mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
`TernaryBranch` with a boolean flag to identify "then" (true) or "else" (false) branches of the ternary operator expression.
953 lines
32 KiB
C++
953 lines
32 KiB
C++
//===--- ConstraintLocator.h - Constraint Locator ---------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides the \c ConstraintLocator class and its related types,
|
|
// which is used by the constraint-based type checker to describe how
|
|
// a particular constraint was derived.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef SWIFT_SEMA_CONSTRAINTLOCATOR_H
|
|
#define SWIFT_SEMA_CONSTRAINTLOCATOR_H
|
|
|
|
#include "swift/Basic/Debug.h"
|
|
#include "swift/Basic/LLVM.h"
|
|
#include "swift/AST/Type.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <utility>
|
|
|
|
namespace swift {
|
|
|
|
class Expr;
|
|
class SourceManager;
|
|
|
|
namespace constraints {
|
|
class ConstraintSystem;
|
|
|
|
/// Locates a given constraint within the expression being
|
|
/// type-checked, which may refer down into subexpressions and parts of
|
|
/// the types of those subexpressions.
|
|
///
|
|
/// Each locator as anchored at some expression, e.g., (3, (x, 3.14)),
|
|
/// and contains a path that digs further into the type of that expression.
|
|
/// For example, the path "tuple element #1" -> "tuple element #0" with the
|
|
/// above expression would refer to 'x'. If 'x' had function type, the
|
|
/// path could be further extended with either "-> argument" or "-> result",
|
|
/// to indicate constraints on its argument or result type.
|
|
class ConstraintLocator : public llvm::FoldingSetNode {
|
|
public:
|
|
/// Describes the kind of a particular path element, e.g.,
|
|
/// "tuple element", "call result", "base of member lookup", etc.
|
|
enum PathElementKind : unsigned char {
|
|
#define LOCATOR_PATH_ELT(Name) Name,
|
|
#define ABSTRACT_LOCATOR_PATH_ELT(Name)
|
|
#include "ConstraintLocatorPathElts.def"
|
|
};
|
|
|
|
/// Determine the number of numeric values used for the given path
|
|
/// element kind.
|
|
static unsigned numNumericValuesInPathElement(PathElementKind kind) {
|
|
switch (kind) {
|
|
#define SIMPLE_LOCATOR_PATH_ELT(Name) case Name :
|
|
#include "ConstraintLocatorPathElts.def"
|
|
case GenericParameter:
|
|
case ProtocolRequirement:
|
|
case Witness:
|
|
return 0;
|
|
|
|
case ContextualType:
|
|
case OpenedGeneric:
|
|
case GenericArgument:
|
|
case NamedTupleElement:
|
|
case TupleElement:
|
|
case KeyPathComponent:
|
|
case SynthesizedArgument:
|
|
case KeyPathDynamicMember:
|
|
case TernaryBranch:
|
|
return 1;
|
|
|
|
case TypeParameterRequirement:
|
|
case ConditionalRequirement:
|
|
return 2;
|
|
|
|
case ApplyArgToParam:
|
|
return 3;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled PathElementKind in switch.");
|
|
}
|
|
|
|
/// Flags for efficiently recording certain information about a path.
|
|
/// All of this information should be re-derivable from the path.
|
|
///
|
|
/// Values are chosen so that an empty path has value 0 and the
|
|
/// flags for a concatenated paths is simply the bitwise-or of the
|
|
/// flags of the component paths.
|
|
enum Flag : unsigned {
|
|
/// Does this path involve a function conversion, i.e. a
|
|
/// FunctionArgument or FunctionResult node?
|
|
IsFunctionConversion = 0x1,
|
|
|
|
/// Does this path involve an argument being applied to a non-ephemeral
|
|
/// parameter?
|
|
IsNonEphemeralParam = 0x2,
|
|
};
|
|
|
|
/// One element in the path of a locator, which can include both
|
|
/// a kind (PathElementKind) and a value used to describe specific
|
|
/// kinds further (e.g., the position of a tuple element).
|
|
class PathElement {
|
|
/// Describes the kind of data stored here.
|
|
enum StoredKind : unsigned char {
|
|
StoredGenericParameter,
|
|
StoredProtocolRequirement,
|
|
StoredWitness,
|
|
StoredGenericSignature,
|
|
StoredKeyPathDynamicMemberBase,
|
|
StoredKindAndValue
|
|
};
|
|
|
|
/// The actual storage for the path element, which involves both a
|
|
/// kind and (potentially) a value.
