mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This reverts commit43a3ab7e35, reversing changes made to4f39d9c749. # Conflicts: # include/swift/AST/Attr.def # lib/AST/Attr.cpp # lib/Serialization/Deserialization.cpp # lib/Serialization/ModuleFormat.h # lib/Serialization/Serialization.cpp
1186 lines
48 KiB
C++
1186 lines
48 KiB
C++
//===--- DerivedConformanceCodable.cpp - Derived Codable ------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements explicit derivation of the Encodable and Decodable
|
|
// protocols for a struct or class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TypeChecker.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/Stmt.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "DerivedConformances.h"
|
|
|
|
using namespace swift;
|
|
|
|
/// Returns whether the type represented by the given ClassDecl inherits from a
|
|
/// type which conforms to the given protocol.
|
|
///
|
|
/// \param target The \c ClassDecl whose superclass to look up.
|
|
///
|
|
/// \param proto The protocol to check conformance for.
|
|
static bool inheritsConformanceTo(ClassDecl *target, ProtocolDecl *proto) {
|
|
if (!target->hasSuperclass())
|
|
return false;
|
|
|
|
auto *superclassDecl = target->getSuperclassDecl();
|
|
auto *superclassModule = superclassDecl->getModuleContext();
|
|
return (bool)superclassModule->lookupConformance(target->getSuperclass(),
|
|
proto);
|
|
}
|
|
|
|
/// Returns whether the superclass of the given class conforms to Encodable.
|
|
///
|
|
/// \param target The \c ClassDecl whose superclass to check.
|
|
static bool superclassIsEncodable(ClassDecl *target) {
|
|
auto &C = target->getASTContext();
|
|
return inheritsConformanceTo(target,
|
|
C.getProtocol(KnownProtocolKind::Encodable));
|
|
}
|
|
|
|
/// Returns whether the superclass of the given class conforms to Decodable.
|
|
///
|
|
/// \param target The \c ClassDecl whose superclass to check.
|
|
static bool superclassIsDecodable(ClassDecl *target) {
|
|
auto &C = target->getASTContext();
|
|
return inheritsConformanceTo(target,
|
|
C.getProtocol(KnownProtocolKind::Decodable));
|
|
}
|
|
|
|
/// Represents the possible outcomes of checking whether a decl conforms to
|
|
/// Encodable or Decodable.
|
|
enum CodableConformanceType {
|
|
TypeNotValidated,
|
|
DoesNotConform,
|
|
Conforms
|
|
};
|
|
|
|
/// Returns whether the given type conforms to the given {En,De}codable
|
|
/// protocol.
|
|
///
|
|
/// \param context The \c DeclContext the var declarations belong to.
|
|
///
|
|
/// \param target The \c Type to validate.
|
|
///
|
|
/// \param proto The \c ProtocolDecl to check conformance to.
|
|
static CodableConformanceType typeConformsToCodable(DeclContext *context,
|
|
Type target, bool isIUO,
|
|
ProtocolDecl *proto) {
|
|
target = context->mapTypeIntoContext(target);
|
|
|
|
if (isIUO)
|
|
return typeConformsToCodable(context, target->getOptionalObjectType(),
|
|
false, proto);
|
|
|
|
auto conf = TypeChecker::conformsToProtocol(target, proto, context, None);
|
|
return conf.isInvalid() ? DoesNotConform : Conforms;
|
|
}
|
|
|
|
/// Returns whether the given variable conforms to the given {En,De}codable
|
|
/// protocol.
|
|
///
|
|
/// \param DC The \c DeclContext in which to check conformance.
|
|
///
|
|
/// \param varDecl The \c VarDecl to validate.
|
|
///
|
|
/// \param proto The \c ProtocolDecl to check conformance to.
|
|
static CodableConformanceType
|
|
varConformsToCodable(DeclContext *DC, VarDecl *varDecl, ProtocolDecl *proto) {
|
|
// If the decl doesn't yet have a type, we may be seeing it before the type
|
|
// checker has gotten around to evaluating its type. For example:
|
|
//
|
|
// func foo() {
|
|
// let b = Bar(from: decoder) // <- evaluates Bar conformance to Codable,
|
|
// // forcing derivation
|
|
// }
|
|
//
|
|
// struct Bar : Codable {
|
|
// var x: Int // <- we get to valuate x's var decl here, but its type
|
|
// // hasn't yet been evaluated
|
|
// }
|
|
bool isIUO = varDecl->isImplicitlyUnwrappedOptional();
|
|
return typeConformsToCodable(DC, varDecl->getValueInterfaceType(), isIUO,
|
|
proto);
|
|
}
|
|
|
|
/// Retrieve the variable name for the purposes of encoding/decoding.
|
|
static Identifier getVarNameForCoding(VarDecl *var) {
|
|
if (auto originalVar = var->getOriginalWrappedProperty())
|
|
return originalVar->getName();
|
|
|
|
return var->getName();
|
|
}
|
|
|
|
/// Validates the given CodingKeys enum decl by ensuring its cases are a 1-to-1
|
|
/// match with the stored vars of the given type.
|
|
///
|
|
/// \param codingKeysDecl The \c CodingKeys enum decl to validate.
|
|
static bool validateCodingKeysEnum(DerivedConformance &derived,
|
|
EnumDecl *codingKeysDecl) {
|
|
auto conformanceDC = derived.getConformanceContext();
|
|
|
|
// Look through all var decls in the given type.
|
|
// * Filter out lazy/computed vars.
|
|
// * Filter out ones which are present in the given decl (by name).
|
|
//
|
|
// If any of the entries in the CodingKeys decl are not present in the type
|
|
// by name, then this decl doesn't match.
|
|
// If there are any vars left in the type which don't have a default value
|
|
// (for Decodable), then this decl doesn't match.
|
|
|
|
// Here we'll hold on to properties by name -- when we've validated a property
|
|
// against its CodingKey entry, it will get removed.
|
|
llvm::SmallDenseMap<Identifier, VarDecl *, 8> properties;
|
|
for (auto *varDecl : derived.Nominal->getStoredProperties()) {
|
|
if (!varDecl->isUserAccessible())
|
|
continue;
|
|
|
|
properties[getVarNameForCoding(varDecl)] = varDecl;
|
|
}
|
|
|
|
bool propertiesAreValid = true;
|
|
for (auto elt : codingKeysDecl->getAllElements()) {
|
|
auto it = properties.find(elt->getName());
|
|
if (it == properties.end()) {
|
|
elt->diagnose(diag::codable_extraneous_codingkey_case_here,
|
|
elt->getName());
|
|
// TODO: Investigate typo-correction here; perhaps the case name was
|
|
// misspelled and we can provide a fix-it.
