mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
6106 lines
206 KiB
C++
6106 lines
206 KiB
C++
//===--- CSDiagnostics.cpp - Constraint Diagnostics -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements diagnostics for constraint system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CSDiagnostics.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "MiscDiagnostics.h"
|
|
#include "TypoCorrection.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/ExistentialLayout.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Initializer.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/ProtocolConformanceRef.h"
|
|
#include "swift/AST/SourceFile.h"
|
|
#include "swift/AST/Stmt.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/SourceLoc.h"
|
|
#include "swift/Parse/Lexer.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include <string>
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
FailureDiagnostic::~FailureDiagnostic() {}
|
|
|
|
bool FailureDiagnostic::diagnose(bool asNote) {
|
|
return asNote ? diagnoseAsNote() : diagnoseAsError();
|
|
}
|
|
|
|
bool FailureDiagnostic::diagnoseAsNote() {
|
|
return false;
|
|
}
|
|
|
|
std::pair<Expr *, bool> FailureDiagnostic::computeAnchor() const {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
auto *locator = getLocator();
|
|
// Resolve the locator to a specific expression.
|
|
SourceRange range;
|
|
bool isSubscriptMember =
|
|
(!locator->getPath().empty() && locator->getPath().back().getKind() ==
|
|
ConstraintLocator::SubscriptMember);
|
|
|
|
ConstraintLocator *resolved = simplifyLocator(cs, locator, range);
|
|
if (!resolved || !resolved->getAnchor())
|
|
return {locator->getAnchor(), true};
|
|
|
|
Expr *anchor = resolved->getAnchor();
|
|
// FIXME: Work around an odd locator representation that doesn't separate the
|
|
// base of a subscript member from the member access.
|
|
if (isSubscriptMember) {
|
|
if (auto subscript = dyn_cast<SubscriptExpr>(anchor))
|
|
anchor = subscript->getBase();
|
|
}
|
|
|
|
return {anchor, !resolved->getPath().empty()};
|
|
}
|
|
|
|
Type FailureDiagnostic::getType(Expr *expr, bool wantRValue) const {
|
|
return resolveType(CS.getType(expr), /*reconstituteSugar=*/false,
|
|
wantRValue);
|
|
}
|
|
|
|
Type FailureDiagnostic::getType(const TypeLoc &loc, bool wantRValue) const {
|
|
return resolveType(CS.getType(loc), /*reconstituteSugar=*/false,
|
|
wantRValue);
|
|
}
|
|
|
|
template <typename... ArgTypes>
|
|
InFlightDiagnostic
|
|
FailureDiagnostic::emitDiagnostic(ArgTypes &&... Args) const {
|
|
auto &cs = getConstraintSystem();
|
|
return cs.getASTContext().Diags.diagnose(std::forward<ArgTypes>(Args)...);
|
|
}
|
|
|
|
Expr *FailureDiagnostic::findParentExpr(Expr *subExpr) const {
|
|
return CS.getParentExpr(subExpr);
|
|
}
|
|
|
|
Expr *
|
|
FailureDiagnostic::getArgumentListExprFor(ConstraintLocator *locator) const {
|
|
auto path = locator->getPath();
|
|
auto iter = path.begin();
|
|
if (!locator->findFirst<LocatorPathElt::ApplyArgument>(iter))
|
|
return nullptr;
|
|
|
|
// Form a new locator that ends at the ApplyArgument element, then simplify
|
|
// to get the argument list.
|
|
auto newPath = ArrayRef<LocatorPathElt>(path.begin(), iter + 1);
|
|
auto &cs = getConstraintSystem();
|
|
auto argListLoc = cs.getConstraintLocator(locator->getAnchor(), newPath);
|
|
return simplifyLocatorToAnchor(argListLoc);
|
|
}
|
|
|
|
Expr *FailureDiagnostic::getBaseExprFor(Expr *anchor) const {
|
|
if (!anchor)
|
|
return nullptr;
|
|
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor))
|
|
return UDE->getBase();
|
|
else if (auto *SE = dyn_cast<SubscriptExpr>(anchor))
|
|
return SE->getBase();
|
|
else if (auto *MRE = dyn_cast<MemberRefExpr>(anchor))
|
|
return MRE->getBase();
|
|
else if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
auto fnType = getType(call->getFn());
|
|
if (fnType->isCallableNominalType(getDC())) {
|
|
return call->getFn();
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Optional<SelectedOverload>
|
|
FailureDiagnostic::getChoiceFor(ConstraintLocator *locator) const {
|
|
auto &cs = getConstraintSystem();
|
|
return getOverloadChoiceIfAvailable(cs.getCalleeLocator(locator));
|
|
}
|
|
|
|
Type FailureDiagnostic::restoreGenericParameters(
|
|
Type type,
|
|
llvm::function_ref<void(GenericTypeParamType *, Type)> substitution) {
|
|
llvm::SmallPtrSet<GenericTypeParamType *, 4> processed;
|
|
return type.transform([&](Type type) -> Type {
|
|
if (auto *typeVar = type->getAs<TypeVariableType>()) {
|
|
type = resolveType(typeVar);
|
|
if (auto *GP = typeVar->getImpl().getGenericParameter()) {
|
|
if (processed.insert(GP).second)
|
|
substitution(GP, type);
|
|
return GP;
|
|
}
|
|
}
|
|
|
|
return type;
|
|
});
|
|
}
|
|
|
|
Type RequirementFailure::getOwnerType() const {
|
|
auto *anchor = getRawAnchor();
|
|
|
|
// If diagnostic is anchored at assignment expression
|
|
// it means that requirement failure happend while trying
|
|
// to convert source to destination, which means that
|
|
// owner type is actually not an assignment expression
|
|
// itself but its source.
|
|
if (auto *assignment = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assignment->getSrc();
|
|
|
|
return getType(anchor)->getInOutObjectType()->getMetatypeInstanceType();
|
|
}
|
|
|
|
const GenericContext *RequirementFailure::getGenericContext() const {
|
|
if (auto *genericCtx = AffectedDecl->getAsGenericContext())
|
|
return genericCtx;
|
|
|
|
auto parentDecl = AffectedDecl->getDeclContext()->getAsDecl();
|
|
if (!parentDecl)
|
|
return nullptr;
|
|
|
|
return parentDecl->getAsGenericContext();
|
|
}
|
|
|
|
const Requirement &RequirementFailure::getRequirement() const {
|
|
// If this is a conditional requirement failure we need to
|
|
// fetch conformance from constraint system associated with
|
|
// type requirement this conditional conformance belongs to.
|
|
auto requirements = isConditional()
|
|
? Conformance->getConditionalRequirements()
|
|
: Signature->getRequirements();
|
|
return requirements[getRequirementIndex()];
|
|
}
|
|
|
|
ProtocolConformance *RequirementFailure::getConformanceForConditionalReq(
|
|
ConstraintLocator *locator) {
|
|
auto &cs = getConstraintSystem();
|
|
auto reqElt = locator->castLastElementTo<LocatorPathElt::AnyRequirement>();
|
|
if (!reqElt.isConditionalRequirement())
|
|
return nullptr;
|
|
|
|
auto path = locator->getPath();
|
|
auto *typeReqLoc = getConstraintLocator(getRawAnchor(), path.drop_back());
|
|
|
|
auto result = llvm::find_if(
|
|
cs.CheckedConformances,
|
|
[&](const std::pair<ConstraintLocator *, ProtocolConformanceRef>
|
|
&conformance) { return conformance.first == typeReqLoc; });
|
|
assert(result != cs.CheckedConformances.end());
|
|
|
|
auto conformance = result->second;
|
|
assert(conformance.isConcrete());
|
|
return conformance.getConcrete();
|
|
}
|
|
|
|
ValueDecl *RequirementFailure::getDeclRef() const {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
// Get a declaration associated with given type (if any).
|
|
// This is used to retrieve affected declaration when
|
|
// failure is in any way contextual, and declaration can't
|
|
// be fetched directly from constraint system.
|
|
auto getAffectedDeclFromType = [](Type type) -> ValueDecl * {
|
|
assert(type);
|
|
// If problem is related to a typealias, let's point this
|
|
// diagnostic directly to its declaration without desugaring.
|
|
if (auto *alias = dyn_cast<TypeAliasType>(type.getPointer()))
|
|
return alias->getDecl();
|
|
|
|
if (auto *opaque = type->getAs<OpaqueTypeArchetypeType>())
|
|
return opaque->getDecl();
|
|
|
|
return type->getAnyGeneric();
|
|
};
|
|
|
|
if (isFromContextualType())
|
|
return getAffectedDeclFromType(
|
|
cs.getContextualType(getLocator()->getAnchor()));
|
|
|
|
if (auto overload = getChoiceFor(getLocator())) {
|
|
// If there is a declaration associated with this
|
|
// failure e.g. an overload choice of the call
|
|
// expression, let's see whether failure is
|
|
// associated with it directly or rather with
|
|
// one of its parents.
|
|
if (auto *decl = overload->choice.getDeclOrNull()) {
|
|
auto *DC = decl->getDeclContext();
|
|
|
|
do {
|
|
if (auto *parent = DC->getAsDecl()) {
|
|
if (auto *GC = parent->getAsGenericContext()) {
|
|
// FIXME: Is this intending an exact match?
|
|
if (GC->getGenericSignature().getPointer() != Signature.getPointer())
|
|
continue;
|
|
|
|
// If this is a signature if an extension
|
|
// then it means that code has referenced
|
|
// something incorrectly and diagnostic
|
|
// should point to the referenced declaration.
|
|
if (isa<ExtensionDecl>(parent))
|
|
break;
|
|
|
|
return cast<ValueDecl>(parent);
|
|
}
|
|
}
|
|
} while ((DC = DC->getParent()));
|
|
|
|
return decl;
|
|
}
|
|
}
|
|
|
|
return getAffectedDeclFromType(getOwnerType());
|
|
}
|
|
|
|
GenericSignature RequirementFailure::getSignature(ConstraintLocator *locator) {
|
|
if (isConditional())
|
|
return Conformance->getGenericSignature();
|
|
|
|
if (auto genericElt = locator->findLast<LocatorPathElt::OpenedGeneric>())
|
|
return genericElt->getSignature();
|
|
|
|
llvm_unreachable("Type requirement failure should always have signature");
|
|
}
|
|
|
|
bool RequirementFailure::isFromContextualType() const {
|
|
auto path = getLocator()->getPath();
|
|
assert(!path.empty());
|
|
return path.front().getKind() == ConstraintLocator::ContextualType;
|
|
}
|
|
|
|
const DeclContext *RequirementFailure::getRequirementDC() const {
|
|
// In case of conditional requirement failure, we don't
|
|
// have to guess where the it comes from.
|
|
if (isConditional())
|
|
return Conformance->getDeclContext();
|
|
|
|
const auto &req = getRequirement();
|
|
auto *DC = AffectedDecl->getDeclContext();
|
|
|
|
do {
|
|
if (auto sig = DC->getGenericSignatureOfContext()) {
|
|
if (sig->isRequirementSatisfied(req))
|
|
return DC;
|
|
}
|
|
} while ((DC = DC->getParent()));
|
|
|
|
return AffectedDecl->getAsGenericContext();
|
|
}
|
|
|
|
bool RequirementFailure::isStaticOrInstanceMember(const ValueDecl *decl) {
|
|
if (decl->isInstanceMember())
|
|
return true;
|
|
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(decl))
|
|
return AFD->isStatic() && !AFD->isOperator();
|
|
|
|
return decl->isStatic();
|
|
}
|
|
|
|
bool RequirementFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
const auto *reqDC = getRequirementDC();
|
|
auto *genericCtx = getGenericContext();
|
|
|
|
auto lhs = getLHS();
|
|
auto rhs = getRHS();
|
|
|
|
if (auto *OTD = dyn_cast<OpaqueTypeDecl>(AffectedDecl)) {
|
|
auto *namingDecl = OTD->getNamingDecl();
|
|
emitDiagnostic(
|
|
anchor->getLoc(), diag::type_does_not_conform_in_opaque_return,
|
|
namingDecl->getDescriptiveKind(), namingDecl->getFullName(), lhs, rhs,
|
|
rhs->isAnyObject());
|
|
|
|
if (auto *repr = namingDecl->getOpaqueResultTypeRepr()) {
|
|
emitDiagnostic(repr->getLoc(), diag::opaque_return_type_declared_here)
|
|
.highlight(repr->getSourceRange());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (reqDC->isTypeContext() && genericCtx != reqDC &&
|
|
(genericCtx->isChildContextOf(reqDC) ||
|
|
isStaticOrInstanceMember(AffectedDecl))) {
|
|
auto *NTD = reqDC->getSelfNominalTypeDecl();
|
|
emitDiagnostic(anchor->getLoc(), getDiagnosticInRereference(),
|
|
AffectedDecl->getDescriptiveKind(),
|
|
AffectedDecl->getFullName(), NTD->getDeclaredType(), lhs,
|
|
rhs);
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), getDiagnosticOnDecl(),
|
|
AffectedDecl->getDescriptiveKind(),
|
|
AffectedDecl->getFullName(), lhs, rhs);
|
|
}
|
|
|
|
emitRequirementNote(reqDC->getAsDecl(), lhs, rhs);
|
|
return true;
|
|
}
|
|
|
|
bool RequirementFailure::diagnoseAsNote() {
|
|
const auto &req = getRequirement();
|
|
const auto *reqDC = getRequirementDC();
|
|
|
|
emitDiagnostic(reqDC->getAsDecl(), getDiagnosticAsNote(), getLHS(), getRHS(),
|
|
req.getFirstType(), req.getSecondType(), "");
|
|
return true;
|
|
}
|
|
|
|
void RequirementFailure::emitRequirementNote(const Decl *anchor, Type lhs,
|
|
Type rhs) const {
|
|
auto &req = getRequirement();
|
|
|
|
if (req.getKind() != RequirementKind::SameType) {
|
|
if (auto wrappedType = lhs->getOptionalObjectType()) {
|
|
auto kind = (req.getKind() == RequirementKind::Superclass ?
|
|
ConstraintKind::Subtype : ConstraintKind::ConformsTo);
|
|
if (TypeChecker::typesSatisfyConstraint(wrappedType, rhs,
|
|
/*openArchetypes=*/false,
|
|
kind, getDC()))
|
|
emitDiagnostic(getAnchor()->getLoc(),
|
|
diag::wrapped_type_satisfies_requirement, wrappedType);
|
|
}
|
|
}
|
|
|
|
if (isConditional()) {
|
|
emitDiagnostic(anchor, diag::requirement_implied_by_conditional_conformance,
|
|
resolveType(Conformance->getType()),
|
|
Conformance->getProtocol()->getDeclaredInterfaceType());
|
|
return;
|
|
}
|
|
|
|
if (req.getKind() == RequirementKind::Layout ||
|
|
rhs->isEqual(req.getSecondType())) {
|
|
emitDiagnostic(anchor, diag::where_requirement_failure_one_subst,
|
|
req.getFirstType(), lhs);
|
|
return;
|
|
}
|
|
|
|
if (lhs->isEqual(req.getFirstType())) {
|
|
emitDiagnostic(anchor, diag::where_requirement_failure_one_subst,
|
|
req.getSecondType(), rhs);
|
|
return;
|
|
}
|
|
|
|
emitDiagnostic(anchor, diag::where_requirement_failure_both_subst,
|
|
req.getFirstType(), lhs, req.getSecondType(), rhs);
|
|
}
|
|
|
|
bool MissingConformanceFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto nonConformingType = getLHS();
|
|
auto protocolType = getRHS();
|
|
|
|
// If this is a requirement of a pattern-matching operator,
|
|
// let's see whether argument already has a fix associated
|
|
// with it and if so skip conformance error, otherwise we'd
|
|
// produce an unrelated `<type> doesn't conform to Equatable protocol`
|
|
// diagnostic.
|
|
if (isPatternMatchingOperator(anchor)) {
|
|
if (auto *binaryOp = dyn_cast_or_null<BinaryExpr>(findParentExpr(anchor))) {
|
|
auto *caseExpr = binaryOp->getArg()->getElement(0);
|
|
|
|
auto &cs = getConstraintSystem();
|
|
llvm::SmallPtrSet<Expr *, 4> anchors;
|
|
for (const auto *fix : cs.getFixes())
|
|
anchors.insert(fix->getAnchor());
|
|
|
|
bool hasFix = false;
|
|
caseExpr->forEachChildExpr([&](Expr *expr) -> Expr * {
|
|
hasFix |= anchors.count(expr);
|
|
return hasFix ? nullptr : expr;
|
|
});
|
|
|
|
if (hasFix)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (diagnoseAsAmbiguousOperatorRef())
|
|
return true;
|
|
|
|
if (nonConformingType->isObjCExistentialType()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::protocol_does_not_conform_static,
|
|
nonConformingType, protocolType);
|
|
return true;
|
|
}
|
|
|
|
if (diagnoseTypeCannotConform(anchor, nonConformingType, protocolType))
|
|
return true;
|
|
|
|
// If none of the special cases could be diagnosed,
|
|
// let's fallback to the most general diagnostic.
|
|
return RequirementFailure::diagnoseAsError();
|
|
}
|
|
|
|
bool MissingConformanceFailure::diagnoseTypeCannotConform(Expr *anchor,
|
|
Type nonConformingType, Type protocolType) const {
|
|
if (getRequirement().getKind() == RequirementKind::Layout ||
|
|
!(nonConformingType->is<AnyFunctionType>() ||
|
|
nonConformingType->is<TupleType>() ||
|
|
nonConformingType->isExistentialType() ||
|
|
nonConformingType->is<AnyMetatypeType>())) {
|
|
return false;
|
|
}
|
|
|
|
emitDiagnostic(anchor->getLoc(), diag::type_cannot_conform,
|
|
nonConformingType->isExistentialType(), nonConformingType,
|
|
protocolType);
|
|
|
|
if (auto *OTD = dyn_cast<OpaqueTypeDecl>(AffectedDecl)) {
|
|
auto *namingDecl = OTD->getNamingDecl();
|
|
if (auto *repr = namingDecl->getOpaqueResultTypeRepr()) {
|
|
emitDiagnostic(repr->getLoc(), diag::required_by_opaque_return,
|
|
namingDecl->getDescriptiveKind(), namingDecl->getFullName())
|
|
.highlight(repr->getSourceRange());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
auto &req = getRequirement();
|
|
auto *reqDC = getRequirementDC();
|
|
auto *genericCtx = getGenericContext();
|
|
auto noteLocation = reqDC->getAsDecl()->getLoc();
|
|
|
|
if (!noteLocation.isValid())
|
|
noteLocation = anchor->getLoc();
|
|
|
|
if (isConditional()) {
|
|
emitDiagnostic(noteLocation, diag::requirement_implied_by_conditional_conformance,
|
|
resolveType(Conformance->getType()),
|
|
Conformance->getProtocol()->getDeclaredInterfaceType());
|
|
} else if (genericCtx != reqDC && (genericCtx->isChildContextOf(reqDC) ||
|
|
isStaticOrInstanceMember(AffectedDecl))) {
|
|
emitDiagnostic(noteLocation, diag::required_by_decl_ref,
|
|
AffectedDecl->getDescriptiveKind(),
|
|
AffectedDecl->getFullName(),
|
|
reqDC->getSelfNominalTypeDecl()->getDeclaredType(),
|
|
req.getFirstType(), nonConformingType);
|
|
} else {
|
|
emitDiagnostic(noteLocation, diag::required_by_decl,
|
|
AffectedDecl->getDescriptiveKind(),
|
|
AffectedDecl->getFullName(), req.getFirstType(),
|
|
nonConformingType);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingConformanceFailure::diagnoseAsAmbiguousOperatorRef() {
|
|
auto *anchor = getRawAnchor();
|
|
auto *ODRE = dyn_cast<OverloadedDeclRefExpr>(anchor);
|
|
if (!ODRE)
|
|
return false;
|
|
|
|
auto isStdlibType = [](Type type) {
|
|
if (auto *NTD = type->getAnyNominal()) {
|
|
auto *DC = NTD->getDeclContext();
|
|
return DC->isModuleScopeContext() &&
|
|
DC->getParentModule()->isStdlibModule();
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
auto name = ODRE->getDecls().front()->getBaseName();
|
|
if (!(name.isOperator() && isStdlibType(getLHS()) && isStdlibType(getRHS())))
|
|
return false;
|
|
|
|
// If this is an operator reference and both types are from stdlib,
|
|
// let's produce a generic diagnostic about invocation and a note
|
|
// about missing conformance just in case.
|
|
auto operatorID = name.getIdentifier();
|
|
|
|
auto *applyExpr = cast<ApplyExpr>(findParentExpr(anchor));
|
|
if (auto *binaryOp = dyn_cast<BinaryExpr>(applyExpr)) {
|
|
auto lhsType = getType(binaryOp->getArg()->getElement(0));
|
|
auto rhsType = getType(binaryOp->getArg()->getElement(1));
|
|
|
|
if (lhsType->isEqual(rhsType)) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_apply_binop_to_same_args,
|
|
operatorID.str(), lhsType);
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_apply_binop_to_args,
|
|
operatorID.str(), lhsType, rhsType);
|
|
}
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_apply_unop_to_arg,
|
|
operatorID.str(), getType(applyExpr->getArg()));
|
|
}
|
|
|
|
diagnoseAsNote();
|
|
return true;
|
|
}
|
|
|
|
Optional<Diag<Type, Type>> GenericArgumentsMismatchFailure::getDiagnosticFor(
|
|
ContextualTypePurpose context) {
|
|
switch (context) {
|
|
case CTP_Initialization:
|
|
case CTP_AssignSource:
|
|
return diag::cannot_convert_assign;
|
|
case CTP_ReturnStmt:
|
|
case CTP_ReturnSingleExpr:
|
|
return diag::cannot_convert_to_return_type;
|
|
case CTP_DefaultParameter:
|
|
return diag::cannot_convert_default_arg_value;
|
|
case CTP_YieldByValue:
|
|
return diag::cannot_convert_yield_value;
|
|
case CTP_CallArgument:
|
|
return diag::cannot_convert_argument_value;
|
|
case CTP_ClosureResult:
|
|
return diag::cannot_convert_closure_result;
|
|
case CTP_ArrayElement:
|
|
return diag::cannot_convert_array_element;
|
|
// TODO(diagnostics): Make dictionary related diagnostics take prescedence
|
|
// over CSDiag. Currently these won't ever be produced.
|
|
case CTP_DictionaryKey:
|
|
return diag::cannot_convert_dict_key;
|
|
case CTP_DictionaryValue:
|
|
return diag::cannot_convert_dict_value;
|
|
case CTP_CoerceOperand:
|
|
return diag::cannot_convert_coerce;
|
|
case CTP_SubscriptAssignSource:
|
|
return diag::cannot_convert_subscript_assign;
|
|
case CTP_Condition:
|
|
return diag::cannot_convert_condition_value;
|
|
|
|
case CTP_ThrowStmt:
|
|
case CTP_ForEachStmt:
|
|
case CTP_Unused:
|
|
case CTP_CannotFail:
|
|
case CTP_YieldByReference:
|
|
case CTP_CalleeResult:
|
|
case CTP_EnumCaseRawValue:
|
|
break;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
void GenericArgumentsMismatchFailure::emitNoteForMismatch(int position) {
|
|
auto *locator = getLocator();
|
|
// Since there could be implicit conversions assoicated with argument
|
|
// to parameter conversions, let's use parameter type as a source of
|
|
// generic parameter information.
|
|
auto paramSourceTy =
|
|
locator->isLastElement<LocatorPathElt::ApplyArgToParam>() ? getRequired()
|
|
: getActual();
|
|
|
|
auto genericTypeDecl = paramSourceTy->getAnyGeneric();
|
|
auto param = genericTypeDecl->getGenericParams()->getParams()[position];
|
|
|
|
auto lhs = getActual()->getGenericArgs()[position];
|
|
auto rhs = getRequired()->getGenericArgs()[position];
|
|
|
|
auto noteLocation = param->getLoc();
|
|
|
|
if (!noteLocation.isValid()) {
|
|
noteLocation = getAnchor()->getLoc();
|
|
}
|
|
|
|
emitDiagnostic(noteLocation, diag::generic_argument_mismatch,
|
|
param->getName(), lhs, rhs);
|
|
}
|
|
|
|
bool GenericArgumentsMismatchFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto path = getLocator()->getPath();
|
|
|
|
auto fromType = getFromType();
|
|
auto toType = getToType();
|
|
|
|
Optional<Diag<Type, Type>> diagnostic;
|
|
if (path.empty()) {
|
|
if (isa<AssignExpr>(anchor)) {
|
|
diagnostic = getDiagnosticFor(CTP_AssignSource);
|
|
} else if (isa<CoerceExpr>(anchor)) {
|
|
diagnostic = getDiagnosticFor(CTP_CoerceOperand);
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
const auto &last = path.back();
|
|
switch (last.getKind()) {
|
|
case ConstraintLocator::ContextualType: {
|
|
auto purpose = getContextualTypePurpose();
|
|
assert(!(purpose == CTP_Unused && purpose == CTP_CannotFail));
|
|
|
|
// If this is call to a closure e.g. `let _: A = { B() }()`
|
|
// let's point diagnostic to its result.
|
|
if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
auto *fnExpr = call->getFn();
|
|
if (auto *closure = dyn_cast<ClosureExpr>(fnExpr)) {
|
|
purpose = CTP_ClosureResult;
|
|
if (closure->hasSingleExpressionBody())
|
|
anchor = closure->getSingleExpressionBody();
|
|
}
|
|
}
|
|
|
|
diagnostic = getDiagnosticFor(purpose);
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::AutoclosureResult:
|
|
case ConstraintLocator::ApplyArgToParam:
|
|
case ConstraintLocator::ApplyArgument: {
|
|
diagnostic = diag::cannot_convert_argument_value;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ParentType: {
|
|
diagnostic = diag::cannot_convert_parent_type;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ClosureResult: {
|
|
diagnostic = diag::cannot_convert_closure_result;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::GenericArgument: {
|
|
// In cases like `[[Int]]` vs. `[[String]]`
|
|
if (auto *assignExpr = dyn_cast<AssignExpr>(anchor)) {
|
|
diagnostic = getDiagnosticFor(CTP_AssignSource);
|
|
fromType = getType(assignExpr->getSrc());
|
|
toType = getType(assignExpr->getDest());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::TupleElement: {
|
|
auto *anchor = getRawAnchor();
|
|
|
|
if (isa<ArrayExpr>(anchor)) {
|
|
diagnostic = getDiagnosticFor(CTP_ArrayElement);
|
|
} else if (isa<DictionaryExpr>(anchor)) {
|
|
auto eltLoc = last.castTo<LocatorPathElt::TupleElement>();
|
|
diagnostic = getDiagnosticFor(
|
|
eltLoc.getIndex() == 0 ? CTP_DictionaryKey : CTP_DictionaryValue);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
emitDiagnostic(anchor->getLoc(), *diagnostic, fromType, toType);
|
|
emitNotesForMismatches();
|
|
return true;
|
|
}
|
|
|
|
bool LabelingFailure::diagnoseAsError() {
|
|
auto *argExpr = getArgumentListExprFor(getLocator());
|
|
if (!argExpr)
|
|
return false;
|
|
|
|
auto &cs = getConstraintSystem();
|
|
auto *anchor = getRawAnchor();
|
|
return diagnoseArgumentLabelError(cs.getASTContext(), argExpr, CorrectLabels,
|
|
isa<SubscriptExpr>(anchor));
|
|
}
|
|
|
|
bool LabelingFailure::diagnoseAsNote() {
|
|
auto *argExpr = getArgumentListExprFor(getLocator());
|
|
if (!argExpr)
|
|
return false;
|
|
|
|
SmallVector<Identifier, 4> argLabels;
|
|
if (auto *paren = dyn_cast<ParenExpr>(argExpr)) {
|
|
argLabels.push_back(Identifier());
|
|
} else if (auto *tuple = dyn_cast<TupleExpr>(argExpr)) {
|
|
argLabels.append(tuple->getElementNames().begin(),
|
|
tuple->getElementNames().end());
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
auto stringifyLabels = [](ArrayRef<Identifier> labels) -> std::string {
|
|
std::string str;
|
|
for (auto label : labels) {
|
|
str += label.empty() ? "_" : label.str();
|
|
str += ':';
|
|
}
|
|
return "(" + str + ")";
|
|
};
|
|
|
|
auto selectedOverload = getChoiceFor(getLocator());
|
|
if (!selectedOverload)
|
|
return false;
|
|
|
|
const auto &choice = selectedOverload->choice;
|
|
if (auto *decl = choice.getDeclOrNull()) {
|
|
emitDiagnostic(decl, diag::candidate_expected_different_labels,
|
|
stringifyLabels(argLabels), stringifyLabels(CorrectLabels));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool NoEscapeFuncToTypeConversionFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
|
|
if (diagnoseParameterUse())
|
|
return true;
|
|
|
|
if (auto *typeVar = getRawFromType()->getAs<TypeVariableType>()) {
|
|
if (auto *GP = typeVar->getImpl().getGenericParameter()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::converting_noescape_to_type, GP);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(anchor->getLoc(), diag::converting_noescape_to_type,
|
|
getToType());
|
|
return true;
|
|
}
|
|
|
|
bool NoEscapeFuncToTypeConversionFailure::diagnoseParameterUse() const {
|
|
auto convertTo = getToType();
|
|
// If the other side is not a function, we have common case diagnostics
|
|
// which handle function-to-type conversion diagnostics.
|
|
if (!convertTo->is<FunctionType>())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto diagnostic = diag::general_noescape_to_escaping;
|
|
|
|
ParamDecl *PD = nullptr;
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(anchor)) {
|
|
PD = dyn_cast<ParamDecl>(DRE->getDecl());
|
|
|
|
// If anchor is not a parameter declaration there
|
|
// is no need to dig up more information.
|
|
if (!PD)
|
|
return false;
|
|
|
|
// Let's check whether this is a function parameter passed
|
|
// as an argument to another function which accepts @escaping
|
|
// function at that position.
