Files
swift-mirror/lib/Serialization/DeserializeSIL.cpp
2014-01-06 16:36:24 +00:00

1376 lines
53 KiB
C++

//===--- DeserializeSIL.cpp - Read SIL ------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "DeserializeSIL.h"
#include "ModuleFile.h"
#include "SILFormat.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/Serialization/BCReadingExtras.h"
// This is a template-only header; eventually it should move to llvm/Support.
#include "clang/Basic/OnDiskHashTable.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::serialization;
using namespace swift::serialization::sil_block;
static Optional<StringLiteralInst::Encoding>
fromStableStringEncoding(unsigned value) {
switch (value) {
case SIL_UTF8: return StringLiteralInst::Encoding::UTF8;
case SIL_UTF16: return StringLiteralInst::Encoding::UTF16;
default: return Nothing;
}
}
/// Used to deserialize entries in the on-disk func hash table.
class SILDeserializer::FuncTableInfo {
public:
using internal_key_type = StringRef;
using external_key_type = Identifier;
using data_type = DeclID;
internal_key_type GetInternalKey(external_key_type ID) {
return ID.str();
}
uint32_t ComputeHash(internal_key_type key) {
return llvm::HashString(key);
}
static bool EqualKey(internal_key_type lhs, internal_key_type rhs) {
return lhs == rhs;
}
static std::pair<unsigned, unsigned> ReadKeyDataLength(const uint8_t *&data) {
using namespace clang::io;
unsigned keyLength = ReadUnalignedLE16(data);
unsigned dataLength = ReadUnalignedLE16(data);
return { keyLength, dataLength };
}
static internal_key_type ReadKey(const uint8_t *data, unsigned length) {
return StringRef(reinterpret_cast<const char *>(data), length);
}
static data_type ReadData(internal_key_type key, const uint8_t *data,
unsigned length) {
using namespace clang::io;
assert(length == 4 && "Expect a single DeclID.");
data_type result = ReadUnalignedLE32(data);
return result;
}
};
SILDeserializer::SILDeserializer(ModuleFile *MF, SILModule &M,
ASTContext &Ctx) :
MF(MF), SILMod(M), Ctx(Ctx) {
SILCursor = MF->getSILCursor();
SILIndexCursor = MF->getSILIndexCursor();
// Early return if either sil block or sil index block does not exist.
if (!SILCursor.getBitStreamReader() || !SILIndexCursor.getBitStreamReader())
return;
// Load any abbrev records at the start of the block.
SILCursor.advance();
llvm::BitstreamCursor cursor = SILIndexCursor;
// We expect SIL_FUNC_NAMES first, then SIL_VTABLE_NAMES, then
// SIL_GLOBALVAR_NAMES. But each one can be omitted if no entries exist
// in the module file.
unsigned kind = 0;
while (kind != sil_index_block::SIL_GLOBALVAR_NAMES) {
auto next = cursor.advance();
if (next.Kind == llvm::BitstreamEntry::EndBlock)
return;
SmallVector<uint64_t, 4> scratch;
StringRef blobData;
unsigned prevKind = kind;
kind = cursor.readRecord(next.ID, scratch, &blobData);
assert((next.Kind == llvm::BitstreamEntry::Record &&
kind > prevKind &&
(kind == sil_index_block::SIL_FUNC_NAMES ||
kind == sil_index_block::SIL_VTABLE_NAMES ||
kind == sil_index_block::SIL_GLOBALVAR_NAMES)) &&
"Expect SIL_FUNC_NAMES, SIL_VTABLE_NAMES, or SIL_GLOBALVAR_NAMES.");
(void)prevKind;
if (kind == sil_index_block::SIL_FUNC_NAMES)
FuncTable = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_VTABLE_NAMES)
VTableList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_GLOBALVAR_NAMES)
GlobalVarList = readFuncTable(scratch, blobData);
// Read SIL_FUNC|VTABLE|GLOBALVAR_OFFSETS record.
next = cursor.advance();
scratch.clear();
unsigned offKind = cursor.readRecord(next.ID, scratch, &blobData);
(void)offKind;
if (kind == sil_index_block::SIL_FUNC_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_FUNC_OFFSETS) &&
"Expect a SIL_FUNC_OFFSETS record.");
Funcs.assign(scratch.begin(), scratch.end());
} else if (kind == sil_index_block::SIL_VTABLE_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_VTABLE_OFFSETS) &&
"Expect a SIL_VTABLE_OFFSETS record.");
VTables.assign(scratch.begin(), scratch.end());
} else if (kind == sil_index_block::SIL_GLOBALVAR_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_GLOBALVAR_OFFSETS) &&
"Expect a SIL_GLOBALVAR_OFFSETS record.");
GlobalVars.assign(scratch.begin(), scratch.end());
}
}
}
std::unique_ptr<SILDeserializer::SerializedFuncTable>
SILDeserializer::readFuncTable(ArrayRef<uint64_t> fields, StringRef blobData) {
uint32_t tableOffset;
sil_index_block::ListLayout::readRecord(fields, tableOffset);
auto base = reinterpret_cast<const uint8_t *>(blobData.data());
using OwnedTable = std::unique_ptr<SerializedFuncTable>;
return OwnedTable(SerializedFuncTable::Create(base + tableOffset, base));
}
/// A high-level overview of how forward references work in serializer and
/// deserializer:
/// In serializer, we pre-assign a value ID in order, to each basic block
/// argument and each SILInstruction that has a value.
/// In deserializer, we use LocalValues to store the definitions and
/// ForwardMRVLocalValues for forward-referenced values (values that are
/// used but not yet defined). LocalValues are updated in setLocalValue where
/// the ID passed in assumes the same ordering as in serializer: in-order
/// for each basic block argument and each SILInstruction that has a value.
/// We update ForwardMRVLocalValues in getLocalValue and when a value is defined
/// in setLocalValue, the corresponding entry in ForwardMRVLocalValues will be
/// erased.
void SILDeserializer::setLocalValue(ValueBase *Value, ValueID Id) {
ValueBase *&Entry = LocalValues[Id];
assert(!Entry && "We should not redefine the same value.");
auto It = ForwardMRVLocalValues.find(Id);
if (It != ForwardMRVLocalValues.end()) {
// Take the information about the forward ref out of the map.
std::vector<SILValue> Entries = std::move(It->second);
// Remove the entries from the map.