|
|
propertiesAreValid = false;
|
|
continue;
|
|
}
|
|
|
|
// We have a property to map to. Ensure it's {En,De}codable.
|
|
auto conformance =
|
|
varConformsToCodable(conformanceDC, it->second, derived.Protocol);
|
|
switch (conformance) {
|
|
case Conforms:
|
|
// The property was valid. Remove it from the list.
|
|
properties.erase(it);
|
|
break;
|
|
|
|
case DoesNotConform:
|
|
it->second->diagnose(diag::codable_non_conforming_property_here,
|
|
derived.getProtocolType(), it->second->getType());
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case TypeNotValidated:
|
|
// We don't produce a diagnostic for a type which failed to validate.
|
|
// This will produce a diagnostic elsewhere anyway.
|
|
propertiesAreValid = false;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!propertiesAreValid)
|
|
return false;
|
|
|
|
// If there are any remaining properties which the CodingKeys did not cover,
|
|
// we can skip them on encode. On decode, though, we can only skip them if
|
|
// they have a default value.
|
|
if (!properties.empty() &&
|
|
derived.Protocol->isSpecificProtocol(KnownProtocolKind::Decodable)) {
|
|
for (auto it = properties.begin(); it != properties.end(); ++it) {
|
|
// If the var is default initializable, then it need not have an explicit
|
|
// initial value.
|
|
auto *varDecl = it->second;
|
|
if (auto pbd = varDecl->getParentPatternBinding()) {
|
|
if (pbd->isDefaultInitializable())
|
|
continue;
|
|
}
|
|
|
|
if (varDecl->isParentInitialized())
|
|
continue;
|
|
|
|
// The var was not default initializable, and did not have an explicit
|
|
// initial value.
|
|
propertiesAreValid = false;
|
|
it->second->diagnose(diag::codable_non_decoded_property_here,
|
|
derived.getProtocolType(), it->first);
|
|
}
|
|
}
|
|
|
|
return propertiesAreValid;
|
|
}
|
|
|
|
/// A type which has information about the validity of an encountered
|
|
/// CodingKeys type.
|
|
struct CodingKeysValidity {
|
|
bool hasType;
|
|
bool isValid;
|
|
CodingKeysValidity(bool ht, bool iv) : hasType(ht), isValid(iv) {}
|
|
};
|
|
|
|
/// Returns whether the given type has a valid nested \c CodingKeys enum.
|
|
///
|
|
/// If the type has an invalid \c CodingKeys entity, produces diagnostics to
|
|
/// complain about the error. In this case, the error result will be true -- in
|
|
/// the case where we don't have a valid CodingKeys enum and have produced
|
|
/// diagnostics here, we don't want to then attempt to synthesize a CodingKeys
|
|
/// enum.
|
|
///
|
|
/// \returns A \c CodingKeysValidity value representing the result of the check.
|
|
static CodingKeysValidity hasValidCodingKeysEnum(DerivedConformance &derived) {
|
|
auto &C = derived.Context;
|
|
auto codingKeysDecls =
|
|
derived.Nominal->lookupDirect(DeclName(C.Id_CodingKeys));
|
|
if (codingKeysDecls.empty())
|
|
return CodingKeysValidity(/*hasType=*/false, /*isValid=*/true);
|
|
|
|
// Only ill-formed code would produce multiple results for this lookup.
|
|
// This would get diagnosed later anyway, so we're free to only look at the
|
|
// first result here.
|
|
auto result = codingKeysDecls.front();
|
|
|
|
auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
|
|
if (!codingKeysTypeDecl) {
|
|
result->diagnose(diag::codable_codingkeys_type_is_not_an_enum_here,
|
|
derived.getProtocolType());
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
|
|
}
|
|
|
|
// CodingKeys may be a typealias. If so, follow the alias to its canonical
|
|
// type.
|
|
auto codingKeysType = codingKeysTypeDecl->getDeclaredInterfaceType();
|
|
if (isa<TypeAliasDecl>(codingKeysTypeDecl))
|
|
codingKeysTypeDecl = codingKeysType->getAnyNominal();
|
|
|
|
// Ensure that the type we found conforms to the CodingKey protocol.
|
|
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
|
|
if (!TypeChecker::conformsToProtocol(codingKeysType, codingKeyProto,
|
|
derived.getConformanceContext(), None)) {
|
|
// If CodingKeys is a typealias which doesn't point to a valid nominal type,
|
|
// codingKeysTypeDecl will be nullptr here. In that case, we need to warn on
|
|
// the location of the usage, since there isn't an underlying type to
|
|
// diagnose on.
|
|
SourceLoc loc = codingKeysTypeDecl ?
|
|
codingKeysTypeDecl->getLoc() :
|
|
cast<TypeDecl>(result)->getLoc();
|
|
|
|
C.Diags.diagnose(loc, diag::codable_codingkeys_type_does_not_conform_here,
|
|
derived.getProtocolType());
|
|
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
|
|
}
|
|
|
|
// CodingKeys must be an enum for synthesized conformance.
|
|
auto *codingKeysEnum = dyn_cast<EnumDecl>(codingKeysTypeDecl);
|
|
if (!codingKeysEnum) {
|
|
codingKeysTypeDecl->diagnose(
|
|
diag::codable_codingkeys_type_is_not_an_enum_here,
|
|
derived.getProtocolType());
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
|
|
}
|
|
|
|
bool valid = validateCodingKeysEnum(derived, codingKeysEnum);
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/valid);
|
|
}
|
|
|
|
/// Synthesizes a new \c CodingKeys enum based on the {En,De}codable members of
|
|
/// the given type (\c nullptr if unable to synthesize).
|
|
///
|
|
/// If able to synthesize the enum, adds it directly to \c derived.Nominal.
|
|
static EnumDecl *synthesizeCodingKeysEnum(DerivedConformance &derived) {
|
|
auto &C = derived.Context;
|
|
// Create CodingKeys in the parent type always, because both
|
|
// Encodable and Decodable might want to use it, and they may have
|
|
// different conditional bounds. CodingKeys is simple and can't
|
|
// depend on those bounds.
