&
|
|
"cannot project a no-payload case");
|
|
|
|
unsigned index = payloadI - ElementsWithPayload.begin();
|
|
|
|
preparePayloadForLoad(IGF, enumAddr, index);
|
|
|
|
// Payloads are all placed at the beginning of the value.
|
|
return IGF.Builder.CreateBitCast(enumAddr,
|
|
payloadI->ti->getStorageType()->getPointerTo());
|
|
}
|
|
|
|
llvm::Value *emitPayloadMetadataArrayForLayout(IRGenFunction &IGF,
|
|
SILType T) const {
|
|
auto numPayloads = ElementsWithPayload.size();
|
|
auto metadataBufferTy = llvm::ArrayType::get(IGF.IGM.TypeMetadataPtrTy,
|
|
numPayloads);
|
|
auto metadataBuffer = IGF.createAlloca(metadataBufferTy,
|
|
IGF.IGM.getPointerAlignment(),
|
|
"payload_types");
|
|
llvm::Value *firstAddr;
|
|
for (unsigned i = 0; i < numPayloads; ++i) {
|
|
auto &elt = ElementsWithPayload[i];
|
|
Address eltAddr = IGF.Builder.CreateStructGEP(metadataBuffer, i,
|
|
IGF.IGM.getPointerSize() * i);
|
|
if (i == 0) firstAddr = eltAddr.getAddress();
|
|
|
|
auto payloadTy = T.getEnumElementType(elt.decl, *IGF.IGM.SILMod);
|
|
|
|
auto metadata = IGF.emitTypeMetadataRefForLayout(payloadTy);
|
|
|
|
IGF.Builder.CreateStore(metadata, eltAddr);
|
|
}
|
|
|
|
return firstAddr;
|
|
}
|
|
|
|
void initializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable,
|
|
SILType T) const override {
|
|
// Fixed-size enums don't need dynamic metadata initialization.
|
|
if (TIK >= Fixed) return;
|
|
|
|
// Ask the runtime to set up the metadata record for a dynamic enum.
|
|
auto payloadMetadataArray = emitPayloadMetadataArrayForLayout(IGF, T);
|
|
auto numPayloadsVal = llvm::ConstantInt::get(IGF.IGM.SizeTy,
|
|
ElementsWithPayload.size());
|
|
|
|
IGF.Builder.CreateCall4(IGF.IGM.getInitEnumMetadataMultiPayloadFn(),
|
|
vwtable, metadata, numPayloadsVal,
|
|
payloadMetadataArray);
|
|
}
|
|
|
|
/// \group Extra inhabitants
|
|
|
|
// TODO
|
|
|
|
bool mayHaveExtraInhabitants(IRGenModule &) const override { return false; }
|
|
|
|
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
|
|
Address src,
|
|
SILType T) const override {
|
|
llvm_unreachable("extra inhabitants for multi-payload enums not implemented");
|
|
}
|
|
|
|
void storeExtraInhabitant(IRGenFunction &IGF,
|
|
llvm::Value *index,
|
|
Address dest,
|
|
SILType T) const override {
|
|
llvm_unreachable("extra inhabitants for multi-payload enums not implemented");
|
|
}
|
|
|
|
APInt
|
|
getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
|
|
// TODO may not always be all-ones
|
|
return APInt::getAllOnesValue(
|
|
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits());
|
|
}
|
|
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
return 0;
|
|
}
|
|
|
|
APInt
|
|
getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index) const override {
|
|
llvm_unreachable("extra inhabitants for multi-payload enums not implemented");
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitPatternForNoPayloadElement(IRGenModule &IGM,
|
|
EnumElementDecl *theCase) const override {
|
|
assert(TIK >= Fixed);
|
|
|
|
APInt payloadPart, extraPart;
|
|
|
|
auto emptyI = std::find_if(ElementsWithNoPayload.begin(),
|
|
ElementsWithNoPayload.end(),
|
|
[&](const Element &e) { return e.decl == theCase; });
|
|
assert(emptyI != ElementsWithNoPayload.end() && "case not in enum");
|
|
|
|
unsigned index = emptyI - ElementsWithNoPayload.begin();
|
|
|
|
std::tie(payloadPart, extraPart) = getNoPayloadCaseValue(IGM, index);
|
|
ClusteredBitVector bits;
|
|
|
|
if (CommonSpareBits.size() > 0)
|
|
bits = getBitVectorFromAPInt(payloadPart);
|
|
|
|
unsigned totalSize
|
|
= cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
|
|
if (ExtraTagBitCount > 0) {
|
|
ClusteredBitVector extraBits =
|
|
getBitVectorFromAPInt(extraPart, bits.size());
|
|
bits.extendWithClearBits(totalSize);
|
|
extraBits.extendWithClearBits(totalSize);
|
|
bits |= extraBits;
|
|
} else {
|
|
assert(totalSize == bits.size());
|
|
}
|
|
return bits;
|
|
}
|
|
|
|
ClusteredBitVector
|
|
getBitMaskForNoPayloadElements(IRGenModule &IGM) const override {
|
|
assert(TIK >= Fixed);
|
|
|
|
// All bits are significant.
|
|
// TODO: They don't have to be.
|
|
return ClusteredBitVector::getConstant(
|
|
cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits(),
|
|
true);
|
|
}
|
|
|
|
ClusteredBitVector getTagBitsForPayloads(IRGenModule &IGM) const override {
|
|
assert(TIK >= Fixed);
|
|
|
|
ClusteredBitVector result = PayloadTagBits;
|
|
|
|
unsigned totalSize
|
|
= cast<FixedTypeInfo>(TI)->getFixedSize().getValueInBits();
|
|
|
|
if (ExtraTagBitCount) {
|
|
result.appendSetBits(ExtraTagBitCount);
|
|
result.extendWithClearBits(totalSize);
|
|
} else {
|
|
assert(PayloadTagBits.size() == totalSize);
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
EnumImplStrategy *EnumImplStrategy::get(TypeConverter &TC,
|
|
SILType type,
|
|
EnumDecl *theEnum)
|
|
{
|
|
unsigned numElements = 0;
|
|
TypeInfoKind tik = Loadable;
|
|
std::vector<Element> elementsWithPayload;
|
|
std::vector<Element> elementsWithRecursivePayload;
|
|
std::vector<Element> elementsWithNoPayload;
|
|
|
|
bool constrainedByRuntimeLayout = false;
|
|
|
|
for (auto elt : theEnum->getAllElements()) {
|
|
numElements++;
|
|
|
|
// Compute whether this gives us an apparent payload or dynamic layout.