|
|
///
|
|
/// The current storage involves a two-bit "storage kind", which selects
|
|
/// among the possible value stores. The value stores can either be an
|
|
/// archetype (for archetype path elements) or an unsigned value that
|
|
/// stores both the specific kind and the (optional) numeric value of that
|
|
/// kind. Use \c encodeStorage and \c decodeStorage to work with this value.
|
|
///
|
|
/// \note The "storage kind" is stored in the \c storedKind field.
|
|
uint64_t storage : 61;
|
|
|
|
/// The kind of value stored in \c storage. Valid values are those
|
|
/// from the StoredKind enum.
|
|
uint64_t storedKind : 3;
|
|
|
|
/// Encode a path element kind and a value into the storage format.
|
|
static uint64_t encodeStorage(PathElementKind kind, uint64_t value) {
|
|
return (value << 8) | kind;
|
|
}
|
|
|
|
/// Decode a storage value into path element kind and value.
|
|
static std::pair<PathElementKind, uint64_t>
|
|
decodeStorage(uint64_t storage) {
|
|
return { (PathElementKind)((unsigned)storage & 0xFF), storage >> 8 };
|
|
}
|
|
|
|
/// Retrieve a value associated with the path element.
|
|
unsigned getValue(unsigned index) const {
|
|
unsigned numValues = numNumericValuesInPathElement(getKind());
|
|
assert(index < numValues && "Index out of range for path element value");
|
|
|
|
// We pack values into 16 bit components of the storage, with value0
|
|
// being stored in the upper bits, valueN in the lower bits. Therefore we
|
|
// need to shift out any extra values in the lower bits.
|
|
auto extraValues = numValues - index - 1;
|
|
auto value = decodeStorage(storage).second >> (extraValues * 16);
|
|
return value & 0xFFFF;
|
|
}
|
|
|
|
PathElement(PathElementKind kind, unsigned value)
|
|
: storage(encodeStorage(kind, value)), storedKind(StoredKindAndValue)
|
|
{
|
|
assert(numNumericValuesInPathElement(kind) == 1 &&
|
|
"Path element kind does not require 1 value");
|
|
assert(value == getValue(0) && "value truncated");
|
|
}
|
|
|
|
PathElement(PathElementKind kind, unsigned value0, unsigned value1)
|
|
: storage(encodeStorage(kind, value0 << 16 | value1)),
|
|
storedKind(StoredKindAndValue)
|
|
{
|
|
assert(numNumericValuesInPathElement(kind) == 2 &&
|
|
"Path element kind does not require 2 values");
|
|
assert(value0 == getValue(0) && "value0 truncated");
|
|
assert(value1 == getValue(1) && "value1 truncated");
|
|
}
|
|
|
|
PathElement(PathElementKind kind, uint64_t value0, uint64_t value1,
|
|
uint64_t value2)
|
|
: storage(encodeStorage(kind, value0 << 32 | value1 << 16 | value2)),
|
|
storedKind(StoredKindAndValue) {
|
|
assert(numNumericValuesInPathElement(kind) == 3 &&
|
|
"Path element kind does not require 3 values");
|
|
assert(value0 == getValue(0) && "value0 truncated");
|
|
assert(value1 == getValue(1) && "value1 truncated");
|
|
assert(value2 == getValue(2) && "value2 truncated");
|
|
}
|
|
|
|
/// Store a path element with an associated pointer, accessible using
|
|
/// \c getStoredPointer.
|
|
template <typename T>
|
|
PathElement(StoredKind storedKind, T *ptr)
|
|
: storage((reinterpret_cast<uintptr_t>(ptr) >> 3)),
|
|
storedKind(storedKind) {
|
|
assert(ptr == getStoredPointer<T>());
|
|
}
|
|
|
|
/// Retrieve an associated pointer for the element. The type \c T must match
|
|
/// the type used when creating the path element.
|
|
template <typename T>
|
|
T *getStoredPointer() const {
|
|
assert(storedKind != StoredKindAndValue);
|
|
return reinterpret_cast<T *>(storage << 3);
|
|
}
|
|
|
|
friend class ConstraintLocator;
|
|
|
|
public:
|
|
#define LOCATOR_PATH_ELT(Name) class Name;
|
|
#include "ConstraintLocatorPathElts.def"
|
|
|
|
PathElement(PathElementKind kind)
|
|
: storage(encodeStorage(kind, 0)), storedKind(StoredKindAndValue)
|
|
{
|
|
assert(numNumericValuesInPathElement(kind) == 0 &&
|
|
"Path element requires value");
|
|
}
|
|
|
|
/// Retrieve the kind of path element.