|
|
auto target = derived.Nominal;
|
|
|
|
// We want to look through all the var declarations of this type to create
|
|
// enum cases based on those var names.
|
|
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
|
|
auto *codingKeyType = codingKeyProto->getDeclaredType();
|
|
TypeLoc protoTypeLoc[1] = {TypeLoc::withoutLoc(codingKeyType)};
|
|
MutableArrayRef<TypeLoc> inherited = C.AllocateCopy(protoTypeLoc);
|
|
|
|
auto *enumDecl = new (C) EnumDecl(SourceLoc(), C.Id_CodingKeys, SourceLoc(),
|
|
inherited, nullptr, target);
|
|
enumDecl->setImplicit();
|
|
enumDecl->setAccess(AccessLevel::Private);
|
|
|
|
// For classes which inherit from something Encodable or Decodable, we
|
|
// provide case `super` as the first key (to be used in encoding super).
|
|
auto *classDecl = dyn_cast<ClassDecl>(target);
|
|
if (classDecl &&
|
|
(superclassIsEncodable(classDecl) || superclassIsDecodable(classDecl))) {
|
|
// TODO: Ensure the class doesn't already have or inherit a variable named
|
|
// "`super`"; otherwise we will generate an invalid enum. In that case,
|
|
// diagnose and bail.
|
|
auto *super = new (C) EnumElementDecl(SourceLoc(), C.Id_super, nullptr,
|
|
SourceLoc(), nullptr, enumDecl);
|
|
super->setImplicit();
|
|
enumDecl->addMember(super);
|
|
}
|
|
|
|
// Each of these vars needs a case in the enum. For each var decl, if the type
|
|
// conforms to {En,De}codable, add it to the enum.
|
|
bool allConform = true;
|
|
for (auto *varDecl : target->getStoredProperties()) {
|
|
if (!varDecl->isUserAccessible())
|
|
continue;
|
|
|
|
// Despite creating the enum in the context of the type, we're
|
|
// concurrently checking the variables for the current protocol
|
|
// conformance being synthesized, for which we use the conformance
|
|
// context, not the type.
|
|
auto conformance = varConformsToCodable(derived.getConformanceContext(),
|
|
varDecl, derived.Protocol);
|
|
switch (conformance) {
|
|
case Conforms:
|
|
{
|
|
auto *elt = new (C) EnumElementDecl(SourceLoc(),
|
|
getVarNameForCoding(varDecl),
|
|
nullptr, SourceLoc(), nullptr,
|
|
enumDecl);
|
|
elt->setImplicit();
|
|
enumDecl->addMember(elt);
|
|
break;
|
|
}
|
|
|
|
case DoesNotConform:
|
|
varDecl->diagnose(diag::codable_non_conforming_property_here,
|
|
derived.getProtocolType(), varDecl->getType());
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case TypeNotValidated:
|
|
// We don't produce a diagnostic for a type which failed to validate.
|
|
// This will produce a diagnostic elsewhere anyway.
|
|
allConform = false;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!allConform)
|
|
return nullptr;
|
|
|
|
// Forcibly derive conformance to CodingKey.
|
|
TypeChecker::checkConformancesInContext(enumDecl, enumDecl);
|
|
|
|
// Add to the type.
|
|
target->addMember(enumDecl);
|
|
return enumDecl;
|
|
}
|
|
|
|
/// Fetches the \c CodingKeys enum nested in \c target, potentially reaching
|
|
/// through a typealias if the "CodingKeys" entity is a typealias.
|
|
///
|
|
/// This is only useful once a \c CodingKeys enum has been validated (via \c
|
|
/// hasValidCodingKeysEnum) or synthesized (via \c synthesizeCodingKeysEnum).
|
|
///
|
|
/// \param C The \c ASTContext to perform the lookup in.
|
|
///
|
|
/// \param target The target type to look in.
|
|
///
|
|
/// \return A retrieved canonical \c CodingKeys enum if \c target has a valid
|
|
/// one; \c nullptr otherwise.
|
|
static EnumDecl *lookupEvaluatedCodingKeysEnum(ASTContext &C,
|
|
NominalTypeDecl *target) {
|
|
auto codingKeyDecls = target->lookupDirect(DeclName(C.Id_CodingKeys));
|
|
if (codingKeyDecls.empty())
|
|
return nullptr;
|
|
|
|
auto *codingKeysDecl = codingKeyDecls.front();
|
|
if (auto *typealiasDecl = dyn_cast<TypeAliasDecl>(codingKeysDecl))
|
|
codingKeysDecl = typealiasDecl->getDeclaredInterfaceType()->getAnyNominal();
|
|
|
|
return dyn_cast<EnumDecl>(codingKeysDecl);
|
|
}
|
|
|
|
/// Creates a new var decl representing
|
|
///
|
|
/// var/let container : containerBase<keyType>
|
|
///
|
|
/// \c containerBase is the name of the type to use as the base (either
|
|
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
|
|
///
|
|
/// \param C The AST context to create the decl in.
|
|
///
|
|
/// \param DC The \c DeclContext to create the decl in.
|
|
///
|
|
/// \param keyedContainerDecl The generic type to bind the key type in.
|
|
///
|
|
/// \param keyType The key type to bind to the container type.
|
|
///
|
|
/// \param introducer Whether to declare the variable as immutable.
|
|
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
|
|
NominalTypeDecl *keyedContainerDecl,
|
|
Type keyType,
|
|
VarDecl::Introducer introducer) {
|
|
// Bind Keyed*Container to Keyed*Container<KeyType>
|
|
Type boundType[1] = {keyType};
|
|
auto containerType = BoundGenericType::get(keyedContainerDecl, Type(),
|
|
C.AllocateCopy(boundType));
|
|
|
|
// let container : Keyed*Container<KeyType>
|
|
auto *containerDecl = new (C) VarDecl(/*IsStatic=*/false, introducer,
|
|
/*IsCaptureList=*/false, SourceLoc(),
|
|
C.Id_container, DC);
|
|
containerDecl->setImplicit();
|
|
containerDecl->setInterfaceType(containerType);
|
|
return containerDecl;
|
|
}
|
|
|
|
/// Creates a new \c CallExpr representing
|
|
///
|
|
/// base.container(keyedBy: CodingKeys.self)
|
|
///
|
|
/// \param C The AST context to create the expression in.