|
|
// Note that we do *not* apply substitutions from a bound generic instance
|
|
// yet. We want all instances of a generic enum to share an implementation
|
|
// strategy. If the abstract layout of the enum is dependent on generic
|
|
// parameters, then we additionally need to constrain any layout
|
|
// optimizations we perform to things that are reproducible by the runtime.
|
|
Type origArgType = elt->getArgumentType();
|
|
if (origArgType.isNull()) {
|
|
elementsWithNoPayload.push_back({elt, nullptr});
|
|
continue;
|
|
}
|
|
auto origArgLoweredTy = TC.IGM.SILMod->Types.getLoweredType(origArgType);
|
|
auto *origArgTI
|
|
= TC.tryGetCompleteTypeInfo(origArgLoweredTy.getSwiftRValueType());
|
|
if (!origArgTI) {
|
|
elementsWithRecursivePayload.push_back({elt, nullptr});
|
|
continue;
|
|
}
|
|
|
|
// If the unsubstituted argument is dependent, then we need to constrain
|
|
// our layout optimizations to what the runtime can reproduce.
|
|
if (!isa<FixedTypeInfo>(origArgTI))
|
|
constrainedByRuntimeLayout = true;
|
|
|
|
auto loadableOrigArgTI = dyn_cast<LoadableTypeInfo>(origArgTI);
|
|
if (loadableOrigArgTI && loadableOrigArgTI->isKnownEmpty()) {
|
|
elementsWithNoPayload.push_back({elt, nullptr});
|
|
} else {
|
|
// *Now* apply the substitutions and get the type info for the instance's
|
|
// payload type, since we know this case carries an apparent payload in
|
|
// the generic case.
|
|
SILType fieldTy = type.getEnumElementType(elt, *TC.IGM.SILMod);
|
|
auto *substArgTI = &TC.IGM.getTypeInfo(fieldTy);
|
|
|
|
elementsWithPayload.push_back({elt, substArgTI});
|
|
if (!substArgTI->isFixedSize())
|
|
tik = Opaque;
|
|
else if (!substArgTI->isLoadable() && tik > Fixed)
|
|
tik = Fixed;
|
|
}
|
|
}
|
|
|
|
// FIXME recursive enums
|
|
if (!elementsWithRecursivePayload.empty()) {
|
|
TC.IGM.fatal_unimplemented(theEnum->getLoc(), "recursive enum layout");
|
|
}
|
|
|
|
assert(numElements == elementsWithPayload.size()
|
|
+ elementsWithRecursivePayload.size()
|
|
+ elementsWithNoPayload.size()
|
|
&& "not all elements accounted for");
|
|
|
|
// Enums imported from Clang or marked with @objc use C-compatible layout.
|
|
if (theEnum->hasClangNode() || theEnum->isObjC()) {
|
|
assert(elementsWithPayload.size() == 0 && "C enum with payload?!");
|
|
return new CCompatibleEnumImplStrategy(TC.IGM, tik, numElements,
|
|
std::move(elementsWithPayload),
|
|
std::move(elementsWithRecursivePayload),
|
|
std::move(elementsWithNoPayload));
|
|
}
|
|
|
|
if (numElements <= 1)
|
|
return new SingletonEnumImplStrategy(TC.IGM, tik, numElements,
|
|
std::move(elementsWithPayload),
|
|
std::move(elementsWithRecursivePayload),
|
|
std::move(elementsWithNoPayload));
|
|
if (elementsWithPayload.size() > 1)
|
|
return new MultiPayloadEnumImplStrategy(TC.IGM, tik, numElements,
|
|
std::move(elementsWithPayload),
|
|
std::move(elementsWithRecursivePayload),
|
|
std::move(elementsWithNoPayload),
|
|
constrainedByRuntimeLayout);
|
|
if (elementsWithPayload.size() == 1)
|
|
return new SinglePayloadEnumImplStrategy(TC.IGM, tik, numElements,
|
|
std::move(elementsWithPayload),
|
|
std::move(elementsWithRecursivePayload),
|
|
std::move(elementsWithNoPayload));
|
|
|
|
return new NoPayloadEnumImplStrategy(TC.IGM, tik, numElements,
|
|
std::move(elementsWithPayload),
|
|
std::move(elementsWithRecursivePayload),
|
|
std::move(elementsWithNoPayload));
|
|
}
|
|
|
|
namespace {
|
|
/// Common base template for enum type infos.
|
|
template<typename BaseTypeInfo>
|
|
class EnumTypeInfoBase : public BaseTypeInfo {
|
|
public:
|
|
EnumImplStrategy &Strategy;
|
|
|
|
template<typename...AA>
|
|
EnumTypeInfoBase(EnumImplStrategy &strategy, AA &&...args)
|
|
: BaseTypeInfo(std::forward<AA>(args)...), Strategy(strategy) {}
|
|
|
|
llvm::StructType *getStorageType() const {
|
|
return cast<llvm::StructType>(TypeInfo::getStorageType());
|
|
}
|
|
|
|
/// \group Methods delegated to the EnumImplStrategy
|
|
|
|
void getSchema(ExplosionSchema &s) const override {
|
|
return Strategy.getSchema(s);
|
|
}
|
|
void destroy(IRGenFunction &IGF, Address addr, SILType T) const override {
|
|
return Strategy.destroy(IGF, addr, T);
|
|
}
|
|
bool isIndirectArgument() const override {
|
|
return Strategy.isIndirectArgument();
|
|
}
|
|
void initializeFromParams(IRGenFunction &IGF, Explosion ¶ms,
|
|
Address dest, SILType T) const override {
|
|
return Strategy.initializeFromParams(IGF, params, dest, T);
|
|
}
|
|
void initializeWithCopy(IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) const override {
|
|
return Strategy.initializeWithCopy(IGF, dest, src, T);
|
|
}
|
|
void initializeWithTake(IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) const override {
|
|
return Strategy.initializeWithTake(IGF, dest, src, T);
|
|
}
|
|
void assignWithCopy(IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) const override {
|
|
return Strategy.assignWithCopy(IGF, dest, src, T);
|
|
}
|
|
void assignWithTake(IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) const override {
|
|
return Strategy.assignWithTake(IGF, dest, src, T);
|
|
}
|
|
void initializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable,
|
|
SILType T) const override {
|
|
return Strategy.initializeMetadata(IGF, metadata, vwtable, T);
|
|
}
|
|
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
|
|
return Strategy.mayHaveExtraInhabitants(IGM);
|
|
}
|
|
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
|
|
Address src,
|
|
SILType T) const override {
|
|
return Strategy.getExtraInhabitantIndex(IGF, src, T);
|
|
}
|
|
void storeExtraInhabitant(IRGenFunction &IGF,
|
|
llvm::Value *index,
|
|
Address dest,
|
|
SILType T) const override {
|
|
return Strategy.storeExtraInhabitant(IGF, index, dest, T);
|
|
}
|
|
};
|
|
|
|
/// TypeInfo for fixed-layout, address-only enum types.