|
|
PathElementKind getKind() const {
|
|
switch (static_cast<StoredKind>(storedKind)) {
|
|
case StoredGenericParameter:
|
|
return PathElementKind::GenericParameter;
|
|
|
|
case StoredProtocolRequirement:
|
|
return PathElementKind::ProtocolRequirement;
|
|
|
|
case StoredWitness:
|
|
return PathElementKind::Witness;
|
|
|
|
case StoredGenericSignature:
|
|
return PathElementKind::OpenedGeneric;
|
|
|
|
case StoredKeyPathDynamicMemberBase:
|
|
return PathElementKind::KeyPathDynamicMember;
|
|
|
|
case StoredKindAndValue:
|
|
return decodeStorage(storage).first;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled StoredKind in switch.");
|
|
}
|
|
|
|
/// Attempts to cast the path element to a specific \c LocatorPathElt
|
|
/// subclass, returning \c None if unsuccessful.
|
|
template <class T>
|
|
Optional<T> getAs() const {
|
|
if (auto *result = dyn_cast<T>(this))
|
|
return *result;
|
|
return None;
|
|
}
|
|
|
|
/// Cast the path element to a specific \c LocatorPathElt subclass.
|
|
template <class T>
|
|
T castTo() const { return *cast<T>(this); }
|
|
|
|
/// Checks whether the path element is a specific \c LocatorPathElt
|
|
/// subclass.
|
|
template <class T>
|
|
bool is() const { return isa<T>(this); }
|
|
|
|
/// Return the summary flags for this particular element.
|
|
unsigned getNewSummaryFlags() const;
|
|
|
|
bool isConditionalRequirement() const {
|
|
return getKind() == PathElementKind::ConditionalRequirement;
|
|
}
|
|
|
|
bool isKeyPathDynamicMember() const {
|
|
return getKind() == PathElementKind::KeyPathDynamicMember;
|
|
}
|
|
|
|
bool isKeyPathComponent() const {
|
|
return getKind() == PathElementKind::KeyPathComponent;
|
|
}
|
|
|
|
bool isClosureResult() const {
|
|
return getKind() == PathElementKind::ClosureResult;
|
|
}
|
|
|
|
/// Determine whether this element points to the contextual type
|
|
/// associated with result of a single expression function.
|
|
bool isResultOfSingleExprFunction() const;
|
|
};
|
|
|
|
/// Return the summary flags for an entire path.
|
|
static unsigned getSummaryFlagsForPath(ArrayRef<PathElement> path) {
|
|
unsigned flags = 0;
|
|
for (auto &elt : path) flags |= elt.getNewSummaryFlags();
|
|
return flags;
|
|
}
|
|
|
|
/// Retrieve the expression that anchors this locator.
|
|
Expr *getAnchor() const { return anchor; }
|
|
|
|
/// Retrieve the path that extends from the anchor to a specific
|
|
/// subcomponent.
|
|
ArrayRef<PathElement> getPath() const {
|
|
// FIXME: Alignment.
|
|
return llvm::makeArrayRef(reinterpret_cast<const PathElement *>(this + 1),
|
|
numPathElements);
|
|
}
|
|
|
|
unsigned getSummaryFlags() const { return summaryFlags; }
|
|
|
|
/// Determines whether this locator is part of a function
|
|
/// conversion.
|
|
bool isFunctionConversion() const {
|
|
return (getSummaryFlags() & IsFunctionConversion);
|
|
}
|
|
|
|
/// Checks whether this locator is describing an argument application for a
|
|
/// non-ephemeral parameter.
|
|
bool isNonEphemeralParameterApplication() const {
|
|
return (getSummaryFlags() & IsNonEphemeralParam);
|
|
}
|
|
|
|
/// Determine whether given locator points to the subscript reference
|
|
/// e.g. `foo[0]` or `\Foo.[0]`
|
|
bool isSubscriptMemberRef() const;
|
|
|
|
/// Determine whether give locator points to the type of the
|
|
/// key path expression.
|
|
bool isKeyPathType() const;
|
|
|
|
/// Determine whether given locator points to the keypath root
|
|
bool isKeyPathRoot() const;
|
|
|
|
/// Determine whether given locator points to the keypath value
|
|
bool isKeyPathValue() const;
|
|
|
|
/// Determine whether given locator points to the choice picked as
|
|
/// as result of the key path dynamic member lookup operation.
|
|
bool isResultOfKeyPathDynamicMemberLookup() const;
|
|
|
|
/// Determine whether this locator points to a subscript component
|
|
/// of the key path at some index.
