mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
When wrapping a function which is supposed to capture the caller’s location, there’s always a risk that the wrapper won’t capture the information the wrapped function wants; for instance, you might pass `(…, line, column)` where the callee expected `(…, column, line)`. This commit emits a warning when a call passes an explicit argument to something that has a default argument, and that explicit argument is itself a parameter with a default argument, and both parameters use magic identifiers, but they use *different* magic identifiers. This is partially in support of concise #file, but applies to all magic identifiers. Fixes rdar://problem/58588633.
4638 lines
168 KiB
C++
4638 lines
168 KiB
C++
//===--- MiscDiagnostics.cpp - AST-Level Diagnostics ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements AST-level diagnostics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MiscDiagnostics.h"
|
|
#include "TypeChecker.h"
|
|
#include "TypeCheckAvailability.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/NameLookupRequests.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "swift/Basic/StringExtras.h"
|
|
#include "swift/Parse/Lexer.h"
|
|
#include "swift/Parse/Parser.h"
|
|
#include "swift/Sema/IDETypeChecking.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
|
|
#define DEBUG_TYPE "Sema"
|
|
using namespace swift;
|
|
|
|
/// Return true if this expression is an implicit promotion from T to T?.
|
|
static Expr *isImplicitPromotionToOptional(Expr *E) {
|
|
if (E->isImplicit())
|
|
if (auto IIOE = dyn_cast<InjectIntoOptionalExpr>(
|
|
E->getSemanticsProvidingExpr()))
|
|
return IIOE->getSubExpr();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Diagnose syntactic restrictions of expressions.
|
|
///
|
|
/// - Module values may only occur as part of qualification.
|
|
/// - Metatype names cannot generally be used as values: they need a "T.self"
|
|
/// qualification unless used in narrow case (e.g. T() for construction).
|
|
/// - '_' may only exist on the LHS of an assignment expression.
|
|
/// - warn_unqualified_access values must not be accessed except via qualified
|
|
/// lookup.
|
|
/// - Partial application of some decls isn't allowed due to implementation
|
|
/// limitations.
|
|
/// - "&" (aka InOutExpressions) may only exist directly in function call
|
|
/// argument lists.
|
|
/// - 'self.init' and 'super.init' cannot be wrapped in a larger expression
|
|
/// or statement.
|
|
/// - Warn about promotions to optional in specific syntactic forms.
|
|
/// - Error about collection literals that default to Any collections in
|
|
/// invalid positions.
|
|
///
|
|
static void diagSyntacticUseRestrictions(const Expr *E, const DeclContext *DC,
|
|
bool isExprStmt) {
|
|
class DiagnoseWalker : public ASTWalker {
|
|
SmallPtrSet<Expr*, 4> AlreadyDiagnosedMetatypes;
|
|
SmallPtrSet<DeclRefExpr*, 4> AlreadyDiagnosedBitCasts;
|
|
|
|
/// Keep track of acceptable DiscardAssignmentExpr's.
|
|
SmallPtrSet<DiscardAssignmentExpr*, 2> CorrectDiscardAssignmentExprs;
|
|
|
|
/// Keep track of the arguments to CallExprs.
|
|
SmallPtrSet<Expr *, 2> CallArgs;
|
|
|
|
bool IsExprStmt;
|
|
|
|
public:
|
|
ASTContext &Ctx;
|
|
const DeclContext *DC;
|
|
|
|
DiagnoseWalker(const DeclContext *DC, bool isExprStmt)
|
|
: IsExprStmt(isExprStmt), Ctx(DC->getASTContext()), DC(DC) {}
|
|
|
|
// Not interested in going outside a basic expression.
|
|
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
|
|
return { false, S };
|
|
}
|
|
std::pair<bool, Pattern*> walkToPatternPre(Pattern *P) override {
|
|
return { false, P };
|
|
}
|
|
bool walkToDeclPre(Decl *D) override { return false; }
|
|
bool walkToTypeReprPre(TypeRepr *T) override { return true; }
|
|
|
|
bool shouldWalkIntoNonSingleExpressionClosure() override { return false; }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
// See through implicit conversions of the expression. We want to be able
|
|
// to associate the parent of this expression with the ultimate callee.
|
|
auto Base = E;
|
|
while (auto Conv = dyn_cast<ImplicitConversionExpr>(Base))
|
|
Base = Conv->getSubExpr();
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
|
|
// Verify metatype uses.
|
|
if (isa<TypeDecl>(DRE->getDecl())) {
|
|
if (isa<ModuleDecl>(DRE->getDecl()))
|
|
checkUseOfModule(DRE);
|
|
else
|
|
checkUseOfMetaTypeName(Base);
|
|
}
|
|
|
|
// Verify warn_unqualified_access uses.
|
|
checkUnqualifiedAccessUse(DRE);
|
|
|
|
// Verify that special decls are eliminated.
|
|
checkForDeclWithSpecialTypeCheckingSemantics(DRE);
|
|
|
|
// Verify that `unsafeBitCast` isn't misused.
|
|
checkForSuspiciousBitCasts(DRE, nullptr);
|
|
}
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(Base)) {
|
|
if (isa<TypeDecl>(MRE->getMember().getDecl()))
|
|
checkUseOfMetaTypeName(Base);
|
|
}
|
|
if (isa<TypeExpr>(Base))
|
|
checkUseOfMetaTypeName(Base);
|
|
|
|
if (auto *OLE = dyn_cast<ObjectLiteralExpr>(E)) {
|
|
CallArgs.insert(OLE->getArg());
|
|
}
|
|
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(E))
|
|
CallArgs.insert(SE->getIndex());
|
|
|
|
if (auto *KPE = dyn_cast<KeyPathExpr>(E)) {
|
|
for (auto Comp : KPE->getComponents()) {
|
|
if (auto *Arg = Comp.getIndexExpr())
|
|
CallArgs.insert(Arg);
|
|
}
|
|
}
|
|
|
|
// Check function calls, looking through implicit conversions on the
|
|
// function and inspecting the arguments directly.
|
|
if (auto *Call = dyn_cast<ApplyExpr>(E)) {
|
|
// Record call arguments.
|
|
CallArgs.insert(Call->getArg());
|
|
|
|
// Warn about surprising implicit optional promotions.
|
|
checkOptionalPromotions(Call);
|
|
|
|
// Check the callee, looking through implicit conversions.
|
|
auto base = Call->getFn();
|
|
unsigned uncurryLevel = 0;
|
|
while (auto conv = dyn_cast<ImplicitConversionExpr>(base))
|
|
base = conv->getSubExpr();
|
|
|
|
const auto findDynamicMemberRefExpr =
|
|
[](Expr *e) -> DynamicMemberRefExpr* {
|
|
if (auto open = dyn_cast<OpenExistentialExpr>(e)) {
|
|
return dyn_cast<DynamicMemberRefExpr>(open->getSubExpr());
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
if (auto force = dyn_cast<ForceValueExpr>(base)) {
|
|
if (auto ref = findDynamicMemberRefExpr(force->getSubExpr()))
|
|
base = ref;
|
|
} else if (auto bind = dyn_cast<BindOptionalExpr>(base)) {
|
|
if (auto ref = findDynamicMemberRefExpr(bind->getSubExpr()))
|
|
base = ref;
|
|
}
|
|
|
|
while (auto ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(base))
|
|
base = ignoredBase->getRHS();
|
|
|
|
ConcreteDeclRef callee;
|
|
if (auto *calleeDRE = dyn_cast<DeclRefExpr>(base)) {
|
|
checkForSuspiciousBitCasts(calleeDRE, Call);
|
|
callee = calleeDRE->getDeclRef();
|
|
|
|
// Otherwise, try to drill down through member calls for the purposes
|
|
// of argument-matching code below.
|
|
} else if (auto selfApply = dyn_cast<SelfApplyExpr>(base)) {
|
|
uncurryLevel++;
|
|
base = selfApply->getSemanticFn();
|
|
if (auto calleeDRE = dyn_cast<DeclRefExpr>(base))
|
|
callee = calleeDRE->getDeclRef();
|
|
|
|
// Otherwise, check for a dynamic member.
|
|
} else if (auto dynamicMRE = dyn_cast<DynamicMemberRefExpr>(base)) {
|
|
uncurryLevel++;
|
|
callee = dynamicMRE->getMember();
|
|
}
|
|
|
|
if (callee) {
|
|
visitArguments(Call, [&](unsigned argIndex, Expr *arg) {
|
|
checkMagicIdentifierMismatch(callee, uncurryLevel, argIndex, arg);
|
|
|
|
// InOutExprs can be wrapped in some implicit casts.
|
|
Expr *unwrapped = arg;
|
|
if (auto *IIO = dyn_cast<InjectIntoOptionalExpr>(arg))
|
|
unwrapped = IIO->getSubExpr();
|
|
|
|
if (isa<InOutToPointerExpr>(unwrapped) ||
|
|
isa<ArrayToPointerExpr>(unwrapped) ||
|
|
isa<ErasureExpr>(unwrapped)) {
|
|
auto operand =
|
|
cast<ImplicitConversionExpr>(unwrapped)->getSubExpr();
|
|
if (auto *IOE = dyn_cast<InOutExpr>(operand))
|
|
operand = IOE->getSubExpr();
|
|
|
|
// Also do some additional work based on how the function uses
|
|
// the argument.
|
|
checkConvertedPointerArgument(callee, uncurryLevel, argIndex,
|
|
unwrapped, operand);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// If we have an assignment expression, scout ahead for acceptable _'s.
|
|
if (auto *AE = dyn_cast<AssignExpr>(E))
|
|
markAcceptableDiscardExprs(AE->getDest());
|
|
|
|
/// Diagnose a '_' that isn't on the immediate LHS of an assignment.
|
|
if (auto *DAE = dyn_cast<DiscardAssignmentExpr>(E)) {
|
|
if (!CorrectDiscardAssignmentExprs.count(DAE) &&
|
|
!DAE->getType()->hasError())
|
|
Ctx.Diags.diagnose(DAE->getLoc(),
|
|
diag::discard_expr_outside_of_assignment);
|
|
}
|
|
|
|
// Diagnose 'self.init' or 'super.init' nested in another expression
|
|
// or closure.
|
|
if (auto *rebindSelfExpr = dyn_cast<RebindSelfInConstructorExpr>(E)) {
|
|
if (!Parent.isNull() || !IsExprStmt || DC->getParent()->isLocalContext()) {
|
|
bool isChainToSuper;
|
|
(void)rebindSelfExpr->getCalledConstructor(isChainToSuper);
|
|
Ctx.Diags.diagnose(E->getLoc(), diag::init_delegation_nested,
|
|
isChainToSuper, !IsExprStmt);
|
|
}
|
|
}
|
|
|
|
// Diagnose single-element tuple expressions.
|
|
if (auto *tupleExpr = dyn_cast<TupleExpr>(E)) {
|
|
if (!CallArgs.count(tupleExpr)) {
|
|
if (tupleExpr->getNumElements() == 1) {
|
|
Ctx.Diags.diagnose(tupleExpr->getElementNameLoc(0),
|
|
diag::tuple_single_element)
|
|
.fixItRemoveChars(tupleExpr->getElementNameLoc(0),
|
|
tupleExpr->getElement(0)->getStartLoc());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Diagnose tuple expressions with duplicate element label
|
|
if (auto *tupleExpr = dyn_cast<TupleExpr>(E)) {
|
|
// FIXME: Duplicate labels on enum payloads should be diagnosed
|
|
// when declared, not when called.
|
|
bool isEnumCase = false;
|
|
if (auto CE = dyn_cast_or_null<CallExpr>(Parent.getAsExpr())) {
|
|
auto calledValue = CE->getCalledValue();
|
|
if (calledValue) {
|
|
isEnumCase = isa<EnumElementDecl>(calledValue);
|
|
}
|
|
}
|
|
|
|
if ((!CallArgs.count(tupleExpr)) || isEnumCase) {
|
|
auto diagnose = false;
|
|
|
|
llvm::SmallDenseSet<Identifier> names;
|
|
names.reserve(tupleExpr->getNumElements());
|
|
|
|
for (auto name : tupleExpr->getElementNames()) {
|
|
if (name.empty())
|
|
continue;
|
|
|
|
if (names.count(name) == 1) {
|
|
diagnose = true;
|
|
break;
|
|
}
|
|
|
|
names.insert(name);
|
|
}
|
|
|
|
if (diagnose) {
|
|
Ctx.Diags.diagnose(tupleExpr->getLoc(),
|
|
diag::tuple_duplicate_label);
|
|
}
|
|
}
|
|
}
|
|
|
|
return { true, E };
|
|
}
|
|
|
|
/// Visit the argument/s represented by either a ParenExpr or TupleExpr,
|
|
/// unshuffling if needed. If any other kind of expression, will pass it
|
|
/// straight back.
|
|
static void argExprVisitArguments(Expr* arg,
|
|
llvm::function_ref
|
|
<void(unsigned, Expr*)> fn) {
|
|
// The argument is either a ParenExpr or TupleExpr.
|
|
if (auto *TE = dyn_cast<TupleExpr>(arg)) {
|
|
auto elts = TE->getElements();
|
|
for (auto i : indices(elts))
|
|
fn(i, elts[i]);
|
|
} else if (auto *PE = dyn_cast<ParenExpr>(arg)) {
|
|
fn(0, PE->getSubExpr());
|
|
} else {
|
|
fn(0, arg);
|
|
}
|
|
}
|
|
|
|
static void visitArguments(ApplyExpr *apply,
|
|
llvm::function_ref<void(unsigned, Expr*)> fn) {
|
|
auto *arg = apply->getArg();
|
|
argExprVisitArguments(arg, fn);
|
|
}
|
|
|
|
static Expr *lookThroughArgument(Expr *arg) {
|
|
while (1) {
|
|
if (auto conv = dyn_cast<ImplicitConversionExpr>(arg))
|
|
arg = conv->getSubExpr();
|
|
else if (auto *PE = dyn_cast<ParenExpr>(arg))
|
|
arg = PE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
return arg;
|
|
}
|
|
|
|
void checkConvertedPointerArgument(ConcreteDeclRef callee,
|
|
unsigned uncurryLevel,
|
|
unsigned argIndex,
|
|
Expr *pointerExpr,
|
|
Expr *storage) {
|
|
if (!isPointerIdentityArgument(callee, uncurryLevel, argIndex))
|
|
return;
|
|
|
|
// Flag that the argument is non-accessing.
|
|
if (auto inout = dyn_cast<InOutToPointerExpr>(pointerExpr)) {
|
|
inout->setNonAccessing(true);
|
|
} else if (auto array = dyn_cast<ArrayToPointerExpr>(pointerExpr)) {
|
|
array->setNonAccessing(true);
|
|
}
|
|
|
|
// TODO: warn if taking the address of 'storage' will definitely
|
|
// yield a temporary address.
|
|
}
|
|
|
|
/// Is the given call argument, known to be of pointer type, just used
|
|
/// for its pointer identity?
|
|
bool isPointerIdentityArgument(ConcreteDeclRef ref, unsigned uncurryLevel,
|
|
unsigned argIndex) {
|
|
// FIXME: derive this from an attribute instead of hacking it based
|
|
// on the target name!
|
|
auto decl = ref.getDecl();
|
|
|
|
// Assume that == and != are non-accessing uses.
|
|
if (decl->isOperator()) {
|
|
auto op = decl->getBaseName();
|
|
if (op == "==" || op == "!=")
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// NSObject.addObserver(_:forKeyPath:options:context:)
|
|
if (uncurryLevel == 1 && argIndex == 3) {
|
|
return decl->getFullName().isCompoundName("addObserver",
|
|
{ "", "forKeyPath",
|
|
"options", "context" });
|
|
}
|
|
|
|
// NSObject.removeObserver(_:forKeyPath:context:)
|
|
if (uncurryLevel == 1 && argIndex == 2) {
|
|
return decl->getFullName().isCompoundName("removeObserver",
|
|
{ "", "forKeyPath",
|
|
"context" });
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// We have a collection literal with a defaulted type, e.g. of [Any]. Emit
|
|
/// an error if it was inferred to this type in an invalid context, which is
|
|
/// one in which the parent expression is not itself a collection literal.
|
|
void checkTypeDefaultedCollectionExpr(CollectionExpr *c) {
|
|
// If the parent is a non-expression, or is not itself a literal, then
|
|
// produce an error with a fixit to add the type as an explicit
|
|
// annotation.
|
|
if (c->getNumElements() == 0)
|
|
Ctx.Diags.diagnose(c->getLoc(), diag::collection_literal_empty)
|
|
.highlight(c->getSourceRange());
|
|
else {
|
|
assert(c->getType()->hasTypeRepr() &&
|
|
"a defaulted type should always be printable");
|
|
Ctx.Diags.diagnose(c->getLoc(), diag::collection_literal_heterogeneous,
|
|
c->getType())
|
|
.highlight(c->getSourceRange())
|
|
.fixItInsertAfter(c->getEndLoc(), " as " + c->getType()->getString());
|
|
}
|
|
}
|
|
|
|
|
|
/// Scout out the specified destination of an AssignExpr to recursively
|
|
/// identify DiscardAssignmentExpr in legal places. We can only allow them
|
|
/// in simple pattern-like expressions, so we reject anything complex here.
|
|
void markAcceptableDiscardExprs(Expr *E) {
|
|
if (!E) return;
|
|
|
|
if (auto *PE = dyn_cast<ParenExpr>(E))
|
|
return markAcceptableDiscardExprs(PE->getSubExpr());
|
|
if (auto *TE = dyn_cast<TupleExpr>(E)) {
|
|
for (auto &elt : TE->getElements())
|
|
markAcceptableDiscardExprs(elt);
|
|
return;
|
|
}
|
|
if (auto *DAE = dyn_cast<DiscardAssignmentExpr>(E))
|
|
CorrectDiscardAssignmentExprs.insert(DAE);
|
|
|
|
// Otherwise, we can't support this.
|
|
}
|
|
|
|
void checkMagicIdentifierMismatch(ConcreteDeclRef callee,
|
|
unsigned uncurryLevel,
|
|
unsigned argIndex,
|
|
Expr *arg) {
|
|
// We only care about args in the arg list.
|
|
if (uncurryLevel != (callee.getDecl()->hasCurriedSelf() ? 1 : 0))
|
|
return;
|
|
|
|
// Get underlying params for both callee and caller, if declared.
|
|
auto *calleeParam = getParameterAt(callee.getDecl(), argIndex);
|
|
auto *callerParam = dyn_cast_or_null<ParamDecl>(
|
|
arg->getReferencedDecl(/*stopAtParenExpr=*/true).getDecl()
|
|
);
|
|
|
|
// (Otherwise, we don't need to do anything.)
|
|
if (!calleeParam || !callerParam)
|
|
return;
|
|
|
|
auto calleeDefaultArg = getMagicIdentifierDefaultArgKind(calleeParam);
|
|
auto callerDefaultArg = getMagicIdentifierDefaultArgKind(callerParam);
|
|
|
|
// If one of the parameters doesn't have a default arg, or they both have
|
|
// the same one, everything's fine.
|
|
if (!calleeDefaultArg || !callerDefaultArg ||
|
|
*calleeDefaultArg == *callerDefaultArg)
|
|
return;
|
|
|
|
StringRef calleeDefaultArgString =
|
|
MagicIdentifierLiteralExpr::getKindString(*calleeDefaultArg);
|
|
StringRef callerDefaultArgString =
|
|
MagicIdentifierLiteralExpr::getKindString(*callerDefaultArg);
|
|
|
|
// Emit main warning
|
|
Ctx.Diags.diagnose(arg->getLoc(), diag::default_magic_identifier_mismatch,
|
|
callerParam->getName(), callerDefaultArgString,
|
|
calleeParam->getName(), calleeDefaultArgString);
|
|
|
|
// Add "change caller default arg" fixit
|
|
SourceLoc callerDefaultArgLoc =
|
|
callerParam->getStructuralDefaultExpr()->getLoc();
|
|
Ctx.Diags.diagnose(callerDefaultArgLoc,
|
|
diag::change_caller_default_to_match_callee,
|
|
callerParam->getName(), calleeDefaultArgString)
|
|
.fixItReplace(callerDefaultArgLoc, calleeDefaultArgString);
|
|
|
|
// Add "silence with parens" fixit
|
|
Ctx.Diags.diagnose(arg->getLoc(),
|
|
diag::silence_default_magic_identifier_mismatch)
|
|
.fixItInsert(arg->getStartLoc(), "(")
|
|
.fixItInsertAfter(arg->getEndLoc(), ")");
|
|
|
|
// Point to callee parameter
|
|
Ctx.Diags.diagnose(calleeParam, diag::decl_declared_here,
|
|
calleeParam->getFullName());
|
|
}
|
|
|
|
Optional<MagicIdentifierLiteralExpr::Kind>
|
|
getMagicIdentifierDefaultArgKind(const ParamDecl *param) {
|
|
switch (param->getDefaultArgumentKind()) {
|
|
case DefaultArgumentKind::Column:
|
|
return MagicIdentifierLiteralExpr::Kind::Column;
|
|
case DefaultArgumentKind::DSOHandle:
|
|
return MagicIdentifierLiteralExpr::Kind::DSOHandle;
|
|
case DefaultArgumentKind::File:
|
|
return MagicIdentifierLiteralExpr::Kind::File;
|
|
case DefaultArgumentKind::FilePath:
|
|
return MagicIdentifierLiteralExpr::Kind::FilePath;
|
|
case DefaultArgumentKind::Function:
|
|
return MagicIdentifierLiteralExpr::Kind::Function;
|
|
case DefaultArgumentKind::Line:
|
|
return MagicIdentifierLiteralExpr::Kind::Line;
|
|
|
|
case DefaultArgumentKind::None:
|
|
case DefaultArgumentKind::Normal:
|
|
case DefaultArgumentKind::Inherited:
|
|
case DefaultArgumentKind::NilLiteral:
|
|
case DefaultArgumentKind::EmptyArray:
|
|
case DefaultArgumentKind::EmptyDictionary:
|
|
case DefaultArgumentKind::StoredProperty:
|
|
return None;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled DefaultArgumentKind in "
|
|
"getMagicIdentifierDefaultArgKind");
|
|
}
|
|
|
|
void checkUseOfModule(DeclRefExpr *E) {
|
|
// Allow module values as a part of:
|
|
// - ignored base expressions;
|
|
// - expressions that failed to type check.