|
|
class FixedEnumTypeInfo : public EnumTypeInfoBase<FixedTypeInfo> {
|
|
public:
|
|
FixedEnumTypeInfo(EnumImplStrategy &strategy,
|
|
llvm::StructType *T, Size S, SpareBitVector SB,
|
|
Alignment A, IsPOD_t isPOD, IsBitwiseTakable_t isBT)
|
|
: EnumTypeInfoBase(strategy, T, S, std::move(SB), A, isPOD, isBT) {}
|
|
|
|
/// \group Methods delegated to the EnumImplStrategy
|
|
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
return Strategy.getFixedExtraInhabitantCount(IGM);
|
|
}
|
|
|
|
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index)
|
|
const override {
|
|
return Strategy.getFixedExtraInhabitantValue(IGM, bits, index);
|
|
}
|
|
};
|
|
|
|
/// TypeInfo for loadable enum types.
|
|
class LoadableEnumTypeInfo : public EnumTypeInfoBase<LoadableTypeInfo> {
|
|
public:
|
|
// FIXME: Derive spare bits from element layout.
|
|
LoadableEnumTypeInfo(EnumImplStrategy &strategy,
|
|
llvm::StructType *T, Size S, SpareBitVector SB,
|
|
Alignment A, IsPOD_t isPOD)
|
|
: EnumTypeInfoBase(strategy, T, S, std::move(SB), A, isPOD) {}
|
|
|
|
unsigned getExplosionSize() const override {
|
|
return Strategy.getExplosionSize();
|
|
}
|
|
void loadAsCopy(IRGenFunction &IGF, Address addr,
|
|
Explosion &e) const override {
|
|
return Strategy.loadAsCopy(IGF, addr, e);
|
|
}
|
|
void loadAsTake(IRGenFunction &IGF, Address addr,
|
|
Explosion &e) const override {
|
|
return Strategy.loadAsTake(IGF, addr, e);
|
|
}
|
|
void assign(IRGenFunction &IGF, Explosion &e,
|
|
Address addr) const override {
|
|
return Strategy.assign(IGF, e, addr);
|
|
}
|
|
void initialize(IRGenFunction &IGF, Explosion &e,
|
|
Address addr) const override {
|
|
return Strategy.initialize(IGF, e, addr);
|
|
}
|
|
void reexplode(IRGenFunction &IGF, Explosion &src,
|
|
Explosion &dest) const override {
|
|
return Strategy.reexplode(IGF, src, dest);
|
|
}
|
|
void copy(IRGenFunction &IGF, Explosion &src,
|
|
Explosion &dest) const override {
|
|
return Strategy.copy(IGF, src, dest);
|
|
}
|
|
void consume(IRGenFunction &IGF, Explosion &src) const override {
|
|
return Strategy.consume(IGF, src);
|
|
}
|
|
void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
|
|
return Strategy.fixLifetime(IGF, src);
|
|
}
|
|
void packIntoEnumPayload(IRGenFunction &IGF,
|
|
EnumPayload &payload,
|
|
Explosion &in,
|
|
unsigned offset) const override {
|
|
return Strategy.packIntoEnumPayload(IGF, payload, in, offset);
|
|
}
|
|
void unpackFromEnumPayload(IRGenFunction &IGF,
|
|
const EnumPayload &payload,
|
|
Explosion &dest,
|
|
unsigned offset) const override {
|
|
return Strategy.unpackFromEnumPayload(IGF, payload, dest, offset);
|
|
}
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
return Strategy.getFixedExtraInhabitantCount(IGM);
|
|
}
|
|
|
|
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index)
|
|
const override {
|
|
return Strategy.getFixedExtraInhabitantValue(IGM, bits, index);
|
|
}
|
|
|
|
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
|
|
return Strategy.getFixedExtraInhabitantMask(IGM);
|
|
}
|
|
LoadedRef loadRefcountedPtr(IRGenFunction &IGF,
|
|
SourceLoc loc, Address addr) const override {
|
|
return LoadedRef(Strategy.loadRefcountedPtr(IGF, loc, addr), false);
|
|
}
|
|
};
|
|
|
|
/// TypeInfo for dynamically-sized enum types.
|
|
class NonFixedEnumTypeInfo
|
|
: public EnumTypeInfoBase<WitnessSizedTypeInfo<NonFixedEnumTypeInfo>>
|
|
{
|
|
public:
|
|
NonFixedEnumTypeInfo(EnumImplStrategy &strategy,
|
|
llvm::Type *irTy,
|
|
Alignment align,
|
|
IsPOD_t pod,
|
|
IsBitwiseTakable_t bt)
|
|
: EnumTypeInfoBase(strategy, irTy, align, pod, bt) {}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
const EnumImplStrategy &
|
|
irgen::getEnumImplStrategy(IRGenModule &IGM, SILType ty) {
|
|
assert(ty.getEnumOrBoundGenericEnum() && "not an enum");
|
|
auto *ti = &IGM.getTypeInfo(ty);
|
|
if (auto *loadableTI = dyn_cast<LoadableTypeInfo>(ti))
|
|
return loadableTI->as<LoadableEnumTypeInfo>().Strategy;
|
|
if (auto *fti = dyn_cast<FixedTypeInfo>(ti))
|
|
return fti->as<FixedEnumTypeInfo>().Strategy;
|
|
return ti->as<NonFixedEnumTypeInfo>().Strategy;
|
|
}
|
|
|
|
const EnumImplStrategy &
|
|
irgen::getEnumImplStrategy(IRGenModule &IGM, CanType ty) {
|
|
// Nominal types are always preserved through SIL lowering.