|
|
auto &cs = getConstraintSystem();
|
|
if (auto argApplyInfo = cs.getFunctionArgApplyInfo(getLocator())) {
|
|
auto paramInterfaceTy = argApplyInfo->getParamInterfaceType();
|
|
if (paramInterfaceTy->isTypeParameter()) {
|
|
auto diagnoseGenericParamFailure = [&](GenericTypeParamDecl *decl) {
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::converting_noespace_param_to_generic_type,
|
|
PD->getName(), paramInterfaceTy);
|
|
|
|
auto declLoc = decl->getLoc();
|
|
if (declLoc.isValid())
|
|
emitDiagnostic(decl, diag::generic_parameters_always_escaping);
|
|
};
|
|
|
|
// If this is a situation when non-escaping parameter is passed
|
|
// to the argument which represents generic parameter, there is
|
|
// a tailored diagnostic for that.
|
|
|
|
if (auto *DMT = paramInterfaceTy->getAs<DependentMemberType>()) {
|
|
diagnoseGenericParamFailure(DMT->getRootGenericParam()->getDecl());
|
|
return true;
|
|
}
|
|
|
|
if (auto *GP = paramInterfaceTy->getAs<GenericTypeParamType>()) {
|
|
diagnoseGenericParamFailure(GP->getDecl());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If there are no generic parameters involved, this could
|
|
// only mean that parameter is expecting @escaping function type.
|
|
diagnostic = diag::passing_noescape_to_escaping;
|
|
}
|
|
} else if (auto *AE = dyn_cast<AssignExpr>(getRawAnchor())) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(AE->getSrc())) {
|
|
PD = dyn_cast<ParamDecl>(DRE->getDecl());
|
|
diagnostic = diag::assigning_noescape_to_escaping;
|
|
}
|
|
}
|
|
|
|
if (!PD)
|
|
return false;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, PD->getName());
|
|
|
|
// Give a note and fix-it
|
|
auto note =
|
|
emitDiagnostic(PD->getLoc(), diag::noescape_parameter, PD->getName());
|
|
|
|
if (!PD->isAutoClosure()) {
|
|
SourceLoc reprLoc;
|
|
if (auto *repr = PD->getTypeRepr())
|
|
reprLoc = repr->getStartLoc();
|
|
note.fixItInsert(reprLoc, "@escaping ");
|
|
} // TODO: add in a fixit for autoclosure
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingForcedDowncastFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *expr = getAnchor();
|
|
if (auto *assignExpr = dyn_cast<AssignExpr>(expr))
|
|
expr = assignExpr->getSrc();
|
|
|
|
auto *coerceExpr = cast<CoerceExpr>(expr);
|
|
|
|
auto fromType = getFromType();
|
|
auto toType = getToType();
|
|
|
|
emitDiagnostic(coerceExpr->getLoc(), diag::missing_forced_downcast, fromType,
|
|
toType)
|
|
.highlight(coerceExpr->getSourceRange())
|
|
.fixItReplace(coerceExpr->getLoc(), "as!");
|
|
return true;
|
|
}
|
|
|
|
bool MissingAddressOfFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto argTy = getFromType();
|
|
auto paramTy = getToType();
|
|
|
|
if (paramTy->getAnyPointerElementType()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_convert_argument_value, argTy,
|
|
paramTy)
|
|
.fixItInsert(anchor->getStartLoc(), "&");
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), diag::missing_address_of, argTy)
|
|
.fixItInsert(anchor->getStartLoc(), "&");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MissingExplicitConversionFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *DC = getDC();
|
|
auto *anchor = getAnchor();
|
|
if (auto *assign = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assign->getSrc();
|
|
if (auto *paren = dyn_cast<ParenExpr>(anchor))
|
|
anchor = paren->getSubExpr();
|
|
|
|
auto fromType = getFromType();
|
|
auto toType = getToType();
|
|
|
|
if (!toType->hasTypeRepr())
|
|
return false;
|
|
|
|
bool useAs = TypeChecker::isExplicitlyConvertibleTo(fromType, toType, DC);
|
|
if (!useAs && !TypeChecker::checkedCastMaySucceed(fromType, toType, DC))
|
|
return false;
|
|
|
|
auto *expr = findParentExpr(getAnchor());
|
|
if (!expr)
|
|
expr = getAnchor();
|
|
|
|
// If we're performing pattern matching,
|
|
// "as" means something completely different...
|
|
if (auto binOpExpr = dyn_cast<BinaryExpr>(expr)) {
|
|
auto overloadedFn = dyn_cast<OverloadedDeclRefExpr>(binOpExpr->getFn());
|
|
if (overloadedFn && !overloadedFn->getDecls().empty()) {
|
|
ValueDecl *decl0 = overloadedFn->getDecls()[0];
|
|
if (decl0->getBaseName() == decl0->getASTContext().Id_MatchOperator)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool needsParensInside = exprNeedsParensBeforeAddingAs(anchor);
|
|
bool needsParensOutside = exprNeedsParensAfterAddingAs(anchor, expr);
|
|
|
|
llvm::SmallString<2> insertBefore;
|
|
llvm::SmallString<32> insertAfter;
|
|
if (needsParensOutside) {
|
|
insertBefore += "(";
|
|
}
|
|
if (needsParensInside) {
|
|
insertBefore += "(";
|
|
insertAfter += ")";
|
|
}
|
|
insertAfter += useAs ? " as " : " as! ";
|
|
insertAfter += toType->getWithoutParens()->getString();
|
|
if (needsParensOutside)
|
|
insertAfter += ")";
|
|
|
|
auto diagID =
|
|
useAs ? diag::missing_explicit_conversion : diag::missing_forced_downcast;
|
|
auto diag = emitDiagnostic(anchor->getLoc(), diagID, fromType, toType);
|
|
if (!insertBefore.empty()) {
|
|
diag.fixItInsert(anchor->getStartLoc(), insertBefore);
|
|
}
|
|
diag.fixItInsertAfter(anchor->getEndLoc(), insertAfter);
|
|
return true;
|
|
}
|
|
|
|
bool MemberAccessOnOptionalBaseFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto baseType = getType(anchor);
|
|
bool resultIsOptional = ResultTypeIsOptional;
|
|
|
|
// If we've resolved the member overload to one that returns an optional
|
|
// type, then the result of the expression is optional (and we want to offer
|
|
// only a '?' fixit) even though the constraint system didn't need to add any
|
|
// additional optionality.
|
|
auto overload = getOverloadChoiceIfAvailable(getLocator());
|
|
if (overload && overload->openedType->getOptionalObjectType())
|
|
resultIsOptional = true;
|
|
|
|
auto unwrappedBaseType = baseType->getOptionalObjectType();
|
|
if (!unwrappedBaseType)
|
|
return false;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diag::optional_base_not_unwrapped,
|
|
baseType, Member, unwrappedBaseType);
|
|
|
|
// FIXME: It would be nice to immediately offer "base?.member ?? defaultValue"
|
|
// for non-optional results where that would be appropriate. For the moment
|
|
// always offering "?" means that if the user chooses chaining, we'll end up
|
|
// in MissingOptionalUnwrapFailure:diagnose() to offer a default value during
|
|
// the next compile.
|
|
emitDiagnostic(anchor->getLoc(), diag::optional_base_chain, Member)
|
|
.fixItInsertAfter(anchor->getEndLoc(), "?");
|
|
|
|
if (!resultIsOptional) {
|
|
emitDiagnostic(anchor->getLoc(), diag::unwrap_with_force_value)
|
|
.fixItInsertAfter(anchor->getEndLoc(), "!");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void MissingOptionalUnwrapFailure::offerDefaultValueUnwrapFixIt(
|
|
DeclContext *DC, Expr *expr) const {
|
|
assert(expr);
|
|
|
|
auto *anchor = getAnchor();
|
|
// If anchor is n explicit address-of, or expression which produces
|
|
// an l-value (e.g. first argument of `+=` operator), let's not
|
|
// suggest default value here because that would produce r-value type.
|
|
if (!anchor || isa<InOutExpr>(anchor))
|
|
return;
|
|
|
|
auto &cs = getConstraintSystem();
|
|
if (auto argApplyInfo = cs.getFunctionArgApplyInfo(getLocator()))
|
|
if (argApplyInfo->getParameterFlags().isInOut())
|
|
return;
|
|
|
|
auto diag = emitDiagnostic(expr->getLoc(), diag::unwrap_with_default_value);
|
|
|
|
// Figure out what we need to parenthesize.
|
|
bool needsParensInside =
|
|
exprNeedsParensBeforeAddingNilCoalescing(DC, expr);
|
|
auto parentExpr = findParentExpr(anchor);
|
|
bool needsParensOutside =
|
|
exprNeedsParensAfterAddingNilCoalescing(DC, expr, parentExpr);
|
|
|
|
llvm::SmallString<2> insertBefore;
|
|
llvm::SmallString<32> insertAfter;
|
|
if (needsParensOutside) {
|
|
insertBefore += "(";
|
|
}
|
|
if (needsParensInside) {
|
|
insertBefore += "(";
|
|
insertAfter += ")";
|
|
}
|
|
insertAfter += " ?? <" "#default value#" ">";
|
|
if (needsParensOutside)
|
|
insertAfter += ")";
|
|
|
|
if (!insertBefore.empty()) {
|
|
diag.fixItInsert(expr->getStartLoc(), insertBefore);
|
|
}
|
|
diag.fixItInsertAfter(expr->getEndLoc(), insertAfter);
|
|
}
|
|
|
|
// Suggest a force-unwrap.
|
|
void MissingOptionalUnwrapFailure::offerForceUnwrapFixIt(Expr *expr) const {
|
|
auto diag = emitDiagnostic(expr->getLoc(), diag::unwrap_with_force_value);
|
|
|
|
// If expr is optional as the result of an optional chain and this last
|
|
// dot isn't a member returning optional, then offer to force the last
|
|
// link in the chain, rather than an ugly parenthesized postfix force.
|
|
if (auto optionalChain = dyn_cast<OptionalEvaluationExpr>(expr)) {
|
|
if (auto dotExpr =
|
|
dyn_cast<UnresolvedDotExpr>(optionalChain->getSubExpr())) {
|
|
auto bind = dyn_cast<BindOptionalExpr>(dotExpr->getBase());
|
|
if (bind && !getType(dotExpr)->getOptionalObjectType()) {
|
|
diag.fixItReplace(SourceRange(bind->getLoc()), "!");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (expr->canAppendPostfixExpression(true)) {
|
|
diag.fixItInsertAfter(expr->getEndLoc(), "!");
|
|
} else {
|
|
diag.fixItInsert(expr->getStartLoc(), "(")
|
|
.fixItInsertAfter(expr->getEndLoc(), ")!");
|
|
}
|
|
}
|
|
|
|
class VarDeclMultipleReferencesChecker : public ASTWalker {
|
|
VarDecl *varDecl;
|
|
int count;
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (DRE->getDecl() == varDecl)
|
|
count++;
|
|
}
|
|
return { true, E };
|
|
}
|
|
|
|
public:
|
|
VarDeclMultipleReferencesChecker(VarDecl *varDecl) : varDecl(varDecl),count(0) {}
|
|
int referencesCount() { return count; }
|
|
};
|
|
|
|
bool MissingOptionalUnwrapFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
if (!getUnwrappedType()->isBool()) {
|
|
if (diagnoseConversionToBool())
|
|
return true;
|
|
}
|
|
|
|
auto *anchor = getAnchor();
|
|
|
|
// If this is an unresolved member expr e.g. `.foo` its
|
|
// base type is going to be the same as result type minus
|
|
// r-value adjustment because base could be an l-value type.
|
|
// We want to fix both cases by only diagnose one of them,
|
|
// otherwise this is just going to result in a duplcate diagnostic.
|
|
if (getLocator()->isLastElement<LocatorPathElt::UnresolvedMember>())
|
|
return false;
|
|
|
|
if (auto assignExpr = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assignExpr->getSrc();
|
|
|
|
auto *unwrappedExpr = anchor->getValueProvidingExpr();
|
|
|
|
if (auto *tryExpr = dyn_cast<OptionalTryExpr>(unwrappedExpr)) {
|
|
bool isSwift5OrGreater = getASTContext().isSwiftVersionAtLeast(5);
|
|
auto subExprType = getType(tryExpr->getSubExpr());
|
|
bool subExpressionIsOptional = (bool)subExprType->getOptionalObjectType();
|
|
|
|
if (isSwift5OrGreater && subExpressionIsOptional) {
|
|
// Using 'try!' won't change the type for a 'try?' with an optional
|
|
// sub-expr under Swift 5+, so just report that a missing unwrap can't be
|
|
// handled here.
|
|
return false;
|
|
}
|
|
|
|
emitDiagnostic(tryExpr->getTryLoc(), diag::missing_unwrap_optional_try,
|
|
getType(anchor))
|
|
.fixItReplace({tryExpr->getTryLoc(), tryExpr->getQuestionLoc()},
|
|
"try!");
|
|
return true;
|
|
}
|
|
|
|
auto baseType = getBaseType();
|
|
auto unwrappedType = getUnwrappedType();
|
|
|
|
assert(!baseType->hasTypeVariable() &&
|
|
"Base type must not be a type variable");
|
|
assert(!unwrappedType->hasTypeVariable() &&
|
|
"Unwrapped type must not be a type variable");
|
|
|
|
if (!baseType->getOptionalObjectType())
|
|
return false;
|
|
|
|
emitDiagnostic(unwrappedExpr->getLoc(), diag::optional_not_unwrapped,
|
|
baseType, unwrappedType);
|
|
|
|
// If the expression we're unwrapping is the only reference to a
|
|
// local variable whose type isn't explicit in the source, then
|
|
// offer unwrapping fixits on the initializer as well.
|
|
if (auto declRef = dyn_cast<DeclRefExpr>(unwrappedExpr)) {
|
|
if (auto varDecl = dyn_cast<VarDecl>(declRef->getDecl())) {
|
|
bool singleUse = false;
|
|
AbstractFunctionDecl *AFD = nullptr;
|
|
if (auto contextDecl = varDecl->getDeclContext()->getAsDecl()) {
|
|
if ((AFD = dyn_cast<AbstractFunctionDecl>(contextDecl))) {
|
|
auto checker = VarDeclMultipleReferencesChecker(varDecl);
|
|
AFD->getBody()->walk(checker);
|
|
singleUse = checker.referencesCount() == 1;
|
|
}
|
|
}
|
|
|
|
PatternBindingDecl *binding = varDecl->getParentPatternBinding();
|
|
if (singleUse && binding && binding->getNumPatternEntries() == 1 &&
|
|
varDecl->getTypeSourceRangeForDiagnostics().isInvalid()) {
|
|
|
|
auto *initializer = varDecl->getParentInitializer();
|
|
if (!initializer)
|
|
return true;
|
|
|
|
if (auto declRefExpr = dyn_cast<DeclRefExpr>(initializer)) {
|
|
if (declRefExpr->getDecl()->isImplicitlyUnwrappedOptional()) {
|
|
emitDiagnostic(declRefExpr->getLoc(), diag::unwrap_iuo_initializer,
|
|
baseType);
|
|
}
|
|
}
|
|
|
|
auto fnTy = AFD->getInterfaceType()->castTo<AnyFunctionType>();
|
|
bool voidReturn =
|
|
fnTy->getResult()->isEqual(TupleType::getEmpty(getASTContext()));
|
|
|
|
auto diag = emitDiagnostic(varDecl->getLoc(), diag::unwrap_with_guard);
|
|
diag.fixItInsert(binding->getStartLoc(), "guard ");
|
|
if (voidReturn) {
|
|
diag.fixItInsertAfter(binding->getEndLoc(), " else { return }");
|
|
} else {
|
|
diag.fixItInsertAfter(binding->getEndLoc(), " else { return <"
|
|
"#default value#"
|
|
"> }");
|
|
}
|
|
diag.flush();
|
|
|
|
offerDefaultValueUnwrapFixIt(varDecl->getDeclContext(), initializer);
|
|
offerForceUnwrapFixIt(initializer);
|
|
}
|
|
}
|
|
}
|
|
|
|
offerDefaultValueUnwrapFixIt(getDC(), unwrappedExpr);
|
|
offerForceUnwrapFixIt(unwrappedExpr);
|
|
return true;
|
|
}
|
|
|
|
bool RValueTreatedAsLValueFailure::diagnoseAsError() {
|
|
Diag<StringRef> subElementDiagID;
|
|
Diag<Type> rvalueDiagID = diag::assignment_lhs_not_lvalue;
|
|
Expr *diagExpr = getRawAnchor();
|
|
SourceLoc loc = diagExpr->getLoc();
|
|
|
|
auto &cs = getConstraintSystem();
|
|
// Assignment is not allowed inside of a condition,
|
|
// so let's not diagnose immutability, because
|
|
// most likely the problem is related to use of `=` itself.
|
|
if (cs.getContextualTypePurpose(diagExpr) == CTP_Condition)
|
|
return false;
|
|
|
|
if (auto assignExpr = dyn_cast<AssignExpr>(diagExpr)) {
|
|
// Let's check whether this is an attempt to assign
|
|
// variable or property to itself.
|
|
if (TypeChecker::diagnoseSelfAssignment(assignExpr))
|
|
return true;
|
|
|
|
diagExpr = assignExpr->getDest();
|
|
}
|
|
|
|
if (auto callExpr = dyn_cast<ApplyExpr>(diagExpr)) {
|
|
Expr *argExpr = callExpr->getArg();
|
|
loc = callExpr->getFn()->getLoc();
|
|
|
|
if (isa<PrefixUnaryExpr>(callExpr) || isa<PostfixUnaryExpr>(callExpr)) {
|
|
subElementDiagID = diag::cannot_apply_lvalue_unop_to_subelement;
|
|
rvalueDiagID = diag::cannot_apply_lvalue_unop_to_rvalue;
|
|
diagExpr = argExpr;
|
|
} else if (isa<BinaryExpr>(callExpr)) {
|
|
subElementDiagID = diag::cannot_apply_lvalue_binop_to_subelement;
|
|
rvalueDiagID = diag::cannot_apply_lvalue_binop_to_rvalue;
|
|
auto argTuple = dyn_cast<TupleExpr>(argExpr);
|
|
diagExpr = argTuple->getElement(0);
|
|
} else if (getLocator()->getPath().size() > 0) {
|
|
auto argElt =
|
|
getLocator()->castLastElementTo<LocatorPathElt::ApplyArgToParam>();
|
|
|
|
subElementDiagID = diag::cannot_pass_rvalue_inout_subelement;
|
|
rvalueDiagID = diag::cannot_pass_rvalue_inout;
|
|
if (auto argTuple = dyn_cast<TupleExpr>(argExpr))
|
|
diagExpr = argTuple->getElement(argElt.getArgIdx());
|
|
else if (auto parens = dyn_cast<ParenExpr>(argExpr))
|
|
diagExpr = parens->getSubExpr();
|
|
} else {
|
|
subElementDiagID = diag::assignment_lhs_is_apply_expression;
|
|
}
|
|
} else if (auto inoutExpr = dyn_cast<InOutExpr>(diagExpr)) {
|
|
if (auto restriction = getRestrictionForType(getType(inoutExpr))) {
|
|
PointerTypeKind pointerKind;
|
|
if (restriction->second == ConversionRestrictionKind::ArrayToPointer &&
|
|
restriction->first->getAnyPointerElementType(pointerKind) &&
|
|
(pointerKind == PTK_UnsafePointer ||
|
|
pointerKind == PTK_UnsafeRawPointer)) {
|
|
// If we're converting to an UnsafePointer, then the programmer
|
|
// specified an & unnecessarily. Produce a fixit hint to remove it.
|
|
emitDiagnostic(inoutExpr->getLoc(),
|
|
diag::extra_address_of_unsafepointer, restriction->first)
|
|
.highlight(inoutExpr->getSourceRange())
|
|
.fixItRemove(inoutExpr->getStartLoc());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
subElementDiagID = diag::cannot_pass_rvalue_inout_subelement;
|
|
rvalueDiagID = diag::cannot_pass_rvalue_inout;
|
|
diagExpr = inoutExpr->getSubExpr();
|
|
} else if (isa<DeclRefExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_variable;
|
|
} else if (isa<ForceValueExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_bang_has_immutable_subcomponent;
|
|
} else if (isa<MemberRefExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_property;
|
|
} else if (auto member = dyn_cast<UnresolvedDotExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_property;
|
|
|
|
if (auto *ctor = dyn_cast<ConstructorDecl>(getDC())) {
|
|
if (auto *baseRef = dyn_cast<DeclRefExpr>(member->getBase())) {
|
|
if (baseRef->getDecl() == ctor->getImplicitSelfDecl() &&
|
|
ctor->getDelegatingOrChainedInitKind(nullptr) ==
|
|
ConstructorDecl::BodyInitKind::Delegating) {
|
|
emitDiagnostic(loc, diag::assignment_let_property_delegating_init,
|
|
member->getName());
|
|
if (auto *ref = getResolvedMemberRef(member)) {
|
|
emitDiagnostic(ref, diag::decl_declared_here, ref->getFullName());
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto resolvedOverload = getOverloadChoiceIfAvailable(getLocator())) {
|
|
if (resolvedOverload->choice.getKind() ==
|
|
OverloadChoiceKind::DynamicMemberLookup)
|
|
subElementDiagID = diag::assignment_dynamic_property_has_immutable_base;
|
|
|
|
if (resolvedOverload->choice.getKind() ==
|
|
OverloadChoiceKind::KeyPathDynamicMemberLookup) {
|
|
if (!getType(member->getBase(), /*wantRValue=*/false)->hasLValueType())
|
|
subElementDiagID =
|
|
diag::assignment_dynamic_property_has_immutable_base;
|
|
}
|
|
}
|
|
} else if (auto sub = dyn_cast<SubscriptExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_subscript_has_immutable_base;
|
|
} else {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_variable;
|
|
}
|
|
|
|
AssignmentFailure failure(diagExpr, getConstraintSystem(), loc,
|
|
subElementDiagID, rvalueDiagID);
|
|
return failure.diagnose();
|
|
}
|
|
|
|
bool RValueTreatedAsLValueFailure::diagnoseAsNote() {
|
|
auto overload = getChoiceFor(getLocator());
|
|
if (!(overload && overload->choice.isDecl()))
|
|
return false;
|
|
|
|
auto *decl = overload->choice.getDecl();
|
|
emitDiagnostic(decl, diag::candidate_is_not_assignable,
|
|
decl->getDescriptiveKind(), decl->getFullName());
|
|
return true;
|
|
}
|
|
|
|
static Decl *findSimpleReferencedDecl(const Expr *E) {
|
|
if (auto *LE = dyn_cast<LoadExpr>(E))
|
|
E = LE->getSubExpr();
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return DRE->getDecl();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static std::pair<Decl *, Decl *> findReferencedDecl(const Expr *E) {
|
|
E = E->getValueProvidingExpr();
|
|
|
|
if (auto *LE = dyn_cast<LoadExpr>(E))
|
|
return findReferencedDecl(LE->getSubExpr());
|
|
|
|
if (auto *AE = dyn_cast<AssignExpr>(E))
|
|
return findReferencedDecl(AE->getDest());
|
|
|
|
if (auto *D = findSimpleReferencedDecl(E))
|
|
return std::make_pair(nullptr, D);
|
|
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
|
|
if (auto *BaseDecl = findSimpleReferencedDecl(MRE->getBase()))
|
|
return std::make_pair(BaseDecl, MRE->getMember().getDecl());
|
|
}
|
|
|
|
return std::make_pair(nullptr, nullptr);
|
|
}
|
|
|
|
bool TypeChecker::diagnoseSelfAssignment(const Expr *expr) {
|
|
auto *assignExpr = dyn_cast<AssignExpr>(expr);
|
|
if (!assignExpr)
|
|
return false;
|
|
|
|
auto *dstExpr = assignExpr->getDest();
|
|
auto *srcExpr = assignExpr->getSrc();
|
|
|
|
auto dstDecl = findReferencedDecl(dstExpr);
|
|
auto srcDecl = findReferencedDecl(srcExpr);
|
|
|
|
if (dstDecl.second && dstDecl == srcDecl) {
|
|
auto &DE = dstDecl.second->getASTContext().Diags;
|
|
DE.diagnose(expr->getLoc(), dstDecl.first ? diag::self_assignment_prop
|
|
: diag::self_assignment_var)
|
|
.highlight(dstExpr->getSourceRange())
|
|
.highlight(srcExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TrailingClosureAmbiguityFailure::diagnoseAsNote() {
|
|
const auto *expr = findParentExpr(getAnchor());
|
|
auto *callExpr = dyn_cast_or_null<CallExpr>(expr);
|
|
if (!callExpr)
|
|
return false;
|
|
if (!callExpr->hasTrailingClosure())
|
|
return false;
|
|
if (callExpr->getFn() != getAnchor())
|
|
return false;
|
|
|
|
llvm::SmallMapVector<Identifier, const ValueDecl *, 8> choicesByLabel;
|
|
for (const auto &choice : Choices) {
|
|
auto *callee = dyn_cast<AbstractFunctionDecl>(choice.getDecl());
|
|
if (!callee)
|
|
return false;
|
|
|
|
const ParameterList *paramList = callee->getParameters();
|
|
const ParamDecl *param = paramList->getArray().back();
|
|
|
|
// Sanity-check that the trailing closure corresponds to this parameter.
|
|
if (!param->hasInterfaceType() ||
|
|
!param->getInterfaceType()->is<AnyFunctionType>())
|
|
return false;
|
|
|
|
Identifier trailingClosureLabel = param->getArgumentName();
|
|
auto &choiceForLabel = choicesByLabel[trailingClosureLabel];
|
|
|
|
// FIXME: Cargo-culted from diagnoseAmbiguity: apparently the same decl can
|
|
// appear more than once?
|
|
if (choiceForLabel == callee)
|
|
continue;
|
|
|
|
// If just providing the trailing closure label won't solve the ambiguity,
|
|
// don't bother offering the fix-it.
|
|
if (choiceForLabel != nullptr)
|
|
return false;
|
|
|
|
choiceForLabel = callee;
|
|
}
|
|
|
|
// If we got here, then all of the choices have unique labels. Offer them in
|
|
// order.
|
|
for (const auto &choicePair : choicesByLabel) {
|
|
auto diag = emitDiagnostic(
|
|
expr->getLoc(), diag::ambiguous_because_of_trailing_closure,
|
|
choicePair.first.empty(), choicePair.second->getFullName());
|
|
swift::fixItEncloseTrailingClosure(getASTContext(), diag, callExpr,
|
|
choicePair.first);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
AssignmentFailure::AssignmentFailure(Expr *destExpr, ConstraintSystem &cs,
|
|
SourceLoc diagnosticLoc)
|
|
: FailureDiagnostic(cs, cs.getConstraintLocator(destExpr)),
|
|
DestExpr(destExpr),
|
|
Loc(diagnosticLoc),
|
|
DeclDiagnostic(findDeclDiagonstic(cs.getASTContext(), destExpr)),
|
|
TypeDiagnostic(diag::assignment_lhs_not_lvalue) {}
|
|
|
|
bool AssignmentFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto *DC = getDC();
|
|
|
|
// Walk through the destination expression, resolving what the problem is. If
|
|
// we find a node in the lvalue path that is problematic, this returns it.
|
|
Expr *immutableExpr;
|
|
Optional<OverloadChoice> choice;
|
|
std::tie(immutableExpr, choice) = resolveImmutableBase(DestExpr);
|
|
|
|
// Attempt diagnostics based on the overload choice.
|
|
if (choice.hasValue()) {
|
|
|
|
auto getKeyPathArgument = [](SubscriptExpr *expr) {
|
|
auto *TE = dyn_cast<TupleExpr>(expr->getIndex());
|
|
assert(TE->getNumElements() == 1);
|
|
assert(TE->getElementName(0).str() == "keyPath");
|
|
return TE->getElement(0);
|
|
};
|
|
|
|
if (!choice->isDecl()) {
|
|
if (choice->getKind() == OverloadChoiceKind::KeyPathApplication &&
|
|
!isa<ApplyExpr>(immutableExpr)) {
|
|
std::string message = "key path is read-only";
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(immutableExpr)) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(getKeyPathArgument(SE))) {
|
|
auto identifier = DRE->getDecl()->getBaseName().getIdentifier();
|
|
message =
|
|
"'" + identifier.str().str() + "' is a read-only key path";
|
|
}
|
|
}
|
|
emitDiagnostic(Loc, DeclDiagnostic, message)
|
|
.highlight(immutableExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot resolve this because the available setter candidates
|
|
// are all mutating and the base must be mutating. If we dug out a
|
|
// problematic decl, we can produce a nice tailored diagnostic.
|
|
if (auto *VD = dyn_cast<VarDecl>(choice->getDecl())) {
|
|
std::string message = "'";
|
|
message += VD->getName().str().str();
|
|
message += "'";
|
|
|
|
auto type = getType(immutableExpr);
|
|
|
|
if (isKnownKeyPathType(type))
|
|
message += " is read-only";
|
|
else if (VD->isCaptureList())
|
|
message += " is an immutable capture";
|
|
else if (VD->isImplicit())
|
|
message += " is immutable";
|
|
else if (VD->isLet())
|
|
message += " is a 'let' constant";
|
|
else if (!VD->isSettable(DC))
|
|
message += " is a get-only property";
|
|
else if (!VD->isSetterAccessibleFrom(DC))
|
|
message += " setter is inaccessible";
|
|
else {
|
|
message += " is immutable";
|
|
}
|
|
|
|
emitDiagnostic(Loc, DeclDiagnostic, message)
|
|
.highlight(immutableExpr->getSourceRange());
|
|
|
|
// If there is a masked property of the same type, emit a
|
|
// note to fixit prepend a 'self.' or 'Type.'.
|
|
if (auto typeContext = DC->getInnermostTypeContext()) {
|
|
SmallVector<ValueDecl *, 2> results;
|
|
DC->lookupQualified(typeContext->getSelfNominalTypeDecl(),
|
|
VD->createNameRef(), NL_QualifiedDefault, results);
|
|
|
|
auto foundProperty = llvm::find_if(results, [&](ValueDecl *decl) {
|
|
// We're looking for a settable property that is the same type as the
|
|
// var we found.
|
|
auto *var = dyn_cast<VarDecl>(decl);
|
|
if (!var || var == VD)
|
|
return false;
|
|
|
|
if (!var->isSettable(DC) || !var->isSetterAccessibleFrom(DC))
|
|
return false;
|
|
|
|
if (!var->getType()->isEqual(VD->getType()))
|
|
return false;
|
|
|
|
// Don't suggest a property if we're in one of its accessors.