|
|
bool isKeyPathSubscriptComponent() const;
|
|
|
|
/// Determine whether this locator points to the member found
|
|
/// via key path dynamic member lookup.
|
|
bool isForKeyPathDynamicMemberLookup() const;
|
|
|
|
/// Determine whether this locator points to one of the key path
|
|
/// components.
|
|
bool isForKeyPathComponent() const;
|
|
|
|
/// Determine whether this locator points to the generic parameter.
|
|
bool isForGenericParameter() const;
|
|
|
|
/// Determine whether this locator points to the element type of a
|
|
/// sequence in a for ... in ... loop.
|
|
bool isForSequenceElementType() const;
|
|
|
|
/// Determine whether this locator points to the contextual type.
|
|
bool isForContextualType() const;
|
|
|
|
/// Attempts to cast the first path element of the locator to a specific
|
|
/// \c LocatorPathElt subclass, returning \c None if either unsuccessful or
|
|
/// the locator has no path elements.
|
|
template <class T>
|
|
Optional<T> getFirstElementAs() const {
|
|
auto path = getPath();
|
|
if (path.empty())
|
|
return None;
|
|
|
|
return path[0].getAs<T>();
|
|
}
|
|
|
|
/// Casts the first path element of the locator to a specific
|
|
/// \c LocatorPathElt subclass, asserting that it has at least one element.
|
|
template <class T>
|
|
T castFirstElementTo() const {
|
|
auto path = getPath();
|
|
assert(!path.empty() && "Expected at least one path element!");
|
|
return path[0].castTo<T>();
|
|
}
|
|
|
|
/// Check whether the last element in the path of this locator (if any)
|
|
/// is a given \c LocatorPathElt subclass.
|
|
template <class T>
|
|
bool isLastElement() const {
|
|
auto path = getPath();
|
|
return !path.empty() && path.back().is<T>();
|
|
}
|
|
|
|
/// Attempts to cast the last path element of the locator to a specific
|
|
/// \c LocatorPathElt subclass, returning \c None if either unsuccessful or
|
|
/// the locator has no path elements.
|
|
template <class T>
|
|
Optional<T> getLastElementAs() const {
|
|
auto path = getPath();
|
|
if (path.empty())
|
|
return None;
|
|
|
|
return path.back().getAs<T>();
|
|
}
|
|
|
|
/// Casts the last path element of the locator to a specific \c LocatorPathElt
|
|
/// subclass, asserting that it has at least one element.
|
|
template <class T>
|
|
T castLastElementTo() const {
|
|
auto path = getPath();
|
|
assert(!path.empty() && "Expected at least one path element!");
|
|
return path.back().castTo<T>();
|
|
}
|
|
|
|
using PathIterator = ArrayRef<PathElement>::iterator;
|
|
using PathReverseIterator = ArrayRef<PathElement>::reverse_iterator;
|
|
|
|
/// Attempts to find the first element in the locator's path that is a
|
|
/// specific \c LocatorPathElt subclass, returning \c None if no such element
|
|
/// exists.
|
|
///
|
|
/// \param iter A reference to an iterator which will be used to iterate
|
|
/// over the locator's path.
|
|
template <class T>
|
|
Optional<T> findFirst(PathIterator &iter) const {
|
|
auto path = getPath();
|
|
auto end = path.end();
|
|
assert(iter >= path.begin() && iter <= end);
|
|
|
|
for (; iter != end; ++iter)
|
|
if (auto elt = iter->getAs<T>())
|
|
return elt;
|
|
return None;
|
|
}
|
|
|
|
/// Attempts to find the first element in the locator's path that is a
|
|
/// specific \c LocatorPathElt subclass, returning \c None if no such element
|
|
/// exists.
|
|
template <class T>
|
|
Optional<T> findFirst() const {
|
|
auto iter = getPath().begin();
|
|
return findFirst<T>(iter);
|
|
}
|
|
|
|
/// Attempts to find the last element in the locator's path that is a
|
|
/// specific \c LocatorPathElt subclass, returning \c None if no such element
|
|
/// exists.
|
|
///
|
|
/// \param iter A reference to a reverse iterator which will be used to
|
|
/// iterate over the locator's path.
|
|
template <class T>
|
|
Optional<T> findLast(PathReverseIterator &iter) const {
|
|
auto path = getPath();
|
|
auto end = path.rend();
|
|
assert(iter >= path.rbegin() && iter <= end);
|
|
|
|
for (; iter != end; ++iter)
|
|
if (auto elt = iter->getAs<T>())
|
|
return elt;
|
|
return None;
|
|
}
|
|
|
|
/// Attempts to find the last element in the locator's path that is a
|
|
/// specific \c LocatorPathElt subclass, returning \c None if no such element
|
|
/// exists.