|
|
return getEnumImplStrategy(IGM, SILType::getPrimitiveAddressType(ty));
|
|
}
|
|
|
|
TypeInfo *
|
|
EnumImplStrategy::getFixedEnumTypeInfo(llvm::StructType *T, Size S,
|
|
SpareBitVector SB,
|
|
Alignment A, IsPOD_t isPOD,
|
|
IsBitwiseTakable_t isBT) {
|
|
TypeInfo *mutableTI;
|
|
switch (TIK) {
|
|
case Opaque:
|
|
llvm_unreachable("not valid");
|
|
case Fixed:
|
|
mutableTI = new FixedEnumTypeInfo(*this, T, S, std::move(SB), A, isPOD, isBT);
|
|
break;
|
|
case Loadable:
|
|
assert(isBT && "loadable enum not bitwise takable?!");
|
|
mutableTI = new LoadableEnumTypeInfo(*this, T, S, std::move(SB), A, isPOD);
|
|
break;
|
|
}
|
|
TI = mutableTI;
|
|
return mutableTI;
|
|
}
|
|
|
|
TypeInfo *
|
|
SingletonEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
if (ElementsWithPayload.empty()) {
|
|
enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/ true);
|
|
Alignment alignment(1);
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/true,
|
|
alignment);
|
|
return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this, enumTy,
|
|
Size(0), {},
|
|
alignment,
|
|
IsPOD));
|
|
} else {
|
|
const TypeInfo &eltTI = *getSingleton();
|
|
|
|
// Use the singleton element's storage type if fixed-size.
|
|
if (eltTI.isFixedSize()) {
|
|
llvm::Type *body[] = { eltTI.StorageType };
|
|
enumTy->setBody(body, /*isPacked*/ true);
|
|
} else {
|
|
enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/ true);
|
|
}
|
|
|
|
if (TIK <= Opaque) {
|
|
auto alignment = eltTI.getBestKnownAlignment();
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/false,
|
|
alignment);
|
|
return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy,
|
|
alignment,
|
|
eltTI.isPOD(ResilienceScope::Local),
|
|
eltTI.isBitwiseTakable(ResilienceScope::Local)));
|
|
} else {
|
|
auto &fixedEltTI = cast<FixedTypeInfo>(eltTI);
|
|
auto alignment = fixedEltTI.getFixedAlignment();
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/true,
|
|
alignment);
|
|
return getFixedEnumTypeInfo(enumTy,
|
|
fixedEltTI.getFixedSize(),
|
|
fixedEltTI.getSpareBits(),
|
|
alignment,
|
|
fixedEltTI.isPOD(ResilienceScope::Local),
|
|
fixedEltTI.isBitwiseTakable(ResilienceScope::Local));
|
|
}
|
|
}
|
|
}
|
|
|
|
TypeInfo *
|
|
NoPayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
// Since there are no payloads, we need just enough bits to hold a
|
|
// discriminator.
|
|
unsigned tagBits = llvm::Log2_32(ElementsWithNoPayload.size() - 1) + 1;
|
|
auto tagTy = llvm::IntegerType::get(TC.IGM.getLLVMContext(), tagBits);
|
|
// Round the physical size up to the next power of two.
|
|
unsigned tagBytes = (tagBits + 7U)/8U;
|
|
if (!llvm::isPowerOf2_32(tagBytes))
|
|
tagBytes = llvm::NextPowerOf2(tagBytes);
|
|
Size tagSize(tagBytes);
|
|
|
|
llvm::Type *body[] = { tagTy };
|
|
enumTy->setBody(body, /*isPacked*/true);
|
|
|
|
// Unused tag bits in the physical size can be used as spare bits.
|
|
// TODO: We can use all values greater than the largest discriminator as
|
|
// extra inhabitants, not just those made available by spare bits.
|
|
SpareBitVector spareBits;
|
|
spareBits.appendClearBits(tagBits);
|
|
spareBits.extendWithSetBits(tagSize.getValueInBits());
|
|
|
|
Alignment alignment(tagBytes);
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/true,
|
|
alignment);
|
|
|
|
return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this,
|
|
enumTy, tagSize, std::move(spareBits),
|
|
alignment, IsPOD));
|
|
}
|
|
|
|
TypeInfo *
|
|
CCompatibleEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy){
|
|
// The type should have come from Clang or be @objc,
|
|
// and should have a raw type.
|
|
assert((theEnum->hasClangNode() || theEnum->isObjC())
|
|
&& "c-compatible enum didn't come from clang!");
|
|
assert(theEnum->hasRawType()
|
|
&& "c-compatible enum doesn't have raw type!");
|
|
assert(!theEnum->getDeclaredTypeInContext()->is<BoundGenericType>()
|
|
&& "c-compatible enum is generic!");
|
|
|
|
// The raw type should be a C integer type, which should have a single
|
|
// scalar representation as a Swift struct. We'll use that same
|
|
// representation type for the enum so that it's ABI-compatible.
|
|
auto &rawTI = TC.getCompleteTypeInfo(
|
|
theEnum->getRawType()->getCanonicalType());
|
|
auto &rawFixedTI = cast<FixedTypeInfo>(rawTI);
|
|
assert(rawFixedTI.isPOD(ResilienceScope::Component)
|
|
&& "c-compatible raw type isn't POD?!");
|
|
ExplosionSchema rawSchema = rawTI.getSchema();
|
|
assert(rawSchema.size() == 1
|
|
&& "c-compatible raw type has non-single-scalar representation?!");
|
|
assert(rawSchema.begin()[0].isScalar()
|
|
&& "c-compatible raw type has non-single-scalar representation?!");
|
|
llvm::Type *tagTy = rawSchema.begin()[0].getScalarType();
|
|
|
|
llvm::Type *body[] = { tagTy };
|
|
enumTy->setBody(body, /*isPacked*/ false);
|
|
|
|
auto alignment = rawFixedTI.getFixedAlignment();
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/true,
|
|
alignment);
|
|
|
|
return registerEnumTypeInfo(new LoadableEnumTypeInfo(*this, enumTy,
|
|
rawFixedTI.getFixedSize(),
|
|
rawFixedTI.getSpareBits(),
|
|
alignment,
|
|
IsPOD));
|
|
}
|
|
|
|
TypeInfo *SinglePayloadEnumImplStrategy::completeFixedLayout(
|
|
TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
// See whether the payload case's type has extra inhabitants.
|
|
unsigned fixedExtraInhabitants = 0;
|
|
unsigned numTags = ElementsWithNoPayload.size();
|
|
|
|
auto &payloadTI = getFixedPayloadTypeInfo(); // FIXME non-fixed payload
|
|
fixedExtraInhabitants = payloadTI.getFixedExtraInhabitantCount(TC.IGM);
|
|
|
|
// Determine how many tag bits we need. Given N extra inhabitants, we
|
|
// represent the first N tags using those inhabitants. For additional tags,
|
|
// we use discriminator bit(s) to inhabit the full bit size of the payload.
