Files
swift-mirror/lib/Sema/ConstraintGraph.cpp
Doug Gregor c63529483d Fix verification of the constraint graph
Swift SVN r10910
2013-12-06 04:31:17 +00:00

700 lines
24 KiB
C++

//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c ConstraintGraph class, which describes the
// relationships among the type variables within a constraint system.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintSystem.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <memory>
#include <numeric>
using namespace swift;
using namespace constraints;
#pragma mark Graph construction/destruction
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
ConstraintGraph::~ConstraintGraph() {
for (auto node : Nodes) {
delete node.second.NodePtr;
}
}
#pragma mark Helper functions
/// Recursively gather the set of type variables referenced by this constraint.
static void
gatherReferencedTypeVarsRec(ConstraintSystem &cs,
Constraint *constraint,
SmallVectorImpl<TypeVariableType *> &typeVars) {
switch (constraint->getKind()) {
case ConstraintKind::Conjunction:
case ConstraintKind::Disjunction:
for (auto nested : constraint->getNestedConstraints())
gatherReferencedTypeVarsRec(cs, nested, typeVars);
return;
case ConstraintKind::ApplicableFunction:
case ConstraintKind::Bind:
case ConstraintKind::Construction:
case ConstraintKind::Conversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::TrivialSubtype:
case ConstraintKind::TypeMember:
case ConstraintKind::ValueMember:
constraint->getSecondType()->getTypeVariables(typeVars);
SWIFT_FALLTHROUGH;
case ConstraintKind::Archetype:
case ConstraintKind::BindOverload:
case ConstraintKind::Class:
case ConstraintKind::ConformsTo:
case ConstraintKind::DynamicLookupValue:
case ConstraintKind::SelfObjectOfProtocol:
constraint->getFirstType()->getTypeVariables(typeVars);
// Special case: the base type of an overloading binding.
if (constraint->getKind() == ConstraintKind::BindOverload) {
if (auto baseType = constraint->getOverloadChoice().getBaseType()) {
baseType->getTypeVariables(typeVars);
}
}
break;
}
}
/// Gather and unique the set of type variables referenced by this constraint.
static void
gatherReferencedTypeVars(ConstraintSystem &cs,
Constraint *constraint,
SmallVectorImpl<TypeVariableType *> &typeVars) {
// Gather all of the referenced type variables.
gatherReferencedTypeVarsRec(cs, constraint, typeVars);
// Remove any duplicate type variables.
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
typeVars.erase(std::remove_if(typeVars.begin(), typeVars.end(),
[&](TypeVariableType *typeVar) {
return !knownTypeVars.insert(typeVar);
}),
typeVars.end());
}
#pragma mark Graph accessors
std::pair<ConstraintGraph::Node &, unsigned>
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
// Check whether we've already created a node for this type variable.
auto known = Nodes.find(typeVar);
if (known != Nodes.end()) {
assert(known->second.NodePtr && "Missing node pointer?");
return { *known->second.NodePtr, known->second.Index };
}
// Allocate the new node.
StoredNode &stored = Nodes[typeVar];
stored.NodePtr = new Node(typeVar);
stored.Index = TypeVariables.size();
// Record this type variable.
TypeVariables.push_back(typeVar);
// If this type variable is not the representative of its equivalence class,
// add it to its representative's set of equivalences.
auto typeVarRep = CS.getRepresentative(typeVar);
if (typeVar != typeVarRep)
(*this)[typeVarRep].addToEquivalenceClass(typeVar);
else {
// If this type variable has a fixed type binding that involves other
// type variables, notify those type variables.