|
|
///
|
|
/// \param DC The \c DeclContext to create any decls in.
|
|
///
|
|
/// \param base The base expression to make the call on.
|
|
///
|
|
/// \param returnType The return type of the call.
|
|
///
|
|
/// \param param The parameter to the call.
|
|
static CallExpr *createContainerKeyedByCall(ASTContext &C, DeclContext *DC,
|
|
Expr *base, Type returnType,
|
|
NominalTypeDecl *param) {
|
|
// (keyedBy:)
|
|
auto *keyedByDecl = new (C)
|
|
ParamDecl(SourceLoc(), SourceLoc(),
|
|
C.Id_keyedBy, SourceLoc(), C.Id_keyedBy, DC);
|
|
keyedByDecl->setImplicit();
|
|
keyedByDecl->setSpecifier(ParamSpecifier::Default);
|
|
keyedByDecl->setInterfaceType(returnType);
|
|
|
|
// base.container(keyedBy:) expr
|
|
auto *paramList = ParameterList::createWithoutLoc(keyedByDecl);
|
|
auto *unboundCall = UnresolvedDotExpr::createImplicit(C, base, C.Id_container,
|
|
paramList);
|
|
|
|
// CodingKeys.self expr
|
|
auto *codingKeysExpr = TypeExpr::createForDecl(DeclNameLoc(),
|
|
param,
|
|
param->getDeclContext(),
|
|
/*Implicit=*/true);
|
|
auto *codingKeysMetaTypeExpr = new (C) DotSelfExpr(codingKeysExpr,
|
|
SourceLoc(), SourceLoc());
|
|
|
|
// Full bound base.container(keyedBy: CodingKeys.self) call
|
|
Expr *args[1] = {codingKeysMetaTypeExpr};
|
|
Identifier argLabels[1] = {C.Id_keyedBy};
|
|
return CallExpr::createImplicit(C, unboundCall, C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
}
|
|
|
|
/// Looks up the property corresponding to the indicated coding key.
|
|
///
|
|
/// \param conformanceDC The DeclContext we're generating code within.
|
|
/// \param elt The CodingKeys enum case.
|
|
/// \param targetDecl The type to look up properties in.
|
|
///
|
|
/// \return A tuple containing the \c VarDecl for the property, the type that
|
|
/// should be passed when decoding it, and a boolean which is true if
|
|
/// \c encodeIfPresent/\c decodeIfPresent should be used for this property.
|
|
static std::tuple<VarDecl *, Type, bool>
|
|
lookupVarDeclForCodingKeysCase(DeclContext *conformanceDC,
|
|
EnumElementDecl *elt,
|
|
NominalTypeDecl *targetDecl) {
|
|
for (auto decl : targetDecl->lookupDirect(DeclName(elt->getName()))) {
|
|
if (auto *vd = dyn_cast<VarDecl>(decl)) {
|
|
// If we found a property with an attached wrapper, retrieve the
|
|
// backing property.
|
|
if (auto backingVar = vd->getPropertyWrapperBackingProperty())
|
|
vd = backingVar;
|
|
|
|
if (!vd->isStatic()) {
|
|
// This is the VarDecl we're looking for.
|
|
|
|
auto varType =
|
|
conformanceDC->mapTypeIntoContext(vd->getValueInterfaceType());
|
|
|
|
bool useIfPresentVariant = false;
|
|
|
|
if (auto objType = varType->getOptionalObjectType()) {
|
|
varType = objType;
|
|
useIfPresentVariant = true;
|
|
}
|
|
|
|
return std::make_tuple(vd, varType, useIfPresentVariant);
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Should have found at least 1 var decl");
|
|
}
|
|
|
|
/// Synthesizes the body for `func encode(to encoder: Encoder) throws`.
|
|
///
|
|
/// \param encodeDecl The function decl whose body to synthesize.
|
|
static std::pair<BraceStmt *, bool>
|
|
deriveBodyEncodable_encode(AbstractFunctionDecl *encodeDecl, void *) {
|
|
// struct Foo : Codable {
|
|
// var x: Int
|
|
// var y: String
|
|
//
|
|
// // Already derived by this point if possible.
|
|
// @derived enum CodingKeys : CodingKey {
|
|
// case x
|
|
// case y
|
|
// }
|
|
//
|
|
// @derived func encode(to encoder: Encoder) throws {
|
|
// var container = encoder.container(keyedBy: CodingKeys.self)
|
|
// try container.encode(x, forKey: .x)
|
|
// try container.encode(y, forKey: .y)
|
|
// }
|
|
// }
|
|
|
|
// The enclosing type decl.
|
|
auto conformanceDC = encodeDecl->getDeclContext();
|
|
auto *targetDecl = conformanceDC->getSelfNominalTypeDecl();
|
|
|
|
auto *funcDC = cast<DeclContext>(encodeDecl);
|
|
auto &C = funcDC->getASTContext();
|
|
|
|
// We'll want the CodingKeys enum for this type, potentially looking through
|
|
// a typealias.
|
|
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
|
|
// We should have bailed already if:
|
|
// a) The type does not have CodingKeys
|
|
// b) The type is not an enum
|
|
assert(codingKeysEnum && "Missing CodingKeys decl.");
|
|
|
|
SmallVector<ASTNode, 5> statements;
|
|
|
|
// Generate a reference to containerExpr ahead of time in case there are no
|
|
// properties to encode or decode, but the type is a class which inherits from
|
|
// something Codable and needs to encode super.
|
|
|
|
// let container : KeyedEncodingContainer<CodingKeys>
|
|
auto codingKeysType = codingKeysEnum->getDeclaredType();
|
|
auto *containerDecl = createKeyedContainer(C, funcDC,
|
|
C.getKeyedEncodingContainerDecl(),
|
|
codingKeysEnum->getDeclaredInterfaceType(),
|
|
VarDecl::Introducer::Var);
|
|
|
|
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
|
|
DeclNameLoc(), /*Implicit=*/true,
|
|
AccessSemantics::DirectToStorage);
|
|
|
|
// Need to generate
|
|
// `let container = encoder.container(keyedBy: CodingKeys.self)`
|
|
// This is unconditional because a type with no properties should encode as an
|
|
// empty container.
|
|
//
|
|
// `let container` (containerExpr) is generated above.