|
|
NumExtraInhabitantTagValues = std::min(numTags, fixedExtraInhabitants);
|
|
|
|
unsigned tagsWithoutInhabitants = numTags - NumExtraInhabitantTagValues;
|
|
if (tagsWithoutInhabitants == 0) {
|
|
ExtraTagBitCount = 0;
|
|
NumExtraTagValues = 0;
|
|
// If the payload size is greater than 32 bits, the calculation would
|
|
// overflow, but one tag bit should suffice. if you have more than 2^32
|
|
// enum discriminators you have other problems.
|
|
} else if (payloadTI.getFixedSize().getValue() >= 4) {
|
|
ExtraTagBitCount = 1;
|
|
NumExtraTagValues = 2;
|
|
} else {
|
|
unsigned tagsPerTagBitValue =
|
|
1 << payloadTI.getFixedSize().getValueInBits();
|
|
NumExtraTagValues
|
|
= (tagsWithoutInhabitants+(tagsPerTagBitValue-1))/tagsPerTagBitValue+1;
|
|
ExtraTagBitCount = llvm::Log2_32(NumExtraTagValues-1) + 1;
|
|
}
|
|
|
|
// Create the body type.
|
|
setTaggedEnumBody(TC.IGM, enumTy,
|
|
payloadTI.getFixedSize().getValueInBits(),
|
|
ExtraTagBitCount);
|
|
|
|
// The enum has the alignment of the payload. The size includes the added
|
|
// tag bits.
|
|
auto sizeWithTag = payloadTI.getFixedSize().getValue();
|
|
unsigned extraTagByteCount = (ExtraTagBitCount+7U)/8U;
|
|
sizeWithTag += extraTagByteCount;
|
|
|
|
// FIXME: We don't have enough semantic understanding of extra inhabitant
|
|
// sets to be able to reason about how many spare bits from the payload type
|
|
// we can forward. If we spilled tag bits, however, we can offer the unused
|
|
// bits we have in that byte.
|
|
SpareBitVector spareBits;
|
|
spareBits.appendClearBits(payloadTI.getFixedSize().getValueInBits());
|
|
if (ExtraTagBitCount > 0) {
|
|
spareBits.appendClearBits(ExtraTagBitCount);
|
|
spareBits.appendSetBits(extraTagByteCount * 8 - ExtraTagBitCount);
|
|
}
|
|
|
|
auto alignment = payloadTI.getFixedAlignment();
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/true,
|
|
alignment);
|
|
|
|
return getFixedEnumTypeInfo(enumTy, Size(sizeWithTag), std::move(spareBits),
|
|
alignment,
|
|
payloadTI.isPOD(ResilienceScope::Component),
|
|
payloadTI.isBitwiseTakable(ResilienceScope::Component));
|
|
}
|
|
|
|
TypeInfo *SinglePayloadEnumImplStrategy::completeDynamicLayout(
|
|
TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
// The body is runtime-dependent, so we can't put anything useful here
|
|
// statically.
|
|
enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/true);
|
|
|
|
// Layout has to be done when the value witness table is instantiated,
|
|
// during initializeMetadata.
|
|
auto &payloadTI = getPayloadTypeInfo();
|
|
auto alignment = payloadTI.getBestKnownAlignment();
|
|
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/false,
|
|
alignment);
|
|
|
|
return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy,
|
|
alignment,
|
|
payloadTI.isPOD(ResilienceScope::Component),
|
|
payloadTI.isBitwiseTakable(ResilienceScope::Component)));
|
|
}
|
|
|
|
TypeInfo *
|
|
SinglePayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
if (TIK >= Fixed)
|
|
return completeFixedLayout(TC, type, theEnum, enumTy);
|
|
return completeDynamicLayout(TC, type, theEnum, enumTy);
|
|
}
|
|
|
|
TypeInfo *
|
|
MultiPayloadEnumImplStrategy::completeFixedLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
// We need tags for each of the payload types, which we may be able to form
|
|
// using spare bits, plus a minimal number of tags with which we can
|
|
// represent the empty cases.
|
|
unsigned numPayloadTags = ElementsWithPayload.size();
|
|
unsigned numEmptyElements = ElementsWithNoPayload.size();
|
|
|
|
// See if the payload types have any spare bits in common.
|
|
// At the end of the loop CommonSpareBits.size() will be the size (in bits)
|
|
// of the largest payload.
|
|
CommonSpareBits = {};
|
|
Alignment worstAlignment(1);
|
|
IsPOD_t isPOD = IsPOD;
|
|
IsBitwiseTakable_t isBT = IsBitwiseTakable;
|
|
for (auto &elt : ElementsWithPayload) {
|
|
auto &fixedPayloadTI = cast<FixedTypeInfo>(*elt.ti); // FIXME
|
|
if (fixedPayloadTI.getFixedAlignment() > worstAlignment)
|
|
worstAlignment = fixedPayloadTI.getFixedAlignment();
|
|
if (!fixedPayloadTI.isPOD(ResilienceScope::Component))
|
|
isPOD = IsNotPOD;
|
|
if (!fixedPayloadTI.isBitwiseTakable(ResilienceScope::Component))
|
|
isBT = IsNotBitwiseTakable;
|
|
|
|
unsigned payloadBits = fixedPayloadTI.getFixedSize().getValueInBits();
|
|
|
|
// See what spare bits from the payload we can use for layout optimization.
|
|
|
|
// The runtime currently does not track spare bits, so we can't use them
|
|
// if the type is layout-dependent. (Even when the runtime does, it will
|
|
// likely only track a subset of the spare bits.)
|
|
if (ConstrainedByRuntimeLayout) {
|
|
if (CommonSpareBits.size() < payloadBits)
|
|
CommonSpareBits.extendWithClearBits(payloadBits);
|
|
continue;
|
|
}
|
|
|
|
// As a hack, if the payload type is generic, don't use any spare bits
|
|
// from it, even if our concrete instance has them. We don't want varying
|
|
// spare bits between ObjC and Swift class references to introduce dynamic
|
|
// layout; that's a lot of overhead in generic code for little gain.
|
|
// There's a corresponding hack in TypeConverter::convertArchetypeType to
|
|
// give class archetypes no spare bits.
|
|
if (elt.decl->getInterfaceType()->isDependentType()) {
|
|
FixedTypeInfo::applyFixedSpareBitsMask(CommonSpareBits,
|
|
SpareBitVector::getConstant(payloadBits, false));
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have no constraints on what spare bits we can use.
|
|
fixedPayloadTI.applyFixedSpareBitsMask(CommonSpareBits);
|
|
}
|
|
|
|
unsigned commonSpareBitCount = CommonSpareBits.count();
|
|
unsigned usedBitCount = CommonSpareBits.size() - commonSpareBitCount;
|
|
|
|
// Determine how many tags we need to accommodate the empty cases, if any.