if (auto fixed = CS.getFixedType(typeVarRep)) {
if (fixed->hasTypeVariable()) {
SmallVector<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
fixed->getTypeVariables(typeVars);
for (auto otherTypeVar : typeVars) {
if (knownTypeVars.insert(otherTypeVar)) {
(*this)[otherTypeVar].addFixedBinding(typeVar);
stored.NodePtr->addFixedBinding(otherTypeVar);
}
}
}
}
}
return { *stored.NodePtr, stored.Index };
}
ArrayRef<TypeVariableType *> ConstraintGraph::Node::getEquivalenceClass() const{
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't request equivalence class from non-representative type var");
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
return EquivalenceClass;
}
#pragma mark Node mutation
void ConstraintGraph::Node::addConstraint(Constraint *constraint) {
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
ConstraintIndex[constraint] = Constraints.size();
Constraints.push_back(constraint);
}
void ConstraintGraph::Node::removeConstraint(Constraint *constraint) {
auto pos = ConstraintIndex.find(constraint);
assert(pos != ConstraintIndex.end());
// Remove this constraint from the constraint mapping.
auto index = pos->second;
ConstraintIndex.erase(pos);
assert(Constraints[index] == constraint && "Mismatched constraint");
// If this is the last constraint, just pop it off the list and we're done.
unsigned lastIndex = Constraints.size()-1;
if (index == lastIndex) {
Constraints.pop_back();
return;
}
// This constraint is somewhere in the middle; swap it with the last
// constraint, so we can remove the constraint from the vector in O(1)
// time rather than O(n) time.
auto lastConstraint = Constraints[lastIndex];
Constraints[index] = lastConstraint;
ConstraintIndex[lastConstraint] = index;
Constraints.pop_back();
}
ConstraintGraph::Node::Adjacency &
ConstraintGraph::Node::getAdjacency(TypeVariableType *typeVar) {
assert(typeVar != TypeVar && "Cannot be adjacent to oneself");
// Look for existing adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
if (pos != AdjacencyInfo.end())
return pos->second;
// If we weren't already adjacent to this type variable, add it to the
// list of adjacencies.
pos = AdjacencyInfo.insert(
{ typeVar, { static_cast<unsigned>(Adjacencies.size()), 0, 0 } })
.first;
Adjacencies.push_back(typeVar);
return pos->second;
}
void ConstraintGraph::Node::modifyAdjacency(
TypeVariableType *typeVar,
std::function<void(Adjacency& adj)> modify) {
// Find the adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
assert(pos != AdjacencyInfo.end() && "Type variables not adjacent");
assert(Adjacencies[pos->second.Index] == typeVar && "Mismatched adjacency");
// Perform the modification .
modify(pos->second);
// If the adjacency is not empty, leave the information in there.
if (!pos->second.empty())
return;
// Remove this adjacency from the mapping.
unsigned index = pos->second.Index;
AdjacencyInfo.erase(pos);
// If this adjacency is last in the vector, just pop it off.
unsigned lastIndex = Adjacencies.size()-1;
if (index == lastIndex) {
Adjacencies.pop_back();
return;
}
// This adjacency is somewhere in the middle; swap it with the last
// adjacency so we can remove the adjacency from the vector in O(1) time
// rather than O(n) time.
auto lastTypeVar = Adjacencies[lastIndex];
Adjacencies[index] = lastTypeVar;
AdjacencyInfo[lastTypeVar].Index = index;
Adjacencies.pop_back();
}
void ConstraintGraph::Node::addAdjacency(TypeVariableType *typeVar) {
auto &adjacency = getAdjacency(typeVar);
// Bump the degree of the adjacency.
++adjacency.NumConstraints;
}
void ConstraintGraph::Node::removeAdjacency(TypeVariableType *typeVar) {
modifyAdjacency(typeVar, [](Adjacency &adj) {
assert(adj.NumConstraints > 0 && "No adjacency to remove?");
--adj.NumConstraints;
});
}
void
ConstraintGraph::Node::addToEquivalenceClass(TypeVariableType *otherTypeVar) {
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't extend equivalence class of non-representative type var");
assert(TypeVar == otherTypeVar->getImpl().getRepresentative(nullptr) &&
"Type variables are equivalent");
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
EquivalenceClass.push_back(otherTypeVar);
}
void ConstraintGraph::Node::addFixedBinding(TypeVariableType *typeVar) {
auto &adjacency = getAdjacency(typeVar);
assert(!adjacency.FixedBinding && "Already marked as a fixed binding?");
adjacency.FixedBinding = true;
}
void ConstraintGraph::Node::removeFixedBinding(TypeVariableType *typeVar) {
modifyAdjacency(typeVar, [](Adjacency &adj) {
assert(adj.FixedBinding && "Not a fixed binding?");
adj.FixedBinding = false;
});
}
#pragma mark Graph mutation
void ConstraintGraph::addConstraint(Constraint *constraint) {
// Gather the set of type variables referenced by this constraint.