|
|
auto *methodDC = DC->getInnermostMethodContext();
|
|
if (auto *AD = dyn_cast_or_null<AccessorDecl>(methodDC))
|
|
if (AD->getStorage() == var)
|
|
return false;
|
|
|
|
return true;
|
|
});
|
|
|
|
if (foundProperty != results.end()) {
|
|
auto startLoc = immutableExpr->getStartLoc();
|
|
auto *property = *foundProperty;
|
|
auto selfTy = typeContext->getSelfTypeInContext();
|
|
|
|
// If we found an instance property, suggest inserting "self.",
|
|
// otherwise suggest "Type." for a static property.
|
|
std::string fixItText;
|
|
if (property->isInstanceMember()) {
|
|
fixItText = "self.";
|
|
} else {
|
|
fixItText = selfTy->getString() + ".";
|
|
}
|
|
emitDiagnostic(startLoc, diag::masked_mutable_property,
|
|
fixItText, property->getDescriptiveKind(), selfTy)
|
|
.fixItInsert(startLoc, fixItText);
|
|
}
|
|
}
|
|
|
|
// If this is a simple variable marked with a 'let', emit a note to fixit
|
|
// hint it to 'var'.
|
|
VD->emitLetToVarNoteIfSimple(DC);
|
|
return true;
|
|
}
|
|
|
|
// If the underlying expression was a read-only subscript, diagnose that.
|
|
if (auto *SD = dyn_cast_or_null<SubscriptDecl>(choice->getDecl())) {
|
|
StringRef message;
|
|
if (!SD->supportsMutation())
|
|
message = "subscript is get-only";
|
|
else if (!SD->isSetterAccessibleFrom(DC))
|
|
message = "subscript setter is inaccessible";
|
|
else
|
|
message = "subscript is immutable";
|
|
|
|
emitDiagnostic(Loc, DeclDiagnostic, message)
|
|
.highlight(immutableExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
// If we're trying to set an unapplied method, say that.
|
|
if (auto *VD = choice->getDecl()) {
|
|
std::string message = "'";
|
|
message += VD->getBaseName().getIdentifier().str();
|
|
message += "'";
|
|
|
|
auto diagID = DeclDiagnostic;
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
|
|
if (AFD->hasImplicitSelfDecl()) {
|
|
message += " is a method";
|
|
diagID = diag::assignment_lhs_is_immutable_variable;
|
|
} else {
|
|
message += " is a function";
|
|
}
|
|
} else
|
|
message += " is not settable";
|
|
|
|
emitDiagnostic(Loc, diagID, message)
|
|
.highlight(immutableExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Fall back to producing diagnostics based on the expression since we
|
|
// couldn't determine anything from the OverloadChoice.
|
|
|
|
// If a keypath was the problem but wasn't resolved into a vardecl
|
|
// it is ambiguous or unable to be used for setting.
|
|
if (auto *KPE = dyn_cast_or_null<KeyPathExpr>(immutableExpr)) {
|
|
emitDiagnostic(Loc, DeclDiagnostic, "immutable key path")
|
|
.highlight(KPE->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (auto LE = dyn_cast<LiteralExpr>(immutableExpr)) {
|
|
emitDiagnostic(Loc, DeclDiagnostic, "literals are not mutable")
|
|
.highlight(LE->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
// If the expression is the result of a call, it is an rvalue, not a mutable
|
|
// lvalue.
|
|
if (auto *AE = dyn_cast<ApplyExpr>(immutableExpr)) {
|
|
// Handle literals, which are a call to the conversion function.
|
|
auto argsTuple =
|
|
dyn_cast<TupleExpr>(AE->getArg()->getSemanticsProvidingExpr());
|
|
if (isa<CallExpr>(AE) && AE->isImplicit() && argsTuple &&
|
|
argsTuple->getNumElements() == 1) {
|
|
if (auto LE = dyn_cast<LiteralExpr>(
|
|
argsTuple->getElement(0)->getSemanticsProvidingExpr())) {
|
|
emitDiagnostic(Loc, DeclDiagnostic, "literals are not mutable")
|
|
.highlight(LE->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
std::string name = "call";
|
|
if (isa<PrefixUnaryExpr>(AE) || isa<PostfixUnaryExpr>(AE))
|
|
name = "unary operator";
|
|
else if (isa<BinaryExpr>(AE))
|
|
name = "binary operator";
|
|
else if (isa<CallExpr>(AE))
|
|
name = "function call";
|
|
else if (isa<DotSyntaxCallExpr>(AE) || isa<DotSyntaxBaseIgnoredExpr>(AE))
|
|
name = "method call";
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(AE->getFn()->getValueProvidingExpr()))
|
|
name = std::string("'") +
|
|
DRE->getDecl()->getBaseName().getIdentifier().str().str() + "'";
|
|
|
|
emitDiagnostic(Loc, DeclDiagnostic, name + " returns immutable value")
|
|
.highlight(AE->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (auto contextualType = cs.getContextualType(immutableExpr)) {
|
|
Type neededType = contextualType->getInOutObjectType();
|
|
Type actualType = getType(immutableExpr)->getInOutObjectType();
|
|
if (!neededType->isEqual(actualType)) {
|
|
if (DeclDiagnostic.ID != diag::cannot_pass_rvalue_inout_subelement.ID) {
|
|
emitDiagnostic(Loc, DeclDiagnostic,
|
|
"implicit conversion from '" + actualType->getString() +
|
|
"' to '" + neededType->getString() +
|
|
"' requires a temporary")
|
|
.highlight(immutableExpr->getSourceRange());
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto IE = dyn_cast<IfExpr>(immutableExpr)) {
|
|
emitDiagnostic(Loc, DeclDiagnostic,
|
|
"result of conditional operator '? :' is never mutable")
|
|
.highlight(IE->getQuestionLoc())
|
|
.highlight(IE->getColonLoc());
|
|
return true;
|
|
}
|
|
|
|
emitDiagnostic(Loc, TypeDiagnostic, getType(DestExpr))
|
|
.highlight(immutableExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
std::pair<Expr *, Optional<OverloadChoice>>
|
|
AssignmentFailure::resolveImmutableBase(Expr *expr) const {
|
|
auto &cs = getConstraintSystem();
|
|
auto *DC = getDC();
|
|
expr = expr->getValueProvidingExpr();
|
|
|
|
auto isImmutable = [&DC](ValueDecl *decl) {
|
|
if (auto *storage = dyn_cast<AbstractStorageDecl>(decl))
|
|
return !storage->isSettable(nullptr) ||
|
|
!storage->isSetterAccessibleFrom(DC);
|
|
|
|
// If this is not something which could possibly be mutable,
|
|
// then it's immutable.
|
|
return true;
|
|
};
|
|
|
|
// Provide specific diagnostics for assignment to subscripts whose base expr
|
|
// is known to be an rvalue.
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(expr)) {
|
|
// If we found a decl for the subscript, check to see if it is a set-only
|
|
// subscript decl.
|
|
if (SE->hasDecl()) {
|
|
const auto &declRef = SE->getDecl();
|
|
if (auto *subscript =
|
|
dyn_cast_or_null<SubscriptDecl>(declRef.getDecl())) {
|
|
if (isImmutable(subscript))
|
|
return {expr, OverloadChoice(getType(SE->getBase()), subscript,
|
|
FunctionRefKind::DoubleApply)};
|
|
}
|
|
}
|
|
|
|
Optional<OverloadChoice> member = getMemberRef(
|
|
cs.getConstraintLocator(SE, ConstraintLocator::SubscriptMember));
|
|
|
|
// If it isn't settable, return it.
|
|
if (member) {
|
|
if (member->isDecl() && isImmutable(member->getDecl()))
|
|
return {expr, member};
|
|
|
|
// We still have a choice, the choice is not a decl
|
|
if (!member->isDecl()) {
|
|
// This must be a keypath application
|
|
assert(member->getKind() == OverloadChoiceKind::KeyPathApplication);
|
|
|
|
auto *argType = getType(SE->getIndex())->castTo<TupleType>();
|
|
assert(argType->getNumElements() == 1);
|
|
|
|
auto indexType = resolveType(argType->getElementType(0));
|
|
|
|
if (auto bgt = indexType->getAs<BoundGenericType>()) {
|
|
// In Swift versions lower than 5, this check will fail as read only
|
|
// key paths can masquerade as writable for compatibilty reasons.
|
|
// This is fine as in this case we just fall back on old diagnostics.
|
|
if (bgt->getDecl() == getASTContext().getKeyPathDecl()) {
|
|
return {expr, member};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If it is settable, then the base must be the problem, recurse.
|
|
return resolveImmutableBase(SE->getBase());
|
|
}
|
|
|
|
// Look through property references.
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(expr)) {
|
|
// If we found a decl for the UDE, check it.
|
|
auto loc = cs.getConstraintLocator(UDE, ConstraintLocator::Member);
|
|
|
|
auto member = getMemberRef(loc);
|
|
|
|
// If we can resolve a member, we can determine whether it is settable in
|
|
// this context.
|
|
if (member && member->isDecl() && isImmutable(member->getDecl()))
|
|
return {expr, member};
|
|
|
|
// If we weren't able to resolve a member or if it is mutable, then the
|
|
// problem must be with the base, recurse.
|
|
return resolveImmutableBase(UDE->getBase());
|
|
}
|
|
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(expr)) {
|
|
// If the member isn't settable, then it is the problem: return it.
|
|
if (auto member = dyn_cast<AbstractStorageDecl>(MRE->getMember().getDecl()))
|
|
if (isImmutable(member))
|
|
return {expr, OverloadChoice(getType(MRE->getBase()), member,
|
|
FunctionRefKind::SingleApply)};
|
|
|
|
// If we weren't able to resolve a member or if it is mutable, then the
|
|
// problem must be with the base, recurse.
|
|
return resolveImmutableBase(MRE->getBase());
|
|
}
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(expr))
|
|
return {expr,
|
|
OverloadChoice(Type(), DRE->getDecl(), FunctionRefKind::Unapplied)};
|
|
|
|
// Look through x!
|
|
if (auto *FVE = dyn_cast<ForceValueExpr>(expr))
|
|
return resolveImmutableBase(FVE->getSubExpr());
|
|
|
|
// Look through x?
|
|
if (auto *BOE = dyn_cast<BindOptionalExpr>(expr))
|
|
return resolveImmutableBase(BOE->getSubExpr());
|
|
|
|
// Look through implicit conversions
|
|
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(expr))
|
|
if (!isa<LoadExpr>(ICE->getSubExpr()))
|
|
return resolveImmutableBase(ICE->getSubExpr());
|
|
|
|
if (auto *SAE = dyn_cast<SelfApplyExpr>(expr))
|
|
return resolveImmutableBase(SAE->getFn());
|
|
|
|
return {expr, None};
|
|
}
|
|
|
|
Optional<OverloadChoice>
|
|
AssignmentFailure::getMemberRef(ConstraintLocator *locator) const {
|
|
auto member = getOverloadChoiceIfAvailable(locator);
|
|
if (!member)
|
|
return None;
|
|
|
|
if (!member->choice.isDecl())
|
|
return member->choice;
|
|
|
|
auto *DC = getDC();
|
|
auto *decl = member->choice.getDecl();
|
|
if (isa<SubscriptDecl>(decl) &&
|
|
isValidDynamicMemberLookupSubscript(cast<SubscriptDecl>(decl), DC)) {
|
|
auto *subscript = cast<SubscriptDecl>(decl);
|
|
// If this is a keypath dynamic member lookup, we have to
|
|
// adjust the locator to find member referred by it.
|
|
if (isValidKeyPathDynamicMemberLookup(subscript)) {
|
|
auto &cs = getConstraintSystem();
|
|
// Type has a following format:
|
|
// `(Self) -> (dynamicMember: {Writable}KeyPath<T, U>) -> U`
|
|
auto *fullType = member->openedFullType->castTo<FunctionType>();
|
|
auto *fnType = fullType->getResult()->castTo<FunctionType>();
|
|
|
|
auto paramTy = fnType->getParams()[0].getPlainType();
|
|
auto keyPath = paramTy->getAnyNominal();
|
|
auto memberLoc = cs.getConstraintLocator(
|
|
locator, LocatorPathElt::KeyPathDynamicMember(keyPath));
|
|
|
|
auto memberRef = getOverloadChoiceIfAvailable(memberLoc);
|
|
return memberRef ? Optional<OverloadChoice>(memberRef->choice) : None;
|
|
}
|
|
|
|
// If this is a string based dynamic lookup, there is no member declaration.
|
|
return None;
|
|
}
|
|
|
|
return member->choice;
|
|
}
|
|
|
|
Diag<StringRef> AssignmentFailure::findDeclDiagonstic(ASTContext &ctx,
|
|
Expr *destExpr) {
|
|
if (isa<ApplyExpr>(destExpr) || isa<SelfApplyExpr>(destExpr))
|
|
return diag::assignment_lhs_is_apply_expression;
|
|
|
|
if (isa<UnresolvedDotExpr>(destExpr) || isa<MemberRefExpr>(destExpr))
|
|
return diag::assignment_lhs_is_immutable_property;
|
|
|
|
if (auto *subscript = dyn_cast<SubscriptExpr>(destExpr)) {
|
|
auto diagID = diag::assignment_subscript_has_immutable_base;
|
|
// If the destination is a subscript with a 'dynamicLookup:' label and if
|
|
// the tuple is implicit, then this was actually a @dynamicMemberLookup
|
|
// access. Emit a more specific diagnostic.
|
|
if (subscript->getIndex()->isImplicit() &&
|
|
subscript->getArgumentLabels().size() == 1 &&
|
|
subscript->getArgumentLabels().front() == ctx.Id_dynamicMember)
|
|
diagID = diag::assignment_dynamic_property_has_immutable_base;
|
|
|
|
return diagID;
|
|
}
|
|
|
|
return diag::assignment_lhs_is_immutable_variable;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto path = getLocator()->getPath();
|
|
|
|
if (CTP == CTP_ReturnSingleExpr || CTP == CTP_ReturnStmt) {
|
|
// Special case the "conversion to void".
|
|
if (getToType()->isVoid()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_return_value_from_void_func)
|
|
.highlight(anchor->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (diagnoseConversionToNil())
|
|
return true;
|
|
|
|
if (path.empty()) {
|
|
if (auto *KPE = dyn_cast<KeyPathExpr>(anchor)) {
|
|
emitDiagnostic(KPE->getLoc(),
|
|
diag::expr_smart_keypath_value_covert_to_contextual_type,
|
|
getFromType(), getToType());
|
|
return true;
|
|
}
|
|
|
|
if (diagnoseCoercionToUnrelatedType())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (diagnoseMissingFunctionCall())
|
|
return true;
|
|
|
|
if (diagnoseConversionToDictionary())
|
|
return true;
|
|
|
|
// Special case of some common conversions involving Swift.String
|
|
// indexes, catching cases where people attempt to index them with an integer.
|
|
if (isIntegerToStringIndexConversion()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::string_index_not_integer,
|
|
getFromType())
|
|
.highlight(anchor->getSourceRange());
|
|
emitDiagnostic(anchor->getLoc(), diag::string_index_not_integer_note);
|
|
return true;
|
|
}
|
|
|
|
auto fromType = getFromType();
|
|
auto toType = getToType();
|
|
|
|
Diag<Type, Type> diagnostic;
|
|
switch (path.back().getKind()) {
|
|
case ConstraintLocator::ClosureResult: {
|
|
auto *closure = cast<ClosureExpr>(getRawAnchor());
|
|
if (closure->hasExplicitResultType() &&
|
|
closure->getExplicitResultTypeLoc().getTypeRepr()) {
|
|
auto resultRepr = closure->getExplicitResultTypeLoc().getTypeRepr();
|
|
emitDiagnostic(resultRepr->getStartLoc(),
|
|
diag::incorrect_explicit_closure_result, fromType, toType)
|
|
.fixItReplace(resultRepr->getSourceRange(), toType.getString());
|
|
return true;
|
|
}
|
|
|
|
diagnostic = diag::cannot_convert_closure_result;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::Condition: {
|
|
// Tailored diagnostics for optional or assignment use
|
|
// in condition expression.
|
|
if (diagnoseConversionToBool())
|
|
return true;
|
|
|
|
diagnostic = diag::cannot_convert_condition_value;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::InstanceType: {
|
|
if (diagnoseCoercionToUnrelatedType())
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::TernaryBranch: {
|
|
auto *ifExpr = cast<IfExpr>(getRawAnchor());
|
|
fromType = getType(ifExpr->getThenExpr());
|
|
toType = getType(ifExpr->getElseExpr());
|
|
diagnostic = diag::if_expr_cases_mismatch;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ContextualType: {
|
|
if (diagnoseConversionToBool())
|
|
return true;
|
|
|
|
if (diagnoseThrowsTypeMismatch())
|
|
return true;
|
|
|
|
if (diagnoseYieldByReferenceMismatch())
|
|
return true;
|
|
|
|
if (CTP == CTP_ForEachStmt) {
|
|
if (fromType->isAnyExistentialType()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::type_cannot_conform,
|
|
/*isExistentialType=*/true, fromType, toType);
|
|
return true;
|
|
}
|
|
|
|
emitDiagnostic(
|
|
anchor->getLoc(),
|
|
diag::foreach_sequence_does_not_conform_to_expected_protocol,
|
|
fromType, toType, bool(fromType->getOptionalObjectType()))
|
|
.highlight(anchor->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
if (isa<ClosureExpr>(call->getFn()))
|
|
CTP = CTP_ClosureResult;
|
|
}
|
|
|
|
if (auto msg = getDiagnosticFor(CTP, toType->isExistentialType())) {
|
|
diagnostic = *msg;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case ConstraintLocator::RValueAdjustment: {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
auto overload = getChoiceFor(
|
|
cs.getConstraintLocator(anchor, ConstraintLocator::UnresolvedMember));
|
|
if (!(overload && overload->choice.isDecl()))
|
|
return false;
|
|
|
|
auto *choice = overload->choice.getDecl();
|
|
auto fnType = fromType->getAs<FunctionType>();
|
|
if (!fnType) {
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::expected_result_in_contextual_member,
|
|
choice->getFullName(), fromType, toType);
|
|
return true;
|
|
}
|
|
|
|
// If member type is a function and contextual type matches
|
|
// its result type, most likely problem is related to a
|
|
// missing call e.g.:
|
|
//
|
|
// struct S {
|
|
// static func foo() -> S {}
|
|
// }
|
|
//
|
|
// let _: S = .foo
|
|
|
|
auto params = fnType->getParams();
|
|
|
|
ParameterListInfo info(params, choice,
|
|
hasAppliedSelf(cs, overload->choice));
|
|
auto numMissingArgs = llvm::count_if(
|
|
indices(params), [&info](const unsigned paramIdx) -> bool {
|
|
return !info.hasDefaultArgument(paramIdx);
|
|
});
|
|
|
|
if (numMissingArgs == 0 || numMissingArgs > 1) {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(), diag::expected_parens_in_contextual_member,
|
|
choice->getFullName());
|
|
|
|
// If there are no parameters we can suggest a fix-it
|
|
// to form an explicit call.
|
|
if (numMissingArgs == 0)
|
|
diagnostic.fixItInsertAfter(anchor->getEndLoc(), "()");
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::expected_argument_in_contextual_member,
|
|
choice->getFullName(), params.front().getPlainType());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
auto diag =
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, fromType, toType);
|
|
diag.highlight(anchor->getSourceRange());
|
|
|
|
(void)tryFixIts(diag);
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseAsNote() {
|
|
auto overload = getChoiceFor(getLocator());
|
|
if (!(overload && overload->choice.isDecl()))
|
|
return false;
|
|
|
|
auto *decl = overload->choice.getDecl();
|
|
emitDiagnostic(decl, diag::found_candidate_type, getFromType());
|
|
return true;
|
|
}
|
|
|
|
static Optional<Diag<Type>>
|
|
getContextualNilDiagnostic(ContextualTypePurpose CTP) {
|
|
switch (CTP) {
|
|
case CTP_Unused:
|
|
case CTP_CannotFail:
|
|
llvm_unreachable("These contextual type purposes cannot fail with a "
|
|
"conversion type specified!");
|
|
case CTP_CalleeResult:
|
|
llvm_unreachable("CTP_CalleeResult does not actually install a "
|
|
"contextual type");
|
|
case CTP_Initialization:
|
|
return diag::cannot_convert_initializer_value_nil;
|
|
|
|
case CTP_ReturnSingleExpr:
|
|
case CTP_ReturnStmt:
|
|
return diag::cannot_convert_to_return_type_nil;
|
|
|
|
case CTP_ThrowStmt:
|
|
case CTP_ForEachStmt:
|
|
case CTP_YieldByReference:
|
|
return None;
|
|
|
|
case CTP_EnumCaseRawValue:
|
|
return diag::cannot_convert_raw_initializer_value_nil;
|
|
case CTP_DefaultParameter:
|
|
return diag::cannot_convert_default_arg_value_nil;
|
|
case CTP_YieldByValue:
|
|
return diag::cannot_convert_yield_value_nil;
|
|
case CTP_CallArgument:
|
|
return diag::cannot_convert_argument_value_nil;
|
|
case CTP_ClosureResult:
|
|
return diag::cannot_convert_closure_result_nil;
|
|
case CTP_ArrayElement:
|
|
return diag::cannot_convert_array_element_nil;
|
|
case CTP_DictionaryKey:
|
|
return diag::cannot_convert_dict_key_nil;
|
|
case CTP_DictionaryValue:
|
|
return diag::cannot_convert_dict_value_nil;
|
|
case CTP_CoerceOperand:
|
|
return diag::cannot_convert_coerce_nil;
|
|
case CTP_AssignSource:
|
|
return diag::cannot_convert_assign_nil;
|
|
case CTP_SubscriptAssignSource:
|
|
return diag::cannot_convert_subscript_assign_nil;
|
|
case CTP_Condition:
|
|
return diag::cannot_convert_condition_value_nil;
|
|
}
|
|
llvm_unreachable("Unhandled ContextualTypePurpose in switch");
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseConversionToNil() const {
|
|
auto *anchor = getAnchor();
|
|
|
|
if (!isa<NilLiteralExpr>(anchor))
|
|
return false;
|
|
|
|
auto &cs = getConstraintSystem();
|
|
auto *locator = getLocator();
|
|
|
|
Optional<ContextualTypePurpose> CTP;
|
|
// Easy case were failure has been identified as contextual already.
|
|
if (locator->isLastElement<LocatorPathElt::ContextualType>()) {
|
|
CTP = getContextualTypePurpose();
|
|
} else {
|
|
// Here we need to figure out where where `nil` is located.
|
|
// It could be e.g. an argument to a subscript/call, assignment
|
|
// source like `s[0] = nil` or an array element like `[nil]` or
|
|
// `[nil: 42]` as a sub-expression to a larger one.
|
|
auto *parentExpr = findParentExpr(anchor);
|
|
|
|
// Looks like it's something similar to `let _ = nil`.
|
|
if (!parentExpr) {
|
|
emitDiagnostic(anchor->getLoc(), diag::unresolved_nil_literal);
|
|
return true;
|
|
}
|
|
|
|
// Two choices here - whether it's a regular assignment
|
|
// e.g. `let _: S = nil` or a subscript one e.g. `s[0] = nil`.
|
|
if (auto *AE = dyn_cast<AssignExpr>(parentExpr)) {
|
|
CTP = isa<SubscriptExpr>(AE->getDest()) ? CTP_SubscriptAssignSource
|
|
: CTP_AssignSource;
|
|
} else if (isa<ArrayExpr>(parentExpr)) {
|
|
CTP = CTP_ArrayElement;
|
|
} else if (isa<ClosureExpr>(parentExpr)) {
|
|
CTP = CTP_ClosureResult;
|
|
} else if (isa<ParenExpr>(parentExpr) || isa<TupleExpr>(parentExpr)) {
|
|
auto *enclosingExpr = findParentExpr(parentExpr);
|
|
|
|
if (!enclosingExpr) {
|
|
// If there is no enclosing expression it's something like
|
|
// `(nil)` or `(a: nil)` which can't be inferred without a
|
|
// contextual type.
|
|
emitDiagnostic(anchor->getLoc(), diag::unresolved_nil_literal);
|
|
return true;
|
|
}
|
|
|
|
if (auto *TE = dyn_cast<TupleExpr>(parentExpr)) {
|
|
// In case of dictionary e.g. `[42: nil]` we need to figure
|
|
// out whether nil is a "key" or a "value".
|
|
if (auto *DE = dyn_cast<DictionaryExpr>(enclosingExpr)) {
|
|
assert(TE->getNumElements() == 2);
|
|
CTP = TE->getElement(0) == anchor ? CTP_DictionaryKey
|
|
: CTP_DictionaryValue;
|
|
} else {
|
|
// Can't initialize one of the tuple elements with `nil`.
|
|
CTP = CTP_Initialization;
|
|
}
|
|
}
|
|
|
|
// `nil` is passed as an argument to a parameter which doesn't
|
|
// expect it e.g. `foo(a: nil)`, `s[x: nil]` or `\S.[x: nil]`.
|
|
// FIXME: Find a more robust way of checking this.
|
|
if (isa<ApplyExpr>(enclosingExpr) || isa<SubscriptExpr>(enclosingExpr) ||
|
|
isa<KeyPathExpr>(enclosingExpr))
|
|
CTP = CTP_CallArgument;
|
|
} else if (auto *CE = dyn_cast<CoerceExpr>(parentExpr)) {
|
|
// `nil` is passed as a left-hand side of the coercion
|
|
// operator e.g. `nil as Foo`
|
|
CTP = CTP_CoerceOperand;
|
|
} else {
|
|
// Otherwise let's produce a generic `nil` conversion diagnostic.
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_use_nil_with_this_type,
|
|
getToType());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!CTP)
|
|
return false;
|
|
|
|
if (CTP == CTP_ThrowStmt) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_throw_nil);
|
|
return true;
|
|
}
|
|
|
|
auto diagnostic = getContextualNilDiagnostic(*CTP);
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
emitDiagnostic(anchor->getLoc(), *diagnostic, getToType());
|
|
|
|
if (CTP == CTP_Initialization) {
|
|
auto *patternTR =
|
|
cs.getContextualTypeLoc(locator->getAnchor()).getTypeRepr();
|
|
if (!patternTR)
|
|
return true;
|
|
|
|
auto diag = emitDiagnostic(patternTR->getLoc(), diag::note_make_optional,
|
|
OptionalType::get(getToType()));
|
|
if (patternTR->isSimple()) {
|
|
diag.fixItInsertAfter(patternTR->getEndLoc(), "?");
|
|
} else {
|
|
diag.fixItInsert(patternTR->getStartLoc(), "(");
|
|
diag.fixItInsertAfter(patternTR->getEndLoc(), ")?");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ContextualFailure::tryFixIts(InFlightDiagnostic &diagnostic) const {
|
|
auto *locator = getLocator();
|
|
// Can't apply any of the fix-its below if this failure
|
|
// is related to `inout` argument.
|
|
if (locator->isLastElement<LocatorPathElt::LValueConversion>())
|
|
return;
|
|
|
|
if (trySequenceSubsequenceFixIts(diagnostic))
|
|
return;
|
|
|
|
if (tryRawRepresentableFixIts(
|
|
diagnostic, KnownProtocolKind::ExpressibleByIntegerLiteral) ||
|
|
tryRawRepresentableFixIts(diagnostic,
|
|
KnownProtocolKind::ExpressibleByStringLiteral))
|
|
return;
|
|
|
|
if (tryIntegerCastFixIts(diagnostic))
|
|
return;
|
|
|
|
if (tryProtocolConformanceFixIt(diagnostic))
|
|
return;
|
|
|
|
if (tryTypeCoercionFixIt(diagnostic))
|
|
return;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseMissingFunctionCall() const {
|
|
if (getLocator()->isLastElement<LocatorPathElt::RValueAdjustment>())
|
|
return false;
|
|
|
|
auto *srcFT = getFromType()->getAs<FunctionType>();
|
|
if (!srcFT || !srcFT->getParams().empty())
|
|
return false;
|
|
|
|
auto toType = getToType();
|
|
if (toType->is<AnyFunctionType>() ||
|
|
!TypeChecker::isConvertibleTo(srcFT->getResult(), toType, getDC()))
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::missing_nullary_call,
|
|
srcFT->getResult())
|
|
.highlight(anchor->getSourceRange())
|
|
.fixItInsertAfter(anchor->getEndLoc(), "()");
|
|
|
|
tryComputedPropertyFixIts(anchor);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseCoercionToUnrelatedType() const {
|
|
auto *anchor = getAnchor();
|
|
|
|
if (auto *coerceExpr = dyn_cast<CoerceExpr>(anchor)) {
|
|
auto fromType = getType(coerceExpr->getSubExpr());
|
|
auto toType = getType(coerceExpr->getCastTypeLoc());
|
|
|
|
auto diagnostic =
|
|
getDiagnosticFor(CTP_CoerceOperand,
|
|
/*forProtocol=*/toType->isExistentialType());
|
|
|
|
auto diag =
|
|
emitDiagnostic(anchor->getLoc(), *diagnostic, fromType, toType);
|
|
diag.highlight(anchor->getSourceRange());
|
|
|
|
(void)tryFixIts(diag);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseConversionToBool() const {
|
|
auto toType = getToType();
|
|
if (!toType->isBool())
|
|
return false;
|
|
|
|
auto *expr = getAnchor();
|
|
// Check for "=" converting to Bool. The user probably meant ==.
|
|
if (auto *AE = dyn_cast<AssignExpr>(expr->getValueProvidingExpr())) {
|
|
emitDiagnostic(AE->getEqualLoc(), diag::use_of_equal_instead_of_equality)
|
|
.fixItReplace(AE->getEqualLoc(), "==")
|
|
.highlight(AE->getDest()->getLoc())
|
|
.highlight(AE->getSrc()->getLoc());
|
|
return true;
|
|
}
|
|
|
|
// If we're trying to convert something from optional type to Bool, then a
|
|
// comparison against nil was probably expected.
|
|
// TODO: It would be nice to handle "!x" --> x == false, but we have no way
|
|
// to get to the parent expr at present.