ForwardMRVLocalValues.erase(It);
assert(Entries.size() <= Value->getTypes().size() &&
"Value Type mismatch?");
// Validate that any forward-referenced elements have the right type, and
// RAUW them.
for (unsigned i = 0, e = Entries.size(); i != e; ++i) {
if (!Entries[i]) continue;
assert(Entries[i]->getType(0) == Value->getType(i) &&
"Value Type mismatch?");
Entries[i].replaceAllUsesWith(SILValue(Value, i));
}
}
// Store it in our map.
Entry = Value;
}
SILValue SILDeserializer::getLocalValue(ValueID Id, unsigned ResultNum,
SILType Type) {
if (Id == 0)
return SILUndef::get(Type, &SILMod);
// Check to see if this is already defined.
ValueBase *Entry = LocalValues.lookup(Id);
if (Entry) {
// If this value was already defined, check it to make sure types match.
SILType EntryTy = Entry->getType(ResultNum);
assert(EntryTy == Type && "Value Type mismatch?");
(void)EntryTy;
return SILValue(Entry, ResultNum);
}
// Otherwise, this is a forward reference. Create a dummy node to represent
// it until we see a real definition.
std::vector<SILValue> &Placeholders = ForwardMRVLocalValues[Id];
SourceLoc Loc;
if (Placeholders.size() <= ResultNum)
Placeholders.resize(ResultNum+1);
if (!Placeholders[ResultNum])
Placeholders[ResultNum] =
new (SILMod) GlobalAddrInst(SILFileLocation(Loc), nullptr, Type);
return Placeholders[ResultNum];
}
/// Return the SILBasicBlock of a given ID.
SILBasicBlock *SILDeserializer::getBBForDefinition(SILFunction *Fn,
unsigned ID) {
SILBasicBlock *&BB = BlocksByID[ID];
// If the block has never been named yet, just create it.
if (BB == nullptr)
return BB = new (SILMod) SILBasicBlock(Fn);
// If it already exists, it was either a forward reference or a redefinition.
// If it is a forward reference, it should be in our undefined set.
if (!UndefinedBlocks.erase(BB)) {
// If we have a redefinition, return a new BB to avoid inserting
// instructions after the terminator.
return new (SILMod) SILBasicBlock(Fn);
}
return BB;
}
/// Return the SILBasicBlock of a given ID.
SILBasicBlock *SILDeserializer::getBBForReference(SILFunction *Fn,
unsigned ID) {
SILBasicBlock *&BB = BlocksByID[ID];
if (BB != nullptr)
return BB;
// Otherwise, create it and remember that this is a forward reference
BB = new (SILMod) SILBasicBlock(Fn);
UndefinedBlocks[BB] = ID;
return BB;
}
/// Helper function to convert from Type to SILType.
static SILType getSILType(Type Ty, SILValueCategory Category) {
auto TyLoc = TypeLoc::withoutLoc(Ty);
return SILType::getPrimitiveType(TyLoc.getType()->getCanonicalType(),
Category);
}
/// Helper function to find the SILFunction given name and type.
static SILFunction *getFuncForReference(Identifier Name, SILType Ty,
SILModule &SILMod) {
// Check to see if we have a function by this name already.
if (SILFunction *FnRef = SILMod.lookup(Name.str()))
// FIXME: check for matching types.
return FnRef;
// FIXME: check that Ty is a SILFunctionType.
// If we didn't find a function, create a new one.
SourceLoc Loc;
auto Fn = new (SILMod) SILFunction(SILMod, SILLinkage::Internal,
Name.str(), Ty.castTo<SILFunctionType>(),
SILFileLocation(Loc));
return Fn;
}
/// Deserialize a SILFunction if it is not already deserialized. The input
/// SILFunction can either be an empty declaration or null. If it is an empty
/// declaration, we fill in the contents. If the input SILFunction is
/// null, we create a SILFunction.
SILFunction *SILDeserializer::readSILFunction(DeclID FID, SILFunction *InFunc,
Identifier FuncName) {
LastValueID = 0;
if (FID == 0)
return nullptr;
assert(FID <= Funcs.size() && "invalid SILFunction ID");
auto &funcOrOffset = Funcs[FID-1];
if (funcOrOffset.isComplete())
return funcOrOffset;
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(funcOrOffset);
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in readSILFunction.\n");
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_FUNCTION && "expect a sil function");
(void)kind;
TypeID FuncTyID;
unsigned Linkage, Transparent;
SILFunctionLayout::readRecord(scratch, Linkage, Transparent, FuncTyID);
if (FuncTyID == 0) {
DEBUG(llvm::dbgs() << "SILFunction typeID is 0.\n");
return nullptr;
}
auto Ty = MF->getType(FuncTyID);
// Verify that the types match up.
if (InFunc &&
InFunc->getLoweredType() != getSILType(Ty, SILValueCategory::Object)) {
DEBUG(llvm::dbgs() << "SILFunction type mismatch.\n");
return nullptr;
}
if (!InFunc)
// Find a declaration from SILModule or create a SILFunction.
InFunc = getFuncForReference(FuncName,
getSILType(Ty, SILValueCategory::Object),
SILMod);
funcOrOffset = InFunc;
assert(InFunc->empty() &&
"SILFunction to be deserialized starts being empty.");
auto Fn = InFunc;
// FIXME: what should we set the linkage to?
Fn->setLinkage(SILLinkage::Deserialized);
Fn->setBare(IsBare);
Fn->setTransparent(IsTransparent_t(Transparent == 1));
// FIXME: use the correct SILLocation from module.
SourceLoc Loc;
Fn->setLocation(SILFileLocation(Loc));
SILBasicBlock *CurrentBB = nullptr;
// Clear up at the beginning of each SILFunction.
BasicBlockID = 0;
BlocksByID.clear();
UndefinedBlocks.clear();
LastValueID = 0;
LocalValues.clear();
ForwardMRVLocalValues.clear();
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// This function has no contents.
return Fn;
kind = SILCursor.readRecord(entry.ID, scratch);
// Another SIL_FUNCTION record means the end of this SILFunction.