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
|
|
isa<UnresolvedDotExpr>(ParentExpr))
|
|
return;
|
|
}
|
|
|
|
Ctx.Diags.diagnose(E->getStartLoc(), diag::value_of_module_type);
|
|
}
|
|
|
|
// Diagnose metatype values that don't appear as part of a property,
|
|
// method, or constructor reference.
|
|
void checkUseOfMetaTypeName(Expr *E) {
|
|
// If we've already checked this at a higher level, we're done.
|
|
if (!AlreadyDiagnosedMetatypes.insert(E).second)
|
|
return;
|
|
|
|
// Allow references to types as a part of:
|
|
// - member references T.foo, T.Type, T.self, etc.
|
|
// - constructor calls T()
|
|
// - Subscripts T[]
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
// This is an exhaustive list of the accepted syntactic forms.
|
|
if (isa<ErrorExpr>(ParentExpr) ||
|
|
isa<DotSelfExpr>(ParentExpr) || // T.self
|
|
isa<CallExpr>(ParentExpr) || // T()
|
|
isa<MemberRefExpr>(ParentExpr) || // T.foo
|
|
isa<UnresolvedMemberExpr>(ParentExpr) ||
|
|
isa<SelfApplyExpr>(ParentExpr) || // T.foo() T()
|
|
isa<UnresolvedDotExpr>(ParentExpr) ||
|
|
isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
|
|
isa<UnresolvedSpecializeExpr>(ParentExpr) ||
|
|
isa<OpenExistentialExpr>(ParentExpr) ||
|
|
isa<SubscriptExpr>(ParentExpr)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Is this a protocol metatype?
|
|
|
|
Ctx.Diags.diagnose(E->getStartLoc(), diag::value_of_metatype_type);
|
|
|
|
// Add fix-it to insert '()', only if this is a metatype of
|
|
// non-existential type and has any initializers.
|
|
bool isExistential = false;
|
|
if (auto metaTy = E->getType()->getAs<MetatypeType>()) {
|
|
auto instanceTy = metaTy->getInstanceType();
|
|
isExistential = instanceTy->isExistentialType();
|
|
if (!isExistential &&
|
|
instanceTy->mayHaveMembers() &&
|
|
!TypeChecker::lookupConstructors(const_cast<DeclContext *>(DC),
|
|
instanceTy).empty()) {
|
|
Ctx.Diags.diagnose(E->getEndLoc(), diag::add_parens_to_type)
|
|
.fixItInsertAfter(E->getEndLoc(), "()");
|
|
}
|
|
}
|
|
|
|
// Add fix-it to insert ".self".
|
|
auto diag = Ctx.Diags.diagnose(E->getEndLoc(), diag::add_self_to_type);
|
|
if (E->canAppendPostfixExpression()) {
|
|
diag.fixItInsertAfter(E->getEndLoc(), ".self");
|
|
} else {
|
|
diag.fixItInsert(E->getStartLoc(), "(");
|
|
diag.fixItInsertAfter(E->getEndLoc(), ").self");
|
|
}
|
|
}
|
|
|
|
void checkUnqualifiedAccessUse(const DeclRefExpr *DRE) {
|
|
const Decl *D = DRE->getDecl();
|
|
if (!D->getAttrs().hasAttribute<WarnUnqualifiedAccessAttr>())
|
|
return;
|
|
|
|
if (auto *parentExpr = Parent.getAsExpr()) {
|
|
if (auto *ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(parentExpr)){
|
|
if (!ignoredBase->isImplicit())
|
|
return;
|
|
}
|
|
if (auto *calledBase = dyn_cast<DotSyntaxCallExpr>(parentExpr)) {
|
|
if (!calledBase->isImplicit())
|
|
return;
|
|
}
|
|
}
|
|
|
|
const auto *VD = cast<ValueDecl>(D);
|
|
const TypeDecl *declParent =
|
|
VD->getDeclContext()->getSelfNominalTypeDecl();
|
|
if (!declParent) {
|
|
// If the declaration has been validated but not fully type-checked,
|
|
// the attribute might be applied to something invalid.
|
|
if (!VD->getDeclContext()->isModuleScopeContext())
|
|
return;
|
|
declParent = VD->getDeclContext()->getParentModule();
|
|
}
|
|
|
|
Ctx.Diags.diagnose(DRE->getLoc(), diag::warn_unqualified_access,
|
|
VD->getBaseName().getIdentifier(),
|
|
VD->getDescriptiveKind(),
|
|
declParent->getDescriptiveKind(),
|
|
declParent->getFullName());
|
|
Ctx.Diags.diagnose(VD, diag::decl_declared_here, VD->getFullName());
|
|
|
|
if (VD->getDeclContext()->isTypeContext()) {
|
|
Ctx.Diags.diagnose(DRE->getLoc(), diag::fix_unqualified_access_member)
|
|
.fixItInsert(DRE->getStartLoc(), "self.");
|
|
}
|
|
|
|
DeclContext *topLevelContext = DC->getModuleScopeContext();
|
|
auto descriptor = UnqualifiedLookupDescriptor(
|
|
DeclNameRef(VD->getBaseName()), topLevelContext, SourceLoc(),
|
|
UnqualifiedLookupFlags::KnownPrivate);
|
|
auto lookup = evaluateOrDefault(Ctx.evaluator,
|
|
UnqualifiedLookupRequest{descriptor}, {});
|
|
|
|
// Group results by module. Pick an arbitrary result from each module.
|
|
llvm::SmallDenseMap<const ModuleDecl*,const ValueDecl*,4> resultsByModule;
|
|
for (auto &result : lookup) {
|
|
const ValueDecl *value = result.getValueDecl();
|
|
resultsByModule.insert(std::make_pair(value->getModuleContext(),value));
|
|
}
|
|
|
|
// Sort by module name.
|
|
using ModuleValuePair = std::pair<const ModuleDecl *, const ValueDecl *>;
|
|
SmallVector<ModuleValuePair, 4> sortedResults{
|
|
resultsByModule.begin(), resultsByModule.end()
|
|
};
|
|
llvm::array_pod_sort(sortedResults.begin(), sortedResults.end(),
|
|
[](const ModuleValuePair *lhs,
|
|
const ModuleValuePair *rhs) {
|
|
return lhs->first->getName().compare(rhs->first->getName());
|
|
});
|
|
|
|
auto topLevelDiag = diag::fix_unqualified_access_top_level;
|
|
if (sortedResults.size() > 1)
|
|
topLevelDiag = diag::fix_unqualified_access_top_level_multi;
|
|
|
|
for (const ModuleValuePair &pair : sortedResults) {
|
|
DescriptiveDeclKind k = pair.second->getDescriptiveKind();
|
|
|
|
SmallString<32> namePlusDot = pair.first->getName().str();
|
|
namePlusDot.push_back('.');
|
|
|
|
Ctx.Diags.diagnose(DRE->getLoc(), topLevelDiag,
|
|
namePlusDot, k, pair.first->getName())
|
|
.fixItInsert(DRE->getStartLoc(), namePlusDot);
|
|
}
|
|
}
|
|
|
|
void checkForDeclWithSpecialTypeCheckingSemantics(const DeclRefExpr *DRE) {
|
|
// Referencing type(of:) and other decls with special type-checking
|
|
// behavior as functions is not implemented. Maybe we could wrap up the
|
|
// special-case behavior in a closure someday...
|
|
if (TypeChecker::getDeclTypeCheckingSemantics(DRE->getDecl())
|
|
!= DeclTypeCheckingSemantics::Normal) {
|
|
Ctx.Diags.diagnose(DRE->getLoc(), diag::unsupported_special_decl_ref,
|
|
DRE->getDecl()->getBaseName().getIdentifier());
|
|
}
|
|
}
|
|
|
|
enum BitcastableNumberKind {
|
|
BNK_None = 0,
|
|
BNK_Int8,
|
|
BNK_Int16,
|
|
BNK_Int32,
|
|
BNK_Int64,
|
|
BNK_Int,
|
|
BNK_UInt8,
|
|
BNK_UInt16,
|
|
BNK_UInt32,
|
|
BNK_UInt64,
|
|
BNK_UInt,
|
|
BNK_Float,
|
|
BNK_Double,
|
|
};
|
|
BitcastableNumberKind getBitcastableNumberKind(Type t) const {
|
|
auto decl = t->getNominalOrBoundGenericNominal();
|
|
#define MATCH_DECL(type) \
|
|
if (decl == Ctx.get##type##Decl()) \
|
|
return BNK_##type;
|
|
MATCH_DECL(Int8)
|
|
MATCH_DECL(Int16)
|
|
MATCH_DECL(Int32)
|
|
MATCH_DECL(Int64)
|
|
MATCH_DECL(Int)
|
|
MATCH_DECL(UInt8)
|
|
MATCH_DECL(UInt16)
|
|
MATCH_DECL(UInt32)
|
|
MATCH_DECL(UInt64)
|
|
MATCH_DECL(UInt)
|
|
MATCH_DECL(Float)
|
|
MATCH_DECL(Double)
|
|
#undef MATCH_DECL
|
|
|
|
return BNK_None;
|
|
}
|
|
|
|
static constexpr unsigned BNKPair(BitcastableNumberKind a,
|
|
BitcastableNumberKind b) {
|
|
return (a << 8) | b;
|
|
}
|
|
|
|
void checkForSuspiciousBitCasts(DeclRefExpr *DRE,
|
|
Expr *Parent = nullptr) {
|
|
if (DRE->getDecl() != Ctx.getUnsafeBitCast())
|
|
return;
|
|
|
|
if (DRE->getDeclRef().getSubstitutions().empty())
|
|
return;
|
|
|
|
// Don't check the same use of unsafeBitCast twice.
|
|
if (!AlreadyDiagnosedBitCasts.insert(DRE).second)
|
|
return;
|
|
|
|
auto subMap = DRE->getDeclRef().getSubstitutions();
|
|
auto fromTy = subMap.getReplacementTypes()[0];
|
|
auto toTy = subMap.getReplacementTypes()[1];
|
|
|
|
// Warn about `unsafeBitCast` formulations that are undefined behavior
|
|
// or have better-defined alternative APIs that can be used instead.
|
|
|
|
// If we have a parent ApplyExpr that calls bitcast, extract the argument
|
|
// for fixits.
|
|
Expr *subExpr = nullptr;
|
|
CharSourceRange removeBeforeRange, removeAfterRange;
|
|
if (auto apply = dyn_cast_or_null<ApplyExpr>(Parent)) {
|
|
if (auto args = dyn_cast<TupleExpr>(apply->getArg())) {
|
|
subExpr = args->getElement(0);
|
|
// Determine the fixit range from the start of the application to
|
|
// the first argument, `unsafeBitCast(`
|
|
removeBeforeRange = CharSourceRange(Ctx.SourceMgr, DRE->getLoc(),
|
|
subExpr->getStartLoc());
|
|
// Determine the fixit range from the end of the first argument to
|
|
// the end of the application, `, to: T.self)`
|
|
removeAfterRange = CharSourceRange(Ctx.SourceMgr,
|
|
Lexer::getLocForEndOfToken(Ctx.SourceMgr,
|
|
subExpr->getEndLoc()),
|
|
Lexer::getLocForEndOfToken(Ctx.SourceMgr,
|
|
apply->getEndLoc()));
|
|
}
|
|
}
|
|
|
|
// Casting to the same type or a superclass is a no-op.
|
|
if (toTy->isEqual(fromTy) ||
|
|
toTy->isExactSuperclassOf(fromTy)) {
|
|
auto d = Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_is_no_op,
|
|
fromTy, toTy);
|
|
if (subExpr) {
|
|
d.fixItRemoveChars(removeBeforeRange.getStart(),
|
|
removeBeforeRange.getEnd())
|
|
.fixItRemoveChars(removeAfterRange.getStart(),
|
|
removeAfterRange.getEnd());
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (auto fromFnTy = fromTy->getAs<FunctionType>()) {
|
|
if (auto toFnTy = toTy->getAs<FunctionType>()) {
|
|
// Casting a nonescaping function to escaping is UB.
|
|
// `withoutActuallyEscaping` ought to be used instead.
|
|
if (fromFnTy->isNoEscape() && !toFnTy->isNoEscape()) {
|
|
Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_away_noescape,
|
|
fromTy, toTy);
|
|
}
|
|
// Changing function representation (say, to try to force a
|
|
// @convention(c) function pointer to exist) is also unlikely to work.
|
|
if (fromFnTy->getRepresentation() != toFnTy->getRepresentation()) {
|
|
Ctx.Diags.diagnose(DRE->getLoc(),
|
|
diag::bitcasting_to_change_function_rep, fromTy,
|
|
toTy);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Unchecked casting to a subclass is better done by unsafeDowncast.
|
|
if (fromTy->isBindableToSuperclassOf(toTy)) {
|
|
Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_to_downcast,
|
|
fromTy, toTy)
|
|
.fixItReplace(DRE->getNameLoc().getBaseNameLoc(),
|
|
"unsafeDowncast");
|
|
return;
|
|
}
|
|
|
|
// Casting among pointer types should use the Unsafe*Pointer APIs for
|
|
// rebinding typed memory or accessing raw memory instead.
|
|
PointerTypeKind fromPTK, toPTK;
|
|
Type fromPointee = fromTy->getAnyPointerElementType(fromPTK);
|
|
Type toPointee = toTy->getAnyPointerElementType(toPTK);
|
|
if (fromPointee && toPointee) {
|
|
// Casting to a pointer to the same type or UnsafeRawPointer can use
|
|
// normal initializers on the destination type.
|
|
if (toPointee->isEqual(fromPointee)
|
|
|| isRawPointerKind(toPTK)) {
|
|
auto d = Ctx.Diags.diagnose(DRE->getLoc(),
|
|
diag::bitcasting_to_change_pointer_kind,
|
|
fromTy, toTy,
|
|
toTy->getStructOrBoundGenericStruct()->getName());
|
|
if (subExpr) {
|
|
StringRef before, after;
|
|
switch (toPTK) {
|
|
case PTK_UnsafePointer:
|
|
// UnsafePointer(mutablePointer)
|
|
before = "UnsafePointer(";
|
|
after = ")";
|
|
break;
|
|
case PTK_UnsafeMutablePointer:
|
|
case PTK_AutoreleasingUnsafeMutablePointer:
|
|
before = "UnsafeMutablePointer(mutating: ";
|
|
after = ")";
|
|
break;
|
|
|
|
case PTK_UnsafeRawPointer:
|
|
// UnsafeRawPointer(pointer)
|
|
before = "UnsafeRawPointer(";
|
|
after = ")";
|
|
break;
|
|
|
|
case PTK_UnsafeMutableRawPointer:
|
|
// UnsafeMutableRawPointer(mutating: rawPointer)
|
|
before = fromPTK == PTK_UnsafeMutablePointer
|
|
? "UnsafeMutableRawPointer("
|
|
: "UnsafeMutableRawPointer(mutating: ";
|
|
after = ")";
|
|
break;
|
|
}
|
|
d.fixItReplaceChars(removeBeforeRange.getStart(),
|
|
removeBeforeRange.getEnd(),
|
|
before)
|
|
.fixItReplaceChars(removeAfterRange.getStart(),
|
|
removeAfterRange.getEnd(),
|
|
after);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Casting to a different typed pointer type should use
|
|
// withMemoryRebound.
|
|
if (!isRawPointerKind(fromPTK) && !isRawPointerKind(toPTK)) {
|
|
Ctx.Diags.diagnose(DRE->getLoc(),
|
|
diag::bitcasting_to_change_pointee_type,
|
|
fromTy, toTy);
|
|
return;
|
|
}
|
|
|
|
// Casting a raw pointer to a typed pointer should bind the memory
|
|
// (or assume it's already bound).
|
|
assert(isRawPointerKind(fromPTK) && !isRawPointerKind(toPTK)
|
|
&& "unhandled cast combo?!");
|
|
Ctx.Diags.diagnose(DRE->getLoc(),
|
|
diag::bitcasting_to_give_type_to_raw_pointer,
|
|
fromTy, toTy);
|
|
if (subExpr) {
|
|
SmallString<64> fixitBuf;
|
|
{
|
|
llvm::raw_svector_ostream os(fixitBuf);
|
|
os << ".assumingMemoryBound(to: ";
|
|
toPointee->print(os);
|
|
os << ".self)";
|
|
}
|
|
Ctx.Diags.diagnose(DRE->getLoc(),
|
|
diag::bitcast_assume_memory_rebound,
|
|
toPointee)
|
|
.fixItRemoveChars(removeBeforeRange.getStart(),
|
|
removeBeforeRange.getEnd())
|
|
.fixItReplaceChars(removeAfterRange.getStart(),
|
|
removeAfterRange.getEnd(),
|
|
fixitBuf);
|
|
fixitBuf.clear();
|
|
{
|
|
llvm::raw_svector_ostream os(fixitBuf);
|
|
os << ".bindMemory(to: ";
|
|
toPointee->print(os);
|
|
os << ".self, capacity: <""#capacity#"">)";
|
|
}
|
|
Ctx.Diags.diagnose(DRE->getLoc(),
|
|
diag::bitcast_bind_memory,
|
|
toPointee)
|
|
.fixItRemoveChars(removeBeforeRange.getStart(),
|
|
removeBeforeRange.getEnd())
|
|
.fixItReplaceChars(removeAfterRange.getStart(),
|
|
removeAfterRange.getEnd(),
|
|
fixitBuf);
|
|
}
|
|
return;
|
|
}
|
|
|
|
StringRef replaceBefore, replaceAfter;
|
|
Optional<Diag<Type, Type>> diagID;
|
|
SmallString<64> replaceBeforeBuf;
|
|
|
|
// Bitcasting among numeric types should use `bitPattern:` initializers.
|
|
auto fromBNK = getBitcastableNumberKind(fromTy);
|
|
auto toBNK = getBitcastableNumberKind(toTy);
|
|
if (fromBNK && toBNK) {
|
|
switch (BNKPair(fromBNK, toBNK)) {
|
|
// Combos that can be bitPattern-ed with a constructor
|
|
case BNKPair(BNK_Int8, BNK_UInt8):
|
|
case BNKPair(BNK_UInt8, BNK_Int8):
|
|
case BNKPair(BNK_Int16, BNK_UInt16):
|
|
case BNKPair(BNK_UInt16, BNK_Int16):
|
|
case BNKPair(BNK_Int32, BNK_UInt32):
|
|
case BNKPair(BNK_UInt32, BNK_Int32):
|
|
case BNKPair(BNK_Int64, BNK_UInt64):
|
|
case BNKPair(BNK_UInt64, BNK_Int64):
|
|
case BNKPair(BNK_Int, BNK_UInt):
|
|
case BNKPair(BNK_UInt, BNK_Int):
|
|
case BNKPair(BNK_UInt32, BNK_Float):
|
|
case BNKPair(BNK_UInt64, BNK_Double):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: ";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ")";
|
|
break;
|
|
|
|
// Combos that can be bitPattern-ed with a constructor and sign flip
|
|
case BNKPair(BNK_Int32, BNK_Float):
|
|
case BNKPair(BNK_Int64, BNK_Double):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: ";
|
|
if (fromBNK == BNK_Int32)
|
|
os << "UInt32(bitPattern: ";
|
|
else
|
|
os << "UInt64(bitPattern: ";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = "))";
|
|
break;
|
|
|
|
// Combos that can be bitPattern-ed with a property
|
|
case BNKPair(BNK_Float, BNK_UInt32):
|
|
case BNKPair(BNK_Double, BNK_UInt64):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_property;
|
|
replaceAfter = ".bitPattern";
|
|
break;
|
|
|
|
// Combos that can be bitPattern-ed with a property and sign flip
|
|
case BNKPair(BNK_Float, BNK_Int32):
|
|
case BNKPair(BNK_Double, BNK_Int64):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_property;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: ";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ")";
|
|
break;
|
|
|
|
// Combos that can be bitPattern-ed with a constructor once (U)Int is
|
|
// converted to a sized type.
|
|
case BNKPair(BNK_UInt, BNK_Float):
|
|
case BNKPair(BNK_Int, BNK_UInt32):
|
|
case BNKPair(BNK_UInt, BNK_Int32):
|
|
case BNKPair(BNK_Int, BNK_UInt64):
|
|
case BNKPair(BNK_UInt, BNK_Int64):
|
|
case BNKPair(BNK_UInt, BNK_Double):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: ";
|
|
|
|
if (fromBNK == BNK_Int)
|
|
os << "Int";
|
|
else
|
|
os << "UInt";
|
|
|
|
if (toBNK == BNK_Float
|
|
|| toBNK == BNK_Int32
|
|
|| toBNK == BNK_UInt32)
|
|
os << "32(";
|
|
else
|
|
os << "64(";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = "))";
|
|
break;
|
|
|
|
case BNKPair(BNK_Int, BNK_Float):
|
|
case BNKPair(BNK_Int, BNK_Double):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: UInt";
|
|
|
|
if (toBNK == BNK_Float
|
|
|| toBNK == BNK_Int32
|
|
|| toBNK == BNK_UInt32)
|
|
os << "32(bitPattern: Int32(";
|
|
else
|
|
os << "64(bitPattern: Int64(";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ")))";
|
|
break;
|
|
|
|
// Combos that can be bitPattern-ed then converted from a sized type
|
|
// to (U)Int.
|
|
case BNKPair(BNK_Int32, BNK_UInt):
|
|
case BNKPair(BNK_UInt32, BNK_Int):
|
|
case BNKPair(BNK_Int64, BNK_UInt):
|
|
case BNKPair(BNK_UInt64, BNK_Int):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(";
|
|
if (toBNK == BNK_UInt)
|
|
os << "UInt";
|
|
else
|
|
os << "Int";
|
|
if (fromBNK == BNK_Int32 || fromBNK == BNK_UInt32)
|
|
os << "32(bitPattern: ";
|
|
else
|
|
os << "64(bitPattern: ";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = "))";
|
|
break;
|
|
|
|
case BNKPair(BNK_Float, BNK_UInt):
|
|
case BNKPair(BNK_Double, BNK_UInt):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_property;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ".bitPattern)";
|
|
break;
|
|
|
|
case BNKPair(BNK_Float, BNK_Int):
|
|
case BNKPair(BNK_Double, BNK_Int):
|
|
diagID = diag::bitcasting_for_number_bit_pattern_property;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: UInt(";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ".bitPattern))";
|
|
break;
|
|
|
|
// Combos that should be done with a value-preserving initializer.
|
|
case BNKPair(BNK_Int, BNK_Int32):
|
|
case BNKPair(BNK_Int, BNK_Int64):
|
|
case BNKPair(BNK_UInt, BNK_UInt32):
|
|
case BNKPair(BNK_UInt, BNK_UInt64):
|
|
case BNKPair(BNK_Int32, BNK_Int):
|
|
case BNKPair(BNK_Int64, BNK_Int):
|
|
case BNKPair(BNK_UInt32, BNK_UInt):
|
|
case BNKPair(BNK_UInt64, BNK_UInt):
|
|
diagID = diag::bitcasting_to_change_from_unsized_to_sized_int;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << '(';
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ")";
|
|
break;
|
|
|
|
default:
|
|
// Leave other combos alone.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Casting a pointer to an int or back should also use bitPattern
|
|
// initializers.
|
|
if (fromPointee && toBNK) {
|
|
switch (toBNK) {
|
|
case BNK_UInt:
|
|
case BNK_Int:
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: ";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ")";
|
|
break;
|
|
|
|
case BNK_UInt64:
|
|
case BNK_UInt32:
|
|
case BNK_Int64:
|
|
case BNK_Int32:
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << '(';
|
|
if (toBNK == BNK_UInt32 || toBNK == BNK_UInt64)
|
|
os << "UInt(bitPattern: ";
|
|
else
|
|
os << "Int(bitPattern: ";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = "))";
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if (fromBNK && toPointee) {
|
|
switch (fromBNK) {
|
|
case BNK_UInt:
|
|
case BNK_Int:
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: ";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = ")";
|
|
break;
|
|
|
|
case BNK_UInt64:
|
|
case BNK_UInt32:
|
|
case BNK_Int64:
|
|
case BNK_Int32:
|
|
diagID = diag::bitcasting_for_number_bit_pattern_init;
|
|
{
|
|
llvm::raw_svector_ostream os(replaceBeforeBuf);
|
|
toTy->print(os);
|
|
os << "(bitPattern: ";
|
|
if (fromBNK == BNK_Int32 || fromBNK == BNK_Int64)
|
|
os << "Int(";
|
|
else
|
|
os << "UInt(";
|
|
}
|
|
replaceBefore = replaceBeforeBuf;
|
|
replaceAfter = "))";
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (diagID) {
|
|
auto d = Ctx.Diags.diagnose(DRE->getLoc(), *diagID, fromTy, toTy);
|
|
if (subExpr) {
|
|
d.fixItReplaceChars(removeBeforeRange.getStart(),
|
|
removeBeforeRange.getEnd(),
|
|
replaceBefore);
|
|
d.fixItReplaceChars(removeAfterRange.getStart(),
|
|
removeAfterRange.getEnd(),
|
|
replaceAfter);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/// Return true if this is a 'nil' literal. This looks
|
|
/// like this if the type is Optional<T>:
|
|
///
|
|
/// (dot_syntax_call_expr implicit type='Int?'