|
|
|
|
// encoder
|
|
auto encoderParam = encodeDecl->getParameters()->get(0);
|
|
auto *encoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(encoderParam),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// Bound encoder.container(keyedBy: CodingKeys.self) call
|
|
auto containerType = containerDecl->getInterfaceType();
|
|
auto *callExpr = createContainerKeyedByCall(C, funcDC, encoderExpr,
|
|
containerType, codingKeysEnum);
|
|
|
|
// Full `let container = encoder.container(keyedBy: CodingKeys.self)`
|
|
// binding.
|
|
auto *containerPattern = new (C) NamedPattern(containerDecl,
|
|
/*implicit=*/true);
|
|
auto *bindingDecl = PatternBindingDecl::createImplicit(
|
|
C, StaticSpellingKind::None, containerPattern, callExpr, funcDC);
|
|
statements.push_back(bindingDecl);
|
|
statements.push_back(containerDecl);
|
|
|
|
// Now need to generate `try container.encode(x, forKey: .x)` for all
|
|
// existing properties. Optional properties get `encodeIfPresent`.
|
|
for (auto *elt : codingKeysEnum->getAllElements()) {
|
|
VarDecl *varDecl;
|
|
Type varType; // not used in Encodable synthesis
|
|
bool useIfPresentVariant;
|
|
|
|
std::tie(varDecl, varType, useIfPresentVariant) =
|
|
lookupVarDeclForCodingKeysCase(conformanceDC, elt, targetDecl);
|
|
|
|
// self.x
|
|
auto *selfRef = DerivedConformance::createSelfDeclRef(encodeDecl);
|
|
auto *varExpr = new (C) MemberRefExpr(selfRef, SourceLoc(),
|
|
ConcreteDeclRef(varDecl),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// CodingKeys.x
|
|
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
|
|
auto *metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
|
|
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
|
|
|
|
// encode(_:forKey:)/encodeIfPresent(_:forKey:)
|
|
auto methodName = useIfPresentVariant ? C.Id_encodeIfPresent : C.Id_encode;
|
|
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
|
|
|
|
auto *encodeCall = UnresolvedDotExpr::createImplicit(C, containerExpr,
|
|
methodName, argNames);
|
|
|
|
// container.encode(self.x, forKey: CodingKeys.x)
|
|
Expr *args[2] = {varExpr, keyExpr};
|
|
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argNames));
|
|
|
|
// try container.encode(self.x, forKey: CodingKeys.x)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
}
|
|
|
|
// Classes which inherit from something Codable should encode super as well.
|
|
auto *classDecl = dyn_cast<ClassDecl>(targetDecl);
|
|
if (classDecl && superclassIsEncodable(classDecl)) {
|
|
// Need to generate `try super.encode(to: container.superEncoder())`
|
|
|
|
// superEncoder()
|
|
auto *method = UnresolvedDeclRefExpr::createImplicit(C, C.Id_superEncoder);
|
|
|
|
// container.superEncoder()
|
|
auto *superEncoderRef = new (C) DotSyntaxCallExpr(containerExpr,
|
|
SourceLoc(), method);
|
|
|
|
// encode(to:) expr
|
|
auto *encodeDeclRef = new (C) DeclRefExpr(ConcreteDeclRef(encodeDecl),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(encodeDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.encode(to:)
|
|
auto *encodeCall = new (C) DotSyntaxCallExpr(superRef, SourceLoc(),
|
|
encodeDeclRef);
|
|
|
|
// super.encode(to: container.superEncoder())
|
|
Expr *args[1] = {superEncoderRef};
|
|
Identifier argLabels[1] = {C.Id_to};
|
|
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
|
|
// try super.encode(to: container.superEncoder())
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
}
|
|
|
|
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
|
|
/*implicit=*/true);
|
|
return { body, /*isTypeChecked=*/false };
|
|
}
|
|
|
|
/// Synthesizes a function declaration for `encode(to: Encoder) throws` with a
|
|
/// lazily synthesized body for the given type.
|
|
///
|
|
/// Adds the function declaration to the given type before returning it.
|
|
static FuncDecl *deriveEncodable_encode(DerivedConformance &derived) {
|
|
auto &C = derived.Context;
|
|
auto conformanceDC = derived.getConformanceContext();
|
|
|
|
// Expected type: (Self) -> (Encoder) throws -> ()
|
|
// Constructed as: func type
|
|
// input: Self
|
|
// throws
|
|
// output: function type
|
|
// input: Encoder
|
|
// output: ()
|
|
// Create from the inside out:
|
|
|
|
auto encoderType = C.getEncoderDecl()->getDeclaredInterfaceType();
|
|
auto returnType = TupleType::getEmpty(C);
|
|
|
|
// Params: (Encoder)
|
|
auto *encoderParam = new (C)
|
|
ParamDecl(SourceLoc(), SourceLoc(), C.Id_to,
|
|
SourceLoc(), C.Id_encoder, conformanceDC);
|
|
encoderParam->setSpecifier(ParamSpecifier::Default);
|
|
encoderParam->setInterfaceType(encoderType);
|
|
|
|
ParameterList *params = ParameterList::createWithoutLoc(encoderParam);
|
|
|
|
// Func name: encode(to: Encoder)
|
|
DeclName name(C, C.Id_encode, params);
|
|
auto *encodeDecl = FuncDecl::create(
|
|
C, SourceLoc(), StaticSpellingKind::None, SourceLoc(), name, SourceLoc(),
|
|
/*Throws=*/true, SourceLoc(), nullptr, params,
|
|
TypeLoc::withoutLoc(returnType), conformanceDC);
|
|
encodeDecl->setImplicit();
|
|
encodeDecl->setSynthesized();
|
|
encodeDecl->setBodySynthesizer(deriveBodyEncodable_encode);
|
|
|
|
// This method should be marked as 'override' for classes inheriting Encodable
|
|
// conformance from a parent class.
|
|
auto *classDecl = dyn_cast<ClassDecl>(derived.Nominal);
|
|
if (classDecl && superclassIsEncodable(classDecl)) {
|
|
auto *attr = new (C) OverrideAttr(/*IsImplicit=*/true);
|
|
encodeDecl->getAttrs().add(attr);
|
|
}
|
|
|
|
encodeDecl->copyFormalAccessFrom(derived.Nominal,
|
|
/*sourceIsParentContext*/ true);
|
|
|
|
derived.addMembersToConformanceContext({encodeDecl});
|
|
|
|
return encodeDecl;
|
|
}
|
|
|
|
/// Synthesizes the body for `init(from decoder: Decoder) throws`.