|
|
auto fromType = getFromType();
|
|
if (fromType->getOptionalObjectType()) {
|
|
StringRef prefix = "((";
|
|
StringRef suffix = ") != nil)";
|
|
|
|
// Check if we need the inner parentheses.
|
|
// Technically we only need them if there's something in 'expr' with
|
|
// lower precedence than '!=', but the code actually comes out nicer
|
|
// in most cases with parens on anything non-trivial.
|
|
if (expr->canAppendPostfixExpression()) {
|
|
prefix = prefix.drop_back();
|
|
suffix = suffix.drop_front();
|
|
}
|
|
// FIXME: The outer parentheses may be superfluous too.
|
|
|
|
emitDiagnostic(expr->getLoc(), diag::optional_used_as_boolean, fromType)
|
|
.fixItInsert(expr->getStartLoc(), prefix)
|
|
.fixItInsertAfter(expr->getEndLoc(), suffix);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ContextualFailure::isInvalidDictionaryConversion(
|
|
ConstraintSystem &cs, Expr *anchor, Type contextualType) {
|
|
auto *arrayExpr = dyn_cast<ArrayExpr>(anchor);
|
|
if (!arrayExpr)
|
|
return false;
|
|
|
|
auto type = contextualType->lookThroughAllOptionalTypes();
|
|
if (!conformsToKnownProtocol(
|
|
cs, type, KnownProtocolKind::ExpressibleByDictionaryLiteral))
|
|
return false;
|
|
|
|
return (arrayExpr->getNumElements() & 1) == 0;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseConversionToDictionary() const {
|
|
auto &cs = getConstraintSystem();
|
|
auto toType = getToType()->lookThroughAllOptionalTypes();
|
|
|
|
if (!isInvalidDictionaryConversion(cs, getAnchor(), toType))
|
|
return false;
|
|
|
|
auto *arrayExpr = cast<ArrayExpr>(getAnchor());
|
|
|
|
// If the contextual type conforms to ExpressibleByDictionaryLiteral and
|
|
// this is an empty array, then they meant "[:]".
|
|
auto numElements = arrayExpr->getNumElements();
|
|
if (numElements == 0) {
|
|
emitDiagnostic(arrayExpr->getStartLoc(),
|
|
diag::should_use_empty_dictionary_literal)
|
|
.fixItInsert(arrayExpr->getEndLoc(), ":");
|
|
return true;
|
|
}
|
|
|
|
// If the contextual type conforms to ExpressibleByDictionaryLiteral, then
|
|
// they wrote "x = [1,2]" but probably meant "x = [1:2]".
|
|
bool isIniting = getContextualTypePurpose() == CTP_Initialization;
|
|
emitDiagnostic(arrayExpr->getStartLoc(), diag::should_use_dictionary_literal,
|
|
toType, isIniting);
|
|
|
|
auto diagnostic =
|
|
emitDiagnostic(arrayExpr->getStartLoc(), diag::meant_dictionary_lit);
|
|
|
|
// Change every other comma into a colon, only if the number
|
|
// of commas present matches the number of elements, because
|
|
// otherwise it might a structural problem with the expression
|
|
// e.g. ["a""b": 1].
|
|
const auto commaLocs = arrayExpr->getCommaLocs();
|
|
if (commaLocs.size() == numElements - 1) {
|
|
for (unsigned i = 0, e = numElements / 2; i != e; ++i)
|
|
diagnostic.fixItReplace(commaLocs[i * 2], ":");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseThrowsTypeMismatch() const {
|
|
// If this is conversion failure due to a return statement with an argument
|
|
// that cannot be coerced to the result type of the function, emit a
|
|
// specific error.
|
|
if (CTP != CTP_ThrowStmt)
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
|
|
// If we tried to throw the error code of an error type, suggest object
|
|
// construction.
|
|
auto &Ctx = getASTContext();
|
|
if (auto errorCodeProtocol =
|
|
Ctx.getProtocol(KnownProtocolKind::ErrorCodeProtocol)) {
|
|
Type errorCodeType = getFromType();
|
|
auto conformance = TypeChecker::conformsToProtocol(
|
|
errorCodeType, errorCodeProtocol, getDC(),
|
|
ConformanceCheckFlags::InExpression);
|
|
if (conformance) {
|
|
Type errorType =
|
|
conformance
|
|
.getTypeWitnessByName(errorCodeType, getASTContext().Id_ErrorType)
|
|
->getCanonicalType();
|
|
if (errorType) {
|
|
auto diagnostic =
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_throw_error_code,
|
|
errorCodeType, errorType);
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
diagnostic.fixItInsert(UDE->getDotLoc(), "(");
|
|
diagnostic.fixItInsertAfter(UDE->getEndLoc(), ")");
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The conversion destination of throw is always ErrorType (at the moment)
|
|
// if this ever expands, this should be a specific form like () is for
|
|
// return.
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_convert_thrown_type,
|
|
getFromType())
|
|
.highlight(anchor->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseYieldByReferenceMismatch() const {
|
|
if (CTP != CTP_YieldByReference)
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto exprType = getType(anchor, /*wantRValue=*/false);
|
|
auto contextualType = getToType();
|
|
|
|
if (auto exprLV = exprType->getAs<LValueType>()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_yield_wrong_type_by_reference,
|
|
exprLV->getObjectType(), contextualType);
|
|
} else if (exprType->isEqual(contextualType)) {
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_yield_rvalue_by_reference_same_type, exprType);
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_yield_rvalue_by_reference,
|
|
exprType, contextualType);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::tryRawRepresentableFixIts(
|
|
InFlightDiagnostic &diagnostic,
|
|
KnownProtocolKind rawRepresentableProtocol) const {
|
|
auto &CS = getConstraintSystem();
|
|
auto *expr = getAnchor();
|
|
auto fromType = getFromType();
|
|
auto toType = getToType();
|
|
|
|
// The following fixes apply for optional destination types as well.
|
|
bool toTypeIsOptional = !toType->getOptionalObjectType().isNull();
|
|
toType = toType->lookThroughAllOptionalTypes();
|
|
|
|
Type fromTypeUnwrapped = fromType->getOptionalObjectType();
|
|
bool fromTypeIsOptional = !fromTypeUnwrapped.isNull();
|
|
if (fromTypeIsOptional)
|
|
fromType = fromTypeUnwrapped;
|
|
|
|
auto fixIt = [&](StringRef convWrapBefore, StringRef convWrapAfter) {
|
|
SourceRange exprRange = expr->getSourceRange();
|
|
if (fromTypeIsOptional && toTypeIsOptional) {
|
|
// Use optional's map function to convert conditionally, like so:
|
|
// expr.map{ T(rawValue: $0) }
|
|
bool needsParens = !expr->canAppendPostfixExpression();
|
|
std::string mapCodeFix;
|
|
if (needsParens) {
|
|
diagnostic.fixItInsert(exprRange.Start, "(");
|
|
mapCodeFix += ")";
|
|
}
|
|
mapCodeFix += ".map { ";
|
|
mapCodeFix += convWrapBefore;
|
|
mapCodeFix += "$0";
|
|
mapCodeFix += convWrapAfter;
|
|
mapCodeFix += " }";
|
|
diagnostic.fixItInsertAfter(exprRange.End, mapCodeFix);
|
|
} else if (!fromTypeIsOptional) {
|
|
diagnostic.fixItInsert(exprRange.Start, convWrapBefore);
|
|
diagnostic.fixItInsertAfter(exprRange.End, convWrapAfter);
|
|
} else {
|
|
SmallString<16> fixItBefore(convWrapBefore);
|
|
SmallString<16> fixItAfter;
|
|
|
|
if (!expr->canAppendPostfixExpression(true)) {
|
|
fixItBefore += "(";
|
|
fixItAfter = ")";
|
|
}
|
|
|
|
fixItAfter += "!" + convWrapAfter.str();
|
|
|
|
diagnostic.flush();
|
|
emitDiagnostic(expr->getLoc(),
|
|
diag::construct_raw_representable_from_unwrapped_value,
|
|
toType, fromType)
|
|
.highlight(exprRange)
|
|
.fixItInsert(exprRange.Start, fixItBefore)
|
|
.fixItInsertAfter(exprRange.End, fixItAfter);
|
|
}
|
|
};
|
|
|
|
if (conformsToKnownProtocol(CS, fromType, rawRepresentableProtocol)) {
|
|
if (conformsToKnownProtocol(CS, fromType, KnownProtocolKind::OptionSet) &&
|
|
isa<IntegerLiteralExpr>(expr) &&
|
|
cast<IntegerLiteralExpr>(expr)->getDigitsText() == "0") {
|
|
diagnostic.fixItReplace(expr->getSourceRange(), "[]");
|
|
return true;
|
|
}
|
|
if (auto rawTy = isRawRepresentable(CS, toType, rawRepresentableProtocol)) {
|
|
// Produce before/after strings like 'Result(rawValue: RawType(<expr>))'
|
|
// or just 'Result(rawValue: <expr>)'.
|
|
std::string convWrapBefore = toType.getString();
|
|
convWrapBefore += "(rawValue: ";
|
|
std::string convWrapAfter = ")";
|
|
if (!isa<LiteralExpr>(expr) &&
|
|
!TypeChecker::isConvertibleTo(fromType, rawTy, getDC())) {
|
|
// Only try to insert a converting construction if the protocol is a
|
|
// literal protocol and not some other known protocol.
|
|
switch (rawRepresentableProtocol) {
|
|
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(name, _, __, ___) \
|
|
case KnownProtocolKind::name: \
|
|
break;
|
|
#define PROTOCOL_WITH_NAME(name, _) \
|
|
case KnownProtocolKind::name: \
|
|
return false;
|
|
#include "swift/AST/KnownProtocols.def"
|
|
}
|
|
convWrapBefore += rawTy->getString();
|
|
convWrapBefore += "(";
|
|
convWrapAfter += ")";
|
|
}
|
|
fixIt(convWrapBefore, convWrapAfter);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto rawTy = isRawRepresentable(CS, fromType, rawRepresentableProtocol)) {
|
|
if (conformsToKnownProtocol(CS, toType, rawRepresentableProtocol)) {
|
|
std::string convWrapBefore;
|
|
std::string convWrapAfter = ".rawValue";
|
|
if (!TypeChecker::isConvertibleTo(rawTy, toType, getDC())) {
|
|
// Only try to insert a converting construction if the protocol is a
|
|
// literal protocol and not some other known protocol.
|
|
switch (rawRepresentableProtocol) {
|
|
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(name, _, __, ___) \
|
|
case KnownProtocolKind::name: \
|
|
break;
|
|
#define PROTOCOL_WITH_NAME(name, _) \
|
|
case KnownProtocolKind::name: \
|
|
return false;
|
|
#include "swift/AST/KnownProtocols.def"
|
|
}
|
|
convWrapBefore += toType->getString();
|
|
convWrapBefore += "(";
|
|
convWrapAfter += ")";
|
|
}
|
|
fixIt(convWrapBefore, convWrapAfter);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ContextualFailure::tryIntegerCastFixIts(
|
|
InFlightDiagnostic &diagnostic) const {
|
|
auto fromType = getFromType();
|
|
auto toType = getToType();
|
|
|
|
if (!isIntegerType(fromType) || !isIntegerType(toType))
|
|
return false;
|
|
|
|
auto getInnerCastedExpr = [&](Expr *expr) -> Expr * {
|
|
if (auto *CE = dyn_cast<CoerceExpr>(expr))
|
|
return CE->getSubExpr();
|
|
|
|
auto *CE = dyn_cast<CallExpr>(expr);
|
|
if (!CE)
|
|
return nullptr;
|
|
if (!isa<ConstructorRefCallExpr>(CE->getFn()))
|
|
return nullptr;
|
|
auto *parenE = dyn_cast<ParenExpr>(CE->getArg());
|
|
if (!parenE)
|
|
return nullptr;
|
|
return parenE->getSubExpr();
|
|
};
|
|
|
|
auto *anchor = getAnchor();
|
|
if (Expr *innerE = getInnerCastedExpr(anchor)) {
|
|
Type innerTy = getType(innerE);
|
|
if (TypeChecker::isConvertibleTo(innerTy, toType, getDC())) {
|
|
// Remove the unnecessary cast.
|
|
diagnostic.fixItRemoveChars(anchor->getLoc(), innerE->getStartLoc())
|
|
.fixItRemove(anchor->getEndLoc());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Add a wrapping integer cast.
|
|
std::string convWrapBefore = toType.getString();
|
|
convWrapBefore += "(";
|
|
std::string convWrapAfter = ")";
|
|
SourceRange exprRange = anchor->getSourceRange();
|
|
diagnostic.fixItInsert(exprRange.Start, convWrapBefore);
|
|
diagnostic.fixItInsertAfter(exprRange.End, convWrapAfter);
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::trySequenceSubsequenceFixIts(
|
|
InFlightDiagnostic &diagnostic) const {
|
|
if (!getASTContext().getStdlibModule())
|
|
return false;
|
|
|
|
auto String = TypeChecker::getStringType(getASTContext());
|
|
auto Substring = TypeChecker::getSubstringType(getASTContext());
|
|
|
|
if (!String || !Substring)
|
|
return false;
|
|
|
|
// Substring -> String conversion
|
|
// Wrap in String.init
|
|
if (getFromType()->isEqual(Substring)) {
|
|
if (getToType()->isEqual(String)) {
|
|
auto *anchor = getAnchor()->getSemanticsProvidingExpr();
|
|
if (auto *CE = dyn_cast<CoerceExpr>(anchor)) {
|
|
anchor = CE->getSubExpr();
|
|
}
|
|
|
|
if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
auto *fnExpr = call->getFn();
|
|
if (auto *closure = dyn_cast<ClosureExpr>(fnExpr)) {
|
|
if (closure->hasSingleExpressionBody())
|
|
anchor = closure->getSingleExpressionBody();
|
|
}
|
|
}
|
|
|
|
auto range = anchor->getSourceRange();
|
|
diagnostic.fixItInsert(range.Start, "String(");
|
|
diagnostic.fixItInsertAfter(range.End, ")");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ContextualFailure::tryTypeCoercionFixIt(
|
|
InFlightDiagnostic &diagnostic) const {
|
|
auto fromType = getFromType();
|
|
auto toType = getToType();
|
|
|
|
// Look through optional types; casts can add them, but can't remove extra
|
|
// ones.
|
|
bool bothOptional =
|
|
fromType->getOptionalObjectType() && toType->getOptionalObjectType();
|
|
if (bothOptional)
|
|
fromType = fromType->getOptionalObjectType();
|
|
toType = toType->lookThroughAllOptionalTypes();
|
|
|
|
if (!toType->hasTypeRepr())
|
|
return false;
|
|
|
|
CheckedCastKind Kind =
|
|
TypeChecker::typeCheckCheckedCast(fromType, toType,
|
|
CheckedCastContextKind::None, getDC(),
|
|
SourceLoc(), nullptr, SourceRange());
|
|
|
|
if (Kind != CheckedCastKind::Unresolved) {
|
|
auto *anchor = getAnchor();
|
|
|
|
bool canUseAs = Kind == CheckedCastKind::Coercion ||
|
|
Kind == CheckedCastKind::BridgingCoercion;
|
|
if (bothOptional && canUseAs)
|
|
toType = OptionalType::get(toType);
|
|
diagnostic.fixItInsert(Lexer::getLocForEndOfToken(getASTContext().SourceMgr,
|
|
anchor->getEndLoc()),
|
|
diag::insert_type_coercion, canUseAs, toType);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ContextualFailure::tryProtocolConformanceFixIt(
|
|
InFlightDiagnostic &diagnostic) const {
|
|
auto innermostTyCtx = getDC()->getInnermostTypeContext();
|
|
if (!innermostTyCtx)
|
|
return false;
|
|
|
|
auto nominal = innermostTyCtx->getSelfNominalTypeDecl();
|
|
if (!nominal)
|
|
return false;
|
|
|
|
auto fromType = getFromType();
|
|
// We need to get rid of optionals and parens as it's not relevant when
|
|
// printing the diagnostic and the fix-it.
|
|
auto unwrappedToType =
|
|
getToType()->lookThroughAllOptionalTypes()->getWithoutParens();
|
|
|
|
// If the protocol requires a class & we don't have one (maybe the context
|
|
// is a struct), then bail out instead of offering a broken fix-it later on.
|
|
auto requiresClass = false;
|
|
ExistentialLayout layout;
|
|
if (unwrappedToType->isExistentialType()) {
|
|
layout = unwrappedToType->getExistentialLayout();
|
|
requiresClass = layout.requiresClass();
|
|
}
|
|
|
|
if (requiresClass && !fromType->is<ClassType>()) {
|
|
return false;
|
|
}
|
|
|
|
// We can only offer a fix-it if we're assigning to a protocol type and
|
|
// the type we're assigning is the same as the innermost type context.
|
|
bool shouldOfferFixIt = nominal->getSelfTypeInContext()->isEqual(fromType) &&
|
|
unwrappedToType->isExistentialType();
|
|
if (!shouldOfferFixIt)
|
|
return false;
|
|
|
|
diagnostic.flush();
|
|
|
|
// Let's build a list of protocols that the context does not conform to.
|
|
SmallVector<std::string, 8> missingProtoTypeStrings;
|
|
for (auto protocol : layout.getProtocols()) {
|
|
if (!TypeChecker::conformsToProtocol(fromType, protocol->getDecl(), getDC(),
|
|
ConformanceCheckFlags::InExpression)) {
|
|
missingProtoTypeStrings.push_back(protocol->getString());
|
|
}
|
|
}
|
|
|
|
// If we have a protocol composition type and we don't conform to all
|
|
// the protocols of the composition, then store the composition directly.
|
|
// This is because we need to append 'Foo & Bar' instead of 'Foo, Bar' in
|
|
// order to match the written type.
|
|
if (auto compositionTy = unwrappedToType->getAs<ProtocolCompositionType>()) {
|
|
if (compositionTy->getMembers().size() == missingProtoTypeStrings.size()) {
|
|
missingProtoTypeStrings = {compositionTy->getString()};
|
|
}
|
|
}
|
|
|
|
assert(!missingProtoTypeStrings.empty() &&
|
|
"type already conforms to all the protocols?");
|
|
|
|
// Combine all protocol names together, separated by commas.
|
|
std::string protoString = llvm::join(missingProtoTypeStrings, ", ");
|
|
|
|
// Emit a diagnostic to inform the user that they need to conform to the
|
|
// missing protocols.
|
|
//
|
|
// TODO: Maybe also insert the requirement stubs?
|
|
auto conformanceDiag = emitDiagnostic(
|
|
getAnchor()->getLoc(), diag::assign_protocol_conformance_fix_it,
|
|
unwrappedToType, nominal->getDescriptiveKind(), fromType);
|
|
if (nominal->getInherited().size() > 0) {
|
|
auto lastInherited = nominal->getInherited().back().getLoc();
|
|
auto lastInheritedEndLoc =
|
|
Lexer::getLocForEndOfToken(getASTContext().SourceMgr, lastInherited);
|
|
conformanceDiag.fixItInsert(lastInheritedEndLoc, ", " + protoString);
|
|
} else {
|
|
auto nameEndLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr,
|
|
nominal->getNameLoc());
|
|
conformanceDiag.fixItInsert(nameEndLoc, ": " + protoString);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ContextualFailure::tryComputedPropertyFixIts(Expr *expr) const {
|
|
if (!isa<ClosureExpr>(expr))
|
|
return;
|
|
|
|
// It is possible that we're looking at a stored property being
|
|
// initialized with a closure. Something like:
|
|
//
|
|
// var foo: Int = { return 0 }
|
|
//
|
|
// Let's offer another fix-it to remove the '=' to turn the stored
|
|
// property into a computed property. If the variable is immutable, then
|
|
// replace the 'let' with a 'var'.
|
|
|
|
PatternBindingDecl *PBD = nullptr;
|
|
|
|
if (auto TLCD = dyn_cast<TopLevelCodeDecl>(getDC())) {
|
|
if (TLCD->getBody()->isImplicit()) {
|
|
if (auto decl = TLCD->getBody()->getFirstElement().dyn_cast<Decl *>()) {
|
|
if (auto binding = dyn_cast<PatternBindingDecl>(decl)) {
|
|
PBD = binding;
|
|
}
|
|
}
|
|
}
|
|
} else if (auto PBI = dyn_cast<PatternBindingInitializer>(getDC())) {
|
|
PBD = PBI->getBinding();
|
|
}
|
|
|
|
if (PBD) {
|
|
if (auto VD = PBD->getSingleVar()) {
|
|
const auto i = PBD->getPatternEntryIndexForVarDecl(VD);
|
|
auto *initExpr = PBD->getInit(i);
|
|
if (!VD->isStatic() &&
|
|
!VD->getAttrs().getAttribute<DynamicReplacementAttr>() &&
|
|
initExpr && isa<ClosureExpr>(initExpr)) {
|
|
auto diag = emitDiagnostic(expr->getLoc(),
|
|
diag::extension_stored_property_fixit,
|
|
VD->getName());
|
|
diag.fixItRemove(PBD->getEqualLoc(i));
|
|
|
|
if (VD->isLet()) {
|
|
diag.fixItReplace(PBD->getStartLoc(), getTokenText(tok::kw_var));
|
|
}
|
|
|
|
if (auto lazyAttr = VD->getAttrs().getAttribute<LazyAttr>()) {
|
|
diag.fixItRemove(lazyAttr->getRange());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ContextualFailure::isIntegerToStringIndexConversion() const {
|
|
auto &cs = getConstraintSystem();
|
|
auto kind = KnownProtocolKind::ExpressibleByIntegerLiteral;
|
|
|
|
auto fromType = getFromType();
|
|
auto toType = getToType()->getCanonicalType();
|
|
return (conformsToKnownProtocol(cs, fromType, kind) &&
|
|
toType.getString() == "String.CharacterView.Index");
|
|
}
|
|
|
|
Optional<Diag<Type, Type>>
|
|
ContextualFailure::getDiagnosticFor(ContextualTypePurpose context,
|
|
bool forProtocol) {
|
|
switch (context) {
|
|
case CTP_Initialization:
|
|
return forProtocol ? diag::cannot_convert_initializer_value_protocol
|
|
: diag::cannot_convert_initializer_value;
|
|
case CTP_ReturnStmt:
|
|
case CTP_ReturnSingleExpr:
|
|
return forProtocol ? diag::cannot_convert_to_return_type_protocol
|
|
: diag::cannot_convert_to_return_type;
|
|
case CTP_EnumCaseRawValue:
|
|
return diag::cannot_convert_raw_initializer_value;
|
|
case CTP_DefaultParameter:
|
|
return forProtocol ? diag::cannot_convert_default_arg_value_protocol
|
|
: diag::cannot_convert_default_arg_value;
|
|
case CTP_YieldByValue:
|
|
return forProtocol ? diag::cannot_convert_yield_value_protocol
|
|
: diag::cannot_convert_yield_value;
|
|
case CTP_CallArgument:
|
|
return forProtocol ? diag::cannot_convert_argument_value_protocol
|
|
: diag::cannot_convert_argument_value;
|
|
case CTP_ClosureResult:
|
|
return forProtocol ? diag::cannot_convert_closure_result_protocol
|
|
: diag::cannot_convert_closure_result;
|
|
case CTP_ArrayElement:
|
|
return forProtocol ? diag::cannot_convert_array_element_protocol
|
|
: diag::cannot_convert_array_element;
|
|
case CTP_DictionaryKey:
|
|
return forProtocol ? diag::cannot_convert_dict_key_protocol
|
|
: diag::cannot_convert_dict_key;
|
|
case CTP_DictionaryValue:
|
|
return forProtocol ? diag::cannot_convert_dict_value_protocol
|
|
: diag::cannot_convert_dict_value;
|
|
case CTP_CoerceOperand:
|
|
return forProtocol ? diag::cannot_convert_coerce_protocol
|
|
: diag::cannot_convert_coerce;
|
|
case CTP_AssignSource:
|
|
return forProtocol ? diag::cannot_convert_assign_protocol
|
|
: diag::cannot_convert_assign;
|
|
case CTP_SubscriptAssignSource:
|
|
return forProtocol ? diag::cannot_convert_subscript_assign_protocol
|
|
: diag::cannot_convert_subscript_assign;
|
|
case CTP_Condition:
|
|
return diag::cannot_convert_condition_value;
|
|
|
|
case CTP_ThrowStmt:
|
|
case CTP_ForEachStmt:
|
|
case CTP_Unused:
|
|
case CTP_CannotFail:
|
|
case CTP_YieldByReference:
|
|
case CTP_CalleeResult:
|
|
break;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
bool TupleContextualFailure::diagnoseAsError() {
|
|
Diag<Type, Type> diagnostic;
|
|
auto purpose = getContextualTypePurpose();
|
|
auto &cs = getConstraintSystem();
|
|
if (isNumElementsMismatch())
|
|
diagnostic = diag::tuple_types_not_convertible_nelts;
|
|
else if ((purpose == CTP_Initialization) &&
|
|
!cs.getContextualType(getAnchor()))
|
|
diagnostic = diag::tuple_types_not_convertible;
|
|
else if (auto diag = getDiagnosticFor(purpose, /*forProtocol=*/false))
|
|
diagnostic = *diag;
|
|
else
|
|
return false;
|
|
|
|
emitDiagnostic(getAnchor()->getLoc(), diagnostic, getFromType(), getToType());
|
|
return true;
|
|
}
|
|
|
|
bool FunctionTypeMismatch::diagnoseAsError() {
|
|
auto purpose = getContextualTypePurpose();
|
|
auto diagnostic = getDiagnosticFor(purpose, /*forProtocol=*/false);
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
emitDiagnostic(getAnchor()->getLoc(), *diagnostic, getFromType(), getToType());
|
|
return true;
|
|
}
|
|
|
|
bool AutoClosureForwardingFailure::diagnoseAsError() {
|
|
auto *loc = getLocator();
|
|
auto last = loc->castLastElementTo<LocatorPathElt::ApplyArgToParam>();
|
|
|
|
// We need a raw anchor here because `getAnchor()` is simplified
|
|
// to the argument expression.
|
|
auto *argExpr = getArgumentExpr(getRawAnchor(), last.getArgIdx());
|
|
emitDiagnostic(argExpr->getLoc(), diag::invalid_autoclosure_forwarding)
|
|
.highlight(argExpr->getSourceRange())
|
|
.fixItInsertAfter(argExpr->getEndLoc(), "()");
|
|
return true;
|
|
}
|
|
|
|
bool AutoClosurePointerConversionFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto diagnostic = diag::invalid_autoclosure_pointer_conversion;
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, getFromType(), getToType())
|
|
.highlight(anchor->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
bool NonOptionalUnwrapFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
|
|
auto diagnostic = diag::invalid_optional_chain;
|
|
if (isa<ForceValueExpr>(anchor))
|
|
diagnostic = diag::invalid_force_unwrap;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, BaseType)
|
|
.highlight(anchor->getSourceRange())
|
|
.fixItRemove(anchor->getEndLoc());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingCallFailure::diagnoseAsError() {
|
|
auto *baseExpr = getAnchor();
|
|
SourceLoc insertLoc = baseExpr->getEndLoc();
|
|
|
|
if (auto *FVE = dyn_cast<ForceValueExpr>(baseExpr))
|
|
baseExpr = FVE->getSubExpr();
|
|
|
|
// Calls are not yet supported by key path, but it
|
|
// is useful to record this fix to diagnose chaining
|
|
// where one of the key path components is a method
|
|
// reference.