|
|
/// (declref_expr implicit decl=Optional.none)
|
|
/// (type_expr type=Int?))
|
|
///
|
|
/// Or like this if it is any other ExpressibleByNilLiteral type:
|
|
///
|
|
/// (nil_literal_expr)
|
|
///
|
|
bool isTypeCheckedOptionalNil(Expr *E) {
|
|
if (dyn_cast<NilLiteralExpr>(E)) return true;
|
|
|
|
auto CE = dyn_cast<ApplyExpr>(E->getSemanticsProvidingExpr());
|
|
if (!CE || !CE->isImplicit())
|
|
return false;
|
|
|
|
// First case -- Optional.none
|
|
if (auto DRE = dyn_cast<DeclRefExpr>(CE->getSemanticFn()))
|
|
return DRE->getDecl() == Ctx.getOptionalNoneDecl();
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Warn about surprising implicit optional promotions involving operands to
|
|
/// calls. Specifically, we warn about these expressions when the 'x'
|
|
/// operand is implicitly promoted to optional:
|
|
///
|
|
/// x ?? y
|
|
/// x == nil // also !=
|
|
///
|
|
void checkOptionalPromotions(ApplyExpr *call) {
|
|
// We only care about binary expressions.
|
|
if (!isa<BinaryExpr>(call)) return;
|
|
|
|
// Dig out the function we're calling.
|
|
auto fnExpr = call->getSemanticFn();
|
|
if (auto dotSyntax = dyn_cast<DotSyntaxCallExpr>(fnExpr))
|
|
fnExpr = dotSyntax->getSemanticFn();
|
|
|
|
auto DRE = dyn_cast<DeclRefExpr>(fnExpr);
|
|
auto args = dyn_cast<TupleExpr>(call->getArg());
|
|
if (!DRE || !DRE->getDecl()->isOperator() ||
|
|
!args || args->getNumElements() != 2)
|
|
return;
|
|
|
|
auto lhs = args->getElement(0);
|
|
auto rhs = args->getElement(1);
|
|
auto calleeName = DRE->getDecl()->getBaseName();
|
|
|
|
Expr *subExpr = nullptr;
|
|
if (calleeName == "??" &&
|
|
(subExpr = isImplicitPromotionToOptional(lhs))) {
|
|
Ctx.Diags.diagnose(DRE->getLoc(), diag::use_of_qq_on_non_optional_value,
|
|
subExpr->getType())
|
|
.highlight(lhs->getSourceRange())
|
|
.fixItRemove(SourceRange(DRE->getLoc(), rhs->getEndLoc()));
|
|
return;
|
|
}
|
|
|
|
if (calleeName == "==" || calleeName == "!=" ||
|
|
calleeName == "===" || calleeName == "!==") {
|
|
if (((subExpr = isImplicitPromotionToOptional(lhs)) &&
|
|
isTypeCheckedOptionalNil(rhs)) ||
|
|
(isTypeCheckedOptionalNil(lhs) &&
|
|
(subExpr = isImplicitPromotionToOptional(rhs)))) {
|
|
bool isTrue = calleeName == "!=" || calleeName == "!==";
|
|
|
|
Ctx.Diags.diagnose(DRE->getLoc(), diag::nonoptional_compare_to_nil,
|
|
subExpr->getType(), isTrue)
|
|
.highlight(lhs->getSourceRange())
|
|
.highlight(rhs->getSourceRange());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
DiagnoseWalker Walker(DC, isExprStmt);
|
|
const_cast<Expr *>(E)->walk(Walker);
|
|
|
|
// Diagnose uses of collection literals with defaulted types at the top
|
|
// level.
|
|
if (auto collection
|
|
= dyn_cast<CollectionExpr>(E->getSemanticsProvidingExpr())) {
|
|
if (collection->isTypeDefaulted()) {
|
|
Walker.checkTypeDefaultedCollectionExpr(
|
|
const_cast<CollectionExpr *>(collection));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Diagnose recursive use of properties within their own accessors
|
|
static void diagRecursivePropertyAccess(const Expr *E, const DeclContext *DC) {
|
|
auto fn = dyn_cast<AccessorDecl>(DC);
|
|
if (!fn)
|
|
return;
|
|
|
|
auto var = dyn_cast<VarDecl>(fn->getStorage());
|
|
if (!var) // Ignore subscripts
|
|
return;
|
|
|
|
class DiagnoseWalker : public ASTWalker {
|
|
ASTContext &Ctx;
|
|
VarDecl *Var;
|
|
const AccessorDecl *Accessor;
|
|
|
|
public:
|
|
explicit DiagnoseWalker(VarDecl *var, const AccessorDecl *Accessor)
|
|
: Ctx(var->getASTContext()), Var(var), Accessor(Accessor) {}
|
|
|
|
/// Return true if this is an implicit reference to self.
|
|
static bool isImplicitSelfUse(Expr *E) {
|
|
auto *DRE = dyn_cast<DeclRefExpr>(E);
|
|
return DRE && DRE->isImplicit() && isa<VarDecl>(DRE->getDecl()) &&
|
|
cast<VarDecl>(DRE->getDecl())->isSelfParameter();
|
|
}
|
|
|
|
bool shouldWalkIntoNonSingleExpressionClosure() override { return false; }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
Expr *subExpr;
|
|
bool isStore = false;
|
|
|
|
if (auto *AE = dyn_cast<AssignExpr>(E)) {
|
|
subExpr = AE->getDest();
|
|
|
|
// If we couldn't flatten this expression, don't explode.
|
|
if (!subExpr)
|
|
return { true, E };
|
|
|
|
isStore = true;
|
|
} else if (auto *IOE = dyn_cast<InOutExpr>(E)) {
|
|
subExpr = IOE->getSubExpr();
|
|
isStore = true;
|
|
} else {
|
|
subExpr = E;
|
|
}
|
|
|
|
if (auto *BOE = dyn_cast<BindOptionalExpr>(subExpr))
|
|
subExpr = BOE;
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(subExpr)) {
|
|
if (DRE->getDecl() == Var) {
|
|
// Handle local and top-level computed variables.
|
|
if (DRE->getAccessSemantics() == AccessSemantics::Ordinary) {
|
|
bool shouldDiagnose = false;
|
|
// Warn about any property access in the getter.
|
|
if (Accessor->isGetter())
|
|
shouldDiagnose = !isStore;
|
|
// Warn about stores in the setter, but allow loads.
|
|
if (Accessor->isSetter())
|
|
shouldDiagnose = isStore;
|
|
|
|
// But silence the warning if the base was explicitly qualified.
|
|
auto parentAsExpr = Parent.getAsExpr();
|
|
if (parentAsExpr && isa<DotSyntaxBaseIgnoredExpr>(parentAsExpr))
|
|
shouldDiagnose = false;
|
|
|
|
if (shouldDiagnose) {
|
|
Ctx.Diags.diagnose(subExpr->getLoc(),
|
|
diag::recursive_accessor_reference,
|
|
Var->getName(), Accessor->isSetter());
|
|
}
|
|
}
|
|
|
|
// If this is a direct store in a "willSet", we reject this because
|
|
// it is about to get overwritten.
|
|
if (isStore &&
|
|
DRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
|
|
Accessor->getAccessorKind() == AccessorKind::WillSet) {
|
|
Ctx.Diags.diagnose(E->getLoc(), diag::store_in_willset,
|
|
Var->getName());
|
|
}
|
|
}
|
|
|
|
|
|
} else if (auto *MRE = dyn_cast<MemberRefExpr>(subExpr)) {
|
|
// Handle instance and type computed variables.
|
|
// Find MemberRefExprs that have an implicit "self" base.
|
|
if (MRE->getMember().getDecl() == Var &&
|
|
isa<DeclRefExpr>(MRE->getBase()) &&
|
|
isImplicitSelfUse(MRE->getBase())) {
|
|
|
|
if (MRE->getAccessSemantics() == AccessSemantics::Ordinary) {
|
|
bool shouldDiagnose = false;
|
|
// Warn about any property access in the getter.
|
|
if (Accessor->isGetter())
|
|
shouldDiagnose = !isStore;
|
|
// Warn about stores in the setter, but allow loads.
|
|
if (Accessor->isSetter())
|
|
shouldDiagnose = isStore;
|
|
|
|
if (shouldDiagnose) {
|
|
Ctx.Diags.diagnose(subExpr->getLoc(),
|
|
diag::recursive_accessor_reference,
|
|
Var->getName(), Accessor->isSetter());
|
|
Ctx.Diags.diagnose(subExpr->getLoc(),
|
|
diag::recursive_accessor_reference_silence)
|
|
.fixItInsert(subExpr->getStartLoc(), "self.");
|
|
}
|
|
}
|
|
|
|
// If this is a direct store in a "willSet", we reject this because
|
|
// it is about to get overwritten.
|
|
if (isStore &&
|
|
MRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
|
|
Accessor->getAccessorKind() == AccessorKind::WillSet) {
|
|
Ctx.Diags.diagnose(subExpr->getLoc(), diag::store_in_willset,
|
|
Var->getName());
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return { true, E };
|
|
}
|
|
};
|
|
|
|
DiagnoseWalker walker(var, fn);
|
|
const_cast<Expr *>(E)->walk(walker);
|
|
}
|
|
|
|
/// Look for any property references in closures that lack a 'self.' qualifier.
|
|
/// Within a closure, we require that the source code contain 'self.' explicitly
|
|
/// (or that the closure explicitly capture 'self' in the capture list) because
|
|
/// 'self' is captured, not the property value. This is a common source of
|
|
/// confusion, so we force an explicit self.
|
|
static void diagnoseImplicitSelfUseInClosure(const Expr *E,
|
|
const DeclContext *DC) {
|
|
class DiagnoseWalker : public ASTWalker {
|
|
ASTContext &Ctx;
|
|
SmallVector<AbstractClosureExpr *, 4> Closures;
|
|
public:
|
|
explicit DiagnoseWalker(ASTContext &ctx, AbstractClosureExpr *ACE)
|
|
: Ctx(ctx), Closures() {
|
|
if (ACE)
|
|
Closures.push_back(ACE);
|
|
}
|
|
|
|
/// Return true if this is an implicit reference to self which is required
|
|
/// to be explicit in an escaping closure. Metatype references and value
|
|
/// type references are excluded.
|
|
static bool isImplicitSelfParamUseLikelyToCauseCycle(Expr *E) {
|
|
auto *DRE = dyn_cast<DeclRefExpr>(E);
|
|
|
|
if (!DRE || !DRE->isImplicit() || !isa<VarDecl>(DRE->getDecl()) ||
|
|
!cast<VarDecl>(DRE->getDecl())->isSelfParameter())
|
|
return false;
|
|
|
|
// Defensive check for type. If the expression doesn't have type here, it
|
|
// should have been diagnosed somewhere else.
|
|
Type ty = DRE->getType();
|
|
assert(ty && "Implicit self parameter ref without type");
|
|
if (!ty)
|
|
return false;
|
|
|
|
// Metatype self captures don't extend the lifetime of an object.
|
|
if (ty->is<MetatypeType>())
|
|
return false;
|
|
|
|
// If self does not have reference semantics, it is very unlikely that
|
|
// capturing it will create a reference cycle.
|
|
if (!ty->hasReferenceSemantics())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if this is a closure expression that will require explicit
|
|
/// use or capture of "self." for qualification of member references.
|
|
static bool isClosureRequiringSelfQualification(
|
|
const AbstractClosureExpr *CE) {
|
|
// If the closure's type was inferred to be noescape, then it doesn't
|
|
// need qualification.
|
|
return !AnyFunctionRef(const_cast<AbstractClosureExpr *>(CE))
|
|
.isKnownNoEscape();
|
|
}
|
|
|
|
|
|
// Don't walk into nested decls.
|
|
bool walkToDeclPre(Decl *D) override {
|
|
return false;
|
|
}
|
|
|
|
bool shouldWalkIntoNonSingleExpressionClosure() override { return false; }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (auto *CE = dyn_cast<AbstractClosureExpr>(E)) {
|
|
// If this is a potentially-escaping closure expression, start looking
|
|
// for references to self if we aren't already.
|
|
if (isClosureRequiringSelfQualification(CE))
|
|
Closures.push_back(CE);
|
|
}
|
|
|
|
|
|
// If we aren't in a closure, no diagnostics will be produced.
|
|
if (Closures.size() == 0)
|
|
return { true, E };
|
|
|
|
auto &Diags = Ctx.Diags;
|
|
|
|
// Diagnostics should correct the innermost closure
|
|
auto *ACE = Closures[Closures.size() - 1];
|
|
assert(ACE);
|
|
|
|
SourceLoc memberLoc = SourceLoc();
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E))
|
|
if (isImplicitSelfParamUseLikelyToCauseCycle(MRE->getBase())) {
|
|
auto baseName = MRE->getMember().getDecl()->getBaseName();
|
|
memberLoc = MRE->getLoc();
|
|
Diags.diagnose(memberLoc,
|
|
diag::property_use_in_closure_without_explicit_self,
|
|
baseName.getIdentifier());
|
|
}
|
|
|
|
// Handle method calls with a specific diagnostic + fixit.
|
|
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(E))
|
|
if (isImplicitSelfParamUseLikelyToCauseCycle(DSCE->getBase()) &&
|
|
isa<DeclRefExpr>(DSCE->getFn())) {
|
|
auto MethodExpr = cast<DeclRefExpr>(DSCE->getFn());
|
|
memberLoc = DSCE->getLoc();
|
|
Diags.diagnose(DSCE->getLoc(),
|
|
diag::method_call_in_closure_without_explicit_self,
|
|
MethodExpr->getDecl()->getBaseName().getIdentifier());
|
|
}
|
|
|
|
if (memberLoc.isValid()) {
|
|
emitFixIts(Diags, memberLoc, ACE);
|
|
return { false, E };
|
|
}
|
|
|
|
// Catch any other implicit uses of self with a generic diagnostic.
|
|
if (isImplicitSelfParamUseLikelyToCauseCycle(E))
|
|
Diags.diagnose(E->getLoc(), diag::implicit_use_of_self_in_closure);
|
|
|
|
return { true, E };
|
|
}
|
|
|
|
Expr *walkToExprPost(Expr *E) override {
|
|
if (auto *CE = dyn_cast<AbstractClosureExpr>(E)) {
|
|
if (isClosureRequiringSelfQualification(CE)) {
|
|
assert(Closures.size() > 0);
|
|
Closures.pop_back();
|
|
}
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
/// Emit any fix-its for this error.
|
|
void emitFixIts(DiagnosticEngine &Diags,
|
|
SourceLoc memberLoc,
|
|
const AbstractClosureExpr *ACE) {
|
|
// This error can be fixed by either capturing self explicitly (if in an
|
|
// explicit closure), or referencing self explicitly.
|
|
if (auto *CE = dyn_cast<const ClosureExpr>(ACE)) {
|
|
if (diagnoseAlmostMatchingCaptures(Diags, memberLoc, CE)) {
|
|
// Bail on the rest of the diagnostics. Offering the option to
|
|
// capture 'self' explicitly will result in an error, and using
|
|
// 'self.' explicitly will be accessing something other than the
|
|
// self param.
|
|
// FIXME: We could offer a special fixit in the [weak self] case to insert 'self?.'...
|
|
return;
|
|
}
|
|
emitFixItsForExplicitClosure(Diags, memberLoc, CE);
|
|
} else {
|
|
// If this wasn't an explicit closure, just offer the fix-it to
|
|
// reference self explicitly.
|
|
Diags.diagnose(memberLoc, diag::note_reference_self_explicitly)
|
|
.fixItInsert(memberLoc, "self.");
|
|
}
|
|
}
|
|
|
|
/// Diagnose any captures which might have been an attempt to capture
|
|
/// \c self strongly, but do not actually enable implicit \c self. Returns
|
|
/// whether there were any such captures to diagnose.
|
|
bool diagnoseAlmostMatchingCaptures(DiagnosticEngine &Diags,
|
|
SourceLoc memberLoc,
|
|
const ClosureExpr *closureExpr) {
|
|
// If we've already captured something with the name "self" other than
|
|
// the actual self param, offer special diagnostics.
|
|
if (auto *VD = closureExpr->getCapturedSelfDecl()) {
|
|
// Either this is a weak capture of self...
|
|
if (VD->getType()->is<WeakStorageType>()) {
|
|
Diags.diagnose(VD->getLoc(), diag::note_self_captured_weakly);
|
|
// ...or something completely different.
|
|
} else {
|
|
Diags.diagnose(VD->getLoc(), diag::note_other_self_capture);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Emit fix-its for invalid use of implicit \c self in an explicit closure.
|
|
/// The error can be solved by capturing self explicitly,
|
|
/// or by using \c self. explicitly.
|
|
void emitFixItsForExplicitClosure(DiagnosticEngine &Diags,
|
|
SourceLoc memberLoc,
|
|
const ClosureExpr *closureExpr) {
|
|
Diags.diagnose(memberLoc, diag::note_reference_self_explicitly)
|
|
.fixItInsert(memberLoc, "self.");
|
|
auto diag = Diags.diagnose(closureExpr->getLoc(),
|
|
diag::note_capture_self_explicitly);
|
|
// There are four different potential fix-its to offer based on the
|
|
// closure signature:
|
|
// 1. There is an existing capture list which already has some
|
|
// entries. We need to insert 'self' into the capture list along
|
|
// with a separating comma.
|
|
// 2. There is an existing capture list, but it is empty (jusr '[]').
|
|
// We can just insert 'self'.
|
|
// 3. Arguments or types are already specified in the signature,
|
|
// but there is no existing capture list. We will need to insert
|
|
// the capture list, but 'in' will already be present.
|
|
// 4. The signature empty so far. We must insert the full capture
|
|
// list as well as 'in'.
|
|
const auto brackets = closureExpr->getBracketRange();
|
|
if (brackets.isValid()) {
|
|
emitInsertSelfIntoCaptureListFixIt(brackets, diag);
|
|
}
|
|
else {
|
|
emitInsertNewCaptureListFixIt(closureExpr, diag);
|
|
}
|
|
}
|
|
|
|
/// Emit a fix-it for inserting \c self into in existing capture list, along
|
|
/// with a trailing comma if needed. The fix-it will be attached to the
|
|
/// provided diagnostic \c diag.
|
|
void emitInsertSelfIntoCaptureListFixIt(SourceRange brackets,
|
|
InFlightDiagnostic &diag) {
|
|
// Look for any non-comment token. If there's anything before the
|
|
// closing bracket, we assume that it is a valid capture list entry and
|
|
// insert 'self,'. If it wasn't a valid entry, then we will at least not
|
|
// be introducing any new errors/warnings...
|
|
const auto locAfterBracket = brackets.Start.getAdvancedLoc(1);
|
|
const auto nextAfterBracket =
|
|
Lexer::getTokenAtLocation(Ctx.SourceMgr, locAfterBracket,
|
|
CommentRetentionMode::None);
|
|
if (nextAfterBracket.getLoc() != brackets.End)
|
|
diag.fixItInsertAfter(brackets.Start, "self, ");
|
|
else
|
|
diag.fixItInsertAfter(brackets.Start, "self");
|
|
}
|
|
|
|
/// Emit a fix-it for inserting a capture list into a closure that does not
|
|
/// already have one, along with a trailing \c in if necessary. The fix-it
|
|
/// will be attached to the provided diagnostic \c diag.
|
|
void emitInsertNewCaptureListFixIt(const ClosureExpr *closureExpr,
|
|
InFlightDiagnostic &diag) {
|
|
if (closureExpr->getInLoc().isValid()) {
|
|
diag.fixItInsertAfter(closureExpr->getLoc(), " [self]");
|
|
return;
|
|
}
|
|
|
|
// If there's a (non-comment) token immediately following the
|
|
// opening brace of the closure, we may need to pad the fix-it
|
|
// with a space.
|
|
const auto nextLoc = closureExpr->getLoc().getAdvancedLoc(1);
|
|
const auto next =
|
|
Lexer::getTokenAtLocation(Ctx.SourceMgr, nextLoc,
|
|
CommentRetentionMode::None);
|
|
std::string trailing = next.getLoc() == nextLoc ? " " : "";
|
|
|
|
diag.fixItInsertAfter(closureExpr->getLoc(), " [self] in" + trailing);
|
|
}
|
|
};
|
|
|
|
AbstractClosureExpr *ACE = nullptr;
|
|
if (DC->isLocalContext()) {
|
|
while (DC->getParent()->isLocalContext() && !ACE) {
|
|
if (auto *closure = dyn_cast<AbstractClosureExpr>(DC))
|
|
if (DiagnoseWalker::isClosureRequiringSelfQualification(closure))
|
|
ACE = const_cast<AbstractClosureExpr *>(closure);
|
|
DC = DC->getParent();
|
|
}
|
|
}
|
|
auto &ctx = DC->getASTContext();
|
|
const_cast<Expr *>(E)->walk(DiagnoseWalker(ctx, ACE));
|
|
}
|
|
|
|
bool TypeChecker::getDefaultGenericArgumentsString(
|
|
SmallVectorImpl<char> &buf,
|
|
const swift::GenericTypeDecl *typeDecl,
|
|
llvm::function_ref<Type(const GenericTypeParamDecl *)> getPreferredType) {
|
|
llvm::raw_svector_ostream genericParamText{buf};
|
|
genericParamText << "<";
|
|
|
|
auto printGenericParamSummary =
|
|
[&](GenericTypeParamType *genericParamTy) {
|
|
const GenericTypeParamDecl *genericParam = genericParamTy->getDecl();
|
|
if (Type result = getPreferredType(genericParam)) {
|
|
result.print(genericParamText);
|
|
return;
|
|
}
|
|
|
|
auto contextTy = typeDecl->mapTypeIntoContext(genericParamTy);
|
|
if (auto archetypeTy = contextTy->getAs<ArchetypeType>()) {
|
|
SmallVector<Type, 2> members;
|
|
|
|
bool hasExplicitAnyObject = archetypeTy->requiresClass();
|
|
if (auto superclass = archetypeTy->getSuperclass()) {
|
|
hasExplicitAnyObject = false;
|
|
members.push_back(superclass);
|
|
}
|
|
|
|
for (auto proto : archetypeTy->getConformsTo()) {
|
|
members.push_back(proto->getDeclaredType());
|
|
if (proto->requiresClass())
|
|
hasExplicitAnyObject = false;
|
|
}
|
|
|
|
if (hasExplicitAnyObject)
|
|
members.push_back(typeDecl->getASTContext().getAnyObjectType());
|
|
|
|
auto type = ProtocolCompositionType::get(typeDecl->getASTContext(),
|
|
members, hasExplicitAnyObject);
|
|
|
|
if (type->isObjCExistentialType() || type->isAny()) {
|
|
genericParamText << type;
|
|
return;
|
|
}
|
|
|
|
genericParamText << "<#" << genericParam->getName() << ": ";
|
|
genericParamText << type << "#>";
|
|
return;
|
|
}
|
|
|
|
genericParamText << contextTy;
|
|
};
|
|
|
|
// FIXME: We can potentially be in the middle of creating a generic signature
|
|
// if we get here. Break this cycle.
|
|
if (typeDecl->hasComputedGenericSignature()) {
|
|
interleave(typeDecl->getInnermostGenericParamTypes(),
|
|
printGenericParamSummary, [&]{ genericParamText << ", "; });
|
|
}
|
|
|
|
genericParamText << ">";
|
|
return true;
|
|
}
|
|
|
|
/// Diagnose an argument labeling issue, returning true if we successfully
|
|
/// diagnosed the issue.