// SIL_VTABLE or SIL_GLOBALVAR record also means the end of this SILFunction.
while (kind != SIL_FUNCTION && kind != SIL_VTABLE && kind != SIL_GLOBALVAR) {
if (kind == SIL_BASIC_BLOCK)
// Handle a SILBasicBlock record.
CurrentBB = readSILBasicBlock(Fn, scratch);
else {
// Handle a SILInstruction record.
if (readSILInstruction(Fn, CurrentBB, kind, scratch)) {
DEBUG(llvm::dbgs() << "readSILInstruction returns error.\n");
return Fn;
}
}
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// EndBlock means the end of this SILFunction.
return Fn;
kind = SILCursor.readRecord(entry.ID, scratch);
}
return Fn;
}
SILBasicBlock *SILDeserializer::readSILBasicBlock(SILFunction *Fn,
SmallVectorImpl<uint64_t> &scratch) {
ArrayRef<uint64_t> Args;
SILBasicBlockLayout::readRecord(scratch, Args);
// Args should be a list of pairs, the first number is a TypeID, the
// second number is a ValueID.
SILBasicBlock *CurrentBB = getBBForDefinition(Fn, BasicBlockID++);
for (unsigned I = 0, E = Args.size(); I < E; I += 3) {
TypeID TyID = Args[I];
if (!TyID) return nullptr;
ValueID ValId = Args[I+2];
if (!ValId) return nullptr;
auto ArgTy = MF->getType(TyID);
auto Arg = new (SILMod) SILArgument(getSILType(ArgTy,
(SILValueCategory)Args[I+1]),
CurrentBB);
setLocalValue(Arg, ++LastValueID);
}
return CurrentBB;
}
static CheckedCastKind getCheckedCastKind(unsigned Attr) {
switch (Attr) {
case (unsigned)CheckedCastKind::ArchetypeToArchetype:
case (unsigned)CheckedCastKind::ArchetypeToConcrete:
case (unsigned)CheckedCastKind::Downcast:
case (unsigned)CheckedCastKind::ExistentialToArchetype:
case (unsigned)CheckedCastKind::ExistentialToConcrete:
case (unsigned)CheckedCastKind::SuperToArchetype:
return (CheckedCastKind)Attr;
default:
llvm_unreachable("not a valid CheckedCastKind for SIL");
}
}
/// Construct a SILDeclRef from ListOfValues.
static SILDeclRef getSILDeclRef(ModuleFile *MF,
ArrayRef<uint64_t> ListOfValues,
unsigned StartIdx) {
assert(ListOfValues.size() >= StartIdx+4 &&
"Expect 4 numbers for SILDeclRef");
SILDeclRef DRef(cast<ValueDecl>(MF->getDecl(ListOfValues[StartIdx])),
(SILDeclRef::Kind)ListOfValues[StartIdx+1],
ListOfValues[StartIdx+2], ListOfValues[StartIdx+3] > 0);
return DRef;
}
bool SILDeserializer::readSILInstruction(SILFunction *Fn, SILBasicBlock *BB,
unsigned RecordKind,
SmallVectorImpl<uint64_t> &scratch) {
// Return error if Basic Block is null.
if (!BB)
return true;
SILBuilder Builder(BB);
unsigned OpCode, TyCategory, TyCategory2, ValResNum, ValResNum2, Attr,
IsTransparent, NumSubs;
ValueID ValID, ValID2;
TypeID TyID, TyID2;
SourceLoc SLoc;
ArrayRef<uint64_t> ListOfValues;
SILLocation Loc = SILFileLocation(SLoc);
switch (RecordKind) {
default:
assert(0 && "Record kind for a SIL instruction is not supported.");
case SIL_ONE_VALUE_ONE_OPERAND:
SILOneValueOneOperandLayout::readRecord(scratch, OpCode, Attr,
ValID, ValResNum, TyID, TyCategory,
ValID2, ValResNum2);
break;
case SIL_ONE_TYPE:
SILOneTypeLayout::readRecord(scratch, OpCode, TyID, TyCategory);
break;
case SIL_ONE_OPERAND:
SILOneOperandLayout::readRecord(scratch, OpCode, Attr,
TyID, TyCategory, ValID, ValResNum);
break;
case SIL_ONE_TYPE_ONE_OPERAND:
SILOneTypeOneOperandLayout::readRecord(scratch, OpCode, Attr,
TyID, TyCategory,
TyID2, TyCategory2,
ValID, ValResNum);
break;
case SIL_ONE_TYPE_VALUES:
SILOneTypeValuesLayout::readRecord(scratch, OpCode, TyID, TyCategory,
ListOfValues);
break;
case SIL_TWO_OPERANDS:
SILTwoOperandsLayout::readRecord(scratch, OpCode, Attr,
TyID, TyCategory, ValID, ValResNum,
TyID2, TyCategory2, ValID2, ValResNum2);
break;
case SIL_INST_APPLY: {
unsigned IsPartial;
SILInstApplyLayout::readRecord(scratch, IsPartial, IsTransparent, NumSubs,
TyID, TyID2, ValID, ValResNum, ListOfValues);
OpCode = (unsigned)(IsPartial ? ValueKind::PartialApplyInst :
ValueKind::ApplyInst);
break;
}
case SIL_INST_NO_OPERAND:
SILInstNoOperandLayout::readRecord(scratch, OpCode);
break;
}
ValueBase *ResultVal;
switch ((ValueKind)OpCode) {
case ValueKind::SILArgument:
case ValueKind::SILUndef:
llvm_unreachable("not an instruction");
#define ONETYPE_INST(ID) \
case ValueKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType."); \
ResultVal = Builder.create##ID(Loc, \
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));\
break;
ONETYPE_INST(AllocBox)
ONETYPE_INST(AllocRef)
ONETYPE_INST(AllocStack)
ONETYPE_INST(Metatype)
#undef ONETYPE_INST
#define ONETYPE_ONEOPERAND_INST(ID) \
case ValueKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND && \
"Layout should be OneTypeOneOperand."); \
ResultVal = Builder.create##ID(Loc, \
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory), \
getLocalValue(ValID, ValResNum, \
getSILType(MF->getType(TyID2), \
(SILValueCategory)TyCategory2))); \
break;
ONETYPE_ONEOPERAND_INST(DeallocBox)
ONETYPE_ONEOPERAND_INST(ArchetypeMetatype)
ONETYPE_ONEOPERAND_INST(ClassMetatype)
ONETYPE_ONEOPERAND_INST(ProtocolMetatype)
ONETYPE_ONEOPERAND_INST(AllocArray)
#undef ONETYPE_ONEOPERAND_INST
#define ONEOPERAND_ONETYPE_INST(ID) \
case ValueKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND && \
"Layout should be OneTypeOneOperand."); \
ResultVal = Builder.create##ID(Loc, \
getLocalValue(ValID, ValResNum, \
getSILType(MF->getType(TyID2), \
(SILValueCategory)TyCategory2)), \
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));\
break;
ONEOPERAND_ONETYPE_INST(ProjectExistential)
ONEOPERAND_ONETYPE_INST(ProjectExistentialRef)
// Conversion instructions.