|
|
///
|
|
/// \param initDecl The function decl whose body to synthesize.
|
|
static std::pair<BraceStmt *, bool>
|
|
deriveBodyDecodable_init(AbstractFunctionDecl *initDecl, void *) {
|
|
// struct Foo : Codable {
|
|
// var x: Int
|
|
// var y: String
|
|
//
|
|
// // Already derived by this point if possible.
|
|
// @derived enum CodingKeys : CodingKey {
|
|
// case x
|
|
// case y
|
|
// }
|
|
//
|
|
// @derived init(from decoder: Decoder) throws {
|
|
// let container = try decoder.container(keyedBy: CodingKeys.self)
|
|
// x = try container.decode(Type.self, forKey: .x)
|
|
// y = try container.decode(Type.self, forKey: .y)
|
|
// }
|
|
// }
|
|
|
|
// The enclosing type decl.
|
|
auto conformanceDC = initDecl->getDeclContext();
|
|
auto *targetDecl = conformanceDC->getSelfNominalTypeDecl();
|
|
|
|
auto *funcDC = cast<DeclContext>(initDecl);
|
|
auto &C = funcDC->getASTContext();
|
|
|
|
// We'll want the CodingKeys enum for this type, potentially looking through
|
|
// a typealias.
|
|
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
|
|
// We should have bailed already if:
|
|
// a) The type does not have CodingKeys
|
|
// b) The type is not an enum
|
|
assert(codingKeysEnum && "Missing CodingKeys decl.");
|
|
|
|
// Generate a reference to containerExpr ahead of time in case there are no
|
|
// properties to encode or decode, but the type is a class which inherits from
|
|
// something Codable and needs to decode super.
|
|
|
|
// let container : KeyedDecodingContainer<CodingKeys>
|
|
auto codingKeysType = codingKeysEnum->getDeclaredType();
|
|
auto *containerDecl = createKeyedContainer(C, funcDC,
|
|
C.getKeyedDecodingContainerDecl(),
|
|
codingKeysEnum->getDeclaredInterfaceType(),
|
|
VarDecl::Introducer::Let);
|
|
|
|
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
|
|
DeclNameLoc(), /*Implicit=*/true,
|
|
AccessSemantics::DirectToStorage);
|
|
|
|
SmallVector<ASTNode, 5> statements;
|
|
auto enumElements = codingKeysEnum->getAllElements();
|
|
if (!enumElements.empty()) {
|
|
// Need to generate
|
|
// `let container = try decoder.container(keyedBy: CodingKeys.self)`
|
|
// `let container` (containerExpr) is generated above.
|
|
|
|
// decoder
|
|
auto decoderParam = initDecl->getParameters()->get(0);
|
|
auto *decoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(decoderParam),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// Bound decoder.container(keyedBy: CodingKeys.self) call
|
|
auto containerType = containerDecl->getInterfaceType();
|
|
auto *callExpr = createContainerKeyedByCall(C, funcDC, decoderExpr,
|
|
containerType, codingKeysEnum);
|
|
|
|
// try decoder.container(keyedBy: CodingKeys.self)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*implicit=*/true);
|
|
|
|
// Full `let container = decoder.container(keyedBy: CodingKeys.self)`
|
|
// binding.
|
|
auto *containerPattern = new (C) NamedPattern(containerDecl,
|
|
/*implicit=*/true);
|
|
auto *bindingDecl = PatternBindingDecl::createImplicit(
|
|
C, StaticSpellingKind::None, containerPattern, tryExpr, funcDC);
|
|
statements.push_back(bindingDecl);
|
|
statements.push_back(containerDecl);
|
|
|
|
// Now need to generate `x = try container.decode(Type.self, forKey: .x)`
|
|
// for all existing properties. Optional properties get `decodeIfPresent`.
|
|
for (auto *elt : enumElements) {
|
|
VarDecl *varDecl;
|
|
Type varType;
|
|
bool useIfPresentVariant;
|
|
|
|
std::tie(varDecl, varType, useIfPresentVariant) =
|
|
lookupVarDeclForCodingKeysCase(conformanceDC, elt, targetDecl);
|
|
|
|
// Don't output a decode statement for a var let with a default value.
|
|
if (varDecl->isLet() && varDecl->isParentInitialized())
|
|
continue;
|
|
|
|
auto methodName =
|
|
useIfPresentVariant ? C.Id_decodeIfPresent : C.Id_decode;
|
|
|
|
// Type.self (where Type === type(of: x))
|
|
// Calculating the metatype needs to happen after potential Optional
|
|
// unwrapping in lookupVarDeclForCodingKeysCase().
|
|
auto *metaTyRef = TypeExpr::createImplicit(varType, C);
|
|
auto *targetExpr = new (C) DotSelfExpr(metaTyRef, SourceLoc(),
|
|
SourceLoc(), varType);
|
|
|
|
// CodingKeys.x
|
|
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
|
|
metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
|
|
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
|
|
|
|
// decode(_:forKey:)/decodeIfPresent(_:forKey:)
|
|
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
|
|
auto *decodeCall = UnresolvedDotExpr::createImplicit(
|
|
C, containerExpr, methodName, argNames);
|
|
|
|
// container.decode(Type.self, forKey: CodingKeys.x)
|
|
Expr *args[2] = {targetExpr, keyExpr};
|
|
auto *callExpr = CallExpr::createImplicit(C, decodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argNames));
|
|
|
|
// try container.decode(Type.self, forKey: CodingKeys.x)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
|
|
auto *selfRef = DerivedConformance::createSelfDeclRef(initDecl);
|
|
auto *varExpr = UnresolvedDotExpr::createImplicit(C, selfRef,
|
|
varDecl->getFullName());
|
|
auto *assignExpr = new (C) AssignExpr(varExpr, SourceLoc(), tryExpr,
|
|
/*Implicit=*/true);
|
|
statements.push_back(assignExpr);
|
|
}
|
|
}
|
|
|
|
// Classes which have a superclass must call super.init(from:) if the
|
|
// superclass is Decodable, or super.init() if it is not.