|
|
template <class T>
|
|
Optional<T> findLast() const {
|
|
auto iter = getPath().rbegin();
|
|
return findLast<T>(iter);
|
|
}
|
|
|
|
/// If this locator points to generic parameter return its type.
|
|
GenericTypeParamType *getGenericParameter() const;
|
|
|
|
/// Produce a profile of this locator, for use in a folding set.
|
|
static void Profile(llvm::FoldingSetNodeID &id, Expr *anchor,
|
|
ArrayRef<PathElement> path);
|
|
|
|
/// Produce a profile of this locator, for use in a folding set.
|
|
void Profile(llvm::FoldingSetNodeID &id) {
|
|
Profile(id, anchor, getPath());
|
|
}
|
|
|
|
/// Produce a debugging dump of this locator.
|
|
SWIFT_DEBUG_DUMPER(dump(SourceManager *SM));
|
|
SWIFT_DEBUG_DUMPER(dump(ConstraintSystem *CS));
|
|
|
|
void dump(SourceManager *SM, raw_ostream &OS) const LLVM_ATTRIBUTE_USED;
|
|
|
|
private:
|
|
/// Initialize a constraint locator with an anchor and a path.
|
|
ConstraintLocator(Expr *anchor, ArrayRef<PathElement> path,
|
|
unsigned flags)
|
|
: anchor(anchor), numPathElements(path.size()), summaryFlags(flags)
|
|
{
|
|
// FIXME: Alignment.
|
|
std::copy(path.begin(), path.end(),
|
|
reinterpret_cast<PathElement *>(this + 1));
|
|
}
|
|
|
|
/// Create a new locator from an anchor and an array of path
|
|
/// elements.
|
|
///
|
|
/// Note that this routine only handles the allocation and initialization
|
|
/// of the locator. The ConstraintSystem object is responsible for
|
|
/// uniquing via the FoldingSet.
|
|
static ConstraintLocator *create(llvm::BumpPtrAllocator &allocator,
|
|
Expr *anchor,
|
|
ArrayRef<PathElement> path,
|
|
unsigned flags) {
|
|
// FIXME: Alignment.
|
|
unsigned size = sizeof(ConstraintLocator)
|
|
+ path.size() * sizeof(PathElement);
|
|
void *mem = allocator.Allocate(size, alignof(ConstraintLocator));
|
|
return new (mem) ConstraintLocator(anchor, path, flags);
|
|
}
|
|
|
|
/// The expression at which this locator is anchored.
|
|
Expr *anchor;
|
|
|
|
/// The number of path elements in this locator.
|
|
///
|
|
/// The actual path elements are stored after the locator.
|
|
unsigned numPathElements : 24;
|
|
|
|
/// A set of flags summarizing interesting properties of the path.
|
|
unsigned summaryFlags : 7;
|
|
|
|
friend class ConstraintSystem;
|
|
};
|
|
|
|
using LocatorPathElt = ConstraintLocator::PathElement;
|
|
|
|
// Disallow direct uses of isa/cast/dyn_cast on LocatorPathElt in favor of using
|
|
// is/castTo/getAs. This allows us to work with Optional<T> rather than pointers
|
|
// for getAs, and maintains consistency with ConstraintLocator's
|
|
// isLastElement/castLastElementTo/getLastElementAs members.
|
|
template <class X>
|
|
inline bool
|
|
isa(const LocatorPathElt &) = delete; // Use LocatorPathElt::is instead.
|
|
|
|
template <class X>
|
|
inline typename llvm::cast_retty<X, LocatorPathElt>::ret_type
|
|
cast(const LocatorPathElt &) = delete; // Use LocatorPathElt::castTo instead.
|
|
|
|
template <class X>
|
|
inline typename llvm::cast_retty<X, LocatorPathElt>::ret_type
|
|
dyn_cast(const LocatorPathElt &) = delete; // Use LocatorPathElt::getAs instead.
|
|
|
|
#define SIMPLE_LOCATOR_PATH_ELT(Name) \
|
|
class LocatorPathElt:: Name final : public LocatorPathElt { \
|
|
public: \
|
|
Name () : LocatorPathElt(ConstraintLocator:: Name) {} \
|
|
\
|
|
static bool classof(const LocatorPathElt *elt) { \
|
|
return elt->getKind() == ConstraintLocator:: Name; \
|
|
} \
|
|
};
|
|
#include "ConstraintLocatorPathElts.def"
|
|
|
|
// The following LocatorPathElt subclasses are used to expose accessors for
|
|
// specific path element information. They shouldn't introduce additional
|
|
// storage, as LocatorPathElt gets passed about by value.