ONEOPERAND_ONETYPE_INST(RefToObjectPointer)
ONEOPERAND_ONETYPE_INST(Upcast)
ONEOPERAND_ONETYPE_INST(Coerce)
ONEOPERAND_ONETYPE_INST(AddressToPointer)
ONEOPERAND_ONETYPE_INST(PointerToAddress)
ONEOPERAND_ONETYPE_INST(ObjectPointerToRef)
ONEOPERAND_ONETYPE_INST(RefToRawPointer)
ONEOPERAND_ONETYPE_INST(RawPointerToRef)
ONEOPERAND_ONETYPE_INST(RefToUnowned)
ONEOPERAND_ONETYPE_INST(UnownedToRef)
ONEOPERAND_ONETYPE_INST(ThinToThickFunction)
ONEOPERAND_ONETYPE_INST(BridgeToBlock)
ONEOPERAND_ONETYPE_INST(ArchetypeRefToSuper)
ONEOPERAND_ONETYPE_INST(ConvertFunction)
ONEOPERAND_ONETYPE_INST(UpcastExistentialRef)
#undef ONEOPERAND_ONETYPE_INST
case ValueKind::InitExistentialInst:
case ValueKind::InitExistentialRefInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto Ty2 = MF->getType(TyID2);
SILValue operand = getLocalValue(ValID, ValResNum,
getSILType(Ty2, (SILValueCategory)TyCategory2));
switch ((ValueKind)OpCode) {
default: assert(0 && "Out of sync with parent switch");
case ValueKind::InitExistentialInst:
// FIXME: Conformances in InitExistentialInst needs to be serialized.
ResultVal = Builder.createInitExistential(Loc, operand, Ty,
ArrayRef<ProtocolConformance*>());
break;
case ValueKind::InitExistentialRefInst:
// FIXME: Conformances in InitExistentialRefInst needs to be serialized.
ResultVal = Builder.createInitExistentialRef(Loc, Ty, operand,
ArrayRef<ProtocolConformance*>());
break;
}
break;
}
case ValueKind::ApplyInst: {
// Format: attributes such as transparent, the callee's type, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber.
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object);
SILType SubstFnTy = getSILType(Ty2, SILValueCategory::Object);
SILFunctionType *FTI = SubstFnTy.castTo<SILFunctionType>();
auto ArgTys = FTI->getParameterSILTypes();
assert((ArgTys.size() << 1) == ListOfValues.size() &&
"Argument number mismatch in ApplyInst.");
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 2)
Args.push_back(getLocalValue(ListOfValues[I], ListOfValues[I+1],
ArgTys[I>>1]));
bool Transparent = (bool)IsTransparent;
unsigned NumSub = NumSubs;
SmallVector<Substitution, 4> Substitutions;
while (NumSub--) {
auto sub = MF->maybeReadSubstitution(SILCursor);
assert(sub.hasValue() && "missing substitution");
Substitutions.push_back(*sub);
}
ResultVal = Builder.createApply(Loc, getLocalValue(ValID, ValResNum, FnTy),
SubstFnTy,
FTI->getResult().getSILType(),
Substitutions, Args, Transparent);
break;
}
case ValueKind::PartialApplyInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object);
SILType SubstFnTy = getSILType(Ty2, SILValueCategory::Object);
SILFunctionType *FTI = SubstFnTy.castTo<SILFunctionType>();
auto ArgTys = FTI->getParameterSILTypes();
assert((ArgTys.size() << 1) >= ListOfValues.size() &&
"Argument number mismatch in PartialApplyInst.");
SmallVector<TupleTypeElt, 4> NewArgTypes;
// Compute the result type of the partial_apply, based on which arguments
// are getting applied.
unsigned ArgNo = 0, NewArgCount = ArgTys.size() - (ListOfValues.size()>>1);
while (ArgNo != NewArgCount)
NewArgTypes.push_back(ArgTys[ArgNo++].getSwiftType());
SILValue FnVal = getLocalValue(ValID, ValResNum, FnTy);
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 2)
Args.push_back(getLocalValue(ListOfValues[I], ListOfValues[I+1],
ArgTys[ArgNo++]));
Type ArgTy = TupleType::get(NewArgTypes, Ctx);
Type ResTy = FunctionType::get(ArgTy, FTI->getResult().getType());
unsigned NumSub = NumSubs;
SmallVector<Substitution, 4> Substitutions;
while (NumSub--) {
auto sub = MF->maybeReadSubstitution(SILCursor);
assert(sub.hasValue() && "missing substitution");
Substitutions.push_back(*sub);
}
// FIXME: Why the arbitrary order difference in IRBuilder type argument?
ResultVal = Builder.createPartialApply(Loc, FnVal, SubstFnTy,
Substitutions, Args,
SILMod.Types.getLoweredType(ResTy));
break;
}
case ValueKind::BuiltinFunctionRefInst: {
// Format: FuncDecl and type. Use SILOneOperandLayout.
auto Ty = MF->getType(TyID);
ResultVal = Builder.createBuiltinFunctionRef(Loc, MF->getIdentifier(ValID),
getSILType(Ty, (SILValueCategory)TyCategory));
break;
}
case ValueKind::GlobalAddrInst: {
// Format: VarDecl and type. Use SILOneOperandLayout.
auto Ty = MF->getType(TyID);
ResultVal = Builder.createGlobalAddr(Loc,
cast<VarDecl>(MF->getDecl(ValID)),
getSILType(Ty, (SILValueCategory)TyCategory));
break;
}
case ValueKind::SILGlobalAddrInst: {
// Format: Name and type. Use SILOneOperandLayout.
auto Ty = MF->getType(TyID);
Identifier Name = MF->getIdentifier(ValID);
// Find the global variable.