|
|
bool swift::diagnoseArgumentLabelError(ASTContext &ctx,
|
|
Expr *expr,
|
|
ArrayRef<Identifier> newNames,
|
|
bool isSubscript,
|
|
InFlightDiagnostic *existingDiag) {
|
|
Optional<InFlightDiagnostic> diagOpt;
|
|
auto getDiag = [&]() -> InFlightDiagnostic & {
|
|
if (existingDiag)
|
|
return *existingDiag;
|
|
return *diagOpt;
|
|
};
|
|
|
|
auto &diags = ctx.Diags;
|
|
|
|
OriginalArgumentList argList = getOriginalArgumentList(expr);
|
|
|
|
// Figure out how many extraneous, missing, and wrong labels are in
|
|
// the call.
|
|
unsigned numExtra = 0, numMissing = 0, numWrong = 0;
|
|
unsigned n = std::max(argList.args.size(), newNames.size());
|
|
|
|
llvm::SmallString<16> missingBuffer;
|
|
llvm::SmallString<16> extraBuffer;
|
|
for (unsigned i = 0; i != n; ++i) {
|
|
Identifier oldName;
|
|
if (i < argList.args.size())
|
|
oldName = argList.labels[i];
|
|
Identifier newName;
|
|
if (i < newNames.size())
|
|
newName = newNames[i];
|
|
|
|
if (oldName == newName ||
|
|
(argList.hasTrailingClosure && i == argList.args.size()-1))
|
|
continue;
|
|
|
|
if (oldName.empty()) {
|
|
++numMissing;
|
|
missingBuffer += newName.str();
|
|
missingBuffer += ":";
|
|
} else if (newName.empty()) {
|
|
++numExtra;
|
|
extraBuffer += oldName.str();
|
|
extraBuffer += ':';
|
|
} else
|
|
++numWrong;
|
|
}
|
|
|
|
// Emit the diagnostic.
|
|
assert(numMissing > 0 || numExtra > 0 || numWrong > 0);
|
|
llvm::SmallString<16> haveBuffer; // note: diagOpt has references to this
|
|
llvm::SmallString<16> expectedBuffer; // note: diagOpt has references to this
|
|
|
|
// If we had any wrong labels, or we have both missing and extra labels,
|
|
// emit the catch-all "wrong labels" diagnostic.
|
|
if (!existingDiag) {
|
|
bool plural = (numMissing + numExtra + numWrong) > 1;
|
|
if (numWrong > 0 || (numMissing > 0 && numExtra > 0)) {
|
|
for (unsigned i = 0, n = argList.args.size(); i != n; ++i) {
|
|
auto haveName = argList.labels[i];
|
|
if (haveName.empty())
|
|
haveBuffer += '_';
|
|
else
|
|
haveBuffer += haveName.str();
|
|
haveBuffer += ':';
|
|
}
|
|
|
|
for (auto expected : newNames) {
|
|
if (expected.empty())
|
|
expectedBuffer += '_';
|
|
else
|
|
expectedBuffer += expected.str();
|
|
expectedBuffer += ':';
|
|
}
|
|
|
|
StringRef haveStr = haveBuffer;
|
|
StringRef expectedStr = expectedBuffer;
|
|
diagOpt.emplace(diags.diagnose(expr->getLoc(),
|
|
diag::wrong_argument_labels,
|
|
plural, haveStr, expectedStr,
|
|
isSubscript));
|
|
} else if (numMissing > 0) {
|
|
StringRef missingStr = missingBuffer;
|
|
diagOpt.emplace(diags.diagnose(expr->getLoc(),
|
|
diag::missing_argument_labels,
|
|
plural, missingStr, isSubscript));
|
|
} else {
|
|
assert(numExtra > 0);
|
|
StringRef extraStr = extraBuffer;
|
|
diagOpt.emplace(diags.diagnose(expr->getLoc(),
|
|
diag::extra_argument_labels,
|
|
plural, extraStr, isSubscript));
|
|
}
|
|
}
|
|
|
|
// Emit Fix-Its to correct the names.
|
|
auto &diag = getDiag();
|
|
for (unsigned i = 0, n = argList.args.size(); i != n; ++i) {
|
|
Identifier oldName = argList.labels[i];
|
|
Identifier newName;
|
|
if (i < newNames.size())
|
|
newName = newNames[i];
|
|
|
|
if (oldName == newName || (i == n-1 && argList.hasTrailingClosure))
|
|
continue;
|
|
|
|
if (newName.empty()) {
|
|
// Delete the old name.
|
|
diag.fixItRemoveChars(argList.labelLocs[i],
|
|
argList.args[i]->getStartLoc());
|
|
continue;
|
|
}
|
|
|
|
bool newNameIsReserved = !canBeArgumentLabel(newName.str());
|
|
llvm::SmallString<16> newStr;
|
|
if (newNameIsReserved)
|
|
newStr += "`";
|
|
newStr += newName.str();
|
|
if (newNameIsReserved)
|
|
newStr += "`";
|
|
|
|
if (oldName.empty()) {
|
|
// Insert the name.
|
|
newStr += ": ";
|
|
diag.fixItInsert(argList.args[i]->getStartLoc(), newStr);
|
|
continue;
|
|
}
|
|
|
|
// Change the name.
|
|
diag.fixItReplace(argList.labelLocs[i], newStr);
|
|
}
|
|
|
|
// If the diagnostic is local, flush it before returning.
|
|
// This makes sure it's emitted before the message text buffers are destroyed.
|
|
diagOpt.reset();
|
|
return true;
|
|
}
|
|
|
|
static const Expr *lookThroughExprsToImmediateDeallocation(const Expr *E) {
|
|
// Look through various expressions that don't affect the fact that the user
|
|
// will be assigning a class instance that will be immediately deallocated.
|
|
while (true) {
|
|
E = E->getValueProvidingExpr();
|
|
|
|
// We don't currently deal with tuple destructuring.
|
|
if (isa<DestructureTupleExpr>(E))
|
|
return E;
|
|
|
|
// If we have a TupleElementExpr with a child TupleExpr, dig into that
|
|
// element.
|
|
if (auto *TEE = dyn_cast<TupleElementExpr>(E)) {
|
|
auto *subExpr = lookThroughExprsToImmediateDeallocation(TEE->getBase());
|
|
if (auto *TE = dyn_cast<TupleExpr>(subExpr)) {
|
|
auto *element = TE->getElements()[TEE->getFieldNumber()];
|
|
return lookThroughExprsToImmediateDeallocation(element);
|
|
}
|
|
return subExpr;
|
|
}
|
|
|
|
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(E)) {
|
|
E = ICE->getSubExpr();
|
|
continue;
|
|
}
|
|
if (auto *CE = dyn_cast<CoerceExpr>(E)) {
|
|
E = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
if (auto *OEE = dyn_cast<OpenExistentialExpr>(E)) {
|
|
E = OEE->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
// Look through optional evaluations, we still want to diagnose on
|
|
// things like initializers called through optional chaining and the
|
|
// unwrapping of failable initializers.
|
|
if (auto *OEE = dyn_cast<OptionalEvaluationExpr>(E)) {
|
|
E = OEE->getSubExpr();
|
|
continue;
|
|
}
|
|
if (auto *OBE = dyn_cast<BindOptionalExpr>(E)) {
|
|
E = OBE->getSubExpr();
|
|
continue;
|
|
}
|
|
if (auto *FOE = dyn_cast<ForceValueExpr>(E)) {
|
|
E = FOE->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (auto *ATE = dyn_cast<AnyTryExpr>(E)) {
|
|
E = ATE->getSubExpr();
|
|
continue;
|
|
}
|
|
if (auto *DSBIE = dyn_cast<DotSyntaxBaseIgnoredExpr>(E)) {
|
|
E = DSBIE->getRHS();
|
|
continue;
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
static void diagnoseUnownedImmediateDeallocationImpl(ASTContext &ctx,
|
|
const VarDecl *varDecl,
|
|
const Expr *initExpr,
|
|
SourceLoc diagLoc,
|
|
SourceRange diagRange) {
|
|
auto *ownershipAttr =
|
|
varDecl->getAttrs().getAttribute<ReferenceOwnershipAttr>();
|
|
if (!ownershipAttr || ownershipAttr->isInvalid())
|
|
return;
|
|
|
|
// Only diagnose for non-owning ownerships such as 'weak' and 'unowned'.
|
|
// Zero is the default/strong ownership strength.
|
|
if (ReferenceOwnership::Strong == ownershipAttr->get() ||
|
|
isLessStrongThan(ReferenceOwnership::Strong, ownershipAttr->get()))
|
|
return;
|
|
|
|
// Try to find a call to a constructor.
|
|
initExpr = lookThroughExprsToImmediateDeallocation(initExpr);
|
|
auto *CE = dyn_cast<CallExpr>(initExpr);
|
|
if (!CE)
|
|
return;
|
|
|
|
auto *CRCE = dyn_cast<ConstructorRefCallExpr>(CE->getFn());
|
|
if (!CRCE)
|
|
return;
|
|
|
|
auto *DRE = dyn_cast<DeclRefExpr>(CRCE->getFn());
|
|
if (!DRE)
|
|
return;
|
|
|
|
auto *constructorDecl = dyn_cast<ConstructorDecl>(DRE->getDecl());
|
|
if (!constructorDecl)
|
|
return;
|
|
|
|
// Make sure the constructor constructs an instance that allows ownership.
|
|
// This is to ensure we don't diagnose on constructors such as
|
|
// Optional.init(nilLiteral:).
|
|
auto selfType = constructorDecl->getDeclContext()->getSelfTypeInContext();
|
|
if (!selfType->allowsOwnership())
|
|
return;
|
|
|
|
// This must stay in sync with
|
|
// diag::unowned_assignment_immediate_deallocation.
|
|
enum {
|
|
SK_Variable = 0,
|
|
SK_Property
|
|
} storageKind = SK_Variable;
|
|
|
|
if (varDecl->getDeclContext()->isTypeContext())
|
|
storageKind = SK_Property;
|
|
|
|
ctx.Diags.diagnose(diagLoc, diag::unowned_assignment_immediate_deallocation,
|
|
varDecl->getName(), ownershipAttr->get(),
|
|
unsigned(storageKind))
|
|
.highlight(diagRange);
|
|
|
|
ctx.Diags.diagnose(diagLoc, diag::unowned_assignment_requires_strong)
|
|
.highlight(diagRange);
|
|
|
|
ctx.Diags.diagnose(varDecl, diag::decl_declared_here, varDecl->getFullName());
|
|
}
|
|
|
|
void swift::diagnoseUnownedImmediateDeallocation(ASTContext &ctx,
|
|
const AssignExpr *assignExpr) {
|
|
auto *destExpr = assignExpr->getDest()->getValueProvidingExpr();
|
|
auto *initExpr = assignExpr->getSrc();
|
|
|
|
// Try to find a referenced VarDecl.
|
|
const VarDecl *VD = nullptr;
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(destExpr)) {
|
|
VD = dyn_cast<VarDecl>(DRE->getDecl());
|
|
} else if (auto *MRE = dyn_cast<MemberRefExpr>(destExpr)) {
|
|
VD = dyn_cast<VarDecl>(MRE->getMember().getDecl());
|
|
}
|
|
|
|
if (VD)
|
|
diagnoseUnownedImmediateDeallocationImpl(ctx, VD, initExpr,
|
|
assignExpr->getLoc(),
|
|
initExpr->getSourceRange());
|
|
}
|
|
|
|
void swift::diagnoseUnownedImmediateDeallocation(ASTContext &ctx,
|
|
const Pattern *pattern,
|
|
SourceLoc equalLoc,
|
|
const Expr *initExpr) {
|
|
pattern = pattern->getSemanticsProvidingPattern();
|
|
|
|
if (auto *TP = dyn_cast<TuplePattern>(pattern)) {
|
|
initExpr = lookThroughExprsToImmediateDeallocation(initExpr);
|
|
|
|
// If we've found a matching tuple initializer with the same number of
|
|
// elements as our pattern, diagnose each element individually.
|
|
auto TE = dyn_cast<TupleExpr>(initExpr);
|
|
if (TE && TE->getNumElements() == TP->getNumElements()) {
|
|
for (unsigned i = 0, e = TP->getNumElements(); i != e; ++i) {
|
|
const TuplePatternElt &elt = TP->getElement(i);
|
|
const Pattern *subPattern = elt.getPattern();
|
|
Expr *subInitExpr = TE->getElement(i);
|
|
|
|
diagnoseUnownedImmediateDeallocation(ctx, subPattern, equalLoc,
|
|
subInitExpr);
|
|
}
|
|
}
|
|
} else if (auto *NP = dyn_cast<NamedPattern>(pattern)) {
|
|
diagnoseUnownedImmediateDeallocationImpl(ctx, NP->getDecl(), initExpr,
|
|
equalLoc,
|
|
initExpr->getSourceRange());
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
enum NoteKind_t {
|
|
FixItReplace,
|
|
FixItInsert,
|
|
};
|
|
|
|
static bool fixItOverrideDeclarationTypesImpl(
|
|
ValueDecl *decl, const ValueDecl *base,
|
|
SmallVectorImpl<std::tuple<NoteKind_t, SourceRange, std::string>> ¬es) {
|
|
// For now, just rewrite cases where the base uses a value type and the
|
|
// override uses a reference type, and the value type is bridged to the
|
|
// reference type. This is a way to migrate code that makes use of types
|
|
// that previously were not bridged to value types.
|
|
auto checkValueReferenceType =
|
|
[&](Type overrideTy, ParamDecl::Specifier overrideSpec,
|
|
Type baseTy, ParamDecl::Specifier baseSpec,
|
|
SourceRange typeRange) -> bool {
|
|
if (typeRange.isInvalid())
|
|
return false;
|
|
|
|
auto normalizeType = [](Type &ty, ParamDecl::Specifier spec) -> Type {
|
|
Type normalizedTy = ty;
|
|
if (Type unwrappedTy = normalizedTy->getOptionalObjectType())
|
|
normalizedTy = unwrappedTy;
|
|
if (spec == ParamDecl::Specifier::InOut)
|
|
ty = InOutType::get(ty);
|
|
return normalizedTy;
|
|
};
|
|
|
|
// Is the base type bridged?
|
|
Type normalizedBaseTy = normalizeType(baseTy, baseSpec);
|
|
const DeclContext *DC = decl->getDeclContext();
|
|
|
|
ASTContext &ctx = decl->getASTContext();
|
|
|
|
// ...and just knowing that it's bridged isn't good enough if we don't
|
|
// know what it's bridged /to/. Also, don't do this check for trivial
|
|
// bridging---that doesn't count.
|
|
Type bridged;
|
|
if (normalizedBaseTy->isAny()) {
|
|
bridged = ctx.getAnyObjectType();
|
|
} else {
|
|
bridged = ctx.getBridgedToObjC(DC, normalizedBaseTy);
|
|
}
|
|
if (!bridged || bridged->isEqual(normalizedBaseTy))
|
|
return false;
|
|
|
|
// ...and is it bridged to the overridden type?
|
|
Type normalizedOverrideTy = normalizeType(overrideTy, overrideSpec);
|
|
if (!bridged->isEqual(normalizedOverrideTy)) {
|
|
// If both are nominal types, check again, ignoring generic arguments.
|
|
auto *overrideNominal = normalizedOverrideTy->getAnyNominal();
|
|
if (!overrideNominal || bridged->getAnyNominal() != overrideNominal) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Type newOverrideTy = baseTy;
|
|
|
|
// Preserve optionality if we're dealing with a simple type.
|
|
if (Type unwrappedTy = newOverrideTy->getOptionalObjectType())
|
|
newOverrideTy = unwrappedTy;
|
|
if (overrideTy->getOptionalObjectType())
|
|
newOverrideTy = OptionalType::get(newOverrideTy);
|
|
|
|
SmallString<32> baseTypeBuf;
|
|
llvm::raw_svector_ostream baseTypeStr(baseTypeBuf);
|
|
PrintOptions options;
|
|
options.SynthesizeSugarOnTypes = true;
|
|
|
|
newOverrideTy->print(baseTypeStr, options);
|
|
notes.emplace_back(FixItReplace, typeRange, baseTypeStr.str().str());
|
|
return true;
|
|
};
|
|
|
|
// Check if overriding fails because we lack @escaping attribute on the function
|
|
// type repr.
|
|
auto checkTypeMissingEscaping = [&](Type overrideTy, Type baseTy,
|
|
SourceRange typeRange) -> bool {
|
|
// Fix-it needs position to apply.
|
|
if (typeRange.isInvalid())
|
|
return false;
|
|
auto overrideFnTy = overrideTy->getAs<AnyFunctionType>();
|
|
auto baseFnTy = baseTy->getAs<AnyFunctionType>();
|
|
|
|
// Both types should be function.
|
|
if (overrideFnTy && baseFnTy &&
|
|
// The overriding function type should be no escaping.
|
|
overrideFnTy->getExtInfo().isNoEscape() &&
|
|
// The overridden function type should be escaping.
|
|
!baseFnTy->getExtInfo().isNoEscape()) {
|
|
notes.emplace_back(FixItInsert, typeRange, "@escaping ");
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
auto checkType = [&](Type overrideTy, ParamDecl::Specifier overrideSpec,
|
|
Type baseTy, ParamDecl::Specifier baseSpec,
|
|
SourceRange typeRange) -> bool {
|
|
return checkValueReferenceType(overrideTy, overrideSpec,
|
|
baseTy, baseSpec, typeRange) ||
|
|
checkTypeMissingEscaping(overrideTy, baseTy, typeRange);
|
|
};
|
|
|
|
if (auto *param = dyn_cast<ParamDecl>(decl)) {
|
|
SourceRange typeRange = param->getTypeSourceRangeForDiagnostics();
|
|
auto *baseParam = cast<ParamDecl>(base);
|
|
return checkType(param->getInterfaceType(), param->getSpecifier(),
|
|
baseParam->getInterfaceType(), baseParam->getSpecifier(),
|
|
typeRange);
|
|
}
|
|
|
|
if (auto *var = dyn_cast<VarDecl>(decl)) {
|
|
SourceRange typeRange = var->getTypeSourceRangeForDiagnostics();
|
|
auto *baseVar = cast<VarDecl>(base);
|
|
return checkType(var->getInterfaceType(), ParamDecl::Specifier::Default,
|
|
baseVar->getInterfaceType(), ParamDecl::Specifier::Default,
|
|
typeRange);
|
|
}
|
|
|
|
if (auto *fn = dyn_cast<AbstractFunctionDecl>(decl)) {
|
|
auto *baseFn = cast<AbstractFunctionDecl>(base);
|
|
bool fixedAny = false;
|
|
if (fn->getParameters()->size() ==
|
|
baseFn->getParameters()->size()) {
|
|
for_each(*fn->getParameters(),
|
|
*baseFn->getParameters(),
|
|
[&](ParamDecl *param, const ParamDecl *baseParam) {
|
|
fixedAny |= fixItOverrideDeclarationTypesImpl(param, baseParam, notes);
|
|
});
|
|
}
|
|
if (auto *method = dyn_cast<FuncDecl>(decl)) {
|
|
auto resultType = method->mapTypeIntoContext(
|
|
method->getResultInterfaceType());
|
|
|
|
auto *baseMethod = cast<FuncDecl>(base);
|
|
auto baseResultType = baseMethod->mapTypeIntoContext(
|
|
baseMethod->getResultInterfaceType());
|
|
|
|
fixedAny |= checkType(resultType, ParamDecl::Specifier::Default,
|
|
baseResultType, ParamDecl::Specifier::Default,
|
|
method->getBodyResultTypeLoc().getSourceRange());
|
|
}
|
|
return fixedAny;
|
|
}
|
|
|
|
if (auto *subscript = dyn_cast<SubscriptDecl>(decl)) {
|
|
auto *baseSubscript = cast<SubscriptDecl>(base);
|
|
bool fixedAny = false;
|
|
if (subscript->getIndices()->size() ==
|
|
baseSubscript->getIndices()->size()) {
|
|
for_each(*subscript->getIndices(),
|
|
*baseSubscript->getIndices(),
|
|
[&](ParamDecl *param, const ParamDecl *baseParam) {
|
|
fixedAny |= fixItOverrideDeclarationTypesImpl(param, baseParam, notes);
|
|
});
|
|
}
|
|
|
|
auto resultType = subscript->getDeclContext()->mapTypeIntoContext(
|
|
subscript->getElementInterfaceType());
|
|
auto baseResultType = baseSubscript->getDeclContext()->mapTypeIntoContext(
|
|
baseSubscript->getElementInterfaceType());
|
|
fixedAny |= checkType(resultType, ParamDecl::Specifier::Default,
|
|
baseResultType, ParamDecl::Specifier::Default,
|
|
subscript->getElementTypeLoc().getSourceRange());
|
|
return fixedAny;
|
|
}
|
|
|
|
llvm_unreachable("unknown overridable member");
|
|
}
|
|
};
|
|
|
|
bool swift::computeFixitsForOverridenDeclaration(
|
|
ValueDecl *decl, const ValueDecl *base,
|
|
llvm::function_ref<Optional<InFlightDiagnostic>(bool)> diag) {
|
|
SmallVector<std::tuple<NoteKind_t, SourceRange, std::string>, 4> Notes;
|
|
bool hasNotes = ::fixItOverrideDeclarationTypesImpl(decl, base, Notes);
|
|
|
|
Optional<InFlightDiagnostic> diagnostic = diag(hasNotes);
|
|
if (!diagnostic) return hasNotes;
|
|
|
|
for (const auto ¬e : Notes) {
|
|
if (std::get<0>(note) == FixItReplace) {
|
|
diagnostic->fixItReplace(std::get<1>(note), std::get<2>(note));
|
|
} else {
|
|
diagnostic->fixItInsert(std::get<1>(note).Start, std::get<2>(note));
|
|
}
|
|
}
|
|
return hasNotes;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Per func/init diagnostics
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class VarDeclUsageChecker : public ASTWalker {
|
|
DiagnosticEngine &Diags;
|
|
// Keep track of some information about a variable.
|
|
enum {
|
|
RK_Read = 1, ///< Whether it was ever read.
|
|
RK_Written = 2, ///< Whether it was ever written or passed inout.
|
|
|
|
RK_CaptureList = 4 ///< Var is an entry in a capture list.
|
|
};
|
|
|
|
/// These are all of the variables that we are tracking. VarDecls get added
|
|
/// to this when the declaration is seen. We use a MapVector to keep the
|
|
/// diagnostics emission in deterministic order.
|
|
llvm::SmallMapVector<VarDecl*, unsigned, 32> VarDecls;
|
|
|
|
/// This is a mapping from an OpaqueValue to the expression that initialized
|
|
/// it.
|
|
llvm::SmallDenseMap<OpaqueValueExpr*, Expr*> OpaqueValueMap;
|
|
|
|
/// The getter associated with a setter function declaration.
|
|
const VarDecl *AssociatedGetter = nullptr;
|
|
|
|
/// The first reference to the associated getter.
|
|
const Expr *AssociatedGetterRefExpr = nullptr;
|
|
|
|
/// This is a mapping from VarDecls to the if/while/guard statement that they
|
|
/// occur in, when they are in a pattern in a StmtCondition.
|
|
llvm::SmallDenseMap<VarDecl*, LabeledConditionalStmt*> StmtConditionForVD;
|
|
|
|
#ifndef NDEBUG
|
|
llvm::SmallPtrSet<Expr*, 32> AllExprsSeen;
|
|
#endif
|
|
|
|
bool sawError = false;
|
|
|
|
VarDeclUsageChecker(const VarDeclUsageChecker &) = delete;
|
|
void operator=(const VarDeclUsageChecker &) = delete;
|
|
|
|
public:
|
|
VarDeclUsageChecker(AbstractFunctionDecl *AFD)
|
|
: Diags(AFD->getASTContext().Diags) {
|
|
// If this AFD is a setter, track the parameter and the getter for
|
|
// the containing property so if newValue isn't used but the getter is used
|
|
// an error can be reported.