|
|
|
|
class LocatorPathElt::ApplyArgToParam final : public LocatorPathElt {
|
|
public:
|
|
ApplyArgToParam(unsigned argIdx, unsigned paramIdx, ParameterTypeFlags flags)
|
|
: LocatorPathElt(ConstraintLocator::ApplyArgToParam, argIdx, paramIdx,
|
|
flags.toRaw()) {}
|
|
|
|
unsigned getArgIdx() const { return getValue(0); }
|
|
unsigned getParamIdx() const { return getValue(1); }
|
|
ParameterTypeFlags getParameterFlags() const {
|
|
return ParameterTypeFlags::fromRaw(getValue(2));
|
|
}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::ApplyArgToParam;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::SynthesizedArgument final : public LocatorPathElt {
|
|
public:
|
|
SynthesizedArgument(unsigned index)
|
|
: LocatorPathElt(ConstraintLocator::SynthesizedArgument, index) {}
|
|
|
|
unsigned getIndex() const { return getValue(0); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::SynthesizedArgument;
|
|
}
|
|
};
|
|
|
|
/// Abstract superclass for any kind of tuple element.
|
|
class LocatorPathElt::AnyTupleElement : public LocatorPathElt {
|
|
protected:
|
|
AnyTupleElement(PathElementKind kind, unsigned index)
|
|
: LocatorPathElt(kind, index) {
|
|
assert(classof(this) && "classof needs updating");
|
|
}
|
|
|
|
public:
|
|
unsigned getIndex() const { return getValue(0); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->is<LocatorPathElt::TupleElement>() ||
|
|
elt->is<LocatorPathElt::NamedTupleElement>();
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::TupleElement final
|
|
: public LocatorPathElt::AnyTupleElement {
|
|
public:
|
|
TupleElement(unsigned index)
|
|
: AnyTupleElement(ConstraintLocator::TupleElement, index) {}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::TupleElement;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::NamedTupleElement final
|
|
: public LocatorPathElt::AnyTupleElement {
|
|
public:
|
|
NamedTupleElement(unsigned index)
|
|
: AnyTupleElement(ConstraintLocator::NamedTupleElement, index) {}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::NamedTupleElement;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::KeyPathComponent final : public LocatorPathElt {
|
|
public:
|
|
KeyPathComponent(unsigned index)
|
|
: LocatorPathElt(ConstraintLocator::KeyPathComponent, index) {}
|
|
|
|
unsigned getIndex() const { return getValue(0); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::KeyPathComponent;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::GenericArgument final : public LocatorPathElt {
|
|
public:
|
|
GenericArgument(unsigned index)
|
|
: LocatorPathElt(ConstraintLocator::GenericArgument, index) {}
|
|
|
|
unsigned getIndex() const { return getValue(0); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::GenericArgument;
|
|
}
|
|
};
|
|
|
|
/// Abstract superclass for any kind of element that describes a requirement
|
|
/// placed on a type within a requirements clause.
|
|
class LocatorPathElt::AnyRequirement : public LocatorPathElt {
|
|
protected:
|
|
AnyRequirement(PathElementKind kind, unsigned index, RequirementKind reqKind)
|
|
: LocatorPathElt(kind, index, static_cast<unsigned>(reqKind)) {
|
|
assert(classof(this) && "classof needs updating");
|
|
}
|
|
|
|
public:
|
|
unsigned getIndex() const { return getValue(0); }
|
|
RequirementKind getRequirementKind() const {
|
|
return static_cast<RequirementKind>(getValue(1));
|
|
}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->is<LocatorPathElt::ConditionalRequirement>() ||
|
|
elt->is<LocatorPathElt::TypeParameterRequirement>();
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::ConditionalRequirement final
|
|
: public LocatorPathElt::AnyRequirement {
|
|
public:
|
|
ConditionalRequirement(unsigned index, RequirementKind reqKind)
|
|
: AnyRequirement(ConstraintLocator::ConditionalRequirement, index,
|
|
reqKind) {}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::ConditionalRequirement;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::TypeParameterRequirement final
|
|
: public LocatorPathElt::AnyRequirement {
|
|
public:
|
|
TypeParameterRequirement(unsigned index, RequirementKind reqKind)
|
|
: AnyRequirement(ConstraintLocator::TypeParameterRequirement, index,
|
|
reqKind) {}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::TypeParameterRequirement;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::ContextualType final : public LocatorPathElt {
|
|
public:
|
|
ContextualType(bool isForSingleExprFunction = false)
|
|
: LocatorPathElt(ConstraintLocator::ContextualType,
|
|
isForSingleExprFunction) {}
|
|
|
|
/// Whether this element points to the contextual type associated with the
|
|
/// result of a single expression function.