SILGlobalVariable *g = readGlobalVar(Name);
assert(g && "Can't deserialize global variable");
assert(g->getLoweredType().getAddressType() ==
getSILType(Ty, (SILValueCategory)TyCategory) &&
"Type of a global variable does not match SILGlobalAddr.");
(void)Ty;
ResultVal = Builder.createSILGlobalAddr(Loc, g);
break;
}
case ValueKind::DeallocStackInst: {
auto Ty = MF->getType(TyID);
ResultVal = Builder.createDeallocStack(Loc,
getLocalValue(ValID, ValResNum,
getSILType(Ty, (SILValueCategory)TyCategory)));
break;
}
case ValueKind::DeallocRefInst: {
auto Ty = MF->getType(TyID);
ResultVal = Builder.createDeallocRef(Loc,
getLocalValue(ValID, ValResNum,
getSILType(Ty, (SILValueCategory)TyCategory)));
break;
}
case ValueKind::FunctionRefInst: {
auto Ty = MF->getType(TyID);
Identifier FuncName = MF->getIdentifier(ValID);
ResultVal = Builder.createFunctionRef(Loc,
getFuncForReference(FuncName,
getSILType(Ty, (SILValueCategory)TyCategory),
SILMod));
break;
}
case ValueKind::IndexAddrInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultVal = Builder.createIndexAddr(Loc,
getLocalValue(ValID, ValResNum,
getSILType(Ty, (SILValueCategory)TyCategory)),
getLocalValue(ValID2, ValResNum2,
getSILType(Ty2, (SILValueCategory)TyCategory2)));
break;
}
case ValueKind::IndexRawPointerInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultVal = Builder.createIndexRawPointer(Loc,
getLocalValue(ValID, ValResNum,
getSILType(Ty, (SILValueCategory)TyCategory)),
getLocalValue(ValID2, ValResNum2,
getSILType(Ty2, (SILValueCategory)TyCategory2)));
break;
}
case ValueKind::UpcastExistentialInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
bool isTake = (Attr > 0);
ResultVal = Builder.createUpcastExistential(Loc,
getLocalValue(ValID, ValResNum,
getSILType(Ty, (SILValueCategory)TyCategory)),
getLocalValue(ValID2, ValResNum2,
getSILType(Ty2, (SILValueCategory)TyCategory2)),
IsTake_t(isTake));
break;
}
case ValueKind::IntegerLiteralInst: {
auto Ty = MF->getType(TyID);
auto intTy = Ty->getAs<BuiltinIntegerType>();
Identifier StringVal = MF->getIdentifier(ValID);
// Build APInt from string.
APInt value(intTy->getGreatestWidth(), StringVal.str(), 10);
ResultVal = Builder.createIntegerLiteral(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
value);
break;
}
case ValueKind::FloatLiteralInst: {
auto Ty = MF->getType(TyID);
auto floatTy = Ty->getAs<BuiltinFloatType>();
Identifier StringVal = MF->getIdentifier(ValID);
// Build APInt from string.
APInt bits(floatTy->getBitWidth(), StringVal.str(), 16);
if (bits.getBitWidth() != floatTy->getBitWidth())
bits = bits.zextOrTrunc(floatTy->getBitWidth());
APFloat value(floatTy->getAPFloatSemantics(), bits);
ResultVal = Builder.createFloatLiteral(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
value);
break;
}
case ValueKind::StringLiteralInst: {
Identifier StringVal = MF->getIdentifier(ValID);
auto encoding = fromStableStringEncoding(Attr);
if (!encoding) return true;
ResultVal = Builder.createStringLiteral(Loc, StringVal.str(),
encoding.getValue());
break;
}
case ValueKind::MarkFunctionEscapeInst: {
// Format: a list of typed values. A typed value is expressed by 4 IDs:
// TypeID, TypeCategory, ValueID, ValueResultNumber.
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 4) {
auto EltTy = MF->getType(ListOfValues[I]);
OpList.push_back(
getLocalValue(ListOfValues[I+2], ListOfValues[I+3],
getSILType(EltTy, (SILValueCategory)ListOfValues[I+1])));
}
ResultVal = Builder.createMarkFunctionEscape(Loc, OpList);
break;
}
// Checked Conversion instructions.