|
|
if (auto FD = dyn_cast<AccessorDecl>(AFD)) {
|
|
if (FD->getAccessorKind() == AccessorKind::Set) {
|
|
if (auto getter = dyn_cast<VarDecl>(FD->getStorage())) {
|
|
auto arguments = FD->getParameters();
|
|
VarDecls[arguments->get(0)] = 0;
|
|
AssociatedGetter = getter;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VarDeclUsageChecker(DiagnosticEngine &Diags) : Diags(Diags) {}
|
|
|
|
VarDeclUsageChecker(VarDecl *vd) : Diags(vd->getASTContext().Diags) {
|
|
// Track a specific VarDecl
|
|
VarDecls[vd] = 0;
|
|
if (auto *childVd = vd->getCorrespondingCaseBodyVariable().getPtrOrNull()) {
|
|
VarDecls[childVd] = 0;
|
|
}
|
|
}
|
|
|
|
void suppressDiagnostics() {
|
|
sawError = true; // set this flag so that no diagnostics will be emitted on delete.
|
|
}
|
|
|
|
// After we have scanned the entire region, diagnose variables that could be
|
|
// declared with a narrower usage kind.
|
|
~VarDeclUsageChecker() override;
|
|
|
|
/// Check to see if the specified VarDecl is part of a larger
|
|
/// PatternBindingDecl, where some other bound variable was mutated. In this
|
|
/// case we don't want to generate a "variable never mutated" warning, because
|
|
/// it would require splitting up the destructuring of the tuple, which is
|
|
/// more code turmoil than the warning is worth.
|
|
bool isVarDeclPartOfPBDThatHadSomeMutation(VarDecl *VD) {
|
|
auto *PBD = VD->getParentPatternBinding();
|
|
if (!PBD) return false;
|
|
|
|
bool sawMutation = false;
|
|
for (auto idx : range(PBD->getNumPatternEntries())) {
|
|
PBD->getPattern(idx)->forEachVariable([&](VarDecl *VD) {
|
|
auto it = VarDecls.find(VD);
|
|
sawMutation |= it != VarDecls.end() && (it->second & RK_Written);
|
|
});
|
|
}
|
|
return sawMutation;
|
|
}
|
|
|
|
bool isVarDeclEverWritten(VarDecl *VD) {
|
|
return (VarDecls[VD] & RK_Written) != 0;
|
|
}
|
|
|
|
bool shouldTrackVarDecl(VarDecl *VD) {
|
|
// If the variable is implicit, ignore it.
|
|
if (VD->isImplicit() || VD->getLoc().isInvalid())
|
|
return false;
|
|
|
|
// If the variable is computed, ignore it.
|
|
if (!VD->hasStorage())
|
|
return false;
|
|
|
|
// If the variable was invalid, ignore it and notice that the code is
|
|
// malformed.
|
|
if (VD->isInvalid()) {
|
|
sawError = true;
|
|
return false;
|
|
}
|
|
|
|
// If the variable is already unnamed, ignore it.
|
|
if (!VD->hasName() || VD->getName().str() == "_")
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void addMark(Decl *D, unsigned Flag) {
|
|
auto *vd = dyn_cast<VarDecl>(D);
|
|
if (!vd) return;
|
|
|
|
auto vdi = VarDecls.find(vd);
|
|
if (vdi != VarDecls.end())
|
|
vdi->second |= Flag;
|
|
}
|
|
|
|
void markBaseOfStorageUse(Expr *E, ConcreteDeclRef decl, unsigned flags);
|
|
void markBaseOfStorageUse(Expr *E, bool isMutating);
|
|
|
|
void markStoredOrInOutExpr(Expr *E, unsigned Flags);
|
|
|
|
// We generally walk into declarations, other than types and nested functions.
|
|
// FIXME: peek into capture lists of nested functions.
|
|
bool walkToDeclPre(Decl *D) override {
|
|
if (isa<TypeDecl>(D))
|
|
return false;
|
|
|
|
// The body of #if clauses are not walked into, we need custom processing
|
|
// for them.
|
|
if (auto *ICD = dyn_cast<IfConfigDecl>(D))
|
|
handleIfConfig(ICD);
|
|
|
|
// If this is a VarDecl, then add it to our list of things to track.
|
|
if (auto *vd = dyn_cast<VarDecl>(D)) {
|
|
if (shouldTrackVarDecl(vd)) {
|
|
// Inline constructor.
|
|
auto defaultFlags = [&]() -> unsigned {
|
|
// If this VarDecl is nested inside of a CaptureListExpr, remember
|
|
// that fact for better diagnostics.
|
|
auto parentAsExpr = Parent.getAsExpr();
|
|
if (parentAsExpr && isa<CaptureListExpr>(parentAsExpr))
|
|
return RK_CaptureList;
|
|
// Otherwise, return none.
|
|
return 0;
|
|
}();
|
|
|
|
if (!vd->isImplicit()) {
|
|
if (auto *childVd =
|
|
vd->getCorrespondingCaseBodyVariable().getPtrOrNull()) {
|
|
// Child vars are never in capture lists.
|
|
assert(defaultFlags == 0);
|
|
VarDecls[childVd] |= 0;
|
|
}
|
|
}
|
|
VarDecls[vd] |= defaultFlags;
|
|
}
|
|
}
|
|
|
|
// Don't walk into implicit accessors, since eg. an observer's setter
|
|
// references the variable, but we don't want to consider it as a real
|
|
// "use".
|
|
if (isa<AccessorDecl>(D) && D->isImplicit())
|
|
return false;
|
|
|
|
if (auto *afd = dyn_cast<AbstractFunctionDecl>(D)) {
|
|
// If this is a nested function with a capture list, mark any captured
|
|
// variables.
|
|
if (afd->isBodyTypeChecked()) {
|
|
TypeChecker::computeCaptures(afd);
|
|
for (const auto &capture : afd->getCaptureInfo().getCaptures())
|
|
addMark(capture.getDecl(), RK_Read|RK_Written);
|
|
} else {
|
|
// If the body hasn't been type checked yet, be super-conservative and
|
|
// mark all variables as used. This can be improved later, e.g. by
|
|
// walking the untype-checked body to look for things that could
|
|
// possibly be used.
|
|
VarDecls.clear();
|
|
}
|
|
|
|
// Don't walk into it though, it may not even be type checked yet.
|
|
return false;
|
|
}
|
|
if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D)) {
|
|
// If this is a TopLevelCodeDecl, scan for global variables
|
|
auto *body = TLCD->getBody();
|
|
for (auto node : body->getElements()) {
|
|
if (node.is<Decl *>()) {
|
|
// Flag all variables in a PatternBindingDecl
|
|
Decl *D = node.get<Decl *>();
|
|
auto *PBD = dyn_cast<PatternBindingDecl>(D);
|
|
if (!PBD) continue;
|
|
for (auto idx : range(PBD->getNumPatternEntries())) {
|
|
PBD->getPattern(idx)->forEachVariable([&](VarDecl *VD) {
|
|
VarDecls[VD] = RK_Read|RK_Written;
|
|
});
|
|
}
|
|
} else if (node.is<Stmt *>()) {
|
|
// Flag all variables in guard statements
|
|
Stmt *S = node.get<Stmt *>();
|
|
auto *GS = dyn_cast<GuardStmt>(S);
|
|
if (!GS) continue;
|
|
for (StmtConditionElement SCE : GS->getCond()) {
|
|
if (auto pattern = SCE.getPatternOrNull()) {
|
|
pattern->forEachVariable([&](VarDecl *VD) {
|
|
VarDecls[VD] = RK_Read|RK_Written;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that we ignore the initialization behavior of PatternBindingDecls,
|
|
// but we do want to walk into them, because we want to see any uses or
|
|
// other things going on in the initializer expressions.
|
|
return true;
|
|
}
|
|
|
|
/// The heavy lifting happens when visiting expressions.
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override;
|
|
|
|
/// handle #if directives.
|
|
void handleIfConfig(IfConfigDecl *ICD);
|
|
|
|
/// Custom handling for statements.
|
|
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
|
|
// Keep track of an association between vardecls and the StmtCondition that
|
|
// they are bound in for IfStmt, GuardStmt, WhileStmt, etc.
|
|
if (auto LCS = dyn_cast<LabeledConditionalStmt>(S)) {
|
|
for (auto &cond : LCS->getCond())
|
|
if (auto pat = cond.getPatternOrNull()) {
|
|
pat->forEachVariable([&](VarDecl *VD) {
|
|
StmtConditionForVD[VD] = LCS;
|
|
});
|
|
}
|
|
}
|
|
|
|
// A fallthrough dest case's bound variable means the source case's
|
|
// var of the same name is read.
|
|
if (auto *fallthroughStmt = dyn_cast<FallthroughStmt>(S)) {
|
|
if (auto *sourceCase = fallthroughStmt->getFallthroughSource()) {
|
|
SmallVector<VarDecl *, 4> sourceVars;
|
|
auto sourcePattern = sourceCase->getCaseLabelItems()[0].getPattern();
|
|
sourcePattern->collectVariables(sourceVars);
|
|
|
|
auto destCase = fallthroughStmt->getFallthroughDest();
|
|
auto destPattern = destCase->getCaseLabelItems()[0].getPattern();
|
|
destPattern->forEachVariable([&](VarDecl *V) {
|
|
if (!V->hasName())
|
|
return;
|
|
for (auto *var : sourceVars) {
|
|
if (var->hasName() && var->getName() == V->getName()) {
|
|
VarDecls[var] |= RK_Read;
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// Make sure that we setup our case body variables.
|
|
if (auto *caseStmt = dyn_cast<CaseStmt>(S)) {
|
|
for (auto *vd : caseStmt->getCaseBodyVariablesOrEmptyArray()) {
|
|
VarDecls[vd] |= 0;
|
|
}
|
|
}
|
|
|
|
return { true, S };
|
|
}
|
|
};
|
|
|
|
/// An AST walker that determines the underlying type of an opaque return decl
|
|
/// from its associated function body.
|
|
class OpaqueUnderlyingTypeChecker : public ASTWalker {
|
|
ASTContext &Ctx;
|
|
AbstractFunctionDecl *Implementation;
|
|
OpaqueTypeDecl *OpaqueDecl;
|
|
BraceStmt *Body;
|
|
SmallVector<std::pair<Expr*, Type>, 4> Candidates;
|
|
|
|
bool HasInvalidReturn = false;
|
|
|
|
public:
|
|
OpaqueUnderlyingTypeChecker(AbstractFunctionDecl *Implementation,
|
|
OpaqueTypeDecl *OpaqueDecl,
|
|
BraceStmt *Body)
|
|
: Ctx(Implementation->getASTContext()),
|
|
Implementation(Implementation),
|
|
OpaqueDecl(OpaqueDecl),
|
|
Body(Body)
|
|
{
|
|
|
|
}
|
|
|
|
void check() {
|
|
Body->walk(*this);
|
|
|
|
// If given function has any invalid returns in the body
|
|
// let's not try to validate the types, since it wouldn't
|
|
// be accurate.
|
|
if (HasInvalidReturn)
|
|
return;
|
|
|
|
// If there are no candidates, then the body has no return statements, and
|
|
// we have nothing to infer the underlying type from.
|
|
if (Candidates.empty()) {
|
|
Implementation->diagnose(diag::opaque_type_no_underlying_type_candidates);
|
|
return;
|
|
}
|
|
|
|
// Check whether all of the underlying type candidates match up.
|
|
auto opaqueTypeInContext =
|
|
Implementation->mapTypeIntoContext(OpaqueDecl->getDeclaredInterfaceType());
|
|
Type underlyingType = Candidates.front().second;
|
|
|
|
bool mismatch = false;
|
|
for (auto otherCandidate : llvm::makeArrayRef(Candidates).slice(1)) {
|
|
// Disregard tautological candidates.
|
|
if (otherCandidate.second->isEqual(opaqueTypeInContext))
|
|
continue;
|
|
|
|
if (!underlyingType->isEqual(otherCandidate.second)) {
|
|
mismatch = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mismatch) {
|
|
Implementation->diagnose(
|
|
diag::opaque_type_mismatched_underlying_type_candidates);
|
|
for (auto candidate : Candidates) {
|
|
Ctx.Diags.diagnose(candidate.first->getLoc(),
|
|
diag::opaque_type_underlying_type_candidate_here,
|
|
candidate.second);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The underlying type can't be defined recursively
|
|
// in terms of the opaque type itself.
|
|
auto isSelfReferencing = underlyingType.findIf([&](Type t) -> bool {
|
|
return t->isEqual(opaqueTypeInContext);
|
|
});
|
|
|
|
if (isSelfReferencing) {
|
|
Ctx.Diags.diagnose(Candidates.front().first->getLoc(),
|
|
diag::opaque_type_self_referential_underlying_type,
|
|
underlyingType);
|
|
return;
|
|
}
|
|
|
|
// If we have one successful candidate, then save it as the underlying type
|
|
// of the opaque decl.
|
|
// Form a substitution map that defines it in terms of the other context
|
|
// generic parameters.
|
|
underlyingType = underlyingType->mapTypeOutOfContext();
|
|
auto underlyingSubs = SubstitutionMap::get(
|
|
OpaqueDecl->getOpaqueInterfaceGenericSignature(),
|
|
[&](SubstitutableType *t) -> Type {
|
|
if (t->isEqual(OpaqueDecl->getUnderlyingInterfaceType())) {
|
|
return underlyingType;
|
|
}
|
|
return Type(t);
|
|
},
|
|
LookUpConformanceInModule(OpaqueDecl->getModuleContext()));
|
|
|
|
OpaqueDecl->setUnderlyingTypeSubstitutions(underlyingSubs);
|
|
}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (auto underlyingToOpaque = dyn_cast<UnderlyingToOpaqueExpr>(E)) {
|
|
assert(E->getType()->isEqual(
|
|
Implementation->mapTypeIntoContext(OpaqueDecl->getDeclaredInterfaceType()))
|
|
&& "unexpected opaque type in function body");
|
|
|
|
Candidates.push_back(std::make_pair(underlyingToOpaque->getSubExpr(),
|
|
underlyingToOpaque->getSubExpr()->getType()));
|
|
}
|
|
return std::make_pair(false, E);
|
|
}
|
|
|
|
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
|
|
if (auto *RS = dyn_cast<ReturnStmt>(S)) {
|
|
if (RS->hasResult()) {
|
|
auto resultTy = RS->getResult()->getType();
|
|
// If expression associated with return statement doesn't have
|
|
// a type or type has an error, checking opaque types is going
|
|
// to produce incorrect diagnostics.
|
|
HasInvalidReturn |= resultTy.isNull() || resultTy->hasError();
|
|
}
|
|
}
|
|
|
|
return {true, S};
|
|
}
|
|
|
|
// Don't descend into nested decls.
|
|
bool walkToDeclPre(Decl *D) override {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// After we have scanned the entire region, diagnose variables that could be
|
|
// declared with a narrower usage kind.
|
|
VarDeclUsageChecker::~VarDeclUsageChecker() {
|
|
// If we saw an ErrorExpr somewhere in the body, then we have a malformed AST
|
|
// and we know stuff got dropped. Instead of producing these diagnostics,
|
|
// lets let the bigger issues get resolved first.
|
|
if (sawError)
|
|
return;
|
|
|
|
for (auto p : VarDecls) {
|
|
VarDecl *var;
|
|
unsigned access;
|
|
std::tie(var, access) = p;
|
|
|
|
if (auto *caseStmt =
|
|
dyn_cast_or_null<CaseStmt>(var->getRecursiveParentPatternStmt())) {
|
|
// Only diagnose VarDecls from the first CaseLabelItem in CaseStmts, as
|
|
// the remaining items must match it anyway.
|
|
auto caseItems = caseStmt->getCaseLabelItems();
|
|
assert(!caseItems.empty() &&
|
|
"If we have any case stmt var decls, we should have a case item");
|
|
if (!caseItems.front().getPattern()->containsVarDecl(var))
|
|
continue;
|
|
|
|
auto *childVar = var->getCorrespondingCaseBodyVariable().get();
|
|
access |= VarDecls[childVar];
|
|
}
|
|
|
|
// If the setter parameter is not used, but the property is read, report
|
|
// a warning. Otherwise, parameters should not generate usage warnings. It
|
|
// is common to name a parameter and not use it (e.g. because you are an
|
|
// override or want the named keyword, etc). Warning to rewrite it to _ is
|
|
// more annoying than it is useful.
|
|
if (auto param = dyn_cast<ParamDecl>(var)) {
|
|
auto FD = dyn_cast<AccessorDecl>(param->getDeclContext());
|
|
if (FD && FD->getAccessorKind() == AccessorKind::Set) {
|
|
auto getter = dyn_cast<VarDecl>(FD->getStorage());
|
|
if ((access & RK_Read) == 0 && AssociatedGetter == getter) {
|
|
if (auto DRE = AssociatedGetterRefExpr) {
|
|
Diags.diagnose(DRE->getLoc(), diag::unused_setter_parameter,
|
|
var->getName());
|
|
Diags.diagnose(DRE->getLoc(), diag::fixit_for_unused_setter_parameter,
|
|
var->getName())
|
|
.fixItReplace(DRE->getSourceRange(), var->getName().str());
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If this is a 'let' value, any stores to it are actually initializations,
|
|
// not mutations.
|
|
auto isWrittenLet = false;
|
|
if (var->isLet()) {
|
|
isWrittenLet = (access & RK_Written) != 0;
|
|
access &= ~RK_Written;
|
|
}
|
|
|
|
// If this variable has WeakStorageType, then it can be mutated in ways we
|
|
// don't know.
|
|
if (var->getType()->is<WeakStorageType>())
|
|
access |= RK_Written;
|
|
|
|
// Diagnose variables that were never used (other than their
|
|
// initialization).
|
|
//
|
|
if ((access & (RK_Read|RK_Written)) == 0) {
|
|
// If this is a member in a capture list, just say it is unused. We could
|
|
// produce a fixit hint with a parent map, but this is a lot of effort for
|
|
// a narrow case.
|
|
if (access & RK_CaptureList) {
|
|
Diags.diagnose(var->getLoc(), diag::capture_never_used,
|
|
var->getName());
|
|
continue;
|
|
}
|
|
|
|
// If the source of the VarDecl is a trivial PatternBinding with only a
|
|
// single binding, rewrite the whole thing into an assignment.
|
|
// let x = foo()
|
|
// ->
|
|
// _ = foo()
|
|
if (auto *pbd = var->getParentPatternBinding())
|
|
if (pbd->getSingleVar() == var && pbd->getInit(0) != nullptr &&
|
|
!isa<TypedPattern>(pbd->getPattern(0))) {
|
|
unsigned varKind = var->isLet();
|
|
SourceRange replaceRange(
|
|
pbd->getStartLoc(),
|
|
pbd->getPattern(0)->getEndLoc());
|
|
Diags.diagnose(var->getLoc(), diag::pbd_never_used,
|
|
var->getName(), varKind)
|
|
.fixItReplace(replaceRange, "_");
|
|
continue;
|
|
}
|
|
|
|
// If the variable is defined in a pattern in an if/while/guard statement,
|
|
// see if we can produce a tuned fixit. When we have something like:
|
|
//
|
|
// if let x = <expr> {
|
|
//
|
|
// we prefer to rewrite it to:
|
|
//
|
|
// if <expr> != nil {
|
|
//
|
|
if (auto SC = StmtConditionForVD[var]) {
|
|
// We only handle the "if let" case right now, since it is vastly the
|
|
// most common situation that people run into.
|
|
if (SC->getCond().size() == 1) {
|
|
auto pattern = SC->getCond()[0].getPattern();
|
|
if (auto OSP = dyn_cast<OptionalSomePattern>(pattern))
|
|
if (auto LP = dyn_cast<VarPattern>(OSP->getSubPattern()))
|
|
if (isa<NamedPattern>(LP->getSubPattern())) {
|
|
auto initExpr = SC->getCond()[0].getInitializer();
|
|
if (initExpr->getStartLoc().isValid()) {
|
|
unsigned noParens = initExpr->canAppendPostfixExpression();
|
|
|
|
// If the subexpr is an "as?" cast, we can rewrite it to
|
|
// be an "is" test.
|
|
bool isIsTest = false;
|
|
if (isa<ConditionalCheckedCastExpr>(initExpr) &&
|
|
!initExpr->isImplicit()) {
|
|
noParens = isIsTest = true;
|
|
}
|
|
|
|
auto diagIF = Diags.diagnose(var->getLoc(),
|
|
diag::pbd_never_used_stmtcond,
|
|
var->getName());
|
|
auto introducerLoc = SC->getCond()[0].getIntroducerLoc();
|
|
diagIF.fixItReplaceChars(introducerLoc,
|
|
initExpr->getStartLoc(),
|
|
&"("[noParens]);
|
|
|
|
if (isIsTest) {
|
|
// If this was an "x as? T" check, rewrite it to "x is T".
|
|
auto CCE = cast<ConditionalCheckedCastExpr>(initExpr);
|
|
diagIF.fixItReplace(SourceRange(CCE->getLoc(),
|
|
CCE->getQuestionLoc()),
|
|
"is");
|
|
} else {
|
|
diagIF.fixItInsertAfter(initExpr->getEndLoc(),
|
|
&") != nil"[noParens]);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, this is something more complex, perhaps
|
|
// let (a,b) = foo()
|
|
if (isWrittenLet) {
|
|
Diags.diagnose(var->getLoc(),
|
|
diag::immutable_value_never_used_but_assigned,
|
|
var->getName());
|
|
} else {
|
|
unsigned varKind = var->isLet();
|
|
// Just rewrite the one variable with a _.
|
|
Diags.diagnose(var->getLoc(), diag::variable_never_used,
|
|
var->getName(), varKind)
|
|
.fixItReplace(var->getLoc(), "_");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If this is a mutable 'var', and it was never written to, suggest
|
|
// upgrading to 'let'.
|
|
if (!var->isLet() && (access & RK_Written) == 0 &&
|
|
// Don't warn if we have something like "let (x,y) = ..." and 'y' was
|
|
// never mutated, but 'x' was.
|
|
!isVarDeclPartOfPBDThatHadSomeMutation(var)) {
|
|
SourceLoc FixItLoc;
|
|
|
|
// Try to find the location of the 'var' so we can produce a fixit. If
|
|
// this is a simple PatternBinding, use its location.
|
|
if (auto *PBD = var->getParentPatternBinding()) {
|
|
if (PBD->getSingleVar() == var)
|
|
FixItLoc = PBD->getLoc();
|
|
} else if (auto *pattern = var->getParentPattern()) {
|
|
VarPattern *foundVP = nullptr;
|
|
pattern->forEachNode([&](Pattern *P) {
|
|
if (auto *VP = dyn_cast<VarPattern>(P))
|
|
if (VP->getSingleVar() == var)
|
|
foundVP = VP;
|
|
});
|
|
|
|
if (foundVP && !foundVP->isLet())
|
|
FixItLoc = foundVP->getLoc();
|
|
}
|
|
|
|
// If this is a parameter explicitly marked 'var', remove it.
|
|
if (FixItLoc.isInvalid()) {
|
|
Diags.diagnose(var->getLoc(), diag::variable_never_mutated,
|
|
var->getName(), true);
|
|
}
|
|
else {
|
|
bool suggestLet = true;
|
|
if (auto *stmt = var->getRecursiveParentPatternStmt()) {
|
|
// Don't try to suggest 'var' -> 'let' conversion
|
|
// in case of 'for' loop because it's an implicitly
|
|
// immutable context.