|
|
if (isa<KeyPathExpr>(baseExpr))
|
|
return false;
|
|
|
|
auto path = getLocator()->getPath();
|
|
if (!path.empty()) {
|
|
const auto &last = path.back();
|
|
|
|
switch (last.getKind()) {
|
|
case ConstraintLocator::ContextualType:
|
|
case ConstraintLocator::ApplyArgToParam: {
|
|
auto fnType = getType(baseExpr)->castTo<FunctionType>();
|
|
emitDiagnostic(baseExpr->getLoc(), diag::missing_nullary_call,
|
|
fnType->getResult())
|
|
.fixItInsertAfter(baseExpr->getEndLoc(), "()");
|
|
return true;
|
|
}
|
|
|
|
case ConstraintLocator::FunctionResult: {
|
|
path = path.drop_back();
|
|
if (path.back().getKind() != ConstraintLocator::AutoclosureResult)
|
|
break;
|
|
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
|
|
case ConstraintLocator::AutoclosureResult: {
|
|
auto &cs = getConstraintSystem();
|
|
auto loc = getConstraintLocator(getRawAnchor(), path.drop_back());
|
|
AutoClosureForwardingFailure failure(cs, loc);
|
|
return failure.diagnoseAsError();
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(baseExpr)) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_function,
|
|
DRE->getDecl()->getBaseName().getIdentifier())
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(baseExpr)) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_method,
|
|
UDE->getName().getBaseIdentifier())
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
|
|
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(baseExpr)) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(DSCE->getFn())) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_method,
|
|
DRE->getDecl()->getBaseName().getIdentifier())
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *AE = dyn_cast<AssignExpr>(baseExpr)) {
|
|
auto *srcExpr = AE->getSrc();
|
|
if (auto *fnType = getType(srcExpr)->getAs<FunctionType>()) {
|
|
emitDiagnostic(srcExpr->getLoc(), diag::missing_nullary_call,
|
|
fnType->getResult())
|
|
.highlight(srcExpr->getSourceRange())
|
|
.fixItInsertAfter(srcExpr->getEndLoc(), "()");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_function_value)
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
|
|
bool ExtraneousPropertyWrapperUnwrapFailure::diagnoseAsError() {
|
|
auto loc = getAnchor()->getLoc();
|
|
auto newPrefix = usingStorageWrapper() ? "$" : "_";
|
|
|
|
if (auto *member = getReferencedMember()) {
|
|
emitDiagnostic(loc, diag::incorrect_property_wrapper_reference_member,
|
|
member->getDescriptiveKind(), member->getFullName(), false,
|
|
getToType())
|
|
.fixItInsert(loc, newPrefix);
|
|
return true;
|
|
}
|
|
|
|
emitDiagnostic(loc, diag::incorrect_property_wrapper_reference,
|
|
getPropertyName(), getFromType(), getToType(), false)
|
|
.fixItInsert(loc, newPrefix);
|
|
return true;
|
|
}
|
|
|
|
bool MissingPropertyWrapperUnwrapFailure::diagnoseAsError() {
|
|
auto loc = getAnchor()->getLoc();
|
|
auto endLoc = getAnchor()->getLoc().getAdvancedLoc(1);
|
|
|
|
if (auto *member = getReferencedMember()) {
|
|
emitDiagnostic(loc, diag::incorrect_property_wrapper_reference_member,
|
|
member->getDescriptiveKind(), member->getFullName(), true,
|
|
getToType())
|
|
.fixItRemoveChars(loc, endLoc);
|
|
return true;
|
|
}
|
|
|
|
emitDiagnostic(loc, diag::incorrect_property_wrapper_reference,
|
|
getPropertyName(), getFromType(), getToType(), true)
|
|
.fixItRemoveChars(loc, endLoc);
|
|
return true;
|
|
}
|
|
|
|
bool SubscriptMisuseFailure::diagnoseAsError() {
|
|
auto &sourceMgr = getASTContext().SourceMgr;
|
|
|
|
auto *memberExpr = cast<UnresolvedDotExpr>(getRawAnchor());
|
|
auto *baseExpr = getAnchor();
|
|
|
|
auto memberRange = baseExpr->getSourceRange();
|
|
(void)simplifyLocator(getConstraintSystem(), getLocator(), memberRange);
|
|
|
|
auto nameLoc = DeclNameLoc(memberRange.Start);
|
|
|
|
auto diag = emitDiagnostic(baseExpr->getLoc(),
|
|
diag::could_not_find_subscript_member_did_you_mean,
|
|
getType(baseExpr));
|
|
|
|
diag.highlight(memberRange).highlight(nameLoc.getSourceRange());
|
|
|
|
if (auto *parentExpr = dyn_cast_or_null<ApplyExpr>(findParentExpr(memberExpr))) {
|
|
auto *argExpr = parentExpr->getArg();
|
|
|
|
auto toCharSourceRange = Lexer::getCharSourceRangeFromSourceRange;
|
|
auto lastArgSymbol = toCharSourceRange(sourceMgr, argExpr->getEndLoc());
|
|
|
|
diag.fixItReplace(SourceRange(argExpr->getStartLoc()),
|
|
getTokenText(tok::l_square));
|
|
diag.fixItRemove(nameLoc.getSourceRange());
|
|
diag.fixItRemove(SourceRange(memberExpr->getDotLoc()));
|
|
|
|
if (sourceMgr.extractText(lastArgSymbol) == getTokenText(tok::r_paren))
|
|
diag.fixItReplace(SourceRange(argExpr->getEndLoc()),
|
|
getTokenText(tok::r_square));
|
|
else
|
|
diag.fixItInsertAfter(argExpr->getEndLoc(), getTokenText(tok::r_square));
|
|
} else {
|
|
diag.fixItReplace(SourceRange(memberExpr->getDotLoc(), memberExpr->getLoc()), "[<#index#>]");
|
|
}
|
|
diag.flush();
|
|
|
|
if (auto overload = getOverloadChoiceIfAvailable(getLocator())) {
|
|
emitDiagnostic(overload->choice.getDecl(), diag::kind_declared_here,
|
|
DescriptiveDeclKind::Subscript);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SubscriptMisuseFailure::diagnoseAsNote() {
|
|
if (auto overload = getOverloadChoiceIfAvailable(getLocator())) {
|
|
emitDiagnostic(overload->choice.getDecl(), diag::found_candidate);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// When a user refers a enum case with a wrong member name, we try to find a
|
|
/// enum element whose name differs from the wrong name only in convention;
|
|
/// meaning their lower case counterparts are identical.
|
|
/// - DeclName is valid when such a correct case is found; invalid otherwise.
|
|
DeclName MissingMemberFailure::findCorrectEnumCaseName(
|
|
Type Ty, TypoCorrectionResults &corrections, DeclNameRef memberName) {
|
|
if (memberName.isSpecial() || !memberName.isSimpleName())
|
|
return DeclName();
|
|
if (!Ty->getEnumOrBoundGenericEnum())
|
|
return DeclName();
|
|
auto candidate =
|
|
corrections.getUniqueCandidateMatching([&](ValueDecl *candidate) {
|
|
return (isa<EnumElementDecl>(candidate) &&
|
|
candidate->getFullName().getBaseIdentifier().str().equals_lower(
|
|
memberName.getBaseIdentifier().str()));
|
|
});
|
|
return (candidate ? candidate->getFullName() : DeclName());
|
|
}
|
|
|
|
bool MissingMemberFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
auto *baseExpr = getAnchor();
|
|
|
|
if (!anchor || !baseExpr)
|
|
return false;
|
|
|
|
if (diagnoseForDynamicCallable())
|
|
return true;
|
|
|
|
auto baseType = resolveType(getBaseType())->getWithoutSpecifierType();
|
|
|
|
DeclNameLoc nameLoc(anchor->getStartLoc());
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
nameLoc = UDE->getNameLoc();
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
nameLoc = UME->getNameLoc();
|
|
}
|
|
|
|
auto emitBasicError = [&](Type baseType) {
|
|
auto diagnostic = diag::could_not_find_value_member;
|
|
|
|
if (auto *metatype = baseType->getAs<MetatypeType>()) {
|
|
baseType = metatype->getInstanceType();
|
|
diagnostic = diag::could_not_find_type_member;
|
|
}
|
|
|
|
if (baseType->is<TupleType>())
|
|
diagnostic = diag::could_not_find_tuple_member;
|
|
|
|
bool hasUnresolvedPattern = false;
|
|
anchor->forEachChildExpr([&](Expr *expr) {
|
|
hasUnresolvedPattern |= isa<UnresolvedPatternExpr>(expr);
|
|
return hasUnresolvedPattern ? nullptr : expr;
|
|
});
|
|
if (hasUnresolvedPattern && !baseType->getAs<EnumType>()) {
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_match_unresolved_expr_pattern_with_value, baseType);
|
|
return;
|
|
}
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, baseType, getName())
|
|
.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
};
|
|
|
|
TypoCorrectionResults corrections(getName(), nameLoc);
|
|
auto tryTypoCorrection = [&] (Type type) {
|
|
TypeChecker::performTypoCorrection(getDC(), DeclRefKind::Ordinary, type,
|
|
defaultMemberLookupOptions, corrections);
|
|
};
|
|
|
|
if (getName().getBaseName().getKind() == DeclBaseName::Kind::Subscript) {
|
|
auto loc = anchor->getLoc();
|
|
if (auto *metatype = baseType->getAs<MetatypeType>()) {
|
|
emitDiagnostic(loc, diag::could_not_find_type_member,
|
|
metatype->getInstanceType(), getName())
|
|
.highlight(baseExpr->getSourceRange());
|
|
} else {
|
|
emitDiagnostic(loc, diag::could_not_find_value_subscript, baseType)
|
|
.highlight(baseExpr->getSourceRange());
|
|
}
|
|
} else if (getName().getBaseName() == "deinit") {
|
|
// Specialised diagnostic if trying to access deinitialisers
|
|
emitDiagnostic(anchor->getLoc(), diag::destructor_not_accessible)
|
|
.highlight(baseExpr->getSourceRange());
|
|
} else if (auto metatypeTy = baseType->getAs<MetatypeType>()) {
|
|
auto instanceTy = metatypeTy->getInstanceType();
|
|
tryTypoCorrection(baseType);
|
|
|
|
if (DeclName rightName =
|
|
findCorrectEnumCaseName(instanceTy, corrections, getName())) {
|
|
emitDiagnostic(anchor->getLoc(), diag::could_not_find_enum_case,
|
|
instanceTy, getName(), rightName)
|
|
.fixItReplace(nameLoc.getBaseNameLoc(),
|
|
rightName.getBaseIdentifier().str());
|
|
return true;
|
|
}
|
|
|
|
if (auto correction = corrections.claimUniqueCorrection()) {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(), diag::could_not_find_type_member_corrected,
|
|
instanceTy, getName(), correction->CorrectedName);
|
|
diagnostic.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
correction->addFixits(diagnostic);
|
|
} else if (instanceTy->getAnyNominal() &&
|
|
getName().getBaseName() == DeclBaseName::createConstructor()) {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
auto result = cs.performMemberLookup(
|
|
ConstraintKind::ValueMember, getName().withoutArgumentLabels(),
|
|
metatypeTy, FunctionRefKind::DoubleApply, getLocator(),
|
|
/*includeInaccessibleMembers=*/true);
|
|
|
|
// If there are no `init` members at all produce a tailored
|
|
// diagnostic for that, otherwise fallback to generic
|
|
// "no such member" one.
|
|
if (result.ViableCandidates.empty() &&
|
|
result.UnviableCandidates.empty()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::no_accessible_initializers,
|
|
instanceTy)
|
|
.highlight(baseExpr->getSourceRange());
|
|
} else {
|
|
emitBasicError(baseType);
|
|
}
|
|
} else {
|
|
emitBasicError(baseType);
|
|
}
|
|
} else if (auto moduleTy = baseType->getAs<ModuleType>()) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::no_member_of_module,
|
|
moduleTy->getModule()->getName(), getName())
|
|
.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
return true;
|
|
} else {
|
|
// Check for a few common cases that can cause missing members.
|
|
auto *ED = baseType->getEnumOrBoundGenericEnum();
|
|
if (ED && getName().isSimpleName("rawValue")) {
|
|
auto loc = ED->getNameLoc();
|
|
if (loc.isValid()) {
|
|
emitBasicError(baseType);
|
|
emitDiagnostic(loc, diag::did_you_mean_raw_type);
|
|
return true;
|
|
}
|
|
} else if (baseType->isAny()) {
|
|
emitBasicError(baseType);
|
|
emitDiagnostic(anchor->getLoc(), diag::any_as_anyobject_fixit)
|
|
.fixItInsert(baseExpr->getStartLoc(), "(")
|
|
.fixItInsertAfter(baseExpr->getEndLoc(), " as AnyObject)");
|
|
return true;
|
|
}
|
|
|
|
tryTypoCorrection(baseType);
|
|
|
|
// If locator points to the member found via key path dynamic member lookup,
|
|
// we provide a custom diagnostic and emit typo corrections for the wrapper type too.
|
|
if (getLocator()->isForKeyPathDynamicMemberLookup()) {
|
|
auto baseExprType = getType(baseExpr)->getWithoutSpecifierType();
|
|
|
|
tryTypoCorrection(baseExprType);
|
|
|
|
if (auto correction = corrections.claimUniqueCorrection()) {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(),
|
|
diag::could_not_find_value_dynamic_member_corrected,
|
|
baseExprType, baseType, getName(),
|
|
correction->CorrectedName);
|
|
diagnostic.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
correction->addFixits(diagnostic);
|
|
} else {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(),
|
|
diag::could_not_find_value_dynamic_member,
|
|
baseExprType, baseType, getName());
|
|
diagnostic.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
}
|
|
} else {
|
|
if (auto correction = corrections.claimUniqueCorrection()) {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(),
|
|
diag::could_not_find_value_member_corrected,
|
|
baseType, getName(),
|
|
correction->CorrectedName);
|
|
diagnostic.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
correction->addFixits(diagnostic);
|
|
} else {
|
|
emitBasicError(baseType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note all the correction candidates.
|
|
corrections.noteAllCandidates();
|
|
return true;
|
|
}
|
|
|
|
bool MissingMemberFailure::diagnoseForDynamicCallable() const {
|
|
auto *locator = getLocator();
|
|
if (!locator->isLastElement<LocatorPathElt::DynamicCallable>())
|
|
return false;
|
|
|
|
auto memberName = getName();
|
|
auto arguments = memberName.getArgumentNames();
|
|
assert(arguments.size() == 1);
|
|
|
|
auto &ctx = getASTContext();
|
|
if (arguments.front() == ctx.Id_withKeywordArguments) {
|
|
auto anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::missing_dynamic_callable_kwargs_method, getBaseType());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool InvalidMemberRefOnExistential::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
|
|
Expr *baseExpr = getAnchor();
|
|
DeclNameLoc nameLoc;
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
baseExpr = UDE->getBase();
|
|
nameLoc = UDE->getNameLoc();
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
nameLoc = UME->getNameLoc();
|
|
} else if (auto *SE = dyn_cast<SubscriptExpr>(anchor)) {
|
|
baseExpr = SE->getBase();
|
|
} else if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
baseExpr = call->getFn();
|
|
}
|
|
|
|
emitDiagnostic(getAnchor()->getLoc(),
|
|
diag::could_not_use_member_on_existential, getBaseType(),
|
|
getName())
|
|
.highlight(nameLoc.getSourceRange())
|
|
.highlight(baseExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
bool AllowTypeOrInstanceMemberFailure::diagnoseAsError() {
|
|
auto loc = getAnchor()->getLoc();
|
|
auto &cs = getConstraintSystem();
|
|
auto *DC = getDC();
|
|
auto locator = getLocator();
|
|
|
|
if (loc.isInvalid()) {
|
|
return true;
|
|
}
|
|
|
|
auto getRootExpr = [&cs](Expr *expr) {
|
|
while (auto parent = cs.getParentExpr(expr))
|
|
expr = parent;
|
|
return expr;
|
|
};
|
|
|
|
Expr *expr = findParentExpr(getAnchor());
|
|
SourceRange baseRange = expr ? expr->getSourceRange() : SourceRange();
|
|
|
|
// If the base is an implicit self type reference, and we're in a
|
|
// an initializer, then the user wrote something like:
|
|
//
|
|
// class Foo { let x = 1, y = x }
|
|
//
|
|
// which runs in type context, not instance context, or
|
|
//
|
|
// class Bar {
|
|
// let otherwise = 1 // instance member
|
|
// var x: Int
|
|
// func init(x: Int =otherwise) { // default parameter
|
|
// self.x = x
|
|
// }
|
|
// }
|
|
//
|
|
// in which an instance member is used as a default value for a
|
|
// parameter.
|
|
//
|
|
// Produce a tailored diagnostic for these cases since this
|
|
// comes up and is otherwise non-obvious what is going on.
|
|
|
|
if (Name.isSimpleName(DeclBaseName::createConstructor()) &&
|
|
!BaseType->is<AnyMetatypeType>()) {
|
|
if (auto ctorRef = dyn_cast<UnresolvedDotExpr>(getRawAnchor())) {
|
|
if (isa<SuperRefExpr>(ctorRef->getBase())) {
|
|
emitDiagnostic(loc, diag::super_initializer_not_in_initializer);
|
|
return true;
|
|
}
|
|
|
|
auto isCallArgument = [this](Expr *expr) {
|
|
auto &cs = getConstraintSystem();
|
|
auto argExpr = cs.getParentExpr(expr);
|
|
if (!argExpr)
|
|
return false;
|
|
auto possibleApplyExpr = cs.getParentExpr(expr);
|
|
return possibleApplyExpr && isa<ApplyExpr>(possibleApplyExpr);
|
|
};
|
|
|
|
auto *initCall = cs.getParentExpr(cs.getParentExpr(ctorRef));
|
|
|
|
auto isMutable = [&DC](ValueDecl *decl) {
|
|
if (auto *storage = dyn_cast<AbstractStorageDecl>(decl))
|
|
return storage->isSettable(DC) && storage->isSetterAccessibleFrom(DC);
|
|
|
|
return true;
|
|
};
|
|
|
|
auto *baseLoc = cs.getConstraintLocator(ctorRef->getBase());
|
|
if (auto selection = getChoiceFor(baseLoc)) {
|
|
OverloadChoice choice = selection->choice;
|
|
if (choice.isDecl() && isMutable(choice.getDecl()) &&
|
|
!isCallArgument(initCall) &&
|
|
cs.getContextualTypePurpose(getRootExpr(ctorRef)) == CTP_Unused) {
|
|
auto fixItLoc = ctorRef->getBase()->getSourceRange().End;
|
|
emitDiagnostic(loc, diag::init_not_instance_member_use_assignment)
|
|
.fixItInsertAfter(fixItLoc, " = ");
|
|
return true;
|
|
}
|
|
|
|
SourceRange fixItRng = ctorRef->getBase()->getSourceRange();
|
|
emitDiagnostic(loc, diag::init_not_instance_member)
|
|
.fixItInsert(fixItRng.Start, "type(of: ")
|
|
.fixItInsertAfter(fixItRng.End, ")");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (BaseType->is<AnyMetatypeType>() && !Member->isStatic()) {
|
|
auto instanceTy = BaseType;
|
|
|
|
if (auto *AMT = instanceTy->getAs<AnyMetatypeType>()) {
|
|
instanceTy = AMT->getInstanceType();
|
|
}
|
|
|
|
if (getRawAnchor() &&
|
|
cs.DC->getContextKind() == DeclContextKind::Initializer) {
|
|
auto *TypeDC = cs.DC->getParent();
|
|
bool propertyInitializer = true;
|
|
// If the parent context is not a type context, we expect it
|
|
// to be a defaulted parameter in a function declaration.
|
|
if (!TypeDC->isTypeContext()) {
|
|
assert(TypeDC->getContextKind() ==
|
|
DeclContextKind::AbstractFunctionDecl &&
|
|
"Expected function decl context for initializer!");
|
|
TypeDC = TypeDC->getParent();
|
|
propertyInitializer = false;
|
|
}
|
|
|
|
assert(TypeDC->isTypeContext() && "Expected type decl context!");
|
|
|
|
if (TypeDC->getSelfNominalTypeDecl() == instanceTy->getAnyNominal()) {
|
|
if (propertyInitializer) {
|
|
emitDiagnostic(loc, diag::instance_member_in_initializer, Name);
|
|
return true;
|
|
} else {
|
|
emitDiagnostic(loc, diag::instance_member_in_default_parameter, Name);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto maybeCallExpr = getRawAnchor();
|
|
|
|
if (auto UDE = dyn_cast<UnresolvedDotExpr>(maybeCallExpr)) {
|
|
maybeCallExpr = UDE->getBase();
|
|
}
|
|
|
|
if (auto callExpr = dyn_cast<ApplyExpr>(maybeCallExpr)) {
|
|
auto fnExpr = callExpr->getFn();
|
|
auto fnType = cs.getType(fnExpr)->getRValueType();
|
|
auto arg = callExpr->getArg();
|
|
|
|
if (fnType->is<ExistentialMetatypeType>()) {
|
|
emitDiagnostic(arg->getStartLoc(),
|
|
diag::missing_init_on_metatype_initialization)
|
|
.highlight(fnExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check whether the instance member is declared on parent context and if so
|
|
// provide more specialized message.
|
|
auto memberTypeContext =
|
|
Member->getDeclContext()->getInnermostTypeContext();
|
|
auto currentTypeContext = cs.DC->getInnermostTypeContext();
|
|
|
|
if (memberTypeContext && currentTypeContext &&
|
|
memberTypeContext->getSemanticDepth() <
|
|
currentTypeContext->getSemanticDepth()) {
|
|
emitDiagnostic(loc, diag::could_not_use_instance_member_on_type,
|
|
currentTypeContext->getDeclaredInterfaceType(), Name,
|
|
memberTypeContext->getDeclaredInterfaceType(), true)
|
|
.highlight(baseRange)
|
|
.highlight(Member->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(getRawAnchor())) {
|
|
auto *baseExpr = UDE->getBase();
|
|
if (isa<TypeExpr>(baseExpr)) {
|
|
emitDiagnostic(loc, diag::instance_member_use_on_type, instanceTy, Name)
|
|
.highlight(baseExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Just emit a generic "instance member cannot be used" error
|
|
emitDiagnostic(loc, diag::could_not_use_instance_member_on_type, instanceTy,
|
|
Name, instanceTy, false)
|
|
.highlight(getAnchor()->getSourceRange());
|
|
return true;
|
|
} else {
|
|
// If the base of the lookup is a protocol metatype, suggest
|
|
// to replace the metatype with 'Self'
|
|
// error saying the lookup cannot be on a protocol metatype
|
|
Optional<InFlightDiagnostic> Diag;
|
|
auto baseTy = BaseType;
|
|
|
|
if (auto metatypeTy = baseTy->getAs<AnyMetatypeType>()) {
|
|
auto instanceTy = metatypeTy->getInstanceType();
|
|
|
|
// This will only happen if we have an unresolved dot expression
|
|
// (.foo) where foo is a protocol member and the contextual type is
|
|
// an optional protocol metatype.
|
|
if (auto objectTy = instanceTy->getOptionalObjectType()) {
|
|
instanceTy = objectTy;
|
|
baseTy = MetatypeType::get(objectTy);
|
|
}
|
|
|
|
if (instanceTy->isExistentialType()) {
|
|
// Give a customized message if we're accessing a member type
|
|
// of a protocol -- otherwise a diagnostic talking about
|
|
// static members doesn't make a whole lot of sense
|
|
if (auto TAD = dyn_cast<TypeAliasDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(loc, diag::typealias_outside_of_protocol,
|
|
Name));
|
|
} else if (auto ATD = dyn_cast<AssociatedTypeDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(loc, diag::assoc_type_outside_of_protocol,
|
|
Name));
|
|
} else if (isa<ConstructorDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(loc, diag::construct_protocol_by_name,
|
|
instanceTy));
|
|
} else {
|
|
Diag.emplace(emitDiagnostic(
|
|
loc, diag::could_not_use_type_member_on_protocol_metatype, baseTy,
|
|
Name));
|
|
}
|
|
|
|
Diag->highlight(baseRange).highlight(getAnchor()->getSourceRange());
|
|
|
|
// See through function decl context
|
|
if (auto parent = cs.DC->getInnermostTypeContext()) {
|
|
// If we are in a protocol extension of 'Proto' and we see
|
|
// 'Proto.static', suggest 'Self.static'
|
|
if (auto extensionContext = parent->getExtendedProtocolDecl()) {
|
|
if (extensionContext->getDeclaredType()->isEqual(instanceTy)) {
|
|
Diag->fixItReplace(getAnchor()->getSourceRange(), "Self");
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If this is a reference to a static member by one of the key path
|
|
// components, let's provide a tailored diagnostic and return because
|
|
// that is unsupported so there is no fix-it.
|
|
if (locator->isForKeyPathComponent()) {
|
|
InvalidStaticMemberRefInKeyPath failure(cs, Member, locator);
|
|
return failure.diagnoseAsError();
|
|
}
|
|
|
|
if (isa<EnumElementDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(
|
|
loc, diag::could_not_use_enum_element_on_instance, Name));
|
|
} else {
|
|
Diag.emplace(emitDiagnostic(
|
|
loc, diag::could_not_use_type_member_on_instance, baseTy, Name));
|
|
}
|
|
|
|
Diag->highlight(getAnchor()->getSourceRange());
|
|
|
|
if (Name.isSimpleName(DeclBaseName::createConstructor()) &&
|
|
!baseTy->is<AnyMetatypeType>()) {
|
|
if (auto ctorRef = dyn_cast<UnresolvedDotExpr>(getRawAnchor())) {
|
|
SourceRange fixItRng = ctorRef->getNameLoc().getSourceRange();
|
|
Diag->fixItInsert(fixItRng.Start, "type(of: ");
|
|
Diag->fixItInsertAfter(fixItRng.End, ")");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Determine the contextual type of the expression
|
|
Type contextualType;
|
|
for (auto iterateCS = &cs; contextualType.isNull() && iterateCS;
|
|
iterateCS = iterateCS->baseCS) {
|
|
contextualType = iterateCS->getContextualType(getRawAnchor());
|
|
}
|
|
|
|
// Try to provide a fix-it that only contains a '.'
|
|
if (contextualType && baseTy->isEqual(contextualType)) {
|
|
Diag->fixItInsert(loc, ".");
|
|
return true;
|
|
}
|
|
|
|
// Check if the expression is the matching operator ~=, most often used in
|
|
// case statements. If so, try to provide a single dot fix-it
|
|
const Expr *contextualTypeNode = getRootExpr(getAnchor());
|
|
ConstraintSystem *lastCS = nullptr;
|
|
for (auto iterateCS = &cs; iterateCS; iterateCS = iterateCS->baseCS) {
|
|
lastCS = iterateCS;
|
|
}
|
|
|
|
// The '~=' operator is an overloaded decl ref inside a binaryExpr
|
|
if (auto binaryExpr = dyn_cast<BinaryExpr>(contextualTypeNode)) {
|
|
if (auto overloadedFn
|
|
= dyn_cast<OverloadedDeclRefExpr>(binaryExpr->getFn())) {
|
|
if (!overloadedFn->getDecls().empty()) {
|
|
// Fetch any declaration to check if the name is '~='
|
|
ValueDecl *decl0 = overloadedFn->getDecls()[0];
|
|
|
|
if (decl0->getBaseName() == decl0->getASTContext().Id_MatchOperator) {
|
|
assert(binaryExpr->getArg()->getElements().size() == 2);
|
|
|
|
// If the rhs of '~=' is the enum type, a single dot suffixes
|
|
// since the type can be inferred
|
|
Type secondArgType =
|
|
lastCS->getType(binaryExpr->getArg()->getElement(1));
|
|
if (secondArgType->isEqual(baseTy)) {
|
|
Diag->fixItInsert(loc, ".");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fall back to a fix-it with a full type qualifier
|
|
if (auto *NTD = Member->getDeclContext()->getSelfNominalTypeDecl()) {
|
|
auto type = NTD->getSelfInterfaceType();
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(getRawAnchor())) {
|
|
auto *baseExpr = SE->getBase();
|
|
Diag->fixItReplace(baseExpr->getSourceRange(), diag::replace_with_type,
|
|
type);
|
|
} else {
|
|
Diag->fixItInsert(loc, diag::insert_type_qualification, type);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PartialApplicationFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto *anchor = cast<UnresolvedDotExpr>(getRawAnchor());
|
|
|
|
RefKind kind = RefKind::MutatingMethod;
|
|
|
|
// If this is initializer delegation chain, we have a tailored message.
|
|
if (getOverloadChoiceIfAvailable(cs.getConstraintLocator(
|
|
anchor, ConstraintLocator::ConstructorMember))) {
|
|
kind = anchor->getBase()->isSuperExpr() ? RefKind::SuperInit
|
|
: RefKind::SelfInit;
|
|
}
|
|
|
|
auto diagnostic = CompatibilityWarning
|
|
? diag::partial_application_of_function_invalid_swift4
|
|
: diag::partial_application_of_function_invalid;
|
|
|
|
emitDiagnostic(anchor->getNameLoc(), diagnostic, kind);
|
|
return true;
|
|
}
|
|
|
|
bool InvalidDynamicInitOnMetatypeFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::dynamic_construct_class,
|
|
BaseType->getMetatypeInstanceType())
|
|
.highlight(BaseRange);
|
|
emitDiagnostic(Init, diag::note_nonrequired_initializer, Init->isImplicit(),
|
|
Init->getFullName());
|
|
return true;
|
|
}
|
|
|
|
bool InitOnProtocolMetatypeFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
if (IsStaticallyDerived) {
|
|
emitDiagnostic(anchor->getLoc(), diag::construct_protocol_by_name,
|
|
BaseType->getMetatypeInstanceType())
|
|
.highlight(BaseRange);
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), diag::construct_protocol_value, BaseType)
|
|
.highlight(BaseRange);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImplicitInitOnNonConstMetatypeFailure::diagnoseAsError() {
|
|
auto *apply = cast<ApplyExpr>(getRawAnchor());
|
|
auto loc = apply->getArg()->getStartLoc();
|
|
emitDiagnostic(loc, diag::missing_init_on_metatype_initialization)
|
|
.fixItInsert(loc, ".init");
|
|
return true;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto *locator = getLocator();
|
|
|
|
if (!(locator->isLastElement<LocatorPathElt::ApplyArgToParam>() ||
|
|
locator->isLastElement<LocatorPathElt::ContextualType>() ||
|
|
locator->isLastElement<LocatorPathElt::ApplyArgument>() ||
|
|
locator->isLastElement<LocatorPathElt::ClosureResult>()))
|
|
return false;
|
|
|
|
// If this is a misplaced `missng argument` situation, it would be
|
|
// diagnosed by invalid conversion fix.
|
|
if (isMisplacedMissingArgument(cs, locator))
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
if (auto *captureList = dyn_cast<CaptureListExpr>(anchor))
|
|
anchor = captureList->getClosureBody();
|
|
|
|
if (auto *closure = dyn_cast<ClosureExpr>(anchor))
|
|
return diagnoseClosure(closure);
|
|
|
|
// This is a situation where function type is passed as an argument
|
|
// to a function type parameter and their argument arity is different.
|
|
//
|
|
// ```
|
|
// func foo(_: (Int) -> Void) {}
|
|
// func bar() {}
|
|
//
|
|
// foo(bar) // `() -> Void` vs. `(Int) -> Void`
|
|
// ```
|
|
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>()) {
|
|
auto info = *(cs.getFunctionArgApplyInfo(locator));
|
|
|
|
auto *argExpr = info.getArgExpr();
|
|
emitDiagnostic(argExpr->getLoc(), diag::cannot_convert_argument_value,
|
|
info.getArgType(), info.getParamType());
|
|
// TODO: It would be great so somehow point out which arguments are missing.
|
|
return true;
|
|
}
|
|
|
|
// Function type has fewer arguments than expected by context:
|
|
//
|
|
// ```
|
|
// func foo() {}
|
|
// let _: (Int) -> Void = foo
|
|
// ```
|
|
if (locator->isLastElement<LocatorPathElt::ContextualType>()) {
|
|
auto &cs = getConstraintSystem();
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_convert_initializer_value,
|
|
getType(anchor),
|
|
resolveType(cs.getContextualType(getAnchor())));
|
|
// TODO: It would be great so somehow point out which arguments are missing.
|
|
return true;
|
|
}
|
|
|
|
if (diagnoseInvalidTupleDestructuring())
|
|
return true;
|
|
|
|
if (SynthesizedArgs.size() == 1)
|
|
return diagnoseSingleMissingArgument();
|
|
|
|
// At this point we know that this is a situation when
|
|
// there are multiple arguments missing, so let's produce
|
|
// a diagnostic which lists all of them and a fix-it
|
|
// to add arguments at appropriate positions.