case ValueKind::UnconditionalCheckedCastInst: {
SILValue Val = getLocalValue(ValID, ValResNum,
getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2));
SILType Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
CheckedCastKind Kind;
switch (Attr) {
case (unsigned)CheckedCastKind::ArchetypeToArchetype:
case (unsigned)CheckedCastKind::ArchetypeToConcrete:
case (unsigned)CheckedCastKind::Downcast:
case (unsigned)CheckedCastKind::ExistentialToArchetype:
case (unsigned)CheckedCastKind::ExistentialToConcrete:
case (unsigned)CheckedCastKind::SuperToArchetype:
Kind = (CheckedCastKind)Attr;
break;
default:
llvm_unreachable("not a valid CheckedCastKind for SIL");
}
ResultVal = Builder.createUnconditionalCheckedCast(Loc, Kind, Val, Ty);
break;
}
#define UNARY_INSTRUCTION(ID) \
case ValueKind::ID##Inst: \
assert(RecordKind == SIL_ONE_OPERAND && \
"Layout should be OneOperand."); \
ResultVal = Builder.create##ID(Loc, getLocalValue(ValID, ValResNum, \
getSILType(MF->getType(TyID), \
(SILValueCategory)TyCategory))); \
break;
UNARY_INSTRUCTION(CondFail)
UNARY_INSTRUCTION(CopyValue)
UNARY_INSTRUCTION(DestroyValue)
UNARY_INSTRUCTION(DeinitExistential)
UNARY_INSTRUCTION(DestroyAddr)
UNARY_INSTRUCTION(IsNonnull)
UNARY_INSTRUCTION(Load)
UNARY_INSTRUCTION(Return)
UNARY_INSTRUCTION(StrongRetain)
UNARY_INSTRUCTION(StrongRelease)
UNARY_INSTRUCTION(StrongRetainAutoreleased)
UNARY_INSTRUCTION(AutoreleaseReturn)
UNARY_INSTRUCTION(StrongRetainUnowned)
UNARY_INSTRUCTION(UnownedRetain)
UNARY_INSTRUCTION(UnownedRelease)
#undef UNARY_INSTRUCTION
case ValueKind::LoadWeakInst: {
auto Ty = MF->getType(TyID);
bool isTake = (Attr > 0);
ResultVal = Builder.createLoadWeak(Loc,
getLocalValue(ValID, ValResNum,
getSILType(Ty, (SILValueCategory)TyCategory)),
IsTake_t(isTake));
break;
}
case ValueKind::MarkUninitializedInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto Kind = (MarkUninitializedInst::Kind)Attr;
auto Val = getLocalValue(ValID, ValResNum, Ty);
ResultVal = Builder.createMarkUninitialized(Loc, Val, Kind);
break;
}
case ValueKind::StoreInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
SILType ValType = addrType.getObjectType();
ResultVal = Builder.createStore(Loc,
getLocalValue(ValID, ValResNum, ValType),
getLocalValue(ValID2, ValResNum2, addrType));
break;
}
case ValueKind::StoreWeakInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
auto refType = addrType.getAs<WeakStorageType>();
auto ValType = SILType::getPrimitiveObjectType(refType.getReferentType());
bool isInit = (Attr > 0);
ResultVal = Builder.createStoreWeak(Loc,
getLocalValue(ValID, ValResNum, ValType),
getLocalValue(ValID2, ValResNum2, addrType),
IsInitialization_t(isInit));
break;
}
case ValueKind::CopyAddrInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
bool isInit = (Attr & 0x2) > 0;
bool isTake = (Attr & 0x1) > 0;
ResultVal = Builder.createCopyAddr(Loc,
getLocalValue(ValID, ValResNum, addrType),
getLocalValue(ValID2, ValResNum2, addrType),
IsTake_t(isTake),
IsInitialization_t(isInit));
break;
}
case ValueKind::AssignInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
SILType ValType = addrType.getObjectType();
ResultVal = Builder.createAssign(Loc,
getLocalValue(ValID, ValResNum, ValType),
getLocalValue(ValID2, ValResNum2, addrType));
break;
}
case ValueKind::StructElementAddrInst: {
// Use SILOneValueOneOperandLayout.
VarDecl *Field = cast<VarDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
ResultVal = Builder.createStructElementAddr(Loc,
getLocalValue(ValID2, ValResNum2,
getSILType(Ty, (SILValueCategory)TyCategory)),
Field,
getSILType(Field->getType(), SILValueCategory::Address));
break;
}
case ValueKind::StructExtractInst: {
// Use SILOneValueOneOperandLayout.
VarDecl *Field = cast<VarDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
ResultVal = Builder.createStructExtract(Loc,
getLocalValue(ValID2, ValResNum2,
getSILType(Ty, (SILValueCategory)TyCategory)),
Field,
getSILType(Field->getType(), SILValueCategory::Object));
break;
}
case ValueKind::StructInst: {
// Format: a type followed by a list of typed values. A typed value is
// expressed by 4 IDs: TypeID, TypeCategory, ValueID, ValueResultNumber.
auto Ty = MF->getType(TyID);
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 4) {
auto EltTy = MF->getType(ListOfValues[I]);
OpList.push_back(
getLocalValue(ListOfValues[I+2], ListOfValues[I+3],
getSILType(EltTy, (SILValueCategory)ListOfValues[I+1])));
}
ResultVal = Builder.createStruct(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
OpList);
break;
}
case ValueKind::TupleElementAddrInst:
case ValueKind::TupleExtractInst: {
// Use OneTypeOneOperand layout where the field number is stored in TypeID.
auto Ty2 = MF->getType(TyID2);
SILType ST = getSILType(Ty2, (SILValueCategory)TyCategory2);
TupleType *TT = ST.getAs<TupleType>();
auto ResultTy = TT->getFields()[TyID].getType();
switch ((ValueKind)OpCode) {
default: assert(0 && "Out of sync with parent switch");
case ValueKind::TupleElementAddrInst:
ResultVal = Builder.createTupleElementAddr(Loc,
getLocalValue(ValID, ValResNum, ST),
TyID, getSILType(ResultTy, SILValueCategory::Address));
break;
case ValueKind::TupleExtractInst:
ResultVal = Builder.createTupleExtract(Loc,
getLocalValue(ValID, ValResNum,ST),
TyID,
getSILType(ResultTy, SILValueCategory::Object));
break;
}
break;
}
case ValueKind::TupleInst: {
// Format: a type followed by a list of values. A value is expressed by
// 2 IDs: ValueID, ValueResultNumber.
auto Ty = MF->getType(TyID);
TupleType *TT = Ty->getAs<TupleType>();
assert(TT && "Type of a TupleInst should be TupleType");
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 2) {
Type EltTy = TT->getFields()[I >> 1].getType();
OpList.push_back(
getLocalValue(ListOfValues[I], ListOfValues[I+1],
getSILType(EltTy, SILValueCategory::Object)));
}
ResultVal = Builder.createTuple(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
OpList);
break;
}
case ValueKind::BranchInst: {
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 4)
Args.push_back(
getLocalValue(ListOfValues[I+2], ListOfValues[I+3],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I+1])));
ResultVal = Builder.createBranch(Loc, getBBForReference(Fn, TyID),
Args);
break;
}
case ValueKind::CondBranchInst: {
// Format: condition, true basic block ID, a list of arguments, false basic
// block ID, a list of arguments. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, true basic block ID,
// false basic block ID, number of true arguments, and a list of true|false
// arguments.