|
|
suggestLet = !isa<ForEachStmt>(stmt);
|
|
}
|
|
|
|
auto diag = Diags.diagnose(var->getLoc(), diag::variable_never_mutated,
|
|
var->getName(), suggestLet);
|
|
|
|
if (suggestLet)
|
|
diag.fixItReplace(FixItLoc, "let");
|
|
else
|
|
diag.fixItRemove(FixItLoc);
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If this is a variable that was only written to, emit a warning.
|
|
if ((access & RK_Read) == 0) {
|
|
Diags.diagnose(var->getLoc(), diag::variable_never_read, var->getName());
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Handle a use of "x.y" or "x[0]" where 'base' is the expression for x and
|
|
/// 'decl' is the property or subscript.
|
|
///
|
|
/// TODO: Rip this out and just rely on LValueAccessKind.
|
|
void VarDeclUsageChecker::markBaseOfStorageUse(Expr *base, ConcreteDeclRef decl,
|
|
unsigned flags) {
|
|
// If the base is an rvalue, then we know that this is a non-mutating access.
|
|
// Note that we can have mutating accesses even when the base has class or
|
|
// metatype type due to protocols and protocol extensions.
|
|
if (!base->getType()->hasLValueType() &&
|
|
!base->isSemanticallyInOutExpr()) {
|
|
base->walk(*this);
|
|
return;
|
|
}
|
|
|
|
// Compute whether this access is to a mutating member.
|
|
auto *ASD = dyn_cast_or_null<AbstractStorageDecl>(decl.getDecl());
|
|
bool isMutating = false;
|
|
if (!ASD) {
|
|
// If there's no abstract storage declaration (which should hopefully
|
|
// only happen with invalid code), treat the base access as mutating if
|
|
// the subobject is being mutated and the base type is not a class
|
|
// or metatype.
|
|
if (flags & RK_Written) {
|
|
Type type = base->getType()->getRValueType()->getInOutObjectType();
|
|
if (!type->isAnyClassReferenceType() && !type->is<AnyMetatypeType>())
|
|
isMutating = true;
|
|
}
|
|
} else {
|
|
// Otherwise, consider whether the accessors are mutating.
|
|
if (flags & RK_Read)
|
|
isMutating |= ASD->isGetterMutating();
|
|
if (flags & RK_Written)
|
|
isMutating |= ASD->isSettable(nullptr) && ASD->isSetterMutating();
|
|
}
|
|
|
|
markBaseOfStorageUse(base, isMutating);
|
|
}
|
|
|
|
void VarDeclUsageChecker::markBaseOfStorageUse(Expr *base, bool isMutating) {
|
|
// CSApply sometimes wraps the base in an InOutExpr just because the
|
|
// base is an l-value; look through that so we can get more precise
|
|
// checking.
|
|
if (auto *ioe = dyn_cast<InOutExpr>(base))
|
|
base = ioe->getSubExpr();
|
|
|
|
if (!isMutating) {
|
|
base->walk(*this);
|
|
return;
|
|
}
|
|
|
|
// Otherwise this is a read and write of the base.
|
|
return markStoredOrInOutExpr(base, RK_Written|RK_Read);
|
|
}
|
|
|
|
|
|
void VarDeclUsageChecker::markStoredOrInOutExpr(Expr *E, unsigned Flags) {
|
|
// Sema leaves some subexpressions null, which seems really unfortunate. It
|
|
// should replace them with ErrorExpr.
|
|
if (E == nullptr || !E->getType() || E->getType()->hasError()) {
|
|
sawError = true;
|
|
return;
|
|
}
|
|
|
|
// Ignore parens and other easy cases.
|
|
E = E->getSemanticsProvidingExpr();
|
|
|
|
// If we found a decl that is being assigned to, then mark it.
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
addMark(DRE->getDecl(), Flags);
|
|
return;
|
|
}
|
|
|
|
if (auto *TE = dyn_cast<TupleExpr>(E)) {
|
|
for (auto &elt : TE->getElements())
|
|
markStoredOrInOutExpr(elt, Flags);
|
|
return;
|
|
}
|
|
|
|
// If this is an assignment into a mutating subscript lvalue expr, then we
|
|
// are mutating the base expression. We also need to visit the index
|
|
// expressions as loads though.
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(E)) {
|
|
// The index of the subscript is evaluated as an rvalue.
|
|
SE->getIndex()->walk(*this);
|
|
markBaseOfStorageUse(SE->getBase(), SE->getDecl(), Flags);
|
|
return;
|
|
}
|
|
|
|
// Likewise for key path applications. An application of a WritableKeyPath
|
|
// reads and writes its base; an application of a ReferenceWritableKeyPath
|
|
// only reads its base; the other KeyPath types cannot be written at all.
|
|
if (auto *KPA = dyn_cast<KeyPathApplicationExpr>(E)) {
|
|
auto &C = KPA->getType()->getASTContext();
|
|
KPA->getKeyPath()->walk(*this);
|
|
|
|
bool isMutating =
|
|
(Flags & RK_Written) &&
|
|
KPA->getKeyPath()->getType()->getAnyNominal()
|
|
== C.getWritableKeyPathDecl();
|
|
markBaseOfStorageUse(KPA->getBase(), isMutating);
|
|
return;
|
|
}
|
|
|
|
if (auto *ioe = dyn_cast<InOutExpr>(E))
|
|
return markStoredOrInOutExpr(ioe->getSubExpr(), RK_Written|RK_Read);
|
|
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
|
|
markBaseOfStorageUse(MRE->getBase(), MRE->getMember(), Flags);
|
|
return;
|
|
}
|
|
|
|
if (auto *TEE = dyn_cast<TupleElementExpr>(E))
|
|
return markStoredOrInOutExpr(TEE->getBase(), Flags);
|
|
|
|
if (auto *FVE = dyn_cast<ForceValueExpr>(E))
|
|
return markStoredOrInOutExpr(FVE->getSubExpr(), Flags);
|
|
|
|
if (auto *BOE = dyn_cast<BindOptionalExpr>(E))
|
|
return markStoredOrInOutExpr(BOE->getSubExpr(), Flags);
|
|
|
|
// Bind existential expressions.
|
|
if (auto *OEE = dyn_cast<OpenExistentialExpr>(E)) {
|
|
OpaqueValueMap[OEE->getOpaqueValue()] = OEE->getExistentialValue();
|
|
return markStoredOrInOutExpr(OEE->getSubExpr(), Flags);
|
|
}
|
|
|
|
// If this is an OpaqueValueExpr that we've seen a mapping for, jump to the
|
|
// mapped value.
|
|
if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
|
|
if (auto *expr = OpaqueValueMap[OVE])
|
|
return markStoredOrInOutExpr(expr, Flags);
|
|
|
|
// If we don't know what kind of expression this is, assume it's a reference
|
|
// and mark it as a read.
|
|
E->walk(*this);
|
|
}
|
|
|
|
/// The heavy lifting happens when visiting expressions.
|
|
std::pair<bool, Expr *> VarDeclUsageChecker::walkToExprPre(Expr *E) {
|
|
STATISTIC(VarDeclUsageCheckerExprVisits,
|
|
"# of times VarDeclUsageChecker::walkToExprPre is called");
|
|
++VarDeclUsageCheckerExprVisits;
|
|
|
|
// Sema leaves some subexpressions null, which seems really unfortunate. It
|
|
// should replace them with ErrorExpr.
|
|
if (E == nullptr || !E->getType() || E->getType()->hasError()) {
|
|
sawError = true;
|
|
return { false, E };
|
|
}
|
|
|
|
assert(AllExprsSeen.insert(E).second && "duplicate traversal");
|
|
|
|
// If this is a DeclRefExpr found in a random place, it is a load of the
|
|
// vardecl.
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
addMark(DRE->getDecl(), RK_Read);
|
|
|
|
// If the Expression is a read of a getter, track for diagnostics
|
|
if (auto VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
if (AssociatedGetter == VD && AssociatedGetterRefExpr == nullptr)
|
|
AssociatedGetterRefExpr = DRE;
|
|
}
|
|
}
|
|
// If the Expression is a member reference, see if it is a read of the getter
|
|
// to track for diagnostics.
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
|
|
if (auto VD = dyn_cast<VarDecl>(MRE->getMember().getDecl())) {
|
|
if (AssociatedGetter == VD && AssociatedGetterRefExpr == nullptr)
|
|
AssociatedGetterRefExpr = MRE;
|
|
markBaseOfStorageUse(MRE->getBase(), MRE->getMember(), RK_Read);
|
|
return { false, E };
|
|
}
|
|
}
|
|
if (auto SE = dyn_cast<SubscriptExpr>(E)) {
|
|
SE->getIndex()->walk(*this);
|
|
markBaseOfStorageUse(SE->getBase(), SE->getDecl(), RK_Read);
|
|
return { false, E };
|
|
}
|
|
|
|
// If this is an AssignExpr, see if we're mutating something that we know
|
|
// about.
|
|
if (auto *assign = dyn_cast<AssignExpr>(E)) {
|
|
markStoredOrInOutExpr(assign->getDest(), RK_Written);
|
|
|
|
// Don't walk into the LHS of the assignment, only the RHS.
|
|
assign->getSrc()->walk(*this);
|
|
return { false, E };
|
|
}
|
|
|
|
// '&x' is a read and write of 'x'.
|
|
if (auto *io = dyn_cast<InOutExpr>(E)) {
|
|
markStoredOrInOutExpr(io->getSubExpr(), RK_Read|RK_Written);
|
|
// Don't bother walking into this.
|
|
return { false, E };
|
|
}
|
|
|
|
// If we see an OpenExistentialExpr, remember the mapping for its OpaqueValue
|
|
// and only walk the subexpr.
|
|
if (auto *oee = dyn_cast<OpenExistentialExpr>(E)) {
|
|
OpaqueValueMap[oee->getOpaqueValue()] = oee->getExistentialValue();
|
|
oee->getSubExpr()->walk(*this);
|
|
return { false, E };
|
|
}
|
|
|
|
// Visit bindings.
|
|
if (auto ove = dyn_cast<OpaqueValueExpr>(E)) {
|
|
if (auto mapping = OpaqueValueMap.lookup(ove))
|
|
mapping->walk(*this);
|
|
return { false, E };
|
|
}
|
|
|
|
// If we saw an ErrorExpr, take note of this.
|
|
if (isa<ErrorExpr>(E))
|
|
sawError = true;
|
|
|
|
return { true, E };
|
|
}
|
|
|
|
/// handle #if directives. All of the active clauses are already walked by the
|
|
/// AST walker, but we also want to handle the inactive ones to avoid false
|
|
/// positives.
|
|
void VarDeclUsageChecker::handleIfConfig(IfConfigDecl *ICD) {
|
|
struct ConservativeDeclMarker : public ASTWalker {
|
|
VarDeclUsageChecker &VDUC;
|
|
ConservativeDeclMarker(VarDeclUsageChecker &VDUC) : VDUC(VDUC) {}
|
|
|
|
Expr *walkToExprPost(Expr *E) override {
|
|
// If we see a bound reference to a decl in an inactive #if block, then
|
|
// conservatively mark it read and written. This will silence "variable
|
|
// unused" and "could be marked let" warnings for it.
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
VDUC.addMark(DRE->getDecl(), RK_Read|RK_Written);
|
|
return E;
|
|
}
|
|
};
|
|
|
|
for (auto &clause : ICD->getClauses()) {
|
|
// Active clauses are handled by the normal AST walk.
|
|
if (clause.isActive) continue;
|
|
|
|
for (auto elt : clause.Elements)
|
|
elt.walk(ConservativeDeclMarker(*this));
|
|
}
|
|
}
|
|
|
|
/// Apply the warnings managed by VarDeclUsageChecker to the top level
|
|
/// code declarations that haven't been checked yet.
|
|
void swift::
|
|
performTopLevelDeclDiagnostics(TopLevelCodeDecl *TLCD) {
|
|
auto &ctx = TLCD->getDeclContext()->getASTContext();
|
|
VarDeclUsageChecker checker(ctx.Diags);
|
|
TLCD->walk(checker);
|
|
}
|
|
|
|
/// Perform diagnostics for func/init/deinit declarations.
|
|
void swift::performAbstractFuncDeclDiagnostics(AbstractFunctionDecl *AFD,
|
|
BraceStmt *body) {
|
|
assert(body && "Need a body to check");
|
|
|
|
// Don't produce these diagnostics for implicitly generated code.
|
|
if (AFD->getLoc().isInvalid() || AFD->isImplicit() || AFD->isInvalid())
|
|
return;
|
|
|
|
// Check for unused variables, as well as variables that are could be
|
|
// declared as constants.
|
|
body->walk(VarDeclUsageChecker(AFD));
|
|
|
|
// If the function has an opaque return type, check the return expressions
|
|
// to determine the underlying type.
|
|
if (auto opaqueResultTy = AFD->getOpaqueResultTypeDecl()) {
|
|
OpaqueUnderlyingTypeChecker(AFD, opaqueResultTy, body).check();
|
|
} else if (auto accessor = dyn_cast<AccessorDecl>(AFD)) {
|
|
if (accessor->isGetter()) {
|
|
if (auto opaqueResultTy
|
|
= accessor->getStorage()->getOpaqueResultTypeDecl()) {
|
|
OpaqueUnderlyingTypeChecker(AFD, opaqueResultTy, body).check();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform MiscDiagnostics on Switch Statements.
|
|
static void checkSwitch(ASTContext &ctx, const SwitchStmt *stmt) {
|
|
// We want to warn about "case .Foo, .Bar where 1 != 100:" since the where
|
|
// clause only applies to the second case, and this is surprising.
|
|
for (auto cs : stmt->getCases()) {
|
|
TypeChecker::checkUnsupportedProtocolType(ctx, cs);
|
|
|
|
// The case statement can have multiple case items, each can have a where.
|
|
// If we find a "where", and there is a preceding item without a where, and
|
|
// if they are on the same source line, then warn.
|
|
auto items = cs->getCaseLabelItems();
|
|
|
|
// Don't do any work for the vastly most common case.
|
|
if (items.size() == 1) continue;
|
|
|
|
// Ignore the first item, since it can't have preceding ones.
|
|
for (unsigned i = 1, e = items.size(); i != e; ++i) {
|
|
// Must have a where clause.
|
|
auto where = items[i].getGuardExpr();
|
|
if (!where)
|
|
continue;
|
|
|
|
// Preceding item must not.
|
|
if (items[i-1].getGuardExpr())
|
|
continue;
|
|
|
|
// Must be on the same source line.
|
|
auto prevLoc = items[i-1].getStartLoc();
|
|
auto thisLoc = items[i].getStartLoc();
|
|
if (prevLoc.isInvalid() || thisLoc.isInvalid())
|
|
continue;
|
|
|
|
auto &SM = ctx.SourceMgr;
|
|
auto prevLineCol = SM.getLineAndColumn(prevLoc);
|
|
if (SM.getLineNumber(thisLoc) != prevLineCol.first)
|
|
continue;
|
|
|
|
ctx.Diags.diagnose(items[i].getWhereLoc(), diag::where_on_one_item)
|
|
.highlight(items[i].getPattern()->getSourceRange())
|
|
.highlight(where->getSourceRange());
|
|
|
|
// Whitespace it out to the same column as the previous item.
|
|
std::string whitespace(prevLineCol.second-1, ' ');
|
|
ctx.Diags.diagnose(thisLoc, diag::add_where_newline)
|
|
.fixItInsert(thisLoc, "\n"+whitespace);
|
|
|
|
auto whereRange = SourceRange(items[i].getWhereLoc(),
|
|
where->getEndLoc());
|
|
auto charRange = Lexer::getCharSourceRangeFromSourceRange(SM, whereRange);
|
|
auto whereText = SM.extractText(charRange);
|
|
ctx.Diags.diagnose(prevLoc, diag::duplicate_where)
|
|
.fixItInsertAfter(items[i-1].getEndLoc(), " " + whereText.str())
|
|
.highlight(items[i-1].getSourceRange());
|
|
}
|
|
}
|
|
}
|
|
|
|
void swift::fixItEncloseTrailingClosure(ASTContext &ctx,
|
|
InFlightDiagnostic &diag,
|
|
const CallExpr *call,
|
|
Identifier closureLabel) {
|
|
auto argsExpr = call->getArg();
|
|
|
|
SmallString<32> replacement;
|
|
SourceLoc lastLoc;
|
|
SourceRange closureRange;
|
|
|
|
auto argList = getOriginalArgumentList(argsExpr);
|
|
|
|
assert(argList.args.size() >= 1 && "must have at least one argument");
|
|
|
|
if (argList.args.size() == 1) {
|
|
closureRange = argList.args[0]->getSourceRange();
|
|
lastLoc = argList.lParenLoc; // e.g funcName() { 1 }
|
|
if (!lastLoc.isValid()) {
|
|
// Bare trailing closure: e.g. funcName { 1 }
|
|
replacement = "(";
|
|
lastLoc = call->getFn()->getEndLoc();
|
|
}
|
|
} else {
|
|
// Tuple + trailing closure: e.g. funcName(x: 1) { 1 }
|
|
auto numElements = argList.args.size();
|
|
closureRange = argList.args[numElements - 1]->getSourceRange();
|
|
lastLoc = argList.args[numElements - 2]->getEndLoc();
|
|
replacement = ", ";
|
|
}
|
|
|
|
// Add argument label of the closure.
|
|
if (!closureLabel.empty()) {
|
|
replacement += closureLabel.str();
|
|
replacement += ": ";
|
|
}
|
|
|
|
lastLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, lastLoc);
|
|
diag
|
|
.fixItReplaceChars(lastLoc, closureRange.Start, replacement)
|
|
.fixItInsertAfter(closureRange.End, ")");
|
|
}
|
|
|
|
// Perform checkStmtConditionTrailingClosure for single expression.
|
|
static void checkStmtConditionTrailingClosure(ASTContext &ctx, const Expr *E) {
|
|
if (E == nullptr || isa<ErrorExpr>(E)) return;
|
|
|
|
// Walk into expressions which might have invalid trailing closures
|
|
class DiagnoseWalker : public ASTWalker {
|
|
ASTContext &Ctx;
|
|
|
|
void diagnoseIt(const CallExpr *E) {
|
|
if (!E->hasTrailingClosure()) return;
|
|
|
|
auto argsExpr = E->getArg();
|
|
auto argsTy = argsExpr->getType();
|
|
// Ignore invalid argument type. Some diagnostics are already emitted.
|
|
if (!argsTy || argsTy->hasError()) return;
|
|
|
|
SourceLoc closureLoc;
|
|
if (auto PE = dyn_cast<ParenExpr>(argsExpr))
|
|
closureLoc = PE->getSubExpr()->getStartLoc();
|
|
else if (auto TE = dyn_cast<TupleExpr>(argsExpr))
|
|
closureLoc = TE->getElements().back()->getStartLoc();
|
|
|
|
Identifier closureLabel;
|
|
if (auto TT = argsTy->getAs<TupleType>()) {
|
|
assert(TT->getNumElements() != 0 && "Unexpected empty TupleType");
|
|
closureLabel = TT->getElement(TT->getNumElements() - 1).getName();
|
|
}
|
|
|
|
auto diag = Ctx.Diags.diagnose(closureLoc,
|
|
diag::trailing_closure_requires_parens);
|
|
fixItEncloseTrailingClosure(Ctx, diag, E, closureLabel);
|
|
}
|
|
|
|
public:
|
|
DiagnoseWalker(ASTContext &ctx) : Ctx(ctx) { }
|
|
|
|
bool shouldWalkIntoNonSingleExpressionClosure() override { return false; }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
switch (E->getKind()) {
|
|
case ExprKind::Paren:
|
|
case ExprKind::Tuple:
|
|
case ExprKind::Array:
|
|
case ExprKind::Dictionary:
|
|
case ExprKind::InterpolatedStringLiteral:
|
|
// If a trailing closure appears as a child of one of these types of
|
|
// expression, don't diagnose it as there is no ambiguity.
|
|
return {E->isImplicit(), E};
|
|
case ExprKind::Call:
|
|
diagnoseIt(cast<CallExpr>(E));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return {true, E};
|
|
}
|
|
};
|
|
|
|
DiagnoseWalker Walker(ctx);
|
|
const_cast<Expr *>(E)->walk(Walker);
|
|
}
|
|
|
|
/// Diagnose trailing closure in statement-conditions.
|
|
///
|
|
/// Conditional statements, including 'for' or `switch` doesn't allow ambiguous
|
|
/// trailing closures in these conditions part. Even if the parser can recover
|
|
/// them, we force them to disambiguate.
|
|
//
|
|
/// E.g.:
|
|
/// if let _ = arr?.map {$0+1} { ... }
|
|
/// for _ in numbers.filter {$0 > 4} { ... }
|
|
static void checkStmtConditionTrailingClosure(ASTContext &ctx, const Stmt *S) {
|
|
if (auto LCS = dyn_cast<LabeledConditionalStmt>(S)) {
|
|
for (auto elt : LCS->getCond()) {
|
|
|
|
if (elt.getKind() == StmtConditionElement::CK_PatternBinding) {
|
|
checkStmtConditionTrailingClosure(ctx, elt.getInitializer());
|
|
if (auto *exprPattern = dyn_cast<ExprPattern>(elt.getPattern())) {
|
|
checkStmtConditionTrailingClosure(ctx, exprPattern->getMatchExpr());
|
|
}
|
|
} else if (elt.getKind() == StmtConditionElement::CK_Boolean)
|
|
checkStmtConditionTrailingClosure(ctx, elt.getBoolean());
|
|
// No trailing closure for CK_Availability: e.g. `if #available() {}`.
|
|
}
|
|
} else if (auto SS = dyn_cast<SwitchStmt>(S)) {
|
|
checkStmtConditionTrailingClosure(ctx, SS->getSubjectExpr());
|
|
} else if (auto FES = dyn_cast<ForEachStmt>(S)) {
|
|
checkStmtConditionTrailingClosure(ctx, FES->getSequence());
|
|
checkStmtConditionTrailingClosure(ctx, FES->getWhere());
|
|
} else if (auto DCS = dyn_cast<DoCatchStmt>(S)) {
|
|
for (auto CS : DCS->getCatches())
|
|
checkStmtConditionTrailingClosure(ctx, CS->getGuardExpr());
|
|
}
|
|
}
|
|
|
|
static Optional<ObjCSelector>
|
|
parseObjCSelector(ASTContext &ctx, StringRef string) {
|
|
// Find the first colon.
|
|
auto colonPos = string.find(':');
|
|
|
|
// If there is no colon, we have a nullary selector.
|
|
if (colonPos == StringRef::npos) {
|
|
if (string.empty() || !Lexer::isIdentifier(string)) return None;
|
|
return ObjCSelector(ctx, 0, { ctx.getIdentifier(string) });
|
|
}
|
|
|
|
SmallVector<Identifier, 2> pieces;
|
|
do {
|
|
// Check whether we have a valid selector piece.
|
|
auto piece = string.substr(0, colonPos);
|
|
if (piece.empty()) {
|
|
pieces.push_back(Identifier());
|
|
} else {
|
|
if (!Lexer::isIdentifier(piece)) return None;
|
|
pieces.push_back(ctx.getIdentifier(piece));
|
|
}
|
|
|
|
// Move to the next piece.
|
|
string = string.substr(colonPos+1);
|
|
colonPos = string.find(':');
|
|
} while (colonPos != StringRef::npos);
|
|
|
|
// If anything remains of the string, it's not a selector.
|
|
if (!string.empty()) return None;
|
|
|
|
return ObjCSelector(ctx, pieces.size(), pieces);
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
class ObjCSelectorWalker : public ASTWalker {
|
|
ASTContext &Ctx;
|
|
const DeclContext *DC;
|
|
Type SelectorTy;
|
|
|
|
/// Determine whether a reference to the given method via its
|
|
/// enclosing class/protocol is ambiguous (and, therefore, needs to
|
|
/// be disambiguated with a coercion).