|
|
bool isForSingleExprFunction() const { return bool(getValue(0)); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::ContextualType;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::Witness final : public LocatorPathElt {
|
|
public:
|
|
Witness(ValueDecl *witness)
|
|
: LocatorPathElt(LocatorPathElt::StoredWitness, witness) {}
|
|
|
|
ValueDecl *getDecl() const { return getStoredPointer<ValueDecl>(); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::Witness;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::ProtocolRequirement final : public LocatorPathElt {
|
|
public:
|
|
ProtocolRequirement(ValueDecl *decl)
|
|
: LocatorPathElt(LocatorPathElt::StoredProtocolRequirement, decl) {}
|
|
|
|
ValueDecl *getDecl() const { return getStoredPointer<ValueDecl>(); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::ProtocolRequirement;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::GenericParameter final : public LocatorPathElt {
|
|
public:
|
|
GenericParameter(GenericTypeParamType *type)
|
|
: LocatorPathElt(LocatorPathElt::StoredGenericParameter, type) {
|
|
static_assert(alignof(GenericTypeParamType) >= 4,
|
|
"archetypes insufficiently aligned");
|
|
}
|
|
|
|
GenericTypeParamType *getType() const {
|
|
return getStoredPointer<GenericTypeParamType>();
|
|
}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::GenericParameter;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::OpenedGeneric final : public LocatorPathElt {
|
|
public:
|
|
OpenedGeneric(GenericSignature sig)
|
|
: LocatorPathElt(LocatorPathElt::StoredGenericSignature,
|
|
sig.getPointer()) {}
|
|
|
|
GenericSignature getSignature() const {
|
|
return getStoredPointer<GenericSignatureImpl>();
|
|
}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::OpenedGeneric;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::KeyPathDynamicMember final : public LocatorPathElt {
|
|
public:
|
|
KeyPathDynamicMember(NominalTypeDecl *keyPathDecl)
|
|
: LocatorPathElt(LocatorPathElt::StoredKeyPathDynamicMemberBase,
|
|
keyPathDecl) {}
|
|
|
|
NominalTypeDecl *getKeyPathDecl() const {
|
|
return getStoredPointer<NominalTypeDecl>();
|
|
}
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::KeyPathDynamicMember;
|
|
}
|
|
};
|
|
|
|
class LocatorPathElt::TernaryBranch final : public LocatorPathElt {
|
|
public:
|
|
TernaryBranch(bool side)
|
|
: LocatorPathElt(ConstraintLocator::TernaryBranch, side) {}
|
|
|
|
bool forThen() const { return bool(getValue(0)); }
|
|
|
|
bool forElse() const { return !bool(getValue(0)); }
|
|
|
|
static bool classof(const LocatorPathElt *elt) {
|
|
return elt->getKind() == ConstraintLocator::TernaryBranch;
|
|
}
|
|
};
|
|
|
|
/// A simple stack-only builder object that constructs a
|
|
/// constraint locator without allocating memory.
|
|
///
|
|
/// Use this object to build a path when passing components down the
|
|
/// stack, e.g., when recursively breaking apart types as in \c matchTypes().
|
|
class ConstraintLocatorBuilder {
|
|
/// The constraint locator that this builder extends or the
|
|
/// previous builder in the chain.
|
|
llvm::PointerUnion<ConstraintLocator *, ConstraintLocatorBuilder *>
|
|
previous;
|
|
|
|
/// The current path element, if there is one.
|
|
Optional<LocatorPathElt> element;
|
|
|
|
/// The current set of flags.
|
|
unsigned summaryFlags;
|
|
|
|
ConstraintLocatorBuilder(llvm::PointerUnion<ConstraintLocator *,
|
|
ConstraintLocatorBuilder *>
|
|
previous,
|
|
LocatorPathElt element,
|
|
unsigned flags)
|
|
: previous(previous), element(element), summaryFlags(flags) { }
|
|
|
|
public:
|
|
ConstraintLocatorBuilder(ConstraintLocator *locator)
|
|
: previous(locator), element(),
|
|
summaryFlags(locator ? locator->getSummaryFlags() : 0) { }
|
|
|
|
/// Retrieve a new path with the given path element added to it. Note that
|
|
/// the produced locator stores a reference to this locator, and therefore
|
|
/// must not outlive it.