SILValue Cond = getLocalValue(ListOfValues[0], ListOfValues[1],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
unsigned NumTrueArgs = ListOfValues[4];
unsigned StartOfTrueArg = 5;
unsigned StartOfFalseArg = StartOfTrueArg + 4*NumTrueArgs;
SmallVector<SILValue, 4> TrueArgs;
for (unsigned I = StartOfTrueArg, E = StartOfFalseArg; I < E; I += 4)
TrueArgs.push_back(
getLocalValue(ListOfValues[I+2], ListOfValues[I+3],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I+1])));
SmallVector<SILValue, 4> FalseArgs;
for (unsigned I = StartOfFalseArg, E = ListOfValues.size(); I < E; I += 4)
FalseArgs.push_back(
getLocalValue(ListOfValues[I+2], ListOfValues[I+3],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I+1])));
ResultVal = Builder.createCondBranch(Loc, Cond,
getBBForReference(Fn, ListOfValues[2]), TrueArgs,
getBBForReference(Fn, ListOfValues[3]), FalseArgs);
break;
}
case ValueKind::SwitchEnumInst:
case ValueKind::DestructiveSwitchEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
SILValue Cond = getLocalValue(ListOfValues[0], ListOfValues[1],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
SILBasicBlock *DefaultBB = nullptr;
if (ListOfValues[2])
DefaultBB = getBBForReference(Fn, ListOfValues[3]);
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
for (unsigned I = 4, E = ListOfValues.size(); I < E; I += 2) {
CaseBBs.push_back( {cast<EnumElementDecl>(MF->getDecl(ListOfValues[I])),
getBBForReference(Fn, ListOfValues[I+1])} );
}
if ((ValueKind)OpCode == ValueKind::SwitchEnumInst)
ResultVal = Builder.createSwitchEnum(Loc, Cond, DefaultBB, CaseBBs);
else
ResultVal = Builder.createDestructiveSwitchEnumAddr(Loc, Cond,
DefaultBB, CaseBBs);
break;
}
case ValueKind::SwitchIntInst: {
// Format: condition, a list of cases (APInt + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list contains value for condition, hasDefault, default
// basic block ID, a list of (APInt(Identifier ID), BasicBlock ID).
SILValue Cond = getLocalValue(ListOfValues[0], ListOfValues[1],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
SILBasicBlock *DefaultBB = nullptr;
if (ListOfValues[2])
DefaultBB = getBBForReference(Fn, ListOfValues[3]);
SmallVector<std::pair<APInt, SILBasicBlock*>, 4> CaseBBs;
for (unsigned I = 4, E = ListOfValues.size(); I < E; I += 2) {
auto intTy = Cond.getType().getAs<BuiltinIntegerType>();
// Build APInt from string.
Identifier StringVal = MF->getIdentifier(ListOfValues[I]);
APInt value(intTy->getGreatestWidth(), StringVal.str(), 10);
CaseBBs.push_back( {value, getBBForReference(Fn, ListOfValues[I+1])} );
}
ResultVal = Builder.createSwitchInt(Loc, Cond, DefaultBB, CaseBBs);
break;
}
case ValueKind::EnumInst: {
// Format: a type, an operand and a decl ID. Use SILTwoOperandsLayout: type,
// (DeclID + hasOperand), and an operand.
SILValue Operand;
if (ValResNum)
Operand = getLocalValue(ValID2, ValResNum2,
getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2));
ResultVal = Builder.createEnum(Loc, Operand,
cast<EnumElementDecl>(MF->getDecl(ValID)),
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
break;
}
case ValueKind::EnumDataAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
auto OperandTy = MF->getType(TyID);
auto ResultTy = OperandTy->getTypeOfMember(Elt->getModuleContext(),
Elt,
nullptr,
Elt->getArgumentType());
ResultVal = Builder.createEnumDataAddr(Loc,
getLocalValue(ValID2, ValResNum2,
getSILType(OperandTy,
(SILValueCategory)TyCategory)),
Elt,
getSILType(ResultTy, SILValueCategory::Address));
break;
}
case ValueKind::InjectEnumAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
ResultVal = Builder.createInjectEnumAddr(Loc,
getLocalValue(ValID2, ValResNum2,
getSILType(Ty, (SILValueCategory)TyCategory)),
Elt);
break;
}
case ValueKind::RefElementAddrInst: {
// Use SILOneValueOneOperandLayout.
VarDecl *Field = cast<VarDecl>(MF->getDecl(ValID));
auto OperandTy = MF->getType(TyID);
ResultVal = Builder.createRefElementAddr(Loc,
getLocalValue(ValID2, ValResNum2,
getSILType(OperandTy,
(SILValueCategory)TyCategory)),
Field,
getSILType(Field->getType(), SILValueCategory::Address));
break;
}
case ValueKind::ArchetypeMethodInst:
case ValueKind::ProtocolMethodInst:
case ValueKind::ClassMethodInst:
case ValueKind::SuperMethodInst:
case ValueKind::DynamicMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
// ArchetypeMethodInst is additionally optionally followed by a
// ProtocolConformance record.
assert(ListOfValues.size() >= 7 &&
"Expect at least 7 numbers for MethodInst");
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, 1);
SILType Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
SILType operandTy = getSILType(MF->getType(ListOfValues[5]),
(SILValueCategory)ListOfValues[6]);
bool IsVolatile = ListOfValues[0] > 0;
switch ((ValueKind)OpCode) {
default: assert(0 && "Out of sync with parent switch");
case ValueKind::ArchetypeMethodInst: {
auto conformancePair = MF->maybeReadConformance(Ty.getSwiftRValueType(),
SILCursor);
ProtocolConformance *conformance
= conformancePair ? conformancePair->second : nullptr;
ResultVal = Builder.createArchetypeMethod(Loc, Ty,
conformance, DRef,
operandTy, IsVolatile);
break;
}
case ValueKind::ProtocolMethodInst:
ResultVal = Builder.createProtocolMethod(Loc,
getLocalValue(ListOfValues[7], ListOfValues[8], operandTy),
DRef, Ty, IsVolatile);
break;
case ValueKind::ClassMethodInst:
ResultVal = Builder.createClassMethod(Loc,
getLocalValue(ListOfValues[7], ListOfValues[8], operandTy),
DRef, Ty, IsVolatile);
break;
case ValueKind::SuperMethodInst:
ResultVal = Builder.createSuperMethod(Loc,
getLocalValue(ListOfValues[7], ListOfValues[8], operandTy),
DRef, Ty, IsVolatile);
break;
case ValueKind::DynamicMethodInst:
ResultVal = Builder.createDynamicMethod(Loc,
getLocalValue(ListOfValues[7], ListOfValues[8], operandTy),
DRef, Ty, IsVolatile);
break;
}
break;
}
case ValueKind::DynamicMethodBranchInst: {
// Format: a typed value, a SILDeclRef, a BasicBlock ID for method,
// a BasicBlock ID for no method. Use SILOneTypeValuesLayout.