|
|
bool isSelectorReferenceAmbiguous(AbstractFunctionDecl *method) {
|
|
// Determine the name we would search for. If there are no
|
|
// argument names, our lookup will be based solely on the base
|
|
// name.
|
|
DeclName lookupName = method->getFullName();
|
|
if (lookupName.getArgumentNames().empty())
|
|
lookupName = lookupName.getBaseName();
|
|
|
|
// Look for members with the given name.
|
|
auto nominal = method->getDeclContext()->getSelfNominalTypeDecl();
|
|
auto result = TypeChecker::lookupMember(
|
|
const_cast<DeclContext *>(DC), nominal->getDeclaredInterfaceType(),
|
|
DeclNameRef(lookupName),
|
|
(defaultMemberLookupOptions | NameLookupFlags::KnownPrivate));
|
|
|
|
// If we didn't find multiple methods, there is no ambiguity.
|
|
if (result.size() < 2) return false;
|
|
|
|
// If we found more than two methods, it's ambiguous.
|
|
if (result.size() > 2) return true;
|
|
|
|
// Dig out the methods.
|
|
auto firstMethod = dyn_cast<FuncDecl>(result[0].getValueDecl());
|
|
auto secondMethod = dyn_cast<FuncDecl>(result[1].getValueDecl());
|
|
if (!firstMethod || !secondMethod) return true;
|
|
|
|
// If one is a static/class method and the other is not...
|
|
if (firstMethod->isStatic() == secondMethod->isStatic()) return true;
|
|
|
|
// ... overload resolution will prefer the static method. Check
|
|
// that it has the correct selector. We don't even care that it's
|
|
// the same method we're asking for, just that it has the right
|
|
// selector.
|
|
FuncDecl *staticMethod =
|
|
firstMethod->isStatic() ? firstMethod : secondMethod;
|
|
return staticMethod->getObjCSelector() != method->getObjCSelector();
|
|
}
|
|
|
|
public:
|
|
ObjCSelectorWalker(const DeclContext *dc, Type selectorTy)
|
|
: Ctx(dc->getASTContext()), DC(dc), SelectorTy(selectorTy) { }
|
|
|
|
bool shouldWalkIntoNonSingleExpressionClosure() override { return false; }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
|
|
auto *stringLiteral = dyn_cast<StringLiteralExpr>(expr);
|
|
bool fromStringLiteral = false;
|
|
bool hadParens = false;
|
|
if (stringLiteral) {
|
|
// Is this a string literal that has type 'Selector'.
|
|
if (!stringLiteral->getType() ||
|
|
!stringLiteral->getType()->isEqual(SelectorTy))
|
|
return { true, expr };
|
|
|
|
fromStringLiteral = true;
|
|
|
|
// FIXME: hadParens
|
|
} else {
|
|
// Is this an initialization of 'Selector'?
|
|
auto call = dyn_cast<CallExpr>(expr);
|
|
if (!call) return { true, expr };
|
|
|
|
// That produce Selectors.
|
|
if (!call->getType() || !call->getType()->isEqual(SelectorTy))
|
|
return { true, expr };
|
|
|
|
// Via a constructor.
|
|
ConstructorDecl *ctor = nullptr;
|
|
if (auto ctorRefCall = dyn_cast<ConstructorRefCallExpr>(call->getFn())) {
|
|
if (auto ctorRef = dyn_cast<DeclRefExpr>(ctorRefCall->getFn()))
|
|
ctor = dyn_cast<ConstructorDecl>(ctorRef->getDecl());
|
|
else if (auto otherCtorRef =
|
|
dyn_cast<OtherConstructorDeclRefExpr>(ctorRefCall->getFn()))
|
|
ctor = otherCtorRef->getDecl();
|
|
}
|
|
|
|
if (!ctor) return { true, expr };
|
|
|
|
// Make sure the constructor is within Selector.
|
|
auto ctorContextType = ctor->getDeclContext()
|
|
->getSelfNominalTypeDecl()
|
|
->getDeclaredType();
|
|
if (!ctorContextType || !ctorContextType->isEqual(SelectorTy))
|
|
return { true, expr };
|
|
|
|
auto argNames = ctor->getFullName().getArgumentNames();
|
|
if (argNames.size() != 1) return { true, expr };
|
|
|
|
// Is this the init(stringLiteral:) initializer or init(_:) initializer?
|
|
if (argNames[0] == Ctx.Id_stringLiteral)
|
|
fromStringLiteral = true;
|
|
else if (!argNames[0].empty())
|
|
return { true, expr };
|
|
|
|
Expr *arg = call->getArg();
|
|
|
|
if (auto paren = dyn_cast<ParenExpr>(arg))
|
|
arg = paren->getSubExpr();
|
|
else if (auto tuple = dyn_cast<TupleExpr>(arg))
|
|
arg = tuple->getElement(0);
|
|
else
|
|
return { true, expr };
|
|
|
|
// Track whether we had parentheses around the string literal.
|
|
if (auto paren = dyn_cast<ParenExpr>(arg)) {
|
|
hadParens = true;
|
|
arg = paren->getSubExpr();
|
|
}
|
|
|
|
// Check whether we have a string literal.
|
|
stringLiteral = dyn_cast<StringLiteralExpr>(arg);
|
|
if (!stringLiteral) return { true, expr };
|
|
}
|
|
|
|
/// Retrieve the parent expression that coerces to Selector, if
|
|
/// there is one.
|
|
auto getParentCoercion = [&]() -> CoerceExpr * {
|
|
auto parentExpr = Parent.getAsExpr();
|
|
if (!parentExpr) return nullptr;
|
|
|
|
auto coerce = dyn_cast<CoerceExpr>(parentExpr);
|
|
if (!coerce) return nullptr;
|
|
|
|
if (coerce->getType() && coerce->getType()->isEqual(SelectorTy))
|
|
return coerce;
|
|
|
|
return nullptr;
|
|
};
|
|
|
|
// Local function that adds the constructor syntax around string
|
|
// literals implicitly treated as a Selector.
|
|
auto addSelectorConstruction = [&](InFlightDiagnostic &diag) {
|
|
if (!fromStringLiteral) return;
|
|
|
|
// Introduce the beginning part of the Selector construction.
|
|
diag.fixItInsert(stringLiteral->getLoc(), "Selector(");
|
|
|
|
if (auto coerce = getParentCoercion()) {
|
|
// If the string literal was coerced to Selector, replace the
|
|
// coercion with the ")".
|
|
SourceLoc endLoc = Lexer::getLocForEndOfToken(Ctx.SourceMgr,
|
|
expr->getEndLoc());
|
|
diag.fixItReplace(SourceRange(endLoc, coerce->getEndLoc()), ")");
|
|
} else {
|
|
// Otherwise, just insert the closing ")".
|
|
diag.fixItInsertAfter(stringLiteral->getEndLoc(), ")");
|
|
}
|
|
};
|
|
|
|
// Try to parse the string literal as an Objective-C selector, and complain
|
|
// if it isn't one.
|
|
auto selector = parseObjCSelector(Ctx, stringLiteral->getValue());
|
|
if (!selector) {
|
|
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
|
|
diag::selector_literal_invalid);
|
|
diag.highlight(stringLiteral->getSourceRange());
|
|
addSelectorConstruction(diag);
|
|
return { true, expr };
|
|
}
|
|
|
|
// Look for methods with this selector.
|
|
SmallVector<AbstractFunctionDecl *, 8> allMethods;
|
|
DC->lookupAllObjCMethods(*selector, allMethods);
|
|
|
|
// If we didn't find any methods, complain.
|
|
if (allMethods.empty()) {
|
|
// If this was Selector(("selector-name")), suppress, the
|
|
// diagnostic.
|
|
if (!fromStringLiteral && hadParens)
|
|
return { true, expr };
|
|
|
|
{
|
|
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
|
|
diag::selector_literal_undeclared,
|
|
*selector);
|
|
addSelectorConstruction(diag);
|
|
}
|
|
|
|
// If the result was from a Selector("selector-name"), add a
|
|
// separate note that suggests wrapping the selector in
|
|
// parentheses to silence the warning.
|
|
if (!fromStringLiteral) {
|
|
Ctx.Diags.diagnose(stringLiteral->getLoc(),
|
|
diag::selector_construction_suppress_warning)
|
|
.fixItInsert(stringLiteral->getStartLoc(), "(")
|
|
.fixItInsertAfter(stringLiteral->getEndLoc(), ")");
|
|
}
|
|
|
|
return { true, expr };
|
|
}
|
|
|
|
// Find the "best" method that has this selector, so we can report
|
|
// that.
|
|
AbstractFunctionDecl *bestMethod = nullptr;
|
|
for (auto method : allMethods) {
|
|
// If this is the first method, use it.
|
|
if (!bestMethod) {
|
|
bestMethod = method;
|
|
continue;
|
|
}
|
|
|
|
// If referencing the best method would produce an ambiguity and
|
|
// referencing the new method would not, we have a new "best".
|
|
if (isSelectorReferenceAmbiguous(bestMethod) &&
|
|
!isSelectorReferenceAmbiguous(method)) {
|
|
bestMethod = method;
|
|
continue;
|
|
}
|
|
|
|
// If this method is within a protocol...
|
|
if (auto proto = method->getDeclContext()->getSelfProtocolDecl()) {
|
|
// If the best so far is not from a protocol, or is from a
|
|
// protocol that inherits this protocol, we have a new best.
|
|
auto bestProto = bestMethod->getDeclContext()->getSelfProtocolDecl();
|
|
if (!bestProto || bestProto->inheritsFrom(proto))
|
|
bestMethod = method;
|
|
continue;
|
|
}
|
|
|
|
// This method is from a class.
|
|
auto classDecl = method->getDeclContext()->getSelfClassDecl();
|
|
|
|
// If the best method was from a protocol, keep it.
|
|
auto bestClassDecl = bestMethod->getDeclContext()->getSelfClassDecl();
|
|
if (!bestClassDecl) continue;
|
|
|
|
// If the best method was from a subclass of the place where
|
|
// this method was declared, we have a new best.
|
|
if (classDecl->isSuperclassOf(bestClassDecl)) {
|
|
bestMethod = method;
|
|
}
|
|
}
|
|
|
|
// If we have a best method, reference it.
|
|
if (bestMethod) {
|
|
// Form the replacement #selector expression.
|
|
SmallString<32> replacement;
|
|
{
|
|
llvm::raw_svector_ostream out(replacement);
|
|
auto nominal = bestMethod->getDeclContext()->getSelfNominalTypeDecl();
|
|
out << "#selector(";
|
|
|
|
DeclName name;
|
|
auto bestAccessor = dyn_cast<AccessorDecl>(bestMethod);
|
|
if (bestAccessor) {
|
|
switch (bestAccessor->getAccessorKind()) {
|
|
case AccessorKind::Get:
|
|
out << "getter: ";
|
|
name = bestAccessor->getStorage()->getFullName();
|
|
break;
|
|
|
|
case AccessorKind::Set:
|
|
case AccessorKind::WillSet:
|
|
case AccessorKind::DidSet:
|
|
out << "setter: ";
|
|
name = bestAccessor->getStorage()->getFullName();
|
|
break;
|
|
|
|
case AccessorKind::Address:
|
|
case AccessorKind::MutableAddress:
|
|
case AccessorKind::Read:
|
|
case AccessorKind::Modify:
|
|
llvm_unreachable("cannot be @objc");
|
|
}
|
|
} else {
|
|
name = bestMethod->getFullName();
|
|
}
|
|
|
|
auto typeName = nominal->getName().str();
|
|
// If we're inside a type Foo (or an extension of it) and the suggestion
|
|
// is going to be #selector(Foo.bar) (or #selector(SuperclassOfFoo.bar),
|
|
// then suggest the more natural #selector(self.bar) instead.
|
|
if (auto containingTypeContext = DC->getInnermostTypeContext()) {
|
|
auto methodNominalType = nominal->getDeclaredType();
|
|
auto outerNomType = containingTypeContext->getSelfNominalTypeDecl()
|
|
->getDeclaredType();
|
|
if (methodNominalType->isEqual(outerNomType) ||
|
|
methodNominalType->isExactSuperclassOf(outerNomType))
|
|
typeName = "self";
|
|
}
|
|
|
|
out << typeName << "." << name.getBaseName();
|
|
auto argNames = name.getArgumentNames();
|
|
|
|
// Only print the parentheses if there are some argument
|
|
// names, because "()" would indicate a call.
|
|
if (!argNames.empty()) {
|
|
out << "(";
|
|
for (auto argName : argNames) {
|
|
if (argName.empty()) out << "_";
|
|
else out << argName.str();
|
|
out << ":";
|
|
}
|
|
out << ")";
|
|
}
|
|
|
|
// If there will be an ambiguity when referring to the method,
|
|
// introduce a coercion to resolve it to the method we found.
|
|
if (!bestAccessor && isSelectorReferenceAmbiguous(bestMethod)) {
|
|
if (auto fnType =
|
|
bestMethod->getInterfaceType()->getAs<FunctionType>()) {
|
|
// For static/class members, drop the metatype argument.
|
|
if (bestMethod->isStatic())
|
|
fnType = fnType->getResult()->getAs<FunctionType>();
|
|
|
|
// Coerce to this type.
|
|
assert(fnType->hasTypeRepr() &&
|
|
"Objective-C methods should always have printable types");
|
|
out << " as ";
|
|
fnType->print(out);
|
|
}
|
|
}
|
|
|
|
out << ")";
|
|
}
|
|
|
|
// Emit the diagnostic.
|
|
SourceRange replacementRange = expr->getSourceRange();
|
|
if (auto coerce = getParentCoercion())
|
|
replacementRange.End = coerce->getEndLoc();
|
|
|
|
Ctx.Diags
|
|
.diagnose(expr->getLoc(),
|
|
fromStringLiteral
|
|
? diag::selector_literal_deprecated_suggest
|
|
: diag::selector_construction_suggest)
|
|
.fixItReplace(replacementRange, replacement);
|
|
return { true, expr };
|
|
}
|
|
|
|
// If we couldn't pick a method to use for #selector, just wrap
|
|
// the string literal in Selector(...).
|
|
if (fromStringLiteral) {
|
|
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
|
|
diag::selector_literal_deprecated);
|
|
addSelectorConstruction(diag);
|
|
return { true, expr };
|
|
}
|
|
|
|
return { true, expr };
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static void diagDeprecatedObjCSelectors(const DeclContext *dc,
|
|
const Expr *expr) {
|
|
auto selectorTy = dc->getASTContext().getSelectorType();
|
|
if (!selectorTy) return;
|
|
|
|
const_cast<Expr *>(expr)->walk(ObjCSelectorWalker(dc, selectorTy));
|
|
}
|
|
|
|
|
|
|
|
/// Diagnose things like this, where 'i' is an Int, not an Int?
|
|
/// if let x: Int = i {
|
|
static void
|
|
checkImplicitPromotionsInCondition(const StmtConditionElement &cond,
|
|
ASTContext &ctx) {
|
|
auto *p = cond.getPatternOrNull();
|
|
if (!p) return;
|
|
|
|
if (auto *subExpr = isImplicitPromotionToOptional(cond.getInitializer())) {
|
|
// If the subexpression was actually optional, then the pattern must be
|
|
// checking for a type, which forced it to be promoted to a double optional
|
|
// type.
|
|
if (auto ooType = subExpr->getType()->getOptionalObjectType()) {
|
|
if (auto TP = dyn_cast<TypedPattern>(p))
|
|
// Check for 'if let' to produce a tuned diagnostic.
|
|
if (isa<OptionalSomePattern>(TP->getSubPattern()) &&
|
|
TP->getSubPattern()->isImplicit()) {
|
|
ctx.Diags.diagnose(cond.getIntroducerLoc(),
|
|
diag::optional_check_promotion,
|
|
subExpr->getType())
|
|
.highlight(subExpr->getSourceRange())
|
|
.fixItReplace(TP->getTypeLoc().getSourceRange(),
|
|
ooType->getString());
|
|
return;
|
|
}
|
|
ctx.Diags.diagnose(cond.getIntroducerLoc(),
|
|
diag::optional_pattern_match_promotion,
|
|
subExpr->getType(), cond.getInitializer()->getType())
|
|
.highlight(subExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
ctx.Diags.diagnose(cond.getIntroducerLoc(),
|
|
diag::optional_check_nonoptional,
|
|
subExpr->getType())
|
|
.highlight(subExpr->getSourceRange());
|
|
}
|
|
}
|
|
|
|
static void diagnoseUnintendedOptionalBehavior(const Expr *E,
|
|
const DeclContext *DC) {
|
|
if (!E || isa<ErrorExpr>(E) || !E->getType())
|
|
return;
|
|
|
|
class UnintendedOptionalBehaviorWalker : public ASTWalker {
|
|
ASTContext &Ctx;
|
|
SmallPtrSet<Expr *, 16> IgnoredExprs;
|
|
|
|
class OptionalToAnyCoercion {
|
|
public:
|
|
Type DestType;
|
|
CoerceExpr *ParentCoercion;
|
|
|
|
bool shouldSuppressDiagnostic() {
|
|
// If we have a parent CoerceExpr that has the same type as our
|
|
// Optional-to-Any coercion, don't emit a diagnostic.
|
|
return ParentCoercion && ParentCoercion->getType()->isEqual(DestType);
|
|
}
|
|
};
|
|
|
|
/// Returns true iff a coercion from srcType to destType is an
|
|
/// Optional-to-Any coercion.
|
|
bool isOptionalToAnyCoercion(Type srcType, Type destType) {
|
|
size_t difference = 0;
|
|
return isOptionalToAnyCoercion(srcType, destType, difference);
|
|
}
|
|
|
|
/// Returns true iff a coercion from srcType to destType is an
|
|
/// Optional-to-Any coercion. On returning true, the value of 'difference'
|
|
/// will be the difference in the levels of optionality.
|
|
bool isOptionalToAnyCoercion(Type srcType, Type destType,
|
|
size_t &difference) {
|
|
SmallVector<Type, 4> destOptionals;
|
|
auto destValueType =
|
|
destType->lookThroughAllOptionalTypes(destOptionals);
|
|
|
|
if (!destValueType->isAny())
|
|
return false;
|
|
|
|
SmallVector<Type, 4> srcOptionals;
|
|
srcType->lookThroughAllOptionalTypes(srcOptionals);
|
|
|
|
if (srcOptionals.size() > destOptionals.size()) {
|
|
difference = srcOptionals.size() - destOptionals.size();
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Returns true iff the collection upcast coercion is an Optional-to-Any
|
|
/// coercion.
|
|
bool isOptionalToAnyCoercion(CollectionUpcastConversionExpr::ConversionPair
|
|
conversion) {
|
|
if (!conversion.OrigValue || !conversion.Conversion)
|
|
return false;
|
|
|
|
auto srcType = conversion.OrigValue->getType();
|
|
auto destType = conversion.Conversion->getType();
|
|
return isOptionalToAnyCoercion(srcType, destType);
|
|
}
|
|
|
|
/// Looks through OptionalEvaluationExprs and InjectIntoOptionalExprs to
|
|
/// find a child ErasureExpr, returning nullptr if no such child is found.
|
|
/// Any intermediate OptionalEvaluationExprs will be marked as ignored.
|
|
ErasureExpr *findErasureExprThroughOptionalInjections(Expr *E) {
|
|
while (true) {
|
|
if (auto *next = dyn_cast<OptionalEvaluationExpr>(E)) {
|
|
// We don't want to re-visit any intermediate optional evaluations.
|
|
IgnoredExprs.insert(next);
|
|
E = next->getSubExpr();
|
|
} else if (auto *next = dyn_cast<InjectIntoOptionalExpr>(E)) {
|
|
E = next->getSubExpr();
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return dyn_cast<ErasureExpr>(E);
|
|
}
|
|
|
|
void emitSilenceOptionalAnyWarningWithCoercion(Expr *E, Type destType) {
|
|
assert(destType->hasTypeRepr() &&
|
|
"coercion to Any should always be printable");
|
|
|
|
SmallString<16> coercionString;
|
|
coercionString += " as ";
|
|
coercionString += destType->getWithoutParens()->getString();
|
|
|
|
Ctx.Diags.diagnose(E->getLoc(), diag::silence_optional_to_any,
|
|
destType, coercionString.substr(1))
|
|
.highlight(E->getSourceRange())
|
|
.fixItInsertAfter(E->getEndLoc(), coercionString);
|
|
}
|
|
|
|
static bool hasImplicitlyUnwrappedResult(Expr *E) {
|
|
auto *decl = getDeclForImplicitlyUnwrappedExpr(E);
|
|
|
|
return decl && decl->isImplicitlyUnwrappedOptional();
|
|
}
|
|
|
|
static ValueDecl *getDeclForImplicitlyUnwrappedExpr(Expr *E) {
|
|
E = E->getValueProvidingExpr();
|
|
|
|
// Look through implicit conversions like loads, derived-to-base
|
|
// conversion, etc.
|
|
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(E)) {
|
|
E = ICE->getSubExpr();
|
|
}
|
|
|
|
if (auto *subscript = dyn_cast<SubscriptExpr>(E)) {
|
|
if (subscript->hasDecl())
|
|
return subscript->getDecl().getDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
if (auto *memberRef = dyn_cast<MemberRefExpr>(E))
|
|
return memberRef->getMember().getDecl();
|
|
|
|
if (auto *declRef = dyn_cast<DeclRefExpr>(E))
|
|
return declRef->getDecl();
|
|
|
|
if (auto *apply = dyn_cast<ApplyExpr>(E)) {
|
|
auto *decl = apply->getCalledValue();
|
|
if (decl && isa<AbstractFunctionDecl>(decl))
|
|
return decl;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void visitErasureExpr(ErasureExpr *E, OptionalToAnyCoercion coercion) {
|
|
if (coercion.shouldSuppressDiagnostic())
|
|
return;
|
|
|
|
auto subExpr = E->getSubExpr();
|
|
|
|
// Look through any BindOptionalExprs, as the coercion may have started
|
|
// from a higher level of optionality.
|
|
while (auto *bindExpr = dyn_cast<BindOptionalExpr>(subExpr))
|
|
subExpr = bindExpr->getSubExpr();
|
|
|
|
// Do not warn on coercions from implicitly unwrapped optionals
|
|
// for Swift versions less than 5.
|
|
if (!Ctx.isSwiftVersionAtLeast(5) &&
|
|
hasImplicitlyUnwrappedResult(subExpr))
|
|
return;
|
|
|
|
// We're taking the source type from the child of any BindOptionalExprs,
|
|
// and the destination from the parent of any
|
|
// (InjectIntoOptional/OptionalEvaluation)Exprs in order to take into
|
|
// account any bindings that need to be done for nested Optional-to-Any
|
|
// coercions, e.g Int??? to Any?.