|
|
|
|
SmallString<32> diagnostic;
|
|
llvm::raw_svector_ostream arguments(diagnostic);
|
|
|
|
interleave(
|
|
SynthesizedArgs,
|
|
[&](const AnyFunctionType::Param &arg) {
|
|
if (arg.hasLabel()) {
|
|
arguments << "'" << arg.getLabel().str() << "'";
|
|
} else {
|
|
auto *typeVar = arg.getPlainType()->castTo<TypeVariableType>();
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
auto paramIdx = locator->findLast<LocatorPathElt::ApplyArgToParam>()
|
|
->getParamIdx();
|
|
|
|
arguments << "#" << (paramIdx + 1);
|
|
}
|
|
},
|
|
[&] { arguments << ", "; });
|
|
|
|
auto diag = emitDiagnostic(anchor->getLoc(), diag::missing_arguments_in_call,
|
|
arguments.str());
|
|
|
|
Expr *fnExpr = nullptr;
|
|
Expr *argExpr = nullptr;
|
|
unsigned numArguments = 0;
|
|
bool hasTrailingClosure = false;
|
|
|
|
std::tie(fnExpr, argExpr, numArguments, hasTrailingClosure) =
|
|
getCallInfo(getRawAnchor());
|
|
|
|
// TODO(diagnostics): We should be able to suggest this fix-it
|
|
// unconditionally.
|
|
if (argExpr && numArguments == 0) {
|
|
SmallString<32> scratch;
|
|
llvm::raw_svector_ostream fixIt(scratch);
|
|
interleave(
|
|
SynthesizedArgs,
|
|
[&](const AnyFunctionType::Param &arg) { forFixIt(fixIt, arg); },
|
|
[&] { fixIt << ", "; });
|
|
|
|
auto *tuple = cast<TupleExpr>(argExpr);
|
|
diag.fixItInsertAfter(tuple->getLParenLoc(), fixIt.str());
|
|
}
|
|
|
|
diag.flush();
|
|
|
|
if (auto selectedOverload = getChoiceFor(locator)) {
|
|
if (auto *decl = selectedOverload->choice.getDeclOrNull()) {
|
|
emitDiagnostic(decl, diag::decl_declared_here, decl->getFullName());
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::diagnoseAsNote() {
|
|
auto *locator = getLocator();
|
|
if (auto overload = getChoiceFor(locator)) {
|
|
auto *fn = resolveType(overload->openedType)->getAs<AnyFunctionType>();
|
|
auto loc = overload->choice.getDecl()->getLoc();
|
|
if (loc.isInvalid())
|
|
loc = getAnchor()->getLoc();
|
|
emitDiagnostic(loc, diag::candidate_partial_match,
|
|
fn->getParamListAsString(fn->getParams()));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::diagnoseSingleMissingArgument() const {
|
|
auto &ctx = getASTContext();
|
|
|
|
auto *anchor = getRawAnchor();
|
|
if (!(isa<CallExpr>(anchor) || isa<SubscriptExpr>(anchor) ||
|
|
isa<UnresolvedMemberExpr>(anchor) || isa<ObjectLiteralExpr>(anchor)))
|
|
return false;
|
|
|
|
if (SynthesizedArgs.size() != 1)
|
|
return false;
|
|
|
|
const auto &argument = SynthesizedArgs.front();
|
|
auto *argType = argument.getPlainType()->castTo<TypeVariableType>();
|
|
auto *argLocator = argType->getImpl().getLocator();
|
|
auto position =
|
|
argLocator->findLast<LocatorPathElt::ApplyArgToParam>()->getParamIdx();
|
|
auto label = argument.getLabel();
|
|
|
|
SmallString<32> insertBuf;
|
|
llvm::raw_svector_ostream insertText(insertBuf);
|
|
|
|
if (position != 0)
|
|
insertText << ", ";
|
|
|
|
forFixIt(insertText, argument);
|
|
|
|
Expr *fnExpr = nullptr;
|
|
Expr *argExpr = nullptr;
|
|
unsigned insertableEndIdx = 0;
|
|
bool hasTrailingClosure = false;
|
|
|
|
std::tie(fnExpr, argExpr, insertableEndIdx, hasTrailingClosure) =
|
|
getCallInfo(anchor);
|
|
|
|
if (!argExpr)
|
|
return false;
|
|
|
|
if (hasTrailingClosure)
|
|
insertableEndIdx -= 1;
|
|
|
|
if (position == 0 && insertableEndIdx != 0)
|
|
insertText << ", ";
|
|
|
|
SourceLoc insertLoc;
|
|
if (auto *TE = dyn_cast<TupleExpr>(argExpr)) {
|
|
// fn():
|
|
// fn([argMissing])
|
|
// fn(argX, argY):
|
|
// fn([argMissing, ]argX, argY)
|
|
// fn(argX[, argMissing], argY)
|
|
// fn(argX, argY[, argMissing])
|
|
// fn(argX) { closure }:
|
|
// fn([argMissing, ]argX) { closure }
|
|
// fn(argX[, argMissing]) { closure }
|
|
// fn(argX[, closureLabel: ]{closure}[, argMissing)] // Not impl.
|
|
if (insertableEndIdx == 0)
|
|
insertLoc = TE->getRParenLoc();
|
|
else if (position != 0) {
|
|
auto argPos = std::min(TE->getNumElements(), position) - 1;
|
|
insertLoc = Lexer::getLocForEndOfToken(
|
|
ctx.SourceMgr, TE->getElement(argPos)->getEndLoc());
|
|
} else {
|
|
insertLoc = TE->getElementNameLoc(0);
|
|
if (insertLoc.isInvalid())
|
|
insertLoc = TE->getElement(0)->getStartLoc();
|
|
}
|
|
} else {
|
|
auto *PE = cast<ParenExpr>(argExpr);
|
|
if (PE->getRParenLoc().isValid()) {
|
|
// fn(argX):
|
|
// fn([argMissing, ]argX)
|
|
// fn(argX[, argMissing])
|
|
// fn() { closure }:
|
|
// fn([argMissing]) {closure}
|
|
// fn([closureLabel: ]{closure}[, argMissing]) // Not impl.
|
|
if (insertableEndIdx == 0)
|
|
insertLoc = PE->getRParenLoc();
|
|
else if (position == 0)
|
|
insertLoc = PE->getSubExpr()->getStartLoc();
|
|
else
|
|
insertLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr,
|
|
PE->getSubExpr()->getEndLoc());
|
|
} else {
|
|
// fn { closure }:
|
|
// fn[(argMissing)] { closure }
|
|
// fn[(closureLabel:] { closure }[, missingArg)] // Not impl.
|
|
assert(!isa<SubscriptExpr>(anchor) && "bracket less subscript");
|
|
assert(PE->hasTrailingClosure() &&
|
|
"paren less ParenExpr without trailing closure");
|
|
insertBuf.insert(insertBuf.begin(), '(');
|
|
insertBuf.insert(insertBuf.end(), ')');
|
|
insertLoc =
|
|
Lexer::getLocForEndOfToken(ctx.SourceMgr, fnExpr->getEndLoc());
|
|
}
|
|
}
|
|
|
|
if (insertLoc.isInvalid())
|
|
return false;
|
|
|
|
if (label.empty()) {
|
|
emitDiagnostic(insertLoc, diag::missing_argument_positional, position + 1)
|
|
.fixItInsert(insertLoc, insertText.str());
|
|
} else if (isPropertyWrapperInitialization()) {
|
|
auto *TE = cast<TypeExpr>(fnExpr);
|
|
emitDiagnostic(TE->getLoc(), diag::property_wrapper_missing_arg_init, label,
|
|
resolveType(TE->getInstanceType())->getString());
|
|
} else {
|
|
emitDiagnostic(insertLoc, diag::missing_argument_named, label)
|
|
.fixItInsert(insertLoc, insertText.str());
|
|
}
|
|
|
|
if (auto selectedOverload = getChoiceFor(getLocator())) {
|
|
if (auto *decl = selectedOverload->choice.getDeclOrNull()) {
|
|
emitDiagnostic(decl, diag::decl_declared_here, decl->getFullName());
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::diagnoseClosure(ClosureExpr *closure) {
|
|
auto &cs = getConstraintSystem();
|
|
FunctionType *funcType = nullptr;
|
|
|
|
auto *locator = getLocator();
|
|
if (locator->isForContextualType()) {
|
|
funcType = cs.getContextualType(locator->getAnchor())->getAs<FunctionType>();
|
|
} else if (auto info = cs.getFunctionArgApplyInfo(locator)) {
|
|
funcType = info->getParamType()->getAs<FunctionType>();
|
|
} else if (locator->isLastElement<LocatorPathElt::ClosureResult>()) {
|
|
// Based on the locator we know this this is something like this:
|
|
// `let _: () -> ((Int) -> Void) = { return {} }`.
|
|
funcType = getType(getRawAnchor())
|
|
->castTo<FunctionType>()
|
|
->getResult()
|
|
->castTo<FunctionType>();
|
|
}
|
|
|
|
if (!funcType)
|
|
return false;
|
|
|
|
unsigned numSynthesized = SynthesizedArgs.size();
|
|
auto diff = funcType->getNumParams() - numSynthesized;
|
|
|
|
// If the closure didn't specify any arguments and it is in a context that
|
|
// needs some, produce a fixit to turn "{...}" into "{ _,_ in ...}".
|
|
if (diff == 0) {
|
|
auto diag =
|
|
emitDiagnostic(closure->getStartLoc(),
|
|
diag::closure_argument_list_missing, numSynthesized);
|
|
|
|
std::string fixText; // Let's provide fixits for up to 10 args.
|
|
if (funcType->getNumParams() <= 10) {
|
|
fixText += " ";
|
|
interleave(
|
|
funcType->getParams(),
|
|
[&fixText](const AnyFunctionType::Param ¶m) { fixText += '_'; },
|
|
[&fixText] { fixText += ','; });
|
|
fixText += " in ";
|
|
}
|
|
|
|
if (!fixText.empty()) {
|
|
// Determine if there is already a space after the { in the closure to
|
|
// make sure we introduce the right whitespace.
|
|
auto afterBrace = closure->getStartLoc().getAdvancedLoc(1);
|
|
auto text = getASTContext().SourceMgr.extractText({afterBrace, 1});
|
|
if (text.size() == 1 && text == " ")
|
|
fixText = fixText.erase(fixText.size() - 1);
|
|
else
|
|
fixText = fixText.erase(0, 1);
|
|
diag.fixItInsertAfter(closure->getStartLoc(), fixText);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
auto params = closure->getParameters();
|
|
bool onlyAnonymousParams =
|
|
std::all_of(params->begin(), params->end(),
|
|
[](ParamDecl *param) { return !param->hasName(); });
|
|
|
|
auto diag = emitDiagnostic(
|
|
params->getStartLoc(), diag::closure_argument_list_tuple,
|
|
resolveType(funcType), funcType->getNumParams(), diff, diff == 1);
|
|
|
|
// If the number of parameters is less than number of inferred
|
|
// let's try to suggest a fix-it with the rest of the missing parameters.
|
|
if (!closure->hasExplicitResultType() &&
|
|
closure->getInLoc().isValid()) {
|
|
SmallString<32> fixIt;
|
|
llvm::raw_svector_ostream OS(fixIt);
|
|
|
|
OS << ",";
|
|
for (unsigned i = 0; i != numSynthesized; ++i) {
|
|
OS << ((onlyAnonymousParams) ? "_" : "<#arg#>");
|
|
OS << ((i == numSynthesized - 1) ? " " : ",");
|
|
}
|
|
|
|
diag.fixItInsertAfter(params->getEndLoc(), OS.str());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::diagnoseInvalidTupleDestructuring() const {
|
|
auto *locator = getLocator();
|
|
if (!locator->isLastElement<LocatorPathElt::ApplyArgument>())
|
|
return false;
|
|
|
|
if (SynthesizedArgs.size() < 2)
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
|
|
Expr *argExpr = nullptr;
|
|
// Something like `foo(x: (1, 2))`
|
|
if (auto *TE = dyn_cast<TupleExpr>(anchor)) {
|
|
if (TE->getNumElements() == 1)
|
|
argExpr = TE->getElement(0);
|
|
} else { // or `foo((1, 2))`
|
|
argExpr = cast<ParenExpr>(anchor)->getSubExpr();
|
|
}
|
|
|
|
if (!(argExpr && getType(argExpr)->getRValueType()->is<TupleType>()))
|
|
return false;
|
|
|
|
auto selectedOverload = getChoiceFor(locator);
|
|
if (!selectedOverload)
|
|
return false;
|
|
|
|
auto *decl = selectedOverload->choice.getDeclOrNull();
|
|
if (!decl)
|
|
return false;
|
|
|
|
auto name = decl->getBaseName();
|
|
auto diagnostic =
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_convert_single_tuple_into_multiple_arguments,
|
|
decl->getDescriptiveKind(), name, name.isSpecial(),
|
|
SynthesizedArgs.size(), isa<TupleExpr>(argExpr));
|
|
|
|
// If argument is a literal tuple, let's suggest removal of parentheses.
|
|
if (auto *TE = dyn_cast<TupleExpr>(argExpr)) {
|
|
diagnostic.fixItRemove(TE->getLParenLoc()).fixItRemove(TE->getRParenLoc());
|
|
}
|
|
|
|
diagnostic.flush();
|
|
|
|
// Add a note which points to the overload choice location.
|
|
emitDiagnostic(decl, diag::decl_declared_here, decl->getFullName());
|
|
return true;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::isPropertyWrapperInitialization() const {
|
|
auto *call = dyn_cast<CallExpr>(getRawAnchor());
|
|
if (!(call && call->isImplicit()))
|
|
return false;
|
|
|
|
auto TE = dyn_cast<TypeExpr>(call->getFn());
|
|
if (!TE)
|
|
return false;
|
|
|
|
auto instanceTy = TE->getInstanceType();
|
|
if (!instanceTy)
|
|
return false;
|
|
|
|
auto *NTD = resolveType(instanceTy)->getAnyNominal();
|
|
return NTD && NTD->getAttrs().hasAttribute<PropertyWrapperAttr>();
|
|
}
|
|
|
|
bool MissingArgumentsFailure::isMisplacedMissingArgument(
|
|
ConstraintSystem &cs, ConstraintLocator *locator) {
|
|
auto *calleeLocator = cs.getCalleeLocator(locator);
|
|
auto overloadChoice = cs.findSelectedOverloadFor(calleeLocator);
|
|
if (!overloadChoice)
|
|
return false;
|
|
|
|
auto *fnType =
|
|
cs.simplifyType(overloadChoice->openedType)->getAs<FunctionType>();
|
|
if (!(fnType && fnType->getNumParams() == 2))
|
|
return false;
|
|
|
|
auto *anchor = locator->getAnchor();
|
|
|
|
auto hasFixFor = [&](FixKind kind, ConstraintLocator *locator) -> bool {
|
|
auto fix = llvm::find_if(cs.getFixes(), [&](const ConstraintFix *fix) {
|
|
return fix->getLocator() == locator;
|
|
});
|
|
|
|
if (fix == cs.getFixes().end())
|
|
return false;
|
|
|
|
return (*fix)->getKind() == kind;
|
|
};
|
|
|
|
auto *callLocator =
|
|
cs.getConstraintLocator(anchor, ConstraintLocator::ApplyArgument);
|
|
|
|
auto argFlags = fnType->getParams()[0].getParameterFlags();
|
|
auto *argLoc = cs.getConstraintLocator(
|
|
callLocator, LocatorPathElt::ApplyArgToParam(0, 0, argFlags));
|
|
|
|
if (!(hasFixFor(FixKind::AllowArgumentTypeMismatch, argLoc) &&
|
|
hasFixFor(FixKind::AddMissingArguments, callLocator)))
|
|
return false;
|
|
|
|
Expr *argExpr = nullptr;
|
|
if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
argExpr = call->getArg();
|
|
} else if (auto *subscript = dyn_cast<SubscriptExpr>(anchor)) {
|
|
argExpr = subscript->getIndex();
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
Expr *argument = nullptr;
|
|
if (auto *PE = dyn_cast<ParenExpr>(argExpr)) {
|
|
argument = PE->getSubExpr();
|
|
} else {
|
|
auto *tuple = cast<TupleExpr>(argExpr);
|
|
if (tuple->getNumElements() != 1)
|
|
return false;
|
|
argument = tuple->getElement(0);
|
|
}
|
|
|
|
auto argType = cs.simplifyType(cs.getType(argument));
|
|
auto paramType = fnType->getParams()[1].getPlainType();
|
|
|
|
return TypeChecker::isConvertibleTo(argType, paramType, cs.DC);
|
|
}
|
|
|
|
std::tuple<Expr *, Expr *, unsigned, bool>
|
|
MissingArgumentsFailure::getCallInfo(Expr *anchor) const {
|
|
if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
return std::make_tuple(call->getFn(), call->getArg(),
|
|
call->getNumArguments(), call->hasTrailingClosure());
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
return std::make_tuple(UME, UME->getArgument(), UME->getNumArguments(),
|
|
UME->hasTrailingClosure());
|
|
} else if (auto *SE = dyn_cast<SubscriptExpr>(anchor)) {
|
|
return std::make_tuple(SE, SE->getIndex(), SE->getNumArguments(),
|
|
SE->hasTrailingClosure());
|
|
} else if (auto *OLE = dyn_cast<ObjectLiteralExpr>(anchor)) {
|
|
return std::make_tuple(OLE, OLE->getArg(), OLE->getNumArguments(),
|
|
OLE->hasTrailingClosure());
|
|
}
|
|
|
|
return std::make_tuple(nullptr, nullptr, 0, false);
|
|
}
|
|
|
|
void MissingArgumentsFailure::forFixIt(
|
|
llvm::raw_svector_ostream &out,
|
|
const AnyFunctionType::Param &argument) const {
|
|
if (argument.hasLabel())
|
|
out << argument.getLabel().str() << ": ";
|
|
|
|
// Explode inout type.
|
|
if (argument.isInOut())
|
|
out << "&";
|
|
|
|
auto resolvedType = resolveType(argument.getPlainType());
|
|
// @autoclosure; the type should be the result type.
|
|
if (argument.isAutoClosure())
|
|
resolvedType = resolvedType->castTo<FunctionType>()->getResult();
|
|
|
|
out << "<#" << resolvedType << "#>";
|
|
}
|
|
|
|
bool ClosureParamDestructuringFailure::diagnoseAsError() {
|
|
auto *closure = cast<ClosureExpr>(getAnchor());
|
|
auto params = closure->getParameters();
|
|
|
|
// In case of implicit parameters e.g. $0, $1 we
|
|
// can't really provide good fix-it because
|
|
// structure of parameter type itself is unclear.
|
|
for (auto *param : params->getArray()) {
|
|
if (param->isImplicit()) {
|
|
emitDiagnostic(params->getStartLoc(),
|
|
diag::closure_tuple_parameter_destructuring_implicit,
|
|
getParameterType());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto diag = emitDiagnostic(params->getStartLoc(),
|
|
diag::closure_tuple_parameter_destructuring,
|
|
getParameterType());
|
|
|
|
auto *closureBody = closure->getBody();
|
|
if (!closureBody)
|
|
return true;
|
|
|
|
auto &sourceMgr = getASTContext().SourceMgr;
|
|
auto bodyStmts = closureBody->getElements();
|
|
|
|
SourceLoc bodyLoc;
|
|
SourceLoc inLoc = closure->getInLoc();
|
|
// If location for `in` is unknown we can't proceed
|
|
// since we'll not be able to figure out source line
|
|
// to place the fix-it on.
|
|
if (inLoc.isInvalid())
|
|
return true;
|
|
|
|
// If the body is empty let's put the cursor
|
|
// right after "in", otherwise make it start
|
|
// location of the first statement in the body.
|
|
if (bodyStmts.empty())
|
|
bodyLoc = Lexer::getLocForEndOfToken(sourceMgr, inLoc);
|
|
else
|
|
bodyLoc = bodyStmts.front().getStartLoc();
|
|
|
|
if (bodyLoc.isInvalid())
|
|
return true;
|
|
|
|
SmallString<64> fixIt;
|
|
llvm::raw_svector_ostream OS(fixIt);
|
|
|
|
// If this is multi-line closure we'd have to insert new lines
|
|
// in the suggested 'let' to keep the structure of the code intact,
|
|
// otherwise just use ';' to keep everything on the same line.
|
|
auto inLine = sourceMgr.getLineNumber(inLoc);
|
|
auto bodyLine = sourceMgr.getLineNumber(bodyLoc);
|
|
auto isMultiLineClosure = bodyLine > inLine;
|
|
auto indent =
|
|
bodyStmts.empty() ? "" : Lexer::getIndentationForLine(sourceMgr, bodyLoc);
|
|
|
|
SmallString<16> parameter;
|
|
llvm::raw_svector_ostream parameterOS(parameter);
|
|
|
|
parameterOS << "(";
|
|
interleave(
|
|
params->getArray(),
|
|
[&](const ParamDecl *param) { parameterOS << param->getNameStr(); },
|
|
[&] { parameterOS << ", "; });
|
|
parameterOS << ")";
|
|
|
|
// Check if there are any explicit types associated
|
|
// with parameters, if there are, we'll have to add
|
|
// type information to the replacement argument.
|
|
bool explicitTypes =
|
|
llvm::any_of(params->getArray(),
|
|
[](const ParamDecl *param) { return param->getTypeRepr(); });
|
|
|
|
if (isMultiLineClosure)
|
|
OS << '\n' << indent;
|
|
|
|
// Let's form 'let <name> : [<type>]? = arg' expression.
|
|
OS << "let " << parameterOS.str() << " = arg"
|
|
<< (isMultiLineClosure ? "\n" + indent : "; ");
|
|
|
|
SmallString<64> argName;
|
|
llvm::raw_svector_ostream nameOS(argName);
|
|
if (explicitTypes) {
|
|
nameOS << "(arg: " << getParameterType()->getString() << ")";
|
|
} else {
|
|
nameOS << "(arg)";
|
|
}
|
|
|
|
if (closure->hasSingleExpressionBody()) {
|
|
// Let's see if we need to add result type to the argument/fix-it:
|
|
// - if the there is a result type associated with the closure;
|
|
// - and it's not a void type;
|
|
// - and it hasn't been explicitly written.
|
|
auto resultType = resolveType(ContextualType->getResult());
|
|
auto hasResult = [](Type resultType) -> bool {
|
|
return resultType && !resultType->isVoid();
|
|
};
|
|
|
|
auto isValidType = [](Type resultType) -> bool {
|
|
return resultType && !resultType->hasUnresolvedType() &&
|
|
!resultType->hasTypeVariable();
|
|
};
|
|
|
|
// If there an expected result type but it hasn't been explicitly
|
|
// provided, let's add it to the argument.
|
|
if (hasResult(resultType) && !closure->hasExplicitResultType()) {
|
|
nameOS << " -> ";
|
|
if (isValidType(resultType))
|
|
nameOS << resultType->getString();
|
|
else
|
|
nameOS << "<#Result#>";
|
|
}
|
|
|
|
if (auto stmt = bodyStmts.front().get<Stmt *>()) {
|
|
// If the body is a single expression with implicit return.
|
|
if (isa<ReturnStmt>(stmt) && stmt->isImplicit()) {
|
|
// And there is non-void expected result type,
|
|
// because we add 'let' expression to the body
|
|
// we need to make such 'return' explicit.
|
|
if (hasResult(resultType))
|
|
OS << "return ";
|
|
}
|
|
}
|
|
}
|
|
|
|
diag.fixItReplace(params->getSourceRange(), nameOS.str())
|
|
.fixItInsert(bodyLoc, OS.str());
|
|
return true;
|
|
}
|
|
|
|
bool OutOfOrderArgumentFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
auto *argExpr = isa<TupleExpr>(anchor) ? anchor
|
|
: getArgumentListExprFor(getLocator());
|
|
if (!argExpr)
|
|
return false;
|
|
|
|
auto *tuple = cast<TupleExpr>(argExpr);
|
|
|
|
Identifier first = tuple->getElementName(ArgIdx);
|
|
Identifier second = tuple->getElementName(PrevArgIdx);
|
|
|
|
// Build a mapping from arguments to parameters.
|
|
SmallVector<unsigned, 4> argBindings(tuple->getNumElements());
|
|
for (unsigned paramIdx = 0; paramIdx != Bindings.size(); ++paramIdx) {
|
|
for (auto argIdx : Bindings[paramIdx])
|
|
argBindings[argIdx] = paramIdx;
|
|
}
|
|
|
|
auto argRange = [&](unsigned argIdx, Identifier label) -> SourceRange {
|
|
auto range = tuple->getElement(argIdx)->getSourceRange();
|
|
if (!label.empty())
|
|
range.Start = tuple->getElementNameLoc(argIdx);
|
|
|
|
unsigned paramIdx = argBindings[argIdx];
|
|
if (Bindings[paramIdx].size() > 1)
|
|
range.End = tuple->getElement(Bindings[paramIdx].back())->getEndLoc();
|
|
|
|
return range;
|
|
};
|
|
|
|
auto firstRange = argRange(ArgIdx, first);
|
|
auto secondRange = argRange(PrevArgIdx, second);
|
|
|
|
SourceLoc diagLoc = firstRange.Start;
|
|
|
|
auto addFixIts = [&](InFlightDiagnostic diag) {
|
|
// Don't add Fix-Its if one of the ranges is outside of the argument
|
|
// list, which can happen when we're splicing together an argument list
|
|
// from multiple sources.
|
|
auto &SM = getASTContext().SourceMgr;
|
|
auto argsRange = tuple->getSourceRange();
|
|
if (!SM.rangeContains(argsRange, firstRange) ||
|
|
!SM.rangeContains(argsRange, secondRange))
|
|
return;
|
|
|
|
diag.highlight(firstRange).highlight(secondRange);
|
|
|
|
// Move the misplaced argument by removing it from one location and
|
|
// inserting it in another location. To maintain argument comma
|
|
// separation, since the argument is always moving to an earlier index
|
|
// the preceding comma and whitespace is removed and a new trailing
|
|
// comma and space is inserted with the moved argument.
|
|
auto text = SM.extractText(
|
|
Lexer::getCharSourceRangeFromSourceRange(SM, firstRange));
|
|
|
|
auto removalRange =
|
|
SourceRange(Lexer::getLocForEndOfToken(
|
|
SM, tuple->getElement(ArgIdx - 1)->getEndLoc()),
|
|
firstRange.End);
|
|
diag.fixItRemove(removalRange);
|
|
diag.fixItInsert(secondRange.Start, text.str() + ", ");
|
|
};
|
|
|
|
// There are 4 diagnostic messages variations depending on
|
|
// labeled/unlabeled arguments.
|
|
if (first.empty() && second.empty()) {
|
|
addFixIts(emitDiagnostic(diagLoc,
|
|
diag::argument_out_of_order_unnamed_unnamed,
|
|
ArgIdx + 1, PrevArgIdx + 1));
|
|
} else if (first.empty() && !second.empty()) {
|
|
addFixIts(emitDiagnostic(diagLoc, diag::argument_out_of_order_unnamed_named,
|
|
ArgIdx + 1, second));
|
|
} else if (!first.empty() && second.empty()) {
|
|
addFixIts(emitDiagnostic(diagLoc, diag::argument_out_of_order_named_unnamed,
|
|
first, PrevArgIdx + 1));
|
|
} else {
|
|
addFixIts(emitDiagnostic(diagLoc, diag::argument_out_of_order_named_named,
|
|
first, second));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ExtraneousArgumentsFailure::diagnoseAsError() {
|
|
// Simplified anchor would point directly to the
|
|
// argument in case of contextual mismatch.
|
|
auto *anchor = getAnchor();
|
|
if (auto *closure = dyn_cast<ClosureExpr>(anchor)) {
|
|
auto fnType = ContextualType;
|
|
auto params = closure->getParameters();
|
|
|
|
auto diag = emitDiagnostic(
|
|
params->getStartLoc(), diag::closure_argument_list_tuple, fnType,
|
|
fnType->getNumParams(), params->size(), (params->size() == 1));
|
|
|
|
bool onlyAnonymousParams =
|
|
std::all_of(params->begin(), params->end(),
|
|
[](ParamDecl *param) { return !param->hasName(); });
|
|
|
|
// If closure expects no parameters but N was given,
|
|
// and all of them are anonymous let's suggest removing them.