SmallVector<TypeVariableType *, 8> referencedTypeVars;
gatherReferencedTypeVars(CS, constraint, referencedTypeVars);
// For the nodes corresponding to each type variable...
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
Node &node = (*this)[typeVar];
// Note the constraint within the node for that type variable.
node.addConstraint(constraint);
// Record the adjacent type variables.
// This is O(N^2) in the number of referenced type variables, because
// we're updating all of the adjacent type variables eagerly.
for (auto otherTypeVar : referencedTypeVars) {
if (typeVar == otherTypeVar)
continue;
node.addAdjacency(otherTypeVar);
}
}
}
void ConstraintGraph::removeConstraint(Constraint *constraint) {
// Gather the set of type variables referenced by this constraint.
SmallVector<TypeVariableType *, 8> referencedTypeVars;
gatherReferencedTypeVars(CS, constraint, referencedTypeVars);
// For the nodes corresponding to each type variable...
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
Node &node = (*this)[typeVar];
// Remove the constraint.
node.removeConstraint(constraint);
// Remove the adjacencies for all adjacent type variables.
// This is O(N^2) in the number of referenced type variables, because
// we're updating all of the adjacent type variables eagerly.
for (auto otherTypeVar : referencedTypeVars) {
if (typeVar == otherTypeVar)
continue;
node.removeAdjacency(otherTypeVar);
}
}
}
#pragma mark Algorithms
/// Depth-first search for connected components
static void connectedComponentsDFS(ConstraintGraph &cg,
ConstraintGraph::Node &node,
unsigned component,
SmallVectorImpl<unsigned> &components) {
// Local function that recurses on the given set of type variables.
auto visitAdjacencies = [&](ArrayRef<TypeVariableType *> typeVars) {
for (auto adj : typeVars) {
auto nodeAndIndex = cg.lookupNode(adj);
// If we've already seen this node in this component, we're done.
unsigned &curComponent = components[nodeAndIndex.second];
if (curComponent == component)
continue;
// Mark this node as part of this connected component, then recurse.
assert(curComponent == components.size() && "Already in a component?");
curComponent = component;
connectedComponentsDFS(cg, nodeAndIndex.first, component, components);
}
};
// Recurse to mark adjacent nodes as part of this connected component.
visitAdjacencies(node.getAdjacencies());
// Figure out the representative for this type variable.
auto &cs = cg.getConstraintSystem();
auto typeVarRep = cs.getRepresentative(node.getTypeVariable());
if (typeVarRep == node.getTypeVariable()) {
// This type variable is the representative of its set; visit all of the
// other type variables in the same equivalence class.
visitAdjacencies(node.getEquivalenceClass().slice(1));
} else {
// Otherwise, visit the representative of the set.
visitAdjacencies(typeVarRep);
}
}
unsigned ConstraintGraph::computeConnectedComponents(
SmallVectorImpl<TypeVariableType *> &typeVars,
SmallVectorImpl<unsigned> &components) {
// Initialize the components with component == # of type variables,
// a sentinel value indicating
unsigned numTypeVariables = TypeVariables.size();
components.assign(numTypeVariables, numTypeVariables);
// Perform a depth-first search from each type variable to identify
// what component it is in.
unsigned numComponents = 0;
for (unsigned i = 0; i != numTypeVariables; ++i) {
auto typeVar = TypeVariables[i];
// Look up the node for this type variable.
auto nodeAndIndex = lookupNode(typeVar);
// If we're already assigned a component for this node, skip it.
unsigned &curComponent = components[nodeAndIndex.second];
if (curComponent != numTypeVariables)
continue;
// Record this component.
unsigned component = numComponents++;
// Note that this node is part of this component, then visit it.
curComponent = component;
connectedComponentsDFS(*this, nodeAndIndex.first, component, components);
}
// Figure out which components have unbound type variables; these
// are the only components and type variables we want to report.