|
|
if (auto *classDecl = dyn_cast<ClassDecl>(targetDecl)) {
|
|
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
|
|
if (superclassIsDecodable(classDecl)) {
|
|
// Need to generate `try super.init(from: container.superDecoder())`
|
|
|
|
// container.superDecoder
|
|
auto *superDecoderRef =
|
|
UnresolvedDotExpr::createImplicit(C, containerExpr,
|
|
C.Id_superDecoder);
|
|
|
|
// container.superDecoder()
|
|
auto *superDecoderCall =
|
|
CallExpr::createImplicit(C, superDecoderRef, ArrayRef<Expr *>(),
|
|
ArrayRef<Identifier>());
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.init(from:)
|
|
auto *initCall = UnresolvedDotExpr::createImplicit(
|
|
C, superRef, DeclBaseName::createConstructor(), {C.Id_from});
|
|
|
|
// super.decode(from: container.superDecoder())
|
|
Expr *args[1] = {superDecoderCall};
|
|
Identifier argLabels[1] = {C.Id_from};
|
|
auto *callExpr = CallExpr::createImplicit(C, initCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
|
|
// try super.init(from: container.superDecoder())
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
} else {
|
|
// The explicit constructor name is a compound name taking no arguments.
|
|
DeclName initName(C, DeclBaseName::createConstructor(), ArrayRef<Identifier>());
|
|
|
|
// We need to look this up in the superclass to see if it throws.
|
|
auto result = superclassDecl->lookupDirect(initName);
|
|
|
|
// We should have bailed one level up if this were not available.
|
|
assert(!result.empty());
|
|
|
|
// If the init is failable, we should have already bailed one level
|
|
// above.
|
|
ConstructorDecl *superInitDecl = cast<ConstructorDecl>(result.front());
|
|
assert(!superInitDecl->isFailable());
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.init()
|
|
auto *superInitRef = UnresolvedDotExpr::createImplicit(C, superRef,
|
|
initName);
|
|
// super.init() call
|
|
Expr *callExpr = CallExpr::createImplicit(C, superInitRef,
|
|
ArrayRef<Expr *>(),
|
|
ArrayRef<Identifier>());
|
|
|
|
// If super.init throws, try super.init()
|
|
if (superInitDecl->hasThrows())
|
|
callExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
|
|
statements.push_back(callExpr);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
|
|
/*implicit=*/true);
|
|
return { body, /*isTypeChecked=*/false };
|
|
}
|
|
|
|
/// Synthesizes a function declaration for `init(from: Decoder) throws` with a
|
|
/// lazily synthesized body for the given type.
|
|
///
|
|
/// Adds the function declaration to the given type before returning it.
|
|
static ValueDecl *deriveDecodable_init(DerivedConformance &derived) {
|
|
auto &C = derived.Context;
|
|
|
|
auto classDecl = dyn_cast<ClassDecl>(derived.Nominal);
|
|
auto conformanceDC = derived.getConformanceContext();
|
|
|
|
// Expected type: (Self) -> (Decoder) throws -> (Self)
|
|
// Constructed as: func type
|
|
// input: Self
|
|
// throws
|
|
// output: function type
|
|
// input: Encoder
|
|
// output: Self
|
|
// Compute from the inside out:
|
|
|
|
// Params: (Decoder)
|
|
auto decoderType = C.getDecoderDecl()->getDeclaredInterfaceType();
|
|
auto *decoderParamDecl = new (C) ParamDecl(
|
|
SourceLoc(), SourceLoc(), C.Id_from,
|
|
SourceLoc(), C.Id_decoder, conformanceDC);
|
|
decoderParamDecl->setImplicit();
|
|
decoderParamDecl->setSpecifier(ParamSpecifier::Default);
|
|
decoderParamDecl->setInterfaceType(decoderType);
|
|
|
|
auto *paramList = ParameterList::createWithoutLoc(decoderParamDecl);
|
|
|
|
// Func name: init(from: Decoder)
|
|
DeclName name(C, DeclBaseName::createConstructor(), paramList);
|
|
|
|
auto *initDecl =
|
|
new (C) ConstructorDecl(name, SourceLoc(),
|
|
/*Failable=*/false,SourceLoc(),
|
|
/*Throws=*/true, SourceLoc(), paramList,
|
|
/*GenericParams=*/nullptr, conformanceDC);
|
|
initDecl->setImplicit();
|
|
initDecl->setSynthesized();
|
|
initDecl->setBodySynthesizer(&deriveBodyDecodable_init);
|
|
|
|
// This constructor should be marked as `required` for non-final classes.
|
|
if (classDecl && !classDecl->isFinal()) {
|
|
auto *reqAttr = new (C) RequiredAttr(/*IsImplicit=*/true);
|
|
initDecl->getAttrs().add(reqAttr);
|
|
}
|
|
|
|
initDecl->copyFormalAccessFrom(derived.Nominal,
|
|
/*sourceIsParentContext*/ true);
|
|
|
|
derived.addMembersToConformanceContext({initDecl});
|
|
|
|
return initDecl;
|
|
}
|
|
|
|
/// Returns whether the given type is valid for synthesizing {En,De}codable.
|
|
///
|
|
/// Checks to see whether the given type has a valid \c CodingKeys enum, and if
|
|
/// not, attempts to synthesize one for it.
|
|
///
|
|
/// \param requirement The requirement we want to synthesize.
|
|
static bool canSynthesize(DerivedConformance &derived, ValueDecl *requirement) {
|
|
// Before we attempt to look up (or more importantly, synthesize) a CodingKeys
|
|
// entity on target, we need to make sure the type is otherwise valid.
|
|
//
|
|
// If we are synthesizing Decodable and the target is a class with a
|
|
// superclass, our synthesized init(from:) will need to call either
|
|
// super.init(from:) or super.init() depending on whether the superclass is
|
|
// Decodable itself.
|
|
//
|
|
// If the required initializer is not available, we shouldn't attempt to
|
|
// synthesize CodingKeys.
|
|
auto proto = derived.Protocol;
|
|
auto *classDecl = dyn_cast<ClassDecl>(derived.Nominal);
|
|
if (proto->isSpecificProtocol(KnownProtocolKind::Decodable) && classDecl) {
|
|
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
|
|
DeclName memberName;
|
|
auto superType = superclassDecl->getDeclaredInterfaceType();
|
|
if (TypeChecker::conformsToProtocol(superType, proto, superclassDecl,
|
|
None)) {
|
|
// super.init(from:) must be accessible.
|
|
memberName = cast<ConstructorDecl>(requirement)->getFullName();
|
|
} else {
|
|
// super.init() must be accessible.