|
|
if (fnType->getNumParams() == 0 && onlyAnonymousParams) {
|
|
auto inLoc = closure->getInLoc();
|
|
auto &sourceMgr = getASTContext().SourceMgr;
|
|
|
|
if (inLoc.isValid())
|
|
diag.fixItRemoveChars(params->getStartLoc(),
|
|
Lexer::getLocForEndOfToken(sourceMgr, inLoc));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (isContextualMismatch()) {
|
|
auto *locator = getLocator();
|
|
emitDiagnostic(anchor->getLoc(),
|
|
locator->isLastElement<LocatorPathElt::ContextualType>()
|
|
? diag::cannot_convert_initializer_value
|
|
: diag::cannot_convert_argument_value,
|
|
getType(anchor), ContextualType);
|
|
return true;
|
|
}
|
|
|
|
if (ExtraArgs.size() == 1) {
|
|
return diagnoseSingleExtraArgument();
|
|
}
|
|
|
|
if (ContextualType->getNumParams() == 0) {
|
|
if (auto argExpr = getArgumentListExprFor(getLocator())) {
|
|
emitDiagnostic(anchor->getLoc(), diag::extra_argument_to_nullary_call)
|
|
.highlight(argExpr->getSourceRange())
|
|
.fixItRemove(argExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (ExtraArgs.size() < 2)
|
|
return false;
|
|
|
|
llvm::SmallString<64> positions;
|
|
llvm::raw_svector_ostream OS(positions);
|
|
|
|
interleave(
|
|
ExtraArgs,
|
|
[&](const std::pair<unsigned, AnyFunctionType::Param> &arg) {
|
|
OS << "#" << (arg.first + 1);
|
|
},
|
|
[&] { OS << ", "; });
|
|
|
|
emitDiagnostic(anchor->getLoc(), diag::extra_arguments_in_call, OS.str());
|
|
|
|
if (auto overload = getChoiceFor(getLocator())) {
|
|
if (auto *decl = overload->choice.getDeclOrNull()) {
|
|
emitDiagnostic(decl, diag::decl_declared_here, decl->getFullName());
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ExtraneousArgumentsFailure::diagnoseAsNote() {
|
|
auto overload = getChoiceFor(getLocator());
|
|
if (!(overload && overload->choice.isDecl()))
|
|
return false;
|
|
|
|
auto *decl = overload->choice.getDecl();
|
|
auto *anchor = getAnchor();
|
|
auto numArgs = getTotalNumArguments();
|
|
emitDiagnostic(decl, diag::candidate_with_extraneous_args, ContextualType,
|
|
ContextualType->getNumParams(), numArgs, (numArgs == 1),
|
|
isa<ClosureExpr>(anchor));
|
|
return true;
|
|
}
|
|
|
|
bool ExtraneousArgumentsFailure::diagnoseSingleExtraArgument() const {
|
|
auto *arguments = getArgumentListExprFor(getLocator());
|
|
if (!arguments)
|
|
return false;
|
|
|
|
const auto &e = ExtraArgs.front();
|
|
auto index = e.first;
|
|
auto argument = e.second;
|
|
|
|
auto tuple = dyn_cast<TupleExpr>(arguments);
|
|
auto argExpr = tuple ? tuple->getElement(index)
|
|
: cast<ParenExpr>(arguments)->getSubExpr();
|
|
|
|
auto loc = argExpr->getLoc();
|
|
if (tuple && index == tuple->getNumElements() - 1 &&
|
|
tuple->hasTrailingClosure()) {
|
|
emitDiagnostic(loc, diag::extra_trailing_closure_in_call)
|
|
.highlight(argExpr->getSourceRange());
|
|
} else if (ContextualType->getNumParams() == 0) {
|
|
auto *PE = dyn_cast<ParenExpr>(arguments);
|
|
Expr *subExpr = nullptr;
|
|
if (PE)
|
|
subExpr = PE->getSubExpr();
|
|
|
|
if (subExpr && argument.getPlainType()->isVoid()) {
|
|
emitDiagnostic(loc, diag::extra_argument_to_nullary_call)
|
|
.fixItRemove(subExpr->getSourceRange());
|
|
} else {
|
|
emitDiagnostic(loc, diag::extra_argument_to_nullary_call)
|
|
.highlight(argExpr->getSourceRange());
|
|
}
|
|
} else if (argument.hasLabel()) {
|
|
emitDiagnostic(loc, diag::extra_argument_named, argument.getLabel())
|
|
.highlight(argExpr->getSourceRange());
|
|
} else {
|
|
emitDiagnostic(loc, diag::extra_argument_positional)
|
|
.highlight(argExpr->getSourceRange());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InaccessibleMemberFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
// Let's try to avoid over-diagnosing chains of inaccessible
|
|
// members e.g.:
|
|
//
|
|
// struct A {
|
|
// struct B {
|
|
// struct C {}
|
|
// }
|
|
// }
|
|
//
|
|
// _ = A.B.C()
|
|
//
|
|
// We'll have a fix for each `B', `C` and `C.init` but it makes
|
|
// sense to diagnose only `B` and consider the rest hidden.
|
|
Expr *baseExpr = nullptr;
|
|
DeclNameLoc nameLoc;
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
baseExpr = UDE->getBase();
|
|
nameLoc = UDE->getNameLoc();
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
nameLoc = UME->getNameLoc();
|
|
} else if (auto *SE = dyn_cast<SubscriptExpr>(anchor)) {
|
|
baseExpr = SE->getBase();
|
|
} else if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
baseExpr = call->getFn();
|
|
}
|
|
|
|
if (baseExpr) {
|
|
auto &cs = getConstraintSystem();
|
|
auto *locator =
|
|
cs.getConstraintLocator(baseExpr, ConstraintLocator::Member);
|
|
if (cs.hasFixFor(locator))
|
|
return false;
|
|
}
|
|
|
|
auto loc = nameLoc.isValid() ? nameLoc.getStartLoc() : anchor->getLoc();
|
|
auto accessLevel = Member->getFormalAccessScope().accessLevelForDiagnostics();
|
|
if (auto *CD = dyn_cast<ConstructorDecl>(Member)) {
|
|
emitDiagnostic(loc, diag::init_candidate_inaccessible,
|
|
CD->getResultInterfaceType(), accessLevel)
|
|
.highlight(nameLoc.getSourceRange());
|
|
} else {
|
|
emitDiagnostic(loc, diag::candidate_inaccessible, Member->getBaseName(),
|
|
accessLevel)
|
|
.highlight(nameLoc.getSourceRange());
|
|
}
|
|
|
|
emitDiagnostic(Member, diag::decl_declared_here, Member->getFullName());
|
|
return true;
|
|
}
|
|
|
|
bool AnyObjectKeyPathRootFailure::diagnoseAsError() {
|
|
// Diagnose use of AnyObject as root for a keypath
|
|
|
|
auto anchor = getAnchor();
|
|
auto loc = anchor->getLoc();
|
|
auto range = anchor->getSourceRange();
|
|
|
|
if (auto KPE = dyn_cast<KeyPathExpr>(anchor)) {
|
|
if (auto rootTyRepr = KPE->getRootType()) {
|
|
loc = rootTyRepr->getLoc();
|
|
range = rootTyRepr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(loc, diag::expr_swift_keypath_anyobject_root).highlight(range);
|
|
return true;
|
|
}
|
|
|
|
bool KeyPathSubscriptIndexHashableFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
auto *locator = getLocator();
|
|
|
|
auto loc = anchor->getLoc();
|
|
if (locator->isKeyPathSubscriptComponent()) {
|
|
auto *KPE = cast<KeyPathExpr>(anchor);
|
|
if (auto kpElt = locator->findFirst<LocatorPathElt::KeyPathComponent>())
|
|
loc = KPE->getComponents()[kpElt->getIndex()].getLoc();
|
|
}
|
|
|
|
emitDiagnostic(loc, diag::expr_keypath_subscript_index_not_hashable,
|
|
resolveType(NonConformingType));
|
|
return true;
|
|
}
|
|
|
|
SourceLoc InvalidMemberRefInKeyPath::getLoc() const {
|
|
auto *anchor = getRawAnchor();
|
|
|
|
if (auto *KPE = dyn_cast<KeyPathExpr>(anchor)) {
|
|
auto *locator = getLocator();
|
|
auto component = locator->findFirst<LocatorPathElt::KeyPathComponent>();
|
|
assert(component);
|
|
return KPE->getComponents()[component->getIndex()].getLoc();
|
|
}
|
|
|
|
return anchor->getLoc();
|
|
}
|
|
|
|
bool InvalidStaticMemberRefInKeyPath::diagnoseAsError() {
|
|
emitDiagnostic(getLoc(), diag::expr_keypath_static_member, getName(),
|
|
isForKeyPathDynamicMemberLookup());
|
|
return true;
|
|
}
|
|
|
|
bool InvalidMemberWithMutatingGetterInKeyPath::diagnoseAsError() {
|
|
emitDiagnostic(getLoc(), diag::expr_keypath_mutating_getter, getName(),
|
|
isForKeyPathDynamicMemberLookup());
|
|
return true;
|
|
}
|
|
|
|
bool InvalidMethodRefInKeyPath::diagnoseAsError() {
|
|
emitDiagnostic(getLoc(), diag::expr_keypath_not_property, getKind(),
|
|
getName(), isForKeyPathDynamicMemberLookup());
|
|
return true;
|
|
}
|
|
|
|
SourceLoc InvalidUseOfAddressOf::getLoc() const {
|
|
auto *anchor = getAnchor();
|
|
|
|
if (auto *assign = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assign->getSrc();
|
|
|
|
return anchor->getLoc();
|
|
}
|
|
|
|
bool InvalidUseOfAddressOf::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
if (auto argApplyInfo = cs.getFunctionArgApplyInfo(getLocator())) {
|
|
if (!argApplyInfo->getParameterFlags().isInOut()) {
|
|
auto anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::extra_address_of, getToType())
|
|
.highlight(anchor->getSourceRange())
|
|
.fixItRemove(anchor->getStartLoc());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(getLoc(), diag::extraneous_address_of);
|
|
return true;
|
|
}
|
|
|
|
bool ExtraneousReturnFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_return_value_from_void_func);
|
|
return true;
|
|
}
|
|
|
|
bool CollectionElementContextualFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto *locator = getLocator();
|
|
|
|
// Check whether this is situation like `let _: [String: Int] = ["A", 0]`
|
|
// which attempts to convert an array into a dictionary. We have a tailored
|
|
// contextual diagnostic for that, so no need to diagnose element mismatches
|
|
// as well.
|
|
auto &cs = getConstraintSystem();
|
|
auto *rawAnchor = getRawAnchor();
|
|
if (llvm::any_of(cs.getFixes(), [&](const ConstraintFix *fix) -> bool {
|
|
auto *locator = fix->getLocator();
|
|
if (!(fix->getKind() == FixKind::ContextualMismatch &&
|
|
locator->getAnchor() == rawAnchor))
|
|
return false;
|
|
|
|
auto *mismatch = static_cast<const ContextualMismatch *>(fix);
|
|
return isInvalidDictionaryConversion(cs, rawAnchor,
|
|
mismatch->getToType());
|
|
}))
|
|
return false;
|
|
|
|
auto eltType = getFromType();
|
|
auto contextualType = getToType();
|
|
|
|
Optional<InFlightDiagnostic> diagnostic;
|
|
if (isa<ArrayExpr>(getRawAnchor())) {
|
|
diagnostic.emplace(emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_convert_array_element,
|
|
eltType, contextualType));
|
|
}
|
|
|
|
if (isa<DictionaryExpr>(getRawAnchor())) {
|
|
auto eltLoc = locator->castLastElementTo<LocatorPathElt::TupleElement>();
|
|
switch (eltLoc.getIndex()) {
|
|
case 0: // key
|
|
diagnostic.emplace(emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_convert_dict_key, eltType,
|
|
contextualType));
|
|
break;
|
|
|
|
case 1: // value
|
|
diagnostic.emplace(emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_convert_dict_value,
|
|
eltType, contextualType));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (locator->isForSequenceElementType()) {
|
|
diagnostic.emplace(
|
|
emitDiagnostic(anchor->getLoc(),
|
|
contextualType->isExistentialType()
|
|
? diag::cannot_convert_sequence_element_protocol
|
|
: diag::cannot_convert_sequence_element_value,
|
|
eltType, contextualType));
|
|
}
|
|
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
(void)trySequenceSubsequenceFixIts(*diagnostic);
|
|
return true;
|
|
}
|
|
|
|
bool MissingContextualConformanceFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto path = getLocator()->getPath();
|
|
|
|
Optional<Diag<Type, Type>> diagnostic;
|
|
if (path.empty()) {
|
|
assert(isa<AssignExpr>(anchor));
|
|
if (isa<SubscriptExpr>(cast<AssignExpr>(anchor)->getDest())) {
|
|
diagnostic =
|
|
getDiagnosticFor(CTP_SubscriptAssignSource, /*forProtocol=*/true);
|
|
} else {
|
|
diagnostic = getDiagnosticFor(CTP_AssignSource, /*forProtocol=*/true);
|
|
}
|
|
} else {
|
|
const auto &last = path.back();
|
|
switch (last.getKind()) {
|
|
case ConstraintLocator::ContextualType:
|
|
assert(Context != CTP_Unused);
|
|
diagnostic = getDiagnosticFor(Context, /*forProtocol=*/true);
|
|
break;
|
|
|
|
case ConstraintLocator::SequenceElementType: {
|
|
diagnostic = diag::cannot_convert_sequence_element_protocol;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
auto srcType = getFromType();
|
|
auto dstType = getToType();
|
|
|
|
emitDiagnostic(anchor->getLoc(), *diagnostic, srcType, dstType);
|
|
|
|
if (isa<InOutExpr>(anchor))
|
|
return true;
|
|
|
|
if (srcType->isAny() && dstType->isAnyObject()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::any_as_anyobject_fixit)
|
|
.fixItInsertAfter(anchor->getEndLoc(), " as AnyObject");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::hasLoc(GenericTypeParamType *GP) const {
|
|
return GP->getDecl()->getStartLoc().isValid();
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::diagnoseAsError() {
|
|
llvm::SmallDenseMap<TypeRepr *, SmallVector<GenericTypeParamType *, 4>>
|
|
scopedParameters;
|
|
|
|
auto isScoped =
|
|
findArgumentLocations([&](TypeRepr *base, GenericTypeParamType *GP) {
|
|
scopedParameters[base].push_back(GP);
|
|
});
|
|
|
|
if (!isScoped)
|
|
return diagnoseForAnchor(getAnchor(), Parameters);
|
|
|
|
bool diagnosed = false;
|
|
for (const auto &scope : scopedParameters)
|
|
diagnosed |= diagnoseForAnchor(scope.first, scope.second);
|
|
return diagnosed;
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::diagnoseForAnchor(
|
|
Anchor anchor, ArrayRef<GenericTypeParamType *> params) const {
|
|
bool diagnosed = false;
|
|
for (auto *GP : params)
|
|
diagnosed |= diagnoseParameter(anchor, GP);
|
|
|
|
if (!diagnosed)
|
|
return false;
|
|
|
|
auto *DC = getDeclContext();
|
|
if (!DC)
|
|
return true;
|
|
|
|
if (auto *SD = dyn_cast<SubscriptDecl>(DC)) {
|
|
emitDiagnostic(SD, diag::note_call_to_subscript, SD->getFullName());
|
|
return true;
|
|
}
|
|
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(DC)) {
|
|
if (isa<ConstructorDecl>(AFD)) {
|
|
emitDiagnostic(AFD, diag::note_call_to_initializer);
|
|
} else {
|
|
emitDiagnostic(AFD,
|
|
AFD->isOperator() ? diag::note_call_to_operator
|
|
: diag::note_call_to_func,
|
|
AFD->getFullName());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
emitGenericSignatureNote(anchor);
|
|
return true;
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::diagnoseParameter(
|
|
Anchor anchor, GenericTypeParamType *GP) const {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
auto loc = anchor.is<Expr *>() ? anchor.get<Expr *>()->getLoc()
|
|
: anchor.get<TypeRepr *>()->getLoc();
|
|
|
|
auto *locator = getLocator();
|
|
// Type variables associated with missing generic parameters are
|
|
// going to be completely cut off from the rest of constraint system,
|
|
// that's why we'd get two fixes in this case which is not ideal.
|
|
if (locator->isForContextualType() &&
|
|
llvm::count_if(cs.DefaultedConstraints,
|
|
[&GP](const ConstraintLocator *locator) {
|
|
return locator->getGenericParameter() == GP;
|
|
}) > 1) {
|
|
return false;
|
|
}
|
|
|
|
if (auto *CE = dyn_cast<ExplicitCastExpr>(getRawAnchor())) {
|
|
auto castTo = getType(CE->getCastTypeLoc());
|
|
auto *NTD = castTo->getAnyNominal();
|
|
emitDiagnostic(loc, diag::unbound_generic_parameter_cast, GP,
|
|
NTD ? NTD->getDeclaredType() : castTo);
|
|
} else {
|
|
emitDiagnostic(loc, diag::unbound_generic_parameter, GP);
|
|
}
|
|
|
|
Type baseTyForNote;
|
|
auto *DC = getDeclContext();
|
|
if (!DC)
|
|
return true;
|
|
|
|
if (!hasLoc(GP))
|
|
return true;
|
|
|
|
if (auto *NTD =
|
|
dyn_cast_or_null<NominalTypeDecl>(DC->getSelfNominalTypeDecl())) {
|
|
baseTyForNote = NTD->getDeclaredType();
|
|
} else if (auto *TAD = dyn_cast<TypeAliasDecl>(DC)) {
|
|
baseTyForNote = TAD->getUnboundGenericType();
|
|
} else {
|
|
return true;
|
|
}
|
|
|
|
emitDiagnostic(GP->getDecl(), diag::archetype_declared_in_type, GP,
|
|
baseTyForNote);
|
|
return true;
|
|
}
|
|
|
|
void MissingGenericArgumentsFailure::emitGenericSignatureNote(
|
|
Anchor anchor) const {
|
|
auto &cs = getConstraintSystem();
|
|
auto *paramDC = getDeclContext();
|
|
|
|
if (!paramDC)
|
|
return;
|
|
|
|
auto *GTD = dyn_cast<GenericTypeDecl>(paramDC);
|
|
if (!GTD || anchor.is<Expr *>())
|
|
return;
|
|
|
|
auto getParamDecl =
|
|
[](const ConstraintLocator *locator) -> GenericTypeParamDecl * {
|
|
return locator->isForGenericParameter()
|
|
? locator->getGenericParameter()->getDecl()
|
|
: nullptr;
|
|
};
|
|
|
|
llvm::SmallDenseMap<GenericTypeParamDecl *, Type> params;
|
|
for (auto *typeVar : cs.getTypeVariables()) {
|
|
auto *GP = typeVar->getImpl().getGenericParameter();
|
|
if (!GP)
|
|
continue;
|
|
|
|
auto type = resolveType(typeVar);
|
|
// This could happen if the diagnostic is used by CSDiag.
|
|
if (type->is<TypeVariableType>())
|
|
continue;
|
|
|
|
// If this is one of the defaulted parameter types, attempt
|
|
// to emit placeholder for it instead of `Any`.
|
|
if (llvm::any_of(cs.DefaultedConstraints,
|
|
[&](const ConstraintLocator *locator) {
|
|
return GP->getDecl() == getParamDecl(locator);
|
|
}))
|
|
continue;
|
|
|
|
params[GP->getDecl()] = type;
|
|
}
|
|
|
|
auto getPreferredType = [&](const GenericTypeParamDecl *GP) -> Type {
|
|
auto type = params.find(GP);
|
|
return (type == params.end()) ? Type() : type->second;
|
|
};
|
|
|
|
SmallString<64> paramsAsString;
|
|
auto baseType = anchor.get<TypeRepr *>();
|
|
if (TypeChecker::getDefaultGenericArgumentsString(paramsAsString, GTD,
|
|
getPreferredType)) {
|
|
auto diagnostic = emitDiagnostic(
|
|
baseType->getLoc(), diag::unbound_generic_parameter_explicit_fix);
|
|
|
|
if (auto *genericTy = dyn_cast<GenericIdentTypeRepr>(baseType)) {
|
|
// If some of the eneric arguments have been specified, we need to
|
|
// replace existing signature with a new one.
|
|
diagnostic.fixItReplace(genericTy->getAngleBrackets(), paramsAsString);
|
|
} else {
|
|
// Otherwise we can simply insert new generic signature.
|
|
diagnostic.fixItInsertAfter(baseType->getEndLoc(), paramsAsString);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::findArgumentLocations(
|
|
llvm::function_ref<void(TypeRepr *, GenericTypeParamType *)> callback) {
|
|
using Callback = llvm::function_ref<void(TypeRepr *, GenericTypeParamType *)>;
|
|
|
|
auto *anchor = getRawAnchor();
|
|
|
|
TypeLoc typeLoc;
|
|
if (auto *TE = dyn_cast<TypeExpr>(anchor))
|
|
typeLoc = TE->getTypeLoc();
|
|
else if (auto *ECE = dyn_cast<ExplicitCastExpr>(anchor))
|
|
typeLoc = ECE->getCastTypeLoc();
|
|
|
|
if (!typeLoc.hasLocation())
|
|
return false;
|
|
|
|
struct AssociateMissingParams : public ASTWalker {
|
|
llvm::SmallVector<GenericTypeParamType *, 4> Params;
|
|
Callback Fn;
|
|
|
|
AssociateMissingParams(ArrayRef<GenericTypeParamType *> params,
|
|
Callback callback)
|
|
: Params(params.begin(), params.end()), Fn(callback) {}
|
|
|
|
bool walkToTypeReprPre(TypeRepr *T) override {
|
|
if (Params.empty())
|
|
return false;
|
|
|
|
auto *ident = dyn_cast<ComponentIdentTypeRepr>(T);
|
|
if (!ident)
|
|
return true;
|
|
|
|
auto *decl = dyn_cast_or_null<GenericTypeDecl>(ident->getBoundDecl());
|
|
if (!decl)
|
|
return true;
|
|
|
|
auto *paramList = decl->getGenericParams();
|
|
if (!paramList)
|
|
return true;
|
|
|
|
// There could a situation like `S<S>()`, so we need to be
|
|
// careful not to point at first `S` because it has all of
|
|
// its generic parameters specified.
|
|
if (auto *generic = dyn_cast<GenericIdentTypeRepr>(ident)) {
|
|
if (paramList->size() == generic->getNumGenericArgs())
|
|
return true;
|
|
}
|
|
|
|
for (auto *candidate : paramList->getParams()) {
|
|
auto result =
|
|
llvm::find_if(Params, [&](const GenericTypeParamType *param) {
|
|
return candidate == param->getDecl();
|
|
});
|
|
|
|
if (result != Params.end()) {
|
|
Fn(ident, *result);
|
|
Params.erase(result);
|
|
}
|
|
}
|
|
|
|
// Keep walking.
|
|
return true;
|
|
}
|
|
|
|
bool allParamsAssigned() const { return Params.empty(); }
|
|
|
|
} associator(Parameters, callback);
|
|
|
|
typeLoc.getTypeRepr()->walk(associator);
|
|
return associator.allParamsAssigned();
|
|
}
|
|
|
|
void SkipUnhandledConstructInFunctionBuilderFailure::diagnosePrimary(
|
|
bool asNote) {
|
|
if (auto stmt = unhandled.dyn_cast<Stmt *>()) {
|
|
emitDiagnostic(stmt->getStartLoc(),
|
|
asNote? diag::note_function_builder_control_flow
|
|
: diag::function_builder_control_flow,
|
|
builder->getFullName());
|
|
} else {
|
|
auto decl = unhandled.get<Decl *>();
|
|
emitDiagnostic(decl,
|
|
asNote ? diag::note_function_builder_decl
|
|
: diag::function_builder_decl,
|
|
builder->getFullName());
|
|
}
|
|
}
|
|
|
|
bool SkipUnhandledConstructInFunctionBuilderFailure::diagnoseAsError() {
|
|
diagnosePrimary(/*asNote=*/false);
|
|
emitDiagnostic(builder,
|
|
diag::kind_declname_declared_here,
|
|
builder->getDescriptiveKind(),
|
|
builder->getFullName());
|
|
return true;
|
|
}
|
|
|
|
bool SkipUnhandledConstructInFunctionBuilderFailure::diagnoseAsNote() {
|
|
diagnosePrimary(/*asNote=*/true);
|
|
return true;
|
|
}
|
|
|
|
bool MutatingMemberRefOnImmutableBase::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
auto baseExpr = getBaseExprFor(anchor);
|
|
if (!baseExpr)
|
|
return false;
|
|
|
|
auto diagIDsubelt = diag::cannot_pass_rvalue_mutating_subelement;
|
|
auto diagIDmember = diag::cannot_pass_rvalue_mutating;
|
|
|
|
if (auto *storage = dyn_cast<AbstractStorageDecl>(Member)) {
|
|
if (storage->isGetterMutating()) {
|
|
diagIDsubelt = diag::cannot_pass_rvalue_mutating_getter_subelement;
|
|
diagIDmember = diag::cannot_pass_rvalue_mutating_getter;
|
|
}
|
|
}
|
|
|
|
auto &cs = getConstraintSystem();
|
|
AssignmentFailure failure(baseExpr, cs, anchor->getLoc(), diagIDsubelt,
|
|
diagIDmember);
|
|
return failure.diagnoseAsError();
|
|
}
|
|
|
|
bool InvalidTupleSplatWithSingleParameterFailure::diagnoseAsError() {
|
|
auto selectedOverload = getChoiceFor(getLocator());
|
|
if (!selectedOverload || !selectedOverload->choice.isDecl())
|
|
return false;
|
|
|
|
auto *choice = selectedOverload->choice.getDecl();
|
|
|
|
auto *argExpr = getArgumentListExprFor(getLocator());
|
|
if (!argExpr)
|
|
return false;
|
|
|
|
using Substitution = std::pair<GenericTypeParamType *, Type>;
|
|
llvm::SmallVector<Substitution, 8> substitutions;
|
|
|
|
auto paramTy = restoreGenericParameters(
|
|
ParamType, [&](GenericTypeParamType *GP, Type resolvedType) {
|
|
substitutions.push_back(std::make_pair(GP, resolvedType));
|
|
});
|
|
|
|
DeclBaseName name = choice->getBaseName();
|
|
|
|
std::string subsStr;
|
|
if (!substitutions.empty()) {
|
|
llvm::array_pod_sort(
|
|
substitutions.begin(), substitutions.end(),
|
|
[](const std::pair<GenericTypeParamType *, Type> *lhs,
|
|
const std::pair<GenericTypeParamType *, Type> *rhs) -> int {
|
|
GenericParamKey key1(lhs->first);
|
|
GenericParamKey key2(rhs->first);
|
|
return key1 < key2 ? -1 : (key1 == key2) ? 0 : 1;
|
|
});
|
|
|
|
subsStr += " [with ";
|
|
interleave(
|
|
substitutions,
|
|
[&subsStr](const Substitution &substitution) {
|
|
subsStr += substitution.first->getString();
|
|
subsStr += " = ";
|
|
subsStr += substitution.second->getString();
|
|
},
|
|
[&subsStr] { subsStr += ", "; });
|
|
subsStr += ']';
|
|
}
|
|
|
|
auto diagnostic =
|
|
name.isSpecial()
|
|
? emitDiagnostic(argExpr->getLoc(),
|
|
diag::single_tuple_parameter_mismatch_special,
|
|
choice->getDescriptiveKind(), paramTy, subsStr)
|
|
: emitDiagnostic(argExpr->getLoc(),
|
|
diag::single_tuple_parameter_mismatch_normal,
|
|
choice->getDescriptiveKind(), name, paramTy, subsStr);
|
|
|
|
|
|
auto newLeftParenLoc = argExpr->getStartLoc();
|
|
if (auto *TE = dyn_cast<TupleExpr>(argExpr)) {
|
|
auto firstArgLabel = TE->getElementName(0);
|
|
// Cover situations like:
|
|
//
|
|
// func foo(x: (Int, Int)) {}
|
|
// foo(x: 0, 1)
|
|
//
|
|
// Where left paren should be suggested after the label,
|
|
// since the label belongs to the parameter itself.
|
|
if (!firstArgLabel.empty()) {
|
|
auto paramTuple = resolveType(ParamType)->castTo<TupleType>();
|
|
// If the label of the first argument matches the one required
|
|
// by the parameter it would be omitted from the fixed parameter type.
|
|
if (!paramTuple->getElement(0).hasName())
|
|
newLeftParenLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr,
|
|
TE->getElementNameLoc(0));
|
|
}
|
|
}
|
|
|
|
diagnostic.highlight(argExpr->getSourceRange())
|
|
.fixItInsertAfter(newLeftParenLoc, "(")
|
|
.fixItInsert(argExpr->getEndLoc(), ")");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ThrowingFunctionConversionFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::throws_functiontype_mismatch,
|
|
getFromType(), getToType());
|
|
return true;
|
|
}
|
|
|
|
bool InOutConversionFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto *anchor = getAnchor();
|
|
auto *locator = getLocator();
|
|
auto path = locator->getPath();
|
|
|
|
if (!path.empty() &&
|
|
path.back().getKind() == ConstraintLocator::FunctionArgument) {
|
|
if (auto argApplyInfo = cs.getFunctionArgApplyInfo(locator)) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_convert_argument_value,
|
|
argApplyInfo->getArgType(), argApplyInfo->getParamType());
|
|
} else {
|
|
assert(locator->findLast<LocatorPathElt::ContextualType>());
|
|
auto contextualType = cs.getContextualType(anchor);
|
|
auto purpose = getContextualTypePurpose();
|
|
auto diagnostic = getDiagnosticFor(purpose, /*forProtocol=*/false);
|
|
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
emitDiagnostic(anchor->getLoc(), *diagnostic, getType(anchor),
|
|
contextualType);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_pass_rvalue_inout_converted,
|
|
getFromType(), getToType());
|
|
fixItChangeArgumentType();
|
|
return true;
|
|
}
|
|
|
|
void InOutConversionFailure::fixItChangeArgumentType() const {
|
|
auto *argExpr = getAnchor();
|
|
auto *DC = getDC();
|
|
|
|
if (auto *IOE = dyn_cast<InOutExpr>(argExpr))
|
|
argExpr = IOE->getSubExpr();
|
|
|
|
auto *DRE = dyn_cast<DeclRefExpr>(argExpr);
|
|
if (!DRE)
|
|
return;
|
|
|
|
auto *VD = dyn_cast_or_null<VarDecl>(DRE->getDecl());
|
|
if (!VD)
|
|
return;
|
|
|
|
// Don't emit for non-local variables.
|
|
// (But in script-mode files, we consider module-scoped
|
|
// variables in the same file to be local variables.)
|
|
auto VDC = VD->getDeclContext();
|
|
bool isLocalVar = VDC->isLocalContext();
|
|
if (!isLocalVar && VDC->isModuleScopeContext()) {
|
|
auto argFile = DC->getParentSourceFile();
|
|
auto varFile = VDC->getParentSourceFile();
|
|
isLocalVar = (argFile == varFile && argFile->isScriptMode());
|
|
}
|
|
if (!isLocalVar)
|
|
return;
|
|
|
|
auto actualType = getFromType();
|
|
auto neededType = getToType();
|
|
|
|
SmallString<32> scratch;
|
|
SourceLoc endLoc; // Filled in if we decide to diagnose this
|
|
SourceLoc startLoc; // Left invalid if we're inserting
|
|
|
|
auto isSimpleTypelessPattern = [](Pattern *P) -> bool {
|
|
if (auto VP = dyn_cast_or_null<VarPattern>(P))
|
|
P = VP->getSubPattern();
|
|
return P && isa<NamedPattern>(P);
|
|
};
|
|
|
|
auto typeRange = VD->getTypeSourceRangeForDiagnostics();
|
|
if (typeRange.isValid()) {
|
|
startLoc = typeRange.Start;
|
|
endLoc = typeRange.End;
|
|
} else if (isSimpleTypelessPattern(VD->getParentPattern())) {
|
|
endLoc = VD->getNameLoc();
|
|
scratch += ": ";
|
|
}
|
|
|
|
if (endLoc.isInvalid())
|
|
return;
|
|
|
|
scratch += neededType.getString();
|
|
|
|
// Adjust into the location where we actually want to insert
|
|
endLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr, endLoc);
|
|
|
|
// Since we already adjusted endLoc, this will turn an insertion
|
|
// into a zero-character replacement.