SmallVector<bool, 4> componentHasUnboundTypeVar(numComponents, false);
for (unsigned i = 0; i != numTypeVariables; ++i) {
// If this type variable has a fixed type, skip it.
if (CS.getFixedType(TypeVariables[i]))
continue;
componentHasUnboundTypeVar[components[i]] = true;
}
// Renumber the old components to the new components.
SmallVector<unsigned, 4> componentRenumbering(numComponents, 0);
numComponents = 0;
for (unsigned i = 0, n = componentHasUnboundTypeVar.size(); i != n; ++i) {
// Skip components that have no unbound type variables.
if (!componentHasUnboundTypeVar[i])
continue;
componentRenumbering[i] = numComponents++;
}
// Copy over the type variables in the live components and remap
// component numbers.
unsigned outIndex = 0;
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
// Skip type variables in dead components.
if (!componentHasUnboundTypeVar[components[i]])
continue;
typeVars.push_back(TypeVariables[i]);
components[outIndex] = componentRenumbering[components[i]];
++outIndex;
}
components.erase(components.begin() + outIndex, components.end());
return numComponents;
}
#pragma mark Debugging output
void ConstraintGraph::Node::print(llvm::raw_ostream &out, unsigned indent) {
out.indent(indent);
TypeVar->print(out);
out << ":\n";
// Print constraints.
if (!Constraints.empty()) {
out.indent(indent + 2);
out << "Constraints:\n";
for (auto constraint : Constraints) {
out.indent(indent + 4);
constraint->print(out, /*FIXME:*/nullptr);
out << "\n";
}
}
// Print adjacencies.
if (!Adjacencies.empty()) {
out.indent(indent + 2);
out << "Adjacencies:";
for (auto adj : Adjacencies) {
out << ' ';
adj->print(out);
auto &info = AdjacencyInfo[adj];
auto degree = info.NumConstraints;
if (degree > 1 || info.FixedBinding) {
out << " (";
if (degree > 1) {
out << degree;
if (info.FixedBinding)
out << ", fixed";
} else {
out << "fixed";
}
out << ")";
}
}
out << "\n";
}
// Print equivalence class.
if (TypeVar->getImpl().getRepresentative(nullptr) == TypeVar &&
EquivalenceClass.size() > 1) {
out.indent(indent + 2);
out << "Equivalence class:";
for (unsigned i = 1, n = EquivalenceClass.size(); i != n; ++i) {
out << ' ';
EquivalenceClass[i]->print(out);
}
out << "\n";
}
}
void ConstraintGraph::Node::dump() {
print(llvm::dbgs(), 0);
}
void ConstraintGraph::print(llvm::raw_ostream &out) {
for (auto typeVar : TypeVariables) {
(*this)[typeVar].print(out, 2);
out << "\n";
}
}
void ConstraintGraph::dump() {
print(llvm::dbgs());
}
#pragma mark Verification of graph invariants
/// Require that the given condition evaluate true.
///
/// If the condition is not true, complain about the problem and abort.
///
/// \param condition The actual Boolean condition.
///
/// \param complaint A string that describes the problem.
///
/// \param cg The constraint graph that failed verification.
///
/// \param node If non-null, the graph node that failed verification.
///
/// \param extraContext If provided, a function that will be called to
/// provide extra, contextual information about the failure.
static void _require(bool condition, const Twine &complaint,
ConstraintGraph &cg,
ConstraintGraph::Node *node,
const std::function<void()> &extraContext = nullptr) {
if (condition)
return;
// Complain
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
if (extraContext)
extraContext();
// Print the graph.
// FIXME: Highlight the offending node/constraint/adjacency/etc.
cg.print(llvm::dbgs());
abort();
}
/// Print a type variable value.
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
typeVar->print(os);
}
/// Print a constraint value.