|
|
if (ElementsWithNoPayload.empty()) {
|
|
NumEmptyElementTags = 0;
|
|
} else {
|
|
// We can store tags for the empty elements using the inhabited bits with
|
|
// their own tag(s).
|
|
if (usedBitCount >= 32) {
|
|
NumEmptyElementTags = 1;
|
|
} else {
|
|
unsigned emptyElementsPerTag = 1 << usedBitCount;
|
|
NumEmptyElementTags
|
|
= (numEmptyElements + (emptyElementsPerTag-1))/emptyElementsPerTag;
|
|
}
|
|
}
|
|
|
|
unsigned numTags = numPayloadTags + NumEmptyElementTags;
|
|
unsigned numTagBits = llvm::Log2_32(numTags-1) + 1;
|
|
ExtraTagBitCount = numTagBits <= commonSpareBitCount
|
|
? 0 : numTagBits - commonSpareBitCount;
|
|
NumExtraTagValues = numTags >> commonSpareBitCount;
|
|
|
|
// Create the type. We need enough bits to store the largest payload plus
|
|
// extra tag bits we need.
|
|
setTaggedEnumBody(TC.IGM, enumTy,
|
|
CommonSpareBits.size(),
|
|
ExtraTagBitCount);
|
|
|
|
// The enum has the worst alignment of its payloads. The size includes the
|
|
// added tag bits.
|
|
auto sizeWithTag = (CommonSpareBits.size() + 7U)/8U;
|
|
unsigned extraTagByteCount = (ExtraTagBitCount+7U)/8U;
|
|
sizeWithTag += extraTagByteCount;
|
|
|
|
SpareBitVector spareBits;
|
|
|
|
// Determine the bits we're going to use for the tag.
|
|
assert(PayloadTagBits.empty());
|
|
|
|
// The easiest case is if we're going to use all of the available
|
|
// payload tag bits (plus potentially some extra bits), because we
|
|
// can just straight-up use CommonSpareBits as that bitset.
|
|
if (numTagBits >= commonSpareBitCount) {
|
|
PayloadTagBits = CommonSpareBits;
|
|
|
|
// We're using all of the common spare bits as tag bits, so none
|
|
// of them are spare; nor are the extra tag bits.
|
|
spareBits.appendClearBits(CommonSpareBits.size() + ExtraTagBitCount);
|
|
|
|
// The remaining bits in the extra tag bytes are spare.
|
|
spareBits.appendSetBits(extraTagByteCount * 8 - ExtraTagBitCount);
|
|
|
|
// Otherwise, we need to construct a new bitset that doesn't
|
|
// include the bits we aren't using.
|
|
} else {
|
|
assert(ExtraTagBitCount == 0
|
|
&& "spilled extra tag bits with spare bits available?!");
|
|
PayloadTagBits =
|
|
ClusteredBitVector::getConstant(CommonSpareBits.size(), false);
|
|
|
|
// Start the spare bit set using all the common spare bits.
|
|
spareBits = CommonSpareBits;
|
|
|
|
// Mark the bits we'll use as occupied in both bitsets.
|
|
// We take bits starting from the most significant.
|
|
unsigned remainingTagBits = numTagBits;
|
|
for (unsigned bit = CommonSpareBits.size() - 1; true; --bit) {
|
|
if (!CommonSpareBits[bit]) {
|
|
assert(bit > 0 && "ran out of spare bits?!");
|
|
continue;
|
|
}
|
|
|
|
// Use this bit as a payload tag bit.
|
|
PayloadTagBits.setBit(bit);
|
|
|
|
// A bit used as a payload tag bit is not a spare bit.
|
|
spareBits.clearBit(bit);
|
|
|
|
if (--remainingTagBits == 0) break;
|
|
assert(bit > 0 && "ran out of spare bits?!");
|
|
}
|
|
assert(PayloadTagBits.count() == numTagBits);
|
|
}
|
|
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/ true,
|
|
worstAlignment);
|
|
|
|
return getFixedEnumTypeInfo(enumTy, Size(sizeWithTag), std::move(spareBits),
|
|
worstAlignment, isPOD, isBT);
|
|
}
|
|
|
|
|
|
TypeInfo *MultiPayloadEnumImplStrategy::completeDynamicLayout(
|
|
TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
// The body is runtime-dependent, so we can't put anything useful here
|
|
// statically.
|
|
enumTy->setBody(ArrayRef<llvm::Type*>{}, /*isPacked*/true);
|
|
|
|
// Layout has to be done when the value witness table is instantiated,
|
|
// during initializeMetadata. We can at least glean the best available
|
|
// static information from the payloads.
|
|
Alignment alignment(1);
|
|
IsPOD_t pod = IsPOD;
|
|
IsBitwiseTakable_t bt = IsBitwiseTakable;
|
|
for (auto &element : ElementsWithPayload) {
|
|
auto &payloadTI = *element.ti;
|
|
alignment = std::max(alignment, payloadTI.getBestKnownAlignment());
|
|
pod &= payloadTI.isPOD(ResilienceScope::Component);
|
|
bt &= payloadTI.isBitwiseTakable(ResilienceScope::Component);
|
|
}
|
|
|
|
applyLayoutAttributes(TC.IGM, Type.getSwiftRValueType(), /*fixed*/false,
|
|
alignment);
|
|
|
|
return registerEnumTypeInfo(new NonFixedEnumTypeInfo(*this, enumTy,
|
|
alignment, pod, bt));
|
|
}
|
|
|
|
TypeInfo *
|
|
MultiPayloadEnumImplStrategy::completeEnumTypeLayout(TypeConverter &TC,
|
|
SILType Type,
|
|
EnumDecl *theEnum,
|
|
llvm::StructType *enumTy) {
|
|
if (TIK >= Fixed)
|
|
return completeFixedLayout(TC, Type, theEnum, enumTy);
|
|
|
|
return completeDynamicLayout(TC, Type, theEnum, enumTy);
|
|
}
|
|
|
|
const TypeInfo *TypeConverter::convertEnumType(TypeBase *key, CanType type,
|
|
EnumDecl *theEnum) {
|
|
llvm::StructType *convertedStruct = IGM.createNominalType(theEnum);
|
|
|
|
// Create a forward declaration for that type.
|
|
addForwardDecl(key, convertedStruct);
|
|
|
|
SILType loweredTy = SILType::getPrimitiveAddressType(type);
|
|
|
|
// Determine the implementation strategy.
|
|
EnumImplStrategy *strategy = EnumImplStrategy::get(*this, loweredTy, theEnum);
|
|
|
|
// Create the TI.