|
|
if (!startLoc.isValid())
|
|
startLoc = endLoc;
|
|
|
|
emitDiagnostic(VD->getLoc(), diag::inout_change_var_type_if_possible,
|
|
actualType, neededType)
|
|
.fixItReplaceChars(startLoc, endLoc, scratch);
|
|
}
|
|
|
|
bool ArgumentMismatchFailure::diagnoseAsError() {
|
|
if (diagnoseMisplacedMissingArgument())
|
|
return true;
|
|
|
|
if (diagnoseConversionToBool())
|
|
return true;
|
|
|
|
if (diagnoseArchetypeMismatch())
|
|
return true;
|
|
|
|
if (diagnosePatternMatchingMismatch())
|
|
return true;
|
|
|
|
if (diagnoseUseOfReferenceEqualityOperator())
|
|
return true;
|
|
|
|
if (diagnosePropertyWrapperMismatch())
|
|
return true;
|
|
|
|
auto argType = getFromType();
|
|
auto paramType = getToType();
|
|
|
|
Diag<Type, Type> diagnostic = diag::cannot_convert_argument_value;
|
|
|
|
// If parameter type is a protocol value, let's says that
|
|
// argument doesn't conform to a give protocol.
|
|
if (paramType->isExistentialType())
|
|
diagnostic = diag::cannot_convert_argument_value_protocol;
|
|
|
|
auto diag = emitDiagnostic(getLoc(), diagnostic, argType, paramType);
|
|
|
|
// If argument is an l-value type and parameter is a pointer type,
|
|
// let's match up its element type to the argument to see whether
|
|
// it would be appropriate to suggest adding `&`.
|
|
auto *argExpr = getAnchor();
|
|
if (getType(argExpr, /*wantRValue=*/false)->is<LValueType>()) {
|
|
auto elementTy = paramType->getAnyPointerElementType();
|
|
if (elementTy && argType->isEqual(elementTy)) {
|
|
diag.fixItInsert(argExpr->getStartLoc(), "&");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
tryFixIts(diag);
|
|
return true;
|
|
}
|
|
|
|
bool ArgumentMismatchFailure::diagnoseAsNote() {
|
|
auto *locator = getLocator();
|
|
if (auto *callee = getCallee()) {
|
|
emitDiagnostic(callee, diag::candidate_has_invalid_argument_at_position,
|
|
getToType(), getParamPosition(),
|
|
locator->isLastElement<LocatorPathElt::LValueConversion>());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ArgumentMismatchFailure::diagnoseUseOfReferenceEqualityOperator() const {
|
|
auto *locator = getLocator();
|
|
|
|
if (!isArgumentOfReferenceEqualityOperator(locator))
|
|
return false;
|
|
|
|
auto *binaryOp = cast<BinaryExpr>(getRawAnchor());
|
|
auto *lhs = binaryOp->getArg()->getElement(0);
|
|
auto *rhs = binaryOp->getArg()->getElement(1);
|
|
|
|
auto name = *getOperatorName(binaryOp->getFn());
|
|
|
|
auto lhsType = getType(lhs);
|
|
auto rhsType = getType(rhs);
|
|
|
|
// If both arguments where incorrect e.g. both are function types,
|
|
// let's avoid producing a diagnostic second time, because first
|
|
// one would cover both arguments.
|
|
if (getAnchor() == rhs && rhsType->is<FunctionType>()) {
|
|
auto &cs = getConstraintSystem();
|
|
if (cs.hasFixFor(cs.getConstraintLocator(
|
|
binaryOp, {ConstraintLocator::ApplyArgument,
|
|
LocatorPathElt::ApplyArgToParam(
|
|
0, 0, getParameterFlagsAtIndex(0))})))
|
|
return true;
|
|
}
|
|
|
|
// Regardless of whether the type has reference or value semantics,
|
|
// comparison with nil is illegal, albeit for different reasons spelled
|
|
// out by the diagnosis.
|
|
if (isa<NilLiteralExpr>(lhs) || isa<NilLiteralExpr>(rhs)) {
|
|
std::string revisedName = name.str();
|
|
revisedName.pop_back();
|
|
|
|
auto loc = binaryOp->getLoc();
|
|
auto nonNilType = isa<NilLiteralExpr>(lhs) ? rhsType : lhsType;
|
|
auto nonNilExpr = isa<NilLiteralExpr>(lhs) ? rhs : lhs;
|
|
|
|
// If we made it here, then we're trying to perform a comparison with
|
|
// reference semantics rather than value semantics. The fixit will
|
|
// lop off the extra '=' in the operator.
|
|
if (nonNilType->getOptionalObjectType()) {
|
|
emitDiagnostic(loc,
|
|
diag::value_type_comparison_with_nil_illegal_did_you_mean,
|
|
nonNilType)
|
|
.fixItReplace(loc, revisedName);
|
|
} else {
|
|
emitDiagnostic(loc, diag::value_type_comparison_with_nil_illegal,
|
|
nonNilType)
|
|
.highlight(nonNilExpr->getSourceRange());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (lhsType->is<FunctionType>() || rhsType->is<FunctionType>()) {
|
|
emitDiagnostic(binaryOp->getLoc(), diag::cannot_reference_compare_types,
|
|
name.str(), lhsType, rhsType)
|
|
.highlight(lhs->getSourceRange())
|
|
.highlight(rhs->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ArgumentMismatchFailure::diagnosePatternMatchingMismatch() const {
|
|
if (!isArgumentOfPatternMatchingOperator(getLocator()))
|
|
return false;
|
|
|
|
auto *op = cast<BinaryExpr>(getRawAnchor());
|
|
auto *lhsExpr = op->getArg()->getElement(0);
|
|
auto *rhsExpr = op->getArg()->getElement(1);
|
|
|
|
auto lhsType = getType(lhsExpr);
|
|
auto rhsType = getType(rhsExpr);
|
|
|
|
auto diagnostic =
|
|
lhsType->is<UnresolvedType>()
|
|
? emitDiagnostic(
|
|
getLoc(), diag::cannot_match_unresolved_expr_pattern_with_value,
|
|
rhsType)
|
|
: emitDiagnostic(getLoc(), diag::cannot_match_expr_pattern_with_value,
|
|
lhsType, rhsType);
|
|
|
|
diagnostic.highlight(lhsExpr->getSourceRange());
|
|
diagnostic.highlight(rhsExpr->getSourceRange());
|
|
|
|
if (auto optUnwrappedType = rhsType->getOptionalObjectType()) {
|
|
if (lhsType->isEqual(optUnwrappedType)) {
|
|
diagnostic.fixItInsertAfter(lhsExpr->getEndLoc(), "?");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ArgumentMismatchFailure::diagnoseArchetypeMismatch() const {
|
|
auto *argTy = getFromType()->getAs<ArchetypeType>();
|
|
auto *paramTy = getToType()->getAs<ArchetypeType>();
|
|
|
|
if (!(argTy && paramTy))
|
|
return false;
|
|
|
|
// Produce this diagnostic only if the names
|
|
// of the generic parameters are the same.
|
|
if (argTy->getName() != paramTy->getName())
|
|
return false;
|
|
|
|
auto getGenericTypeDecl = [&](ArchetypeType *archetype) -> ValueDecl * {
|
|
auto paramType = archetype->getInterfaceType();
|
|
|
|
if (auto *GTPT = paramType->getAs<GenericTypeParamType>())
|
|
return GTPT->getDecl();
|
|
|
|
if (auto *DMT = paramType->getAs<DependentMemberType>())
|
|
return DMT->getAssocType();
|
|
|
|
return nullptr;
|
|
};
|
|
|
|
auto *argDecl = getGenericTypeDecl(argTy);
|
|
auto *paramDecl = getGenericTypeDecl(paramTy);
|
|
|
|
if (!(paramDecl && argDecl))
|
|
return false;
|
|
|
|
auto describeGenericType = [&](ValueDecl *genericParam,
|
|
bool includeName = false) -> std::string {
|
|
if (!genericParam)
|
|
return "";
|
|
|
|
Decl *parent = nullptr;
|
|
if (auto *AT = dyn_cast<AssociatedTypeDecl>(genericParam)) {
|
|
parent = AT->getProtocol();
|
|
} else {
|
|
auto *dc = genericParam->getDeclContext();
|
|
parent = dc->getInnermostDeclarationDeclContext();
|
|
}
|
|
|
|
if (!parent)
|
|
return "";
|
|
|
|
llvm::SmallString<64> result;
|
|
llvm::raw_svector_ostream OS(result);
|
|
|
|
OS << Decl::getDescriptiveKindName(genericParam->getDescriptiveKind());
|
|
|
|
if (includeName && genericParam->hasName())
|
|
OS << " '" << genericParam->getBaseName() << "'";
|
|
|
|
OS << " of ";
|
|
OS << Decl::getDescriptiveKindName(parent->getDescriptiveKind());
|
|
if (auto *decl = dyn_cast<ValueDecl>(parent)) {
|
|
if (decl->hasName())
|
|
OS << " '" << decl->getFullName() << "'";
|
|
}
|
|
|
|
return OS.str();
|
|
};
|
|
|
|
emitDiagnostic(
|
|
getAnchor()->getLoc(), diag::cannot_convert_argument_value_generic, argTy,
|
|
describeGenericType(argDecl), paramTy, describeGenericType(paramDecl));
|
|
|
|
emitDiagnostic(argDecl, diag::descriptive_generic_type_declared_here,
|
|
describeGenericType(argDecl, true));
|
|
|
|
emitDiagnostic(paramDecl, diag::descriptive_generic_type_declared_here,
|
|
describeGenericType(paramDecl, true));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ArgumentMismatchFailure::diagnoseMisplacedMissingArgument() const {
|
|
auto &cs = getConstraintSystem();
|
|
auto *locator = getLocator();
|
|
|
|
if (!MissingArgumentsFailure::isMisplacedMissingArgument(cs, locator))
|
|
return false;
|
|
|
|
auto *argType = cs.createTypeVariable(
|
|
cs.getConstraintLocator(locator, LocatorPathElt::SynthesizedArgument(1)),
|
|
/*flags=*/0);
|
|
|
|
// Assign new type variable to a type of a parameter.
|
|
auto *fnType = getFnType();
|
|
const auto ¶m = fnType->getParams()[0];
|
|
cs.assignFixedType(argType, param.getOldType());
|
|
|
|
auto *anchor = getRawAnchor();
|
|
|
|
MissingArgumentsFailure failure(
|
|
cs, {param.withType(argType)},
|
|
cs.getConstraintLocator(anchor, ConstraintLocator::ApplyArgument));
|
|
|
|
return failure.diagnoseSingleMissingArgument();
|
|
}
|
|
|
|
bool ArgumentMismatchFailure::diagnosePropertyWrapperMismatch() const {
|
|
auto argType = getFromType();
|
|
auto paramType = getToType();
|
|
|
|
// Verify that this is an implicit call to a property wrapper initializer
|
|
// in a form of `init(wrappedValue:)` or deprecated `init(initialValue:)`.
|
|
auto *call = dyn_cast<CallExpr>(getRawAnchor());
|
|
if (!(call && call->isImplicit() && isa<TypeExpr>(call->getFn()) &&
|
|
call->getNumArguments() == 1 &&
|
|
(call->getArgumentLabels().front() == getASTContext().Id_wrappedValue ||
|
|
call->getArgumentLabels().front() == getASTContext().Id_initialValue)))
|
|
return false;
|
|
|
|
auto argExpr = cast<TupleExpr>(call->getArg())->getElement(0);
|
|
// If this is an attempt to initialize property wrapper with opaque value
|
|
// of error type, let's just ignore that problem since original mismatch
|
|
// has been diagnosed already.
|
|
if (argExpr->isImplicit() && isa<OpaqueValueExpr>(argExpr) &&
|
|
argType->is<ErrorType>())
|
|
return true;
|
|
|
|
emitDiagnostic(getLoc(), diag::cannot_convert_initializer_value, argType,
|
|
paramType);
|
|
return true;
|
|
}
|
|
|
|
void ExpandArrayIntoVarargsFailure::tryDropArrayBracketsFixIt(
|
|
Expr *anchor) const {
|
|
// If this is an array literal, offer to remove the brackets and pass the
|
|
// elements directly as variadic arguments.
|
|
if (auto *arrayExpr = dyn_cast<ArrayExpr>(anchor)) {
|
|
auto diag = emitDiagnostic(arrayExpr->getLoc(),
|
|
diag::suggest_pass_elements_directly);
|
|
diag.fixItRemove(arrayExpr->getLBracketLoc())
|
|
.fixItRemove(arrayExpr->getRBracketLoc());
|
|
// Handle the case where the array literal has a trailing comma.
|
|
if (arrayExpr->getNumCommas() == arrayExpr->getNumElements())
|
|
diag.fixItRemove(arrayExpr->getCommaLocs().back());
|
|
}
|
|
}
|
|
|
|
bool ExpandArrayIntoVarargsFailure::diagnoseAsError() {
|
|
if (auto anchor = getAnchor()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_convert_array_to_variadic,
|
|
getFromType(), getToType());
|
|
tryDropArrayBracketsFixIt(anchor);
|
|
// TODO: Array splat fix-it once that's supported.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ExpandArrayIntoVarargsFailure::diagnoseAsNote() {
|
|
auto overload = getChoiceFor(getLocator());
|
|
auto anchor = getAnchor();
|
|
if (!overload || !anchor)
|
|
return false;
|
|
|
|
if (auto chosenDecl = overload->choice.getDeclOrNull()) {
|
|
emitDiagnostic(chosenDecl, diag::candidate_would_match_array_to_variadic,
|
|
getToType());
|
|
tryDropArrayBracketsFixIt(anchor);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ExtraneousCallFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
auto *anchor = getAnchor();
|
|
auto *locator = getLocator();
|
|
|
|
// If this is something like `foo()` where `foo` is a variable
|
|
// or a property, let's suggest dropping `()`.
|
|
auto removeParensFixIt = [&](InFlightDiagnostic &diagnostic) {
|
|
auto *argLoc = cs.getConstraintLocator(getRawAnchor(),
|
|
ConstraintLocator::ApplyArgument);
|
|
|
|
if (auto *TE =
|
|
dyn_cast_or_null<TupleExpr>(simplifyLocatorToAnchor(argLoc))) {
|
|
if (TE->getNumElements() == 0) {
|
|
diagnostic.fixItRemove(TE->getSourceRange());
|
|
}
|
|
}
|
|
};
|
|
|
|
if (auto overload = getChoiceFor(cs.getCalleeLocator(locator))) {
|
|
if (auto *decl = overload->choice.getDeclOrNull()) {
|
|
if (auto *enumCase = dyn_cast<EnumElementDecl>(decl)) {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(), diag::unexpected_arguments_in_enum_case,
|
|
enumCase->getName());
|
|
removeParensFixIt(diagnostic);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
auto *baseExpr = UDE->getBase();
|
|
auto *call = cast<CallExpr>(getRawAnchor());
|
|
|
|
if (getType(baseExpr)->isAnyObject()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_call_with_params,
|
|
UDE->getName().getBaseName().userFacingName(),
|
|
getType(call->getArg())->getString(),
|
|
isa<TypeExpr>(baseExpr));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(), diag::cannot_call_non_function_value, getType(anchor));
|
|
removeParensFixIt(diagnostic);
|
|
return true;
|
|
}
|
|
|
|
bool InvalidUseOfTrailingClosure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto &cs = getConstraintSystem();
|
|
|
|
emitDiagnostic(anchor->getLoc(), diag::trailing_closure_bad_param,
|
|
getToType())
|
|
.highlight(anchor->getSourceRange());
|
|
|
|
if (auto overload = getChoiceFor(cs.getCalleeLocator(getLocator()))) {
|
|
if (auto *decl = overload->choice.getDeclOrNull()) {
|
|
emitDiagnostic(decl, diag::decl_declared_here, decl->getFullName());
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void NonEphemeralConversionFailure::emitSuggestionNotes() const {
|
|
auto getPointerKind = [](Type ty) -> PointerTypeKind {
|
|
PointerTypeKind pointerKind;
|
|
auto pointeeType = ty->lookThroughSingleOptionalType()
|
|
->getAnyPointerElementType(pointerKind);
|
|
assert(pointeeType && "Expected a pointer!");
|
|
(void)pointeeType;
|
|
|
|
return pointerKind;
|
|
};
|
|
|
|
// This must stay in sync with diag::ephemeral_use_array_with_unsafe_buffer
|
|
// and diag::ephemeral_use_with_unsafe_pointer.
|
|
enum AlternativeKind {
|
|
AK_Raw = 0,
|
|
AK_MutableRaw,
|
|
AK_Typed,
|
|
AK_MutableTyped,
|
|
};
|
|
|
|
auto getAlternativeKind = [&]() -> Optional<AlternativeKind> {
|
|
switch (getPointerKind(getParamType())) {
|
|
case PTK_UnsafeRawPointer:
|
|
return AK_Raw;
|
|
case PTK_UnsafeMutableRawPointer:
|
|
return AK_MutableRaw;
|
|
case PTK_UnsafePointer:
|
|
return AK_Typed;
|
|
case PTK_UnsafeMutablePointer:
|
|
return AK_MutableTyped;
|
|
case PTK_AutoreleasingUnsafeMutablePointer:
|
|
return None;
|
|
}
|
|
};
|
|
|
|
// First emit a note about the implicit conversion only lasting for the
|
|
// duration of the call.
|
|
auto *argExpr = getArgExpr();
|
|
emitDiagnostic(argExpr->getLoc(),
|
|
diag::ephemeral_pointer_argument_conversion_note,
|
|
getArgType(), getParamType(), getCallee(), getCalleeFullName())
|
|
.highlight(argExpr->getSourceRange());
|
|
|
|
// Then try to find a suitable alternative.
|
|
switch (ConversionKind) {
|
|
case ConversionRestrictionKind::ArrayToPointer: {
|
|
// Don't suggest anything for optional arrays, as there's currently no
|
|
// direct alternative.
|
|
if (getArgType()->getOptionalObjectType())
|
|
break;
|
|
|
|
// We can suggest using withUnsafe[Mutable][Bytes/BufferPointer].
|
|
if (auto alternative = getAlternativeKind())
|
|
emitDiagnostic(argExpr->getLoc(),
|
|
diag::ephemeral_use_array_with_unsafe_buffer,
|
|
*alternative);
|
|
break;
|
|
}
|
|
case ConversionRestrictionKind::StringToPointer: {
|
|
// Don't suggest anything for optional strings, as there's currently no
|
|
// direct alternative.
|
|
if (getArgType()->getOptionalObjectType())
|
|
break;
|
|
|
|
// We can suggest withCString as long as the resulting pointer is
|
|
// immutable.
|
|
switch (getPointerKind(getParamType())) {
|
|
case PTK_UnsafePointer:
|
|
case PTK_UnsafeRawPointer:
|
|
emitDiagnostic(argExpr->getLoc(),
|
|
diag::ephemeral_use_string_with_c_string);
|
|
break;
|
|
case PTK_UnsafeMutableRawPointer:
|
|
case PTK_UnsafeMutablePointer:
|
|
case PTK_AutoreleasingUnsafeMutablePointer:
|
|
// There's nothing really sensible we can suggest for a mutable pointer.
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case ConversionRestrictionKind::InoutToPointer:
|
|
// For an arbitrary inout-to-pointer, we can suggest
|
|
// withUnsafe[Mutable][Bytes/Pointer].
|
|
if (auto alternative = getAlternativeKind())
|
|
emitDiagnostic(argExpr->getLoc(), diag::ephemeral_use_with_unsafe_pointer,
|
|
*alternative);
|
|
break;
|
|
case ConversionRestrictionKind::DeepEquality:
|
|
case ConversionRestrictionKind::Superclass:
|
|
case ConversionRestrictionKind::Existential:
|
|
case ConversionRestrictionKind::MetatypeToExistentialMetatype:
|
|
case ConversionRestrictionKind::ExistentialMetatypeToMetatype:
|
|
case ConversionRestrictionKind::ValueToOptional:
|
|
case ConversionRestrictionKind::OptionalToOptional:
|
|
case ConversionRestrictionKind::ClassMetatypeToAnyObject:
|
|
case ConversionRestrictionKind::ExistentialMetatypeToAnyObject:
|
|
case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass:
|
|
case ConversionRestrictionKind::PointerToPointer:
|
|
case ConversionRestrictionKind::ArrayUpcast:
|
|
case ConversionRestrictionKind::DictionaryUpcast:
|
|
case ConversionRestrictionKind::SetUpcast:
|
|
case ConversionRestrictionKind::HashableToAnyHashable:
|
|
case ConversionRestrictionKind::CFTollFreeBridgeToObjC:
|
|
case ConversionRestrictionKind::ObjCTollFreeBridgeToCF:
|
|
llvm_unreachable("Expected an ephemeral conversion!");
|
|
}
|
|
}
|
|
|
|
bool NonEphemeralConversionFailure::diagnosePointerInit() const {
|
|
auto *constructor = dyn_cast_or_null<ConstructorDecl>(getCallee());
|
|
if (!constructor)
|
|
return false;
|
|
|
|
auto constructedTy = getFnType()->getResult();
|
|
|
|
// Strip off a level of optionality if we have a failable initializer.
|
|
if (constructor->isFailable())
|
|
constructedTy = constructedTy->getOptionalObjectType();
|
|
|
|
// This must stay in sync with diag::cannot_construct_dangling_pointer.
|
|
enum ConstructorKind {
|
|
CK_Pointer = 0,
|
|
CK_BufferPointer,
|
|
};
|
|
|
|
// Consider OpaquePointer as well as the other kinds of pointers.
|
|
auto isConstructingPointer =
|
|
constructedTy->getAnyPointerElementType() ||
|
|
constructedTy->getAnyNominal() == getASTContext().getOpaquePointerDecl();
|
|
|
|
ConstructorKind constructorKind;
|
|
auto parameterCount = constructor->getParameters()->size();
|
|
if (isConstructingPointer && parameterCount == 1) {
|
|
constructorKind = CK_Pointer;
|
|
} else if (constructedTy->getAnyBufferPointerElementType() &&
|
|
parameterCount == 2) {
|
|
constructorKind = CK_BufferPointer;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
auto diagID = DowngradeToWarning
|
|
? diag::cannot_construct_dangling_pointer_warning
|
|
: diag::cannot_construct_dangling_pointer;
|
|
|
|
auto *anchor = getRawAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diagID, constructedTy, constructorKind)
|
|
.highlight(anchor->getSourceRange());
|
|
|
|
emitSuggestionNotes();
|
|
return true;
|
|
}
|
|
|
|
bool NonEphemeralConversionFailure::diagnoseAsNote() {
|
|
// We can only emit a useful note if we have a callee.
|
|
if (auto *callee = getCallee()) {
|
|
emitDiagnostic(callee, diag::candidate_performs_illegal_ephemeral_conv,
|
|
getParamPosition());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool NonEphemeralConversionFailure::diagnoseAsError() {
|
|
// Emit a specialized diagnostic for
|
|
// Unsafe[Mutable][Raw]Pointer.init([mutating]:) &
|
|
// Unsafe[Mutable][Raw]BufferPointer.init(start:count:).
|
|
if (diagnosePointerInit())
|
|
return true;
|
|
|
|
// Otherwise, emit a more general diagnostic.
|
|
SmallString<8> scratch;
|
|
auto argDesc = getArgDescription(scratch);
|
|
|
|
auto *argExpr = getArgExpr();
|
|
if (isa<InOutExpr>(argExpr)) {
|
|
auto diagID = DowngradeToWarning
|
|
? diag::cannot_use_inout_non_ephemeral_warning
|
|
: diag::cannot_use_inout_non_ephemeral;
|
|
|
|
emitDiagnostic(argExpr->getLoc(), diagID, argDesc, getCallee(),
|
|
getCalleeFullName())
|
|
.highlight(argExpr->getSourceRange());
|
|
} else {
|
|
auto diagID = DowngradeToWarning
|
|
? diag::cannot_pass_type_to_non_ephemeral_warning
|
|
: diag::cannot_pass_type_to_non_ephemeral;
|
|
|
|
emitDiagnostic(argExpr->getLoc(), diagID, getArgType(), argDesc,
|
|
getCallee(), getCalleeFullName())
|
|
.highlight(argExpr->getSourceRange());
|
|
}
|
|
emitSuggestionNotes();
|
|
return true;
|
|
}
|
|
|
|
bool AssignmentTypeMismatchFailure::diagnoseMissingConformance() const {
|
|
auto srcType = getFromType();
|
|
auto dstType = getToType()->lookThroughAllOptionalTypes();
|
|
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> srcMembers;
|
|
llvm::SmallPtrSet<ProtocolDecl *, 4> dstMembers;
|
|
|
|
auto retrieveProtocols = [](Type type,
|
|
llvm::SmallPtrSetImpl<ProtocolDecl *> &members) {
|
|
if (auto *protocol = type->getAs<ProtocolType>())
|
|
members.insert(protocol->getDecl());
|
|
|
|
if (auto *composition = type->getAs<ProtocolCompositionType>()) {
|
|
for (auto member : composition->getMembers()) {
|
|
if (auto *protocol = member->getAs<ProtocolType>())
|
|
members.insert(protocol->getDecl());
|
|
}
|
|
}
|
|
};
|
|
|
|
retrieveProtocols(srcType, srcMembers);
|
|
retrieveProtocols(dstType, dstMembers);
|
|
|
|
if (srcMembers.empty() || dstMembers.empty())
|
|
return false;
|
|
|
|
// Let's check whether there is an overlap between source and destination.
|
|
for (auto *member : srcMembers)
|
|
dstMembers.erase(member);
|
|
|
|
if (dstMembers.size() == 1)
|
|
dstType = (*dstMembers.begin())->getDeclaredType();
|
|
|
|
auto *anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_convert_assign_protocol,
|
|
srcType, dstType);
|
|
return true;
|
|
}
|
|
|
|
bool AssignmentTypeMismatchFailure::diagnoseAsError() {
|
|
if (diagnoseMissingConformance())
|
|
return true;
|
|
|
|
return ContextualFailure::diagnoseAsError();
|
|
}
|
|
|
|
bool AssignmentTypeMismatchFailure::diagnoseAsNote() {
|
|
auto *anchor = getAnchor();
|
|
auto &cs = getConstraintSystem();
|
|
|
|
if (auto overload = getChoiceFor(cs.getConstraintLocator(anchor))) {
|
|
if (auto *decl = overload->choice.getDeclOrNull()) {
|
|
emitDiagnostic(decl,
|
|
diag::cannot_convert_candidate_result_to_contextual_type,
|
|
decl->getFullName(), getFromType(), getToType());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MissingContextualBaseInMemberRefFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto &cs = getConstraintSystem();
|
|
|
|
// Member reference could be wrapped into a number of parens
|
|
// e.g. `((.foo))`.
|
|
auto *parentExpr = findParentExpr(anchor);
|
|
do {
|
|
// If we have found something which isn't a paren let's stop,
|
|
// otherwise let's keep unwrapping until there are either no
|
|
// more parens or no more parents...
|
|
if (!parentExpr || !isa<ParenExpr>(parentExpr))
|
|
break;
|
|
} while ((parentExpr = findParentExpr(parentExpr)));
|
|
|
|
auto diagnostic = parentExpr || cs.getContextualType(anchor)
|
|
? diag::cannot_infer_base_of_unresolved_member
|
|
: diag::unresolved_member_no_inference;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, MemberName)
|
|
.highlight(anchor->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
bool UnableToInferClosureReturnType::diagnoseAsError() {
|
|
auto *closure = cast<ClosureExpr>(getRawAnchor());
|
|
|
|
auto diagnostic =
|
|
emitDiagnostic(closure->getLoc(),
|
|
diag::cannot_infer_closure_result_type,
|
|
closure->hasSingleExpressionBody());
|
|
|
|
// If there is a location for an 'in' token, then the argument list was
|
|
// specified somehow but no return type was. Insert a "-> ReturnType "
|
|
// before the in token.
|
|
if (closure->getInLoc().isValid()) {
|
|
diagnostic.fixItInsert(closure->getInLoc(),
|
|
diag::insert_closure_return_type_placeholder,
|
|
/*argListSpecified=*/false);
|
|
} else if (closure->getParameters()->size() == 0) {
|
|
// Otherwise, the closure must take zero arguments.
|
|
//
|
|
// As such, we insert " () -> ReturnType in " right after the '{' that
|
|
// starts the closure body.
|
|
diagnostic.fixItInsertAfter(closure->getBody()->getLBraceLoc(),
|
|
diag::insert_closure_return_type_placeholder,
|
|
/*argListSpecified=*/true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static std::pair<StringRef, StringRef>
|
|
getImportModuleAndDefaultType(const ASTContext &ctx, ObjectLiteralExpr *expr) {
|
|
const auto &target = ctx.LangOpts.Target;
|
|
|
|
switch (expr->getLiteralKind()) {
|
|
case ObjectLiteralExpr::colorLiteral: {
|
|
if (target.isMacOSX()) {
|
|
return std::make_pair("AppKit", "NSColor");
|
|
} else if (target.isiOS() || target.isTvOS()) {
|
|
return std::make_pair("UIKit", "UIColor");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ObjectLiteralExpr::imageLiteral: {
|
|
if (target.isMacOSX()) {
|
|
return std::make_pair("AppKit", "NSImage");
|
|
} else if (target.isiOS() || target.isTvOS()) {
|
|
return std::make_pair("UIKit", "UIImage");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ObjectLiteralExpr::fileLiteral: {
|
|
return std::make_pair("Foundation", "URL");
|
|
}
|
|
}
|
|
|
|
return std::make_pair("", "");
|
|
}
|
|
|
|
bool UnableToInferProtocolLiteralType::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto &ctx = cs.getASTContext();
|
|
auto *expr = cast<ObjectLiteralExpr>(getLocator()->getAnchor());
|
|
|
|
StringRef importModule;
|
|
StringRef importDefaultTypeName;
|
|
std::tie(importModule, importDefaultTypeName) =
|
|
getImportModuleAndDefaultType(ctx, expr);
|
|
|
|
auto plainName = expr->getLiteralKindPlainName();
|
|
emitDiagnostic(expr->getLoc(), diag::object_literal_default_type_missing,
|
|
plainName);
|
|
if (!importModule.empty()) {
|
|
emitDiagnostic(expr->getLoc(), diag::object_literal_resolve_import,
|
|
importModule, importDefaultTypeName, plainName);
|
|
}
|
|
|
|
return true;
|
|
}
|