assert(ListOfValues.size() == 8 &&
"Expect 8 numbers for DynamicMethodBranchInst");
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, 2);
ResultVal = Builder.createDynamicMethodBranch(Loc,
getLocalValue(ListOfValues[0], ListOfValues[1],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory)),
DRef, getBBForReference(Fn, ListOfValues[6]),
getBBForReference(Fn, ListOfValues[7]));
break;
}
case ValueKind::CheckedCastBranchInst: {
// Format: the cast kind, a typed value, a BasicBlock ID for success,
// a BasicBlock ID for failure. Uses SILOneTypeValuesLayout.
assert(ListOfValues.size() == 7 &&
"expect 7 numbers for CheckedCastBranchInst");
CheckedCastKind castKind = getCheckedCastKind(ListOfValues[0]);
SILType opTy = getSILType(MF->getType(ListOfValues[3]),
(SILValueCategory)ListOfValues[4]);
SILValue op = getLocalValue(ListOfValues[1], ListOfValues[2], opTy);
SILType castTy = getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory);
auto *successBB = getBBForReference(Fn, ListOfValues[5]);
auto *failureBB = getBBForReference(Fn, ListOfValues[6]);
ResultVal = Builder.createCheckedCastBranch(Loc, castKind, op, castTy,
successBB, failureBB);
break;
}
case ValueKind::UnreachableInst: {
ResultVal = Builder.createUnreachable(Loc);
break;
}
}
if (ResultVal->hasValue())
setLocalValue(ResultVal, ++LastValueID);
return false;
}
SILFunction *SILDeserializer::lookupSILFunction(SILFunction *InFunc) {
Identifier name = Ctx.getIdentifier(InFunc->getName());
if (!FuncTable)
return nullptr;
auto iter = FuncTable->find(name);
if (iter == FuncTable->end())
return nullptr;
auto Func = readSILFunction(*iter, InFunc, name);
if (Func)
DEBUG(llvm::dbgs() << "Deserialize SIL:\n";
Func->dump());
return Func;
}
SILFunction *SILDeserializer::lookupSILFunction(Identifier name) {
if (!FuncTable)
return nullptr;
auto iter = FuncTable->find(name);
if (iter == FuncTable->end())
return nullptr;
auto Func = readSILFunction(*iter, nullptr, name);
if (Func)
DEBUG(llvm::dbgs() << "Deserialize SIL:\n";
Func->dump());
return Func;
}
SILGlobalVariable *SILDeserializer::readGlobalVar(Identifier Name) {
if (!GlobalVarList)
return nullptr;
// Find Id for the given name.
auto iter = GlobalVarList->find(Name);
if (iter == GlobalVarList->end())
return nullptr;
auto VId = *iter;
if (VId == 0)
return nullptr;
assert(VId <= GlobalVars.size() && "invalid GlobalVar ID");
auto &globalVarOrOffset = GlobalVars[VId-1];
if (globalVarOrOffset.isComplete())
return globalVarOrOffset;
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(globalVarOrOffset);
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in readGlobalVar.\n");
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_GLOBALVAR && "expect a sil global var");
(void)kind;
TypeID TyID;
unsigned Linkage, IsExternal;
GlobalVarLayout::readRecord(scratch, Linkage, IsExternal, TyID);
if (TyID == 0) {
DEBUG(llvm::dbgs() << "SILGlobalVariable typeID is 0.\n");
return nullptr;
}
auto Ty = MF->getType(TyID);
SILGlobalVariable *v = new (SILMod) SILGlobalVariable(
SILMod, (SILLinkage)Linkage,
Name.str(), getSILType(Ty, SILValueCategory::Object),
!IsExternal);
globalVarOrOffset = v;
return v;
}
SILVTable *SILDeserializer::readVTable(DeclID VId) {
if (VId == 0)
return nullptr;
assert(VId <= VTables.size() && "invalid VTable ID");
auto &vTableOrOffset = VTables[VId-1];
if (vTableOrOffset.isComplete())
return vTableOrOffset;
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(vTableOrOffset);
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in readVTable.\n");
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_VTABLE && "expect a sil vtable");
(void)kind;
DeclID ClassID;
VTableLayout::readRecord(scratch, ClassID);
if (ClassID == 0) {
DEBUG(llvm::dbgs() << "VTable classID is 0.\n");
return nullptr;
}
ClassDecl *theClass = cast<ClassDecl>(MF->getDecl(ClassID));
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// This vtable has no contents.
return nullptr;
kind = SILCursor.readRecord(entry.ID, scratch);
std::vector<SILVTable::Pair> vtableEntries;
// Another SIL_VTABLE record means the end of this VTable.
while (kind != SIL_VTABLE && kind != SIL_FUNCTION) {
assert(kind == SIL_VTABLE_ENTRY &&
"Content of Vtable should be in SIL_VTABLE_ENTRY.");
ArrayRef<uint64_t> ListOfValues;
DeclID NameID;
VTableEntryLayout::readRecord(scratch, NameID, ListOfValues);
SILFunction *Func = lookupSILFunction(MF->getIdentifier(NameID));
if (Func)
vtableEntries.emplace_back(getSILDeclRef(MF, ListOfValues, 0), Func);
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// EndBlock means the end of this VTable.
break;
kind = SILCursor.readRecord(entry.ID, scratch);
}
SILVTable *vT = SILVTable::create(SILMod, theClass, vtableEntries);
vTableOrOffset = vT;
return vT;
}
SILVTable *SILDeserializer::lookupVTable(Identifier Name) {
if (!VTableList)
return nullptr;
auto iter = VTableList->find(Name);
if (iter == VTableList->end())
return nullptr;
auto VT = readVTable(*iter);
return VT;
}
/// Deserialize all VTables inside the module and add them to SILMod.
void SILDeserializer::getAllVTables() {
if (!VTableList)
return;
for (unsigned I = 0, E = VTables.size(); I < E; I++)
readVTable(I+1);
}
SILDeserializer::~SILDeserializer() = default;