|
|
auto *ti = strategy->completeEnumTypeLayout(*this, loweredTy,
|
|
theEnum, convertedStruct);
|
|
// Assert that the layout query functions for fixed-layout enums work, for
|
|
// LLDB's sake.
|
|
#ifndef NDEBUG
|
|
auto displayBitMask = [&](const SpareBitVector &v) {
|
|
for (unsigned i = v.size(); i-- > 0;) {
|
|
llvm::dbgs() << (v[i] ? '1' : '0');
|
|
if (i % 8 == 0 && i != 0)
|
|
llvm::dbgs() << '_';
|
|
}
|
|
llvm::dbgs() << '\n';
|
|
};
|
|
|
|
if (auto fixedTI = dyn_cast<FixedTypeInfo>(ti)) {
|
|
DEBUG(llvm::dbgs() << "Layout for enum ";
|
|
type->print(llvm::dbgs());
|
|
llvm::dbgs() << ":\n";);
|
|
|
|
SpareBitVector spareBits;
|
|
fixedTI->applyFixedSpareBitsMask(spareBits);
|
|
|
|
auto bitMask = strategy->getBitMaskForNoPayloadElements(IGM);
|
|
assert(bitMask.size() == fixedTI->getFixedSize().getValueInBits());
|
|
DEBUG(llvm::dbgs() << " no-payload mask:\t";
|
|
displayBitMask(bitMask));
|
|
DEBUG(llvm::dbgs() << " spare bits mask:\t";
|
|
displayBitMask(spareBits));
|
|
|
|
for (auto &elt : strategy->getElementsWithNoPayload()) {
|
|
auto bitPattern = strategy->getBitPatternForNoPayloadElement(IGM, elt.decl);
|
|
assert(bitPattern.size() == fixedTI->getFixedSize().getValueInBits());
|
|
DEBUG(llvm::dbgs() << " no-payload case " << elt.decl->getName().str()
|
|
<< ":\t";
|
|
displayBitMask(bitPattern));
|
|
|
|
auto maskedBitPattern = bitPattern;
|
|
maskedBitPattern &= spareBits;
|
|
assert(maskedBitPattern.none() && "no-payload case occupies spare bits?!");
|
|
}
|
|
auto tagBits = strategy->getTagBitsForPayloads(IGM);
|
|
assert(tagBits.count() >= 32
|
|
|| (1U << tagBits.count())
|
|
>= strategy->getElementsWithPayload().size());
|
|
DEBUG(llvm::dbgs() << " payload tag bits:\t";
|
|
displayBitMask(tagBits));
|
|
|
|
tagBits &= spareBits;
|
|
assert(tagBits.none() && "tag bits overlap spare bits?!");
|
|
}
|
|
#endif
|
|
return ti;
|
|
}
|
|
|
|
void IRGenModule::emitEnumDecl(EnumDecl *theEnum) {
|
|
emitEnumMetadata(*this, theEnum);
|
|
emitNestedTypeDecls(theEnum->getMembers());
|
|
}
|
|
|
|
void irgen::emitSwitchAddressOnlyEnumDispatch(IRGenFunction &IGF,
|
|
SILType enumTy,
|
|
Address enumAddr,
|
|
ArrayRef<std::pair<EnumElementDecl *,
|
|
llvm::BasicBlock *>> dests,
|
|
llvm::BasicBlock *defaultDest) {
|
|
auto &strategy = getEnumImplStrategy(IGF.IGM, enumTy);
|
|
strategy.emitIndirectSwitch(IGF, enumTy,
|
|
enumAddr, dests, defaultDest);
|
|
}
|
|
|
|
void irgen::emitInjectLoadableEnum(IRGenFunction &IGF, SILType enumTy,
|
|
EnumElementDecl *theCase,
|
|
Explosion &data,
|
|
Explosion &out) {
|
|
getEnumImplStrategy(IGF.IGM, enumTy)
|
|
.emitValueInjection(IGF, theCase, data, out);
|
|
}
|
|
|
|
void irgen::emitProjectLoadableEnum(IRGenFunction &IGF, SILType enumTy,
|
|
Explosion &inEnumValue,
|
|
EnumElementDecl *theCase,
|
|
Explosion &out) {
|
|
getEnumImplStrategy(IGF.IGM, enumTy)
|
|
.emitValueProject(IGF, inEnumValue, theCase, out);
|
|
}
|
|
|
|
Address irgen::emitProjectEnumAddressForStore(IRGenFunction &IGF,
|
|
SILType enumTy,
|
|
Address enumAddr,
|
|
EnumElementDecl *theCase) {
|
|
return getEnumImplStrategy(IGF.IGM, enumTy)
|
|
.projectDataForStore(IGF, theCase, enumAddr);
|
|
}
|
|
|
|
Address irgen::emitDestructiveProjectEnumAddressForLoad(IRGenFunction &IGF,
|
|
SILType enumTy,
|
|
Address enumAddr,
|
|
EnumElementDecl *theCase) {
|
|
return getEnumImplStrategy(IGF.IGM, enumTy)
|
|
.destructiveProjectDataForLoad(IGF, theCase, enumAddr);
|
|
}
|
|
|
|
void irgen::emitStoreEnumTagToAddress(IRGenFunction &IGF,
|
|
SILType enumTy,
|
|
Address enumAddr,
|
|
EnumElementDecl *theCase) {
|
|
getEnumImplStrategy(IGF.IGM, enumTy)
|
|
.storeTag(IGF, theCase, enumAddr, enumTy);
|
|
}
|
|
|
|
/// Gather spare bits into the low bits of a smaller integer value.
|
|
llvm::Value *irgen::emitGatherSpareBits(IRGenFunction &IGF,
|
|
const SpareBitVector &spareBitMask,
|
|
llvm::Value *spareBits,
|
|
unsigned resultLowBit,
|
|
unsigned resultBitWidth) {
|
|
auto destTy
|
|
= llvm::IntegerType::get(IGF.IGM.getLLVMContext(), resultBitWidth);
|
|
unsigned usedBits = resultLowBit;
|
|
llvm::Value *result = nullptr;
|
|
|
|
auto spareBitEnumeration = spareBitMask.enumerateSetBits();
|
|
for (auto optSpareBit = spareBitEnumeration.findNext();
|
|
optSpareBit.hasValue() && usedBits < resultBitWidth;
|
|
optSpareBit = spareBitEnumeration.findNext()) {
|
|
unsigned u = optSpareBit.getValue();
|
|
assert(u >= (usedBits - resultLowBit) &&
|
|
"used more bits than we've processed?!");
|
|
|
|
// Shift the bits into place.