|
|
// Passing an empty params array constructs a compound name with no
|
|
// arguments (as opposed to a simple name when omitted).
|
|
memberName =
|
|
DeclName(derived.Context, DeclBaseName::createConstructor(),
|
|
ArrayRef<Identifier>());
|
|
}
|
|
|
|
auto result =
|
|
TypeChecker::lookupMember(superclassDecl, superType,
|
|
DeclNameRef(memberName));
|
|
|
|
if (result.empty()) {
|
|
// No super initializer for us to call.
|
|
superclassDecl->diagnose(diag::decodable_no_super_init_here,
|
|
requirement->getFullName(), memberName);
|
|
return false;
|
|
} else if (result.size() > 1) {
|
|
// There are multiple results for this lookup. We'll end up producing a
|
|
// diagnostic later complaining about duplicate methods (if we haven't
|
|
// already), so just bail with a general error.
|
|
return false;
|
|
} else {
|
|
auto *initializer =
|
|
cast<ConstructorDecl>(result.front().getValueDecl());
|
|
auto conformanceDC = derived.getConformanceContext();
|
|
if (!initializer->isDesignatedInit()) {
|
|
// We must call a superclass's designated initializer.
|
|
initializer->diagnose(diag::decodable_super_init_not_designated_here,
|
|
requirement->getFullName(), memberName);
|
|
return false;
|
|
} else if (!initializer->isAccessibleFrom(conformanceDC)) {
|
|
// Cannot call an inaccessible method.
|
|
auto accessScope = initializer->getFormalAccessScope(conformanceDC);
|
|
initializer->diagnose(diag::decodable_inaccessible_super_init_here,
|
|
requirement->getFullName(), memberName,
|
|
accessScope.accessLevelForDiagnostics());
|
|
return false;
|
|
} else if (initializer->isFailable()) {
|
|
// We can't call super.init() if it's failable, since init(from:)
|
|
// isn't failable.
|
|
initializer->diagnose(diag::decodable_super_init_is_failable_here,
|
|
requirement->getFullName(), memberName);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the target already has a valid CodingKeys enum, we won't need to
|
|
// synthesize one.
|
|
auto validity = hasValidCodingKeysEnum(derived);
|
|
|
|
// We found a type, but it wasn't valid.
|
|
if (!validity.isValid)
|
|
return false;
|
|
|
|
// We can try to synthesize a type here.
|
|
if (!validity.hasType) {
|
|
auto *synthesizedEnum = synthesizeCodingKeysEnum(derived);
|
|
if (!synthesizedEnum)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ValueDecl *DerivedConformance::deriveEncodable(ValueDecl *requirement) {
|
|
// We can only synthesize Encodable for structs and classes.
|
|
if (!isa<StructDecl>(Nominal) && !isa<ClassDecl>(Nominal))
|
|
return nullptr;
|
|
|
|
if (requirement->getBaseName() != Context.Id_encode) {
|
|
// Unknown requirement.
|
|
requirement->diagnose(diag::broken_encodable_requirement);
|
|
return nullptr;
|
|
}
|
|
|
|
if (checkAndDiagnoseDisallowedContext(requirement))
|
|
return nullptr;
|
|
|
|
// We're about to try to synthesize Encodable. If something goes wrong,
|
|
// we'll have to output at least one error diagnostic because we returned
|
|
// true from NominalTypeDecl::derivesProtocolConformance; if we don't, we're
|
|
// expected to return a witness here later (and we crash on an assertion).
|
|
// Producing a diagnostic stops compilation before then.
|
|
//
|
|
// A synthesis attempt will produce NOTE diagnostics throughout, but we'll
|
|
// want to collect them before displaying -- we want NOTEs to display
|
|
// _after_ a main diagnostic so we don't get a NOTE before the error it
|
|
// relates to.
|
|
//
|
|
// We can do this with a diagnostic transaction -- first collect failure
|
|
// diagnostics, then potentially collect notes. If we succeed in
|
|
// synthesizing Encodable, we can cancel the transaction and get rid of the
|
|
// fake failures.
|
|
DiagnosticTransaction diagnosticTransaction(Context.Diags);
|
|
ConformanceDecl->diagnose(diag::type_does_not_conform,
|
|
Nominal->getDeclaredType(), getProtocolType());
|
|
requirement->diagnose(diag::no_witnesses, diag::RequirementKind::Func,
|
|
requirement->getFullName(), getProtocolType(),
|
|
/*AddFixIt=*/false);
|
|
|
|
// Check other preconditions for synthesized conformance.
|
|
// This synthesizes a CodingKeys enum if possible.
|
|
if (canSynthesize(*this, requirement)) {
|
|
diagnosticTransaction.abort();
|
|
return deriveEncodable_encode(*this);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
ValueDecl *DerivedConformance::deriveDecodable(ValueDecl *requirement) {
|
|
// We can only synthesize Encodable for structs and classes.
|
|
if (!isa<StructDecl>(Nominal) && !isa<ClassDecl>(Nominal))
|
|
return nullptr;
|
|
|
|
if (requirement->getBaseName() != DeclBaseName::createConstructor()) {
|
|
// Unknown requirement.
|
|
requirement->diagnose(diag::broken_decodable_requirement);
|
|
return nullptr;
|
|
}
|
|
|
|
if (checkAndDiagnoseDisallowedContext(requirement))
|
|
return nullptr;
|
|
|
|
// We're about to try to synthesize Decodable. If something goes wrong,
|
|
// we'll have to output at least one error diagnostic. We need to collate
|
|
// diagnostics produced by canSynthesize and deriveDecodable_init to produce
|
|
// them in the right order -- see the comment in deriveEncodable for
|
|
// background on this transaction.
|
|
DiagnosticTransaction diagnosticTransaction(Context.Diags);
|
|
ConformanceDecl->diagnose(diag::type_does_not_conform,
|
|
Nominal->getDeclaredType(), getProtocolType());
|
|
requirement->diagnose(diag::no_witnesses, diag::RequirementKind::Constructor,
|
|
requirement->getFullName(), getProtocolType(),
|
|
/*AddFixIt=*/false);
|
|
|
|
// Check other preconditions for synthesized conformance.
|
|
// This synthesizes a CodingKeys enum if possible.
|
|
if (canSynthesize(*this, requirement)) {
|
|
diagnosticTransaction.abort();
|
|
return deriveDecodable_init(*this);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|