|
|
ConstraintLocatorBuilder withPathElement(LocatorPathElt newElt) & {
|
|
unsigned newFlags = summaryFlags | newElt.getNewSummaryFlags();
|
|
if (!element)
|
|
return ConstraintLocatorBuilder(previous, newElt, newFlags);
|
|
|
|
return ConstraintLocatorBuilder(this, newElt, newFlags);
|
|
}
|
|
|
|
/// Determine whether this builder has an empty path.
|
|
bool hasEmptyPath() const {
|
|
return !element;
|
|
}
|
|
|
|
/// Return the set of flags that summarize this path.
|
|
unsigned getSummaryFlags() const {
|
|
return summaryFlags;
|
|
}
|
|
|
|
bool isFunctionConversion() const {
|
|
return (getSummaryFlags() & ConstraintLocator::IsFunctionConversion);
|
|
}
|
|
|
|
bool isForAutoclosureResult() const {
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
getLocatorParts(path);
|
|
|
|
auto last = std::find_if(
|
|
path.rbegin(), path.rend(), [](LocatorPathElt &elt) -> bool {
|
|
return elt.getKind() != ConstraintLocator::OptionalPayload &&
|
|
elt.getKind() != ConstraintLocator::GenericArgument;
|
|
});
|
|
|
|
if (last != path.rend())
|
|
return last->getKind() == ConstraintLocator::AutoclosureResult;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Checks whether this locator is describing an argument application for a
|
|
/// non-ephemeral parameter.
|
|
bool isNonEphemeralParameterApplication() const {
|
|
return (getSummaryFlags() & ConstraintLocator::IsNonEphemeralParam);
|
|
}
|
|
|
|
/// Retrieve the base constraint locator, on which this builder's
|
|
/// path is based.
|
|
ConstraintLocator *getBaseLocator() const {
|
|
for (auto prev = this;
|
|
prev;
|
|
prev = prev->previous.dyn_cast<ConstraintLocatorBuilder *>()) {
|
|
if (auto locator = prev->previous.dyn_cast<ConstraintLocator *>())
|
|
return locator;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get anchor expression associated with this locator builder.
|
|
Expr *getAnchor() const {
|
|
for (auto prev = this; prev;
|
|
prev = prev->previous.dyn_cast<ConstraintLocatorBuilder *>()) {
|
|
if (auto *locator = prev->previous.dyn_cast<ConstraintLocator *>())
|
|
return locator->getAnchor();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Retrieve the components of the complete locator, which includes
|
|
/// the anchor expression and the path.
|
|
Expr *getLocatorParts(SmallVectorImpl<LocatorPathElt> &path) const {
|
|
for (auto prev = this;
|
|
prev;
|
|
prev = prev->previous.dyn_cast<ConstraintLocatorBuilder *>()) {
|
|
// If there is an element at this level, add it.
|
|
if (prev->element)
|
|
path.push_back(*prev->element);
|
|
|
|
if (auto locator = prev->previous.dyn_cast<ConstraintLocator *>()) {
|
|
// We found the end of the chain. Reverse the path we've built up,
|
|
// then prepend the locator's path.
|
|
std::reverse(path.begin(), path.end());
|
|
path.insert(path.begin(),
|
|
locator->getPath().begin(),
|
|
locator->getPath().end());
|
|
return locator->getAnchor();
|
|
}
|
|
}
|
|
|
|
// There was no locator. Just reverse the path.
|
|
std::reverse(path.begin(), path.end());
|
|
return nullptr;
|
|
}
|
|
|
|
/// Attempt to simplify this locator to a single expression.
|
|
Expr *trySimplifyToExpr() const;
|
|
|
|
/// Retrieve the last element in the path, if there is one.
|
|
Optional<LocatorPathElt> last() const {
|
|
// If we stored a path element here, grab it.
|
|
if (element) return *element;
|
|
|
|
// Otherwise, look in the previous builder if there is one.
|
|
if (auto prevBuilder = previous.dyn_cast<ConstraintLocatorBuilder *>())
|
|
return prevBuilder->last();
|
|
|
|
// Next, check the constraint locator itself.
|
|
if (auto locator = previous.dyn_cast<ConstraintLocator *>()) {
|
|
auto path = locator->getPath();
|
|
if (path.empty()) return None;
|
|
return path.back();
|
|
}
|
|
|
|
return None;
|
|
}
|
|
};
|
|
|
|
} // end namespace constraints
|
|
} // end namespace swift
|
|
|
|
#endif // LLVM_SWIFT_SEMA_CONSTRAINTLOCATOR_H
|