|
|
llvm::Value *newBits;
|
|
if (u > usedBits)
|
|
newBits = IGF.Builder.CreateLShr(spareBits, u - usedBits);
|
|
else if (u < usedBits)
|
|
newBits = IGF.Builder.CreateShl(spareBits, usedBits - u);
|
|
else
|
|
newBits = spareBits;
|
|
newBits = IGF.Builder.CreateZExtOrTrunc(newBits, destTy);
|
|
|
|
// See how many consecutive bits we have.
|
|
unsigned numBits = 1;
|
|
++u;
|
|
// We don't need more bits than the size of the result.
|
|
unsigned maxBits = resultBitWidth - usedBits;
|
|
for (unsigned e = spareBitMask.size();
|
|
u < e && numBits < maxBits && spareBitMask[u];
|
|
++u) {
|
|
++numBits;
|
|
(void) spareBitEnumeration.findNext();
|
|
}
|
|
|
|
// Mask out the selected bits.
|
|
auto val = APInt::getAllOnesValue(numBits);
|
|
if (numBits < resultBitWidth)
|
|
val = val.zext(resultBitWidth);
|
|
val = val.shl(usedBits);
|
|
auto *mask = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), val);
|
|
newBits = IGF.Builder.CreateAnd(newBits, mask);
|
|
|
|
// Accumulate the result.
|
|
if (result)
|
|
result = IGF.Builder.CreateOr(result, newBits);
|
|
else
|
|
result = newBits;
|
|
|
|
usedBits += numBits;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Scatter spare bits from the low bits of an integer value.
|
|
llvm::Value *irgen::emitScatterSpareBits(IRGenFunction &IGF,
|
|
const SpareBitVector &spareBitMask,
|
|
llvm::Value *packedBits,
|
|
unsigned packedLowBit) {
|
|
auto destTy
|
|
= llvm::IntegerType::get(IGF.IGM.getLLVMContext(), spareBitMask.size());
|
|
llvm::Value *result = nullptr;
|
|
unsigned usedBits = packedLowBit;
|
|
|
|
// Expand the packed bits to the destination type.
|
|
packedBits = IGF.Builder.CreateZExtOrTrunc(packedBits, destTy);
|
|
|
|
auto spareBitEnumeration = spareBitMask.enumerateSetBits();
|
|
for (auto nextSpareBit = spareBitEnumeration.findNext();
|
|
nextSpareBit.hasValue();
|
|
nextSpareBit = spareBitEnumeration.findNext()) {
|
|
unsigned u = nextSpareBit.getValue(), startBit = u;
|
|
assert(u >= usedBits - packedLowBit
|
|
&& "used more bits than we've processed?!");
|
|
|
|
// Shift the selected bits into place.
|
|
llvm::Value *newBits;
|
|
if (u > usedBits)
|
|
newBits = IGF.Builder.CreateShl(packedBits, u - usedBits);
|
|
else if (u < usedBits)
|
|
newBits = IGF.Builder.CreateLShr(packedBits, usedBits - u);
|
|
else
|
|
newBits = packedBits;
|
|
|
|
// See how many consecutive bits we have.
|
|
unsigned numBits = 1;
|
|
++u;
|
|
for (unsigned e = spareBitMask.size(); u < e && spareBitMask[u]; ++u) {
|
|
++numBits;
|
|
auto nextBit = spareBitEnumeration.findNext(); (void) nextBit;
|
|
assert(nextBit.hasValue());
|
|
}
|
|
|
|
// Mask out the selected bits.
|
|
auto val = APInt::getAllOnesValue(numBits);
|
|
if (numBits < spareBitMask.size())
|
|
val = val.zext(spareBitMask.size());
|
|
val = val.shl(startBit);
|
|
auto mask = llvm::ConstantInt::get(IGF.IGM.getLLVMContext(), val);
|
|
newBits = IGF.Builder.CreateAnd(newBits, mask);
|
|
|
|
// Accumulate the result.
|
|
if (result)
|
|
result = IGF.Builder.CreateOr(result, newBits);
|
|
else
|
|
result = newBits;
|
|
|
|
usedBits += numBits;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Interleave the occupiedValue and spareValue bits, taking a bit from one
|
|
/// or the other at each position based on the spareBits mask.
|
|
APInt
|
|
irgen::interleaveSpareBits(IRGenModule &IGM, const SpareBitVector &spareBits,
|
|
unsigned bits,
|
|
unsigned spareValue, unsigned occupiedValue) {
|
|
// FIXME: endianness.
|
|
SmallVector<llvm::integerPart, 2> valueParts;
|
|
valueParts.push_back(0);
|
|
|
|
llvm::integerPart valueBit = 1;
|
|
auto advanceValueBit = [&]{
|
|
valueBit <<= 1;
|
|
if (valueBit == 0) {
|
|
valueParts.push_back(0);
|
|
valueBit = 1;
|
|
}
|
|
};
|
|
|
|
for (unsigned i = 0, e = spareBits.size();
|
|
(occupiedValue || spareValue) && i < e;
|
|
++i, advanceValueBit()) {
|
|
if (spareBits[i]) {
|
|
if (spareValue & 1)
|
|
valueParts.back() |= valueBit;
|
|
spareValue >>= 1;
|
|
} else {
|
|
if (occupiedValue & 1)
|
|
valueParts.back() |= valueBit;
|
|
occupiedValue >>= 1;
|
|
}
|
|
}
|
|
|
|
// Create the value.
|
|
return llvm::APInt(bits, valueParts);
|
|
}
|
|
|
|
static void setAlignmentBits(SpareBitVector &v, Alignment align) {
|
|
auto value = align.getValue() >> 1;
|
|
for (unsigned i = 0; value; ++i, value >>= 1) {
|
|
v.setBit(i);
|
|
}
|
|
}
|
|
|
|
const SpareBitVector &
|
|
IRGenModule::getHeapObjectSpareBits() const {
|
|
if (!HeapPointerSpareBits) {
|
|
// Start with the spare bit mask for all pointers.
|
|
HeapPointerSpareBits = TargetInfo.PointerSpareBits;
|
|
|
|
// Low bits are made available by heap object alignment.
|
|
setAlignmentBits(*HeapPointerSpareBits, TargetInfo.HeapObjectAlignment);
|
|
}
|
|
return *HeapPointerSpareBits;
|
|
}
|
|
|
|
const SpareBitVector &
|
|
IRGenModule::getFunctionPointerSpareBits() const {
|
|
return TargetInfo.FunctionPointerSpareBits;
|
|
}
|