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
constraint->print(os, nullptr);
}
/// Print an unsigned value.
static void printValue(llvm::raw_ostream &os, unsigned value) {
os << value;
}
void ConstraintGraph::Node::verify(ConstraintGraph &cg) {
#define require(condition, complaint) _require(condition, complaint, cg, this)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, cg, this, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, cg, this, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the constraint map/vector haven't gotten out of sync.
requireSameValue(Constraints.size(), ConstraintIndex.size(),
"constraint vector and map have different sizes");
for (auto info : ConstraintIndex) {
require(info.second < Constraints.size(), "constraint index out-of-range");
requireSameValue(info.first, Constraints[info.second],
"constraint map provides wrong index into vector");
}
// Verify that the adjacency map/vector haven't gotten out of sync.
requireSameValue(Adjacencies.size(), AdjacencyInfo.size(),
"adjacency vector and map have different sizes");
for (auto info : AdjacencyInfo) {
require(info.second.Index < Adjacencies.size(),
"adjacency index out-of-range");
requireSameValue(info.first, Adjacencies[info.second.Index],
"adjacency map provides wrong index into vector");
require(!info.second.empty(),
"adjacency information should have been removed");
require(info.second.NumConstraints <= Constraints.size(),
"adjacency information has higher degree than # of constraints");
}
// Based on the constraints we have, build up a representation of what
// we expect the adjacencies to look like.
llvm::DenseMap<TypeVariableType *, unsigned> expectedAdjacencies;
for (auto constraint : Constraints) {
SmallVector<TypeVariableType *, 4> referencedTypeVars;
gatherReferencedTypeVars(cg.CS, constraint, referencedTypeVars);
for (auto adjTypeVar : referencedTypeVars) {
if (adjTypeVar == TypeVar)
continue;
++expectedAdjacencies[adjTypeVar];
}
}
// Make sure that the adjacencies we expect are the adjacencies we have.
for (auto adj : expectedAdjacencies) {
auto knownAdj = AdjacencyInfo.find(adj.first);
requireWithContext(knownAdj != AdjacencyInfo.end(),
"missing adjacency information for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << 'n';
});
requireWithContext(adj.second == knownAdj->second.NumConstraints,
"wrong number of adjacencies for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString()
<< " (" << adj.second << " vs. "
<< knownAdj->second.NumConstraints
<< ")\n";
});
}
if (AdjacencyInfo.size() != expectedAdjacencies.size()) {
// The adjacency information has something extra in it. Find the
// extraneous type variable.
for (auto adj : AdjacencyInfo) {
requireWithContext(AdjacencyInfo.count(adj.first) > 0,
"extraneous adjacency info for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << '\n';
});
}
}
#undef requireSameValue
#undef requireWithContext
#undef require
}
void ConstraintGraph::verify() {
#define require(condition, complaint) \
_require(condition, complaint, *this, nullptr)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, *this, nullptr, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, *this, nullptr, [&] { \
llvm::dbgs() << " " << value1 << " != " << value2 << '\n'; \
})
// Verify that the type variables are either representatives or represented
// within their representative's equivalence class.
// FIXME: Also check to make sure the equivalence classes aren't too large?
for (auto typeVar : TypeVariables) {
auto typeVarRep = CS.getRepresentative(typeVar);
if (typeVar == typeVarRep)
continue;
// This type variable should be in the equivalence class of its
// representative.
auto &repNode = (*this)[typeVarRep];
require(std::find(repNode.getEquivalenceClass().begin(),
repNode.getEquivalenceClass().end(),
typeVar) != repNode.getEquivalenceClass().end(),
"type variable is not present in its representative's equiv class");
}
// Verify that our type variable map/vector are in sync.
requireSameValue(TypeVariables.size(), Nodes.size(),
"type variables vector and node map have different sizes");
for (auto node : Nodes) {
require(node.second.Index < TypeVariables.size(),
"out of bounds node index");
requireSameValue(node.first, TypeVariables[node.second.Index],
"node map provides wrong index into type variable vector");
}
// Verify consistency of all of the nodes in the graph.
for (auto node : Nodes) {
node.second.NodePtr->verify(*this);
}
// FIXME: Verify that all of the constraints in the constraint system
// are accounted for. This requires a better abstraction for tracking
// the set of constraints that are live.
#undef requireSameValue
#undef requireWithContext
#undef require
}