|
|
auto srcType = subExpr->getType();
|
|
auto destType = coercion.DestType;
|
|
|
|
size_t optionalityDifference = 0;
|
|
if (!isOptionalToAnyCoercion(srcType, destType, optionalityDifference))
|
|
return;
|
|
|
|
// If we're implicitly unwrapping from IUO to Any then emit a custom
|
|
// diagnostic
|
|
if (hasImplicitlyUnwrappedResult(subExpr)) {
|
|
if (auto decl = getDeclForImplicitlyUnwrappedExpr(subExpr)) {
|
|
Ctx.Diags.diagnose(subExpr->getStartLoc(), diag::iuo_to_any_coercion,
|
|
/* from */ srcType, /* to */ destType)
|
|
.highlight(subExpr->getSourceRange());
|
|
|
|
auto noteDiag = isa<FuncDecl>(decl)
|
|
? diag::iuo_to_any_coercion_note_func_result
|
|
: diag::iuo_to_any_coercion_note;
|
|
|
|
Ctx.Diags.diagnose(decl->getLoc(), noteDiag,
|
|
decl->getDescriptiveKind(), decl->getFullName());
|
|
}
|
|
} else {
|
|
Ctx.Diags.diagnose(subExpr->getStartLoc(),
|
|
diag::optional_to_any_coercion,
|
|
/* from */ srcType, /* to */ destType)
|
|
.highlight(subExpr->getSourceRange());
|
|
}
|
|
|
|
if (optionalityDifference == 1) {
|
|
Ctx.Diags.diagnose(subExpr->getLoc(), diag::default_optional_to_any)
|
|
.highlight(subExpr->getSourceRange())
|
|
.fixItInsertAfter(subExpr->getEndLoc(), " ?? <#default value#>");
|
|
}
|
|
|
|
SmallString<4> forceUnwrapString;
|
|
for (size_t i = 0; i < optionalityDifference; i++)
|
|
forceUnwrapString += "!";
|
|
|
|
Ctx.Diags.diagnose(subExpr->getLoc(), diag::force_optional_to_any)
|
|
.highlight(subExpr->getSourceRange())
|
|
.fixItInsertAfter(subExpr->getEndLoc(), forceUnwrapString);
|
|
|
|
emitSilenceOptionalAnyWarningWithCoercion(subExpr, destType);
|
|
}
|
|
|
|
void visitCollectionUpcastExpr(CollectionUpcastConversionExpr *E,
|
|
OptionalToAnyCoercion coercion) {
|
|
// We only need to consider the valueConversion, as the Key type of a
|
|
// Dictionary cannot be implicitly coerced to Any.
|
|
auto valueConversion = E->getValueConversion();
|
|
|
|
// We're handling the coercion of the entire collection, so we don't need
|
|
// to re-visit a nested ErasureExpr for the value.
|
|
if (auto conversionExpr = valueConversion.Conversion)
|
|
if (auto *erasureExpr =
|
|
findErasureExprThroughOptionalInjections(conversionExpr))
|
|
IgnoredExprs.insert(erasureExpr);
|
|
|
|
if (coercion.shouldSuppressDiagnostic() ||
|
|
!isOptionalToAnyCoercion(valueConversion))
|
|
return;
|
|
|
|
auto subExpr = E->getSubExpr();
|
|
|
|
Ctx.Diags.diagnose(subExpr->getStartLoc(), diag::optional_to_any_coercion,
|
|
/* from */ subExpr->getType(), /* to */ E->getType())
|
|
.highlight(subExpr->getSourceRange());
|
|
|
|
emitSilenceOptionalAnyWarningWithCoercion(subExpr, E->getType());
|
|
}
|
|
|
|
void visitPossibleOptionalToAnyExpr(Expr *E,
|
|
OptionalToAnyCoercion coercion) {
|
|
if (auto *upcastExpr =
|
|
dyn_cast<CollectionUpcastConversionExpr>(E)) {
|
|
visitCollectionUpcastExpr(upcastExpr, coercion);
|
|
} else if (auto *erasureExpr = dyn_cast<ErasureExpr>(E)) {
|
|
visitErasureExpr(erasureExpr, coercion);
|
|
} else if (auto *optionalEvalExpr = dyn_cast<OptionalEvaluationExpr>(E)) {
|
|
// The ErasureExpr could be nested within optional injections and
|
|
// bindings, such as is the case for e.g Int??? to Any?. Try and find
|
|
// and visit it directly, making sure we don't re-visit it later.
|
|
auto subExpr = optionalEvalExpr->getSubExpr();
|
|
if (auto *erasureExpr =
|
|
findErasureExprThroughOptionalInjections(subExpr)) {
|
|
visitErasureExpr(erasureExpr, coercion);
|
|
IgnoredExprs.insert(erasureExpr);
|
|
}
|
|
}
|
|
}
|
|
|
|
enum class UnintendedInterpolationKind: bool {
|
|
Optional,
|
|
Function
|
|
};
|
|
|
|
void visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E) {
|
|
E->forEachSegment(Ctx,
|
|
[&](bool isInterpolation, CallExpr *segment) -> void {
|
|
if (isInterpolation) {
|
|
diagnoseIfUnintendedInterpolation(segment,
|
|
UnintendedInterpolationKind::Optional);
|
|
diagnoseIfUnintendedInterpolation(segment,
|
|
UnintendedInterpolationKind::Function);
|
|
}
|
|
});
|
|
}
|
|
|
|
void diagnoseIfUnintendedInterpolation(CallExpr *segment,
|
|
UnintendedInterpolationKind kind) {
|
|
if (interpolationWouldBeUnintended(segment->getCalledValue(), kind))
|
|
if (auto firstArg =
|
|
getFirstArgIfUnintendedInterpolation(segment->getArg(), kind))
|
|
diagnoseUnintendedInterpolation(firstArg, kind);
|
|
}
|
|
|
|
bool interpolationWouldBeUnintended(ConcreteDeclRef appendMethod,
|
|
UnintendedInterpolationKind kind) {
|
|
ValueDecl * fnDecl = appendMethod.getDecl();
|
|
|
|
// If things aren't set up right, just hope for the best.
|
|
if (!fnDecl || fnDecl->isInvalid())
|
|
return false;
|
|
|
|
// If the decl expects an optional, that's fine.
|
|
auto uncurriedType = fnDecl->getInterfaceType()->getAs<AnyFunctionType>();
|
|
auto curriedType = uncurriedType->getResult()->getAs<AnyFunctionType>();
|
|
|
|
// I don't know why you'd use a zero-arg interpolator, but it obviously
|
|
// doesn't interpolate an optional.
|
|
if (curriedType->getNumParams() == 0)
|
|
return false;
|
|
|
|
// If the first parameter explicitly accepts the type, this method
|
|
// presumably doesn't want us to warn about optional use.
|
|
auto firstParamType =
|
|
curriedType->getParams().front().getPlainType()->getRValueType();
|
|
if (kind == UnintendedInterpolationKind::Optional) {
|
|
if (firstParamType->getOptionalObjectType())
|
|
return false;
|
|
} else {
|
|
if (firstParamType->is<AnyFunctionType>())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Expr *
|
|
getFirstArgIfUnintendedInterpolation(Expr *args,
|
|
UnintendedInterpolationKind kind) {
|
|
// Just check the first argument, which is usually the value
|
|
// being interpolated.
|
|
Expr *firstArg;
|
|
if (auto parenExpr = dyn_cast_or_null<ParenExpr>(args)) {
|
|
firstArg = parenExpr->getSubExpr();
|
|
} else if (auto tupleExpr = dyn_cast_or_null<TupleExpr>(args)) {
|
|
if (tupleExpr->getNumElements())
|
|
firstArg = tupleExpr->getElement(0);
|
|
else
|
|
return nullptr;
|
|
}
|
|
else {
|
|
firstArg = args;
|
|
}
|
|
|
|
// Allow explicit casts.
|
|
if (isa<ExplicitCastExpr>(firstArg->getSemanticsProvidingExpr()))
|
|
return nullptr;
|
|
|
|
// If we don't have a type, assume the best.
|
|
if (!firstArg->getType() || firstArg->getType()->hasError())
|
|
return nullptr;
|
|
|
|
// Bail out if we don't have an optional.
|
|
if (kind == UnintendedInterpolationKind::Optional) {
|
|
if (!firstArg->getType()->getRValueType()->getOptionalObjectType())
|
|
return nullptr;
|
|
}
|
|
else if (kind == UnintendedInterpolationKind::Function) {
|
|
if (!firstArg->getType()->getRValueType()->is<AnyFunctionType>())
|
|
return nullptr;
|
|
}
|
|
|
|
return firstArg;
|
|
}
|
|
|
|
void diagnoseUnintendedInterpolation(Expr * arg, UnintendedInterpolationKind kind) {
|
|
Ctx.Diags
|
|
.diagnose(arg->getStartLoc(),
|
|
diag::debug_description_in_string_interpolation_segment,
|
|
(bool)kind)
|
|
.highlight(arg->getSourceRange());
|
|
|
|
// Suggest 'String(describing: <expr>)'.
|
|
auto argStart = arg->getStartLoc();
|
|
Ctx.Diags
|
|
.diagnose(
|
|
arg->getLoc(),
|
|
diag::silence_debug_description_in_interpolation_segment_call)
|
|
.highlight(arg->getSourceRange())
|
|
.fixItInsert(argStart, "String(describing: ")
|
|
.fixItInsertAfter(arg->getEndLoc(), ")");
|
|
|
|
if (kind == UnintendedInterpolationKind::Optional) {
|
|
// Suggest inserting a default value.
|
|
Ctx.Diags.diagnose(arg->getLoc(), diag::default_optional_to_any)
|
|
.highlight(arg->getSourceRange())
|
|
.fixItInsertAfter(arg->getEndLoc(), " ?? <#default value#>");
|
|
}
|
|
}
|
|
|
|
bool shouldWalkIntoNonSingleExpressionClosure() override { return false; }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (!E || isa<ErrorExpr>(E) || !E->getType())
|
|
return { false, E };
|
|
|
|
if (IgnoredExprs.count(E))
|
|
return { true, E };
|
|
|
|
if (auto *literal = dyn_cast<InterpolatedStringLiteralExpr>(E)) {
|
|
visitInterpolatedStringLiteralExpr(literal);
|
|
} else if (auto *coercion = dyn_cast<CoerceExpr>(E)) {
|
|
// If we come across a CoerceExpr, visit its subExpr with the coercion
|
|
// as the parent, making sure we don't re-visit the subExpr later.
|
|
auto subExpr = coercion->getSubExpr();
|
|
visitPossibleOptionalToAnyExpr(subExpr,
|
|
{ subExpr->getType(), coercion });
|
|
IgnoredExprs.insert(subExpr);
|
|
} else {
|
|
visitPossibleOptionalToAnyExpr(E, { E->getType(), nullptr });
|
|
}
|
|
return { true, E };
|
|
}
|
|
|
|
public:
|
|
UnintendedOptionalBehaviorWalker(ASTContext &ctx) : Ctx(ctx) { }
|
|
};
|
|
|
|
UnintendedOptionalBehaviorWalker Walker(DC->getASTContext());
|
|
const_cast<Expr *>(E)->walk(Walker);
|
|
}
|
|
|
|
static void diagnoseDeprecatedWritableKeyPath(const Expr *E,
|
|
const DeclContext *DC) {
|
|
if (!E || isa<ErrorExpr>(E) || !E->getType())
|
|
return;
|
|
|
|
class DeprecatedWritableKeyPathWalker : public ASTWalker {
|
|
ASTContext &Ctx;
|
|
const DeclContext *DC;
|
|
|
|
void visitKeyPathApplicationExpr(KeyPathApplicationExpr *E) {
|
|
bool isWrite = false;
|
|
if (auto *P = Parent.getAsExpr())
|
|
if (auto *AE = dyn_cast<AssignExpr>(P))
|
|
if (AE->getDest() == E)
|
|
isWrite = true;
|
|
|
|
if (!isWrite)
|
|
return;
|
|
|
|
if (auto *keyPathExpr = dyn_cast<KeyPathExpr>(E->getKeyPath())) {
|
|
auto *decl = keyPathExpr->getType()->getNominalOrBoundGenericNominal();
|
|
if (decl != Ctx.getWritableKeyPathDecl() &&
|
|
decl != Ctx.getReferenceWritableKeyPathDecl())
|
|
return;
|
|
|
|
assert(keyPathExpr->getComponents().size() > 0);
|
|
auto &component = keyPathExpr->getComponents().back();
|
|
if (component.getKind() == KeyPathExpr::Component::Kind::Property) {
|
|
auto *storage =
|
|
cast<AbstractStorageDecl>(component.getDeclRef().getDecl());
|
|
if (!storage->isSettable(nullptr) ||
|
|
!storage->isSetterAccessibleFrom(DC)) {
|
|
Ctx.Diags.diagnose(keyPathExpr->getLoc(),
|
|
swift::diag::expr_deprecated_writable_keypath,
|
|
storage->getFullName());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool shouldWalkIntoNonSingleExpressionClosure() override { return false; }
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (!E || isa<ErrorExpr>(E) || !E->getType())
|
|
return {false, E};
|
|
|
|
if (auto *KPAE = dyn_cast<KeyPathApplicationExpr>(E)) {
|
|
visitKeyPathApplicationExpr(KPAE);
|
|
return {true, E};
|
|
}
|
|
|
|
return {true, E};
|
|
}
|
|
|
|
public:
|
|
DeprecatedWritableKeyPathWalker(const DeclContext *DC)
|
|
: Ctx(DC->getASTContext()), DC(DC) {}
|
|
};
|
|
|
|
DeprecatedWritableKeyPathWalker Walker(DC);
|
|
const_cast<Expr *>(E)->walk(Walker);
|
|
}
|
|
|
|
static void maybeDiagnoseCallToKeyValueObserveMethod(const Expr *E,
|
|
const DeclContext *DC) {
|
|
class KVOObserveCallWalker : public ASTWalker {
|
|
const ASTContext &C;
|
|
|
|
public:
|
|
KVOObserveCallWalker(ASTContext &ctx) : C(ctx) {}
|
|
|
|
void maybeDiagnoseCallExpr(CallExpr *expr) {
|
|
auto fn = expr->getCalledValue();
|
|
if (!fn)
|
|
return;
|
|
if (fn->getModuleContext()->getName() != C.Id_Foundation)
|
|
return;
|
|
if (!fn->getFullName().isCompoundName("observe",
|
|
{"", "options", "changeHandler"}))
|
|
return;
|
|
auto args = cast<TupleExpr>(expr->getArg());
|
|
auto firstArg = dyn_cast<KeyPathExpr>(args->getElement(0));
|
|
if (!firstArg)
|
|
return;
|
|
auto lastComponent = firstArg->getComponents().back();
|
|
if (lastComponent.getKind() != KeyPathExpr::Component::Kind::Property)
|
|
return;
|
|
auto property = lastComponent.getDeclRef().getDecl();
|
|
if (!property)
|
|
return;
|
|
if (property->isObjCDynamic())
|
|
return;
|
|
C.Diags
|
|
.diagnose(expr->getLoc(),
|
|
diag::observe_keypath_property_not_objc_dynamic,
|
|
property->getFullName(), fn->getFullName())
|
|
.highlight(lastComponent.getLoc());
|
|
}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (!E || isa<ErrorExpr>(E) || !E->getType())
|
|
return {false, E};
|
|
|
|
if (auto *CE = dyn_cast<CallExpr>(E)) {
|
|
maybeDiagnoseCallExpr(CE);
|
|
return {false, E};
|
|
}
|
|
|
|
return {true, E};
|
|
}
|
|
};
|
|
|
|
KVOObserveCallWalker Walker(DC->getASTContext());
|
|
const_cast<Expr *>(E)->walk(Walker);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// High-level entry points.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Emit diagnostics for syntactic restrictions on a given expression.
|
|
void swift::performSyntacticExprDiagnostics(const Expr *E,
|
|
const DeclContext *DC,
|
|
bool isExprStmt) {
|
|
auto &ctx = DC->getASTContext();
|
|
TypeChecker::diagnoseSelfAssignment(E);
|
|
diagSyntacticUseRestrictions(E, DC, isExprStmt);
|
|
diagRecursivePropertyAccess(E, DC);
|
|
diagnoseImplicitSelfUseInClosure(E, DC);
|
|
diagnoseUnintendedOptionalBehavior(E, DC);
|
|
maybeDiagnoseCallToKeyValueObserveMethod(E, DC);
|
|
if (!ctx.isSwiftVersionAtLeast(5))
|
|
diagnoseDeprecatedWritableKeyPath(E, DC);
|
|
if (!ctx.LangOpts.DisableAvailabilityChecking)
|
|
diagAvailability(E, const_cast<DeclContext*>(DC));
|
|
if (ctx.LangOpts.EnableObjCInterop)
|
|
diagDeprecatedObjCSelectors(DC, E);
|
|
}
|
|
|
|
void swift::performStmtDiagnostics(ASTContext &ctx, const Stmt *S) {
|
|
TypeChecker::checkUnsupportedProtocolType(ctx, const_cast<Stmt *>(S));
|
|
|
|
if (auto switchStmt = dyn_cast<SwitchStmt>(S))
|
|
checkSwitch(ctx, switchStmt);
|
|
|
|
checkStmtConditionTrailingClosure(ctx, S);
|
|
|
|
// Check for implicit optional promotions in stmt-condition patterns.
|
|
if (auto *lcs = dyn_cast<LabeledConditionalStmt>(S))
|
|
for (const auto &elt : lcs->getCond())
|
|
checkImplicitPromotionsInCondition(elt, ctx);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void swift::fixItAccess(InFlightDiagnostic &diag, ValueDecl *VD,
|
|
AccessLevel desiredAccess, bool isForSetter,
|
|
bool shouldUseDefaultAccess) {
|
|
StringRef fixItString;
|
|
switch (desiredAccess) {
|
|
case AccessLevel::Private: fixItString = "private "; break;
|
|
case AccessLevel::FilePrivate: fixItString = "fileprivate "; break;
|
|
case AccessLevel::Internal: fixItString = "internal "; break;
|
|
case AccessLevel::Public: fixItString = "public "; break;
|
|
case AccessLevel::Open: fixItString = "open "; break;
|
|
}
|
|
|
|
DeclAttributes &attrs = VD->getAttrs();
|
|
AbstractAccessControlAttr *attr;
|
|
if (isForSetter) {
|
|
attr = attrs.getAttribute<SetterAccessAttr>();
|
|
cast<AbstractStorageDecl>(VD)->overwriteSetterAccess(desiredAccess);
|
|
} else {
|
|
attr = attrs.getAttribute<AccessControlAttr>();
|
|
VD->overwriteAccess(desiredAccess);
|
|
|
|
if (auto *ASD = dyn_cast<AbstractStorageDecl>(VD)) {
|
|
if (auto *getter = ASD->getAccessor(AccessorKind::Get))
|
|
getter->overwriteAccess(desiredAccess);
|
|
|
|
if (auto *setterAttr = attrs.getAttribute<SetterAccessAttr>()) {
|
|
if (setterAttr->getAccess() > desiredAccess)
|
|
fixItAccess(diag, VD, desiredAccess, true);
|
|
} else {
|
|
ASD->overwriteSetterAccess(desiredAccess);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isForSetter && VD->getFormalAccess() == desiredAccess) {
|
|
assert(attr);
|
|
attr->setInvalid();
|
|
// Remove the setter attribute.
|
|
diag.fixItRemove(attr->Range);
|
|
|
|
} else if (attr) {
|
|
// If the formal access already matches the desired access, the problem
|
|
// must be in a parent scope. Don't emit a fix-it.
|
|
// FIXME: It's also possible for access to already be /broader/ than what's
|
|
// desired, in which case the problem is also in a parent scope. However,
|
|
// this function is sometimes called to make access narrower, so assuming
|
|
// that a broader scope is acceptable breaks some diagnostics.
|
|
if (attr->getAccess() != desiredAccess) {
|
|
if (shouldUseDefaultAccess) {
|
|
// Remove the attribute if replacement is not preferred.
|
|
diag.fixItRemove(attr->getRange());
|
|
} else {
|
|
// This uses getLocation() instead of getRange() because we don't want to
|
|
// replace the "(set)" part of a setter attribute.
|
|
diag.fixItReplace(attr->getLocation(), fixItString.drop_back());
|
|
}
|
|
attr->setInvalid();
|
|
}
|
|
|
|
} else if (auto *override = VD->getAttrs().getAttribute<OverrideAttr>()) {
|
|
// Insert the access in front of 'override', if it exists, in order to
|
|
// match the same keyword order as produced by method autocompletion.
|
|
diag.fixItInsert(override->getLocation(), fixItString);
|
|
|
|
} else if (auto var = dyn_cast<VarDecl>(VD)) {
|
|
if (auto PBD = var->getParentPatternBinding())
|
|
diag.fixItInsert(PBD->getStartLoc(), fixItString);
|
|
|
|
} else {
|
|
diag.fixItInsert(VD->getStartLoc(), fixItString);
|
|
}
|
|
}
|
|
|
|
/// Retrieve the type name to be used for determining whether we can
|
|
/// omit needless words.
|
|
static OmissionTypeName getTypeNameForOmission(Type type) {
|
|
if (!type)
|
|
return "";
|
|
|
|
ASTContext &ctx = type->getASTContext();
|
|
Type boolType;
|
|
if (auto boolDecl = ctx.getBoolDecl())
|
|
boolType = boolDecl->getDeclaredInterfaceType();
|
|
auto objcBoolType = ctx.getObjCBoolType();
|
|
|
|
/// Determine the options associated with the given type.
|
|
auto getOptions = [&](Type type) {
|
|
// Look for Boolean types.
|
|
OmissionTypeOptions options;
|
|
|
|
// Look for Boolean types.
|
|
if (boolType && type->isEqual(boolType)) {
|
|
// Swift.Bool
|
|
options |= OmissionTypeFlags::Boolean;
|
|
} else if (objcBoolType && type->isEqual(objcBoolType)) {
|
|
// ObjectiveC.ObjCBool
|
|
options |= OmissionTypeFlags::Boolean;
|
|
}
|
|
|
|
return options;
|
|
};
|
|
|
|
do {
|
|
// Look through typealiases.
|
|
if (auto aliasTy = dyn_cast<TypeAliasType>(type.getPointer())) {
|
|
type = aliasTy->getSinglyDesugaredType();
|
|
continue;
|
|
}
|
|
|
|
// Strip off lvalue/inout types.
|
|
Type newType = type->getWithoutSpecifierType();
|
|
if (newType.getPointer() != type.getPointer()) {
|
|
type = newType;
|
|
continue;
|
|
}
|
|
|
|
// Look through reference-storage types.
|
|
newType = type->getReferenceStorageReferent();
|
|
if (newType.getPointer() != type.getPointer()) {
|
|
type = newType;
|
|
continue;
|
|
}
|
|
|
|
// Look through parentheses.
|
|
type = type->getWithoutParens();
|
|
|
|
// Look through optionals.
|
|
if (auto optObjectTy = type->getOptionalObjectType()) {
|
|
type = optObjectTy;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
} while (true);
|
|
|
|
// Nominal types.
|
|
if (auto nominal = type->getAnyNominal()) {
|
|
// If we have a collection, get the element type.
|
|
if (auto bound = type->getAs<BoundGenericType>()) {
|
|
ASTContext &ctx = nominal->getASTContext();
|
|
auto args = bound->getGenericArgs();
|
|
if (!args.empty() &&
|
|
(bound->getDecl() == ctx.getArrayDecl() ||
|
|
bound->getDecl() == ctx.getSetDecl())) {
|
|
return OmissionTypeName(nominal->getName().str(),
|
|
getOptions(bound),
|
|
getTypeNameForOmission(args[0]).Name);
|
|
}
|
|
}
|
|
|
|
// AnyObject -> "Object".
|
|
if (type->isAnyObject())
|
|
return "Object";
|
|
|
|
return OmissionTypeName(nominal->getName().str(), getOptions(type));
|
|
}
|
|
|
|
// Generic type parameters.
|
|
if (auto genericParamTy = type->getAs<GenericTypeParamType>()) {
|
|
if (auto genericParam = genericParamTy->getDecl())
|
|
return genericParam->getName().str();
|
|
|
|
return "";
|
|
}
|
|
|
|
// Dependent members.
|
|
if (auto dependentMemberTy = type->getAs<DependentMemberType>()) {
|
|
return dependentMemberTy->getName().str();
|
|
}
|
|
|
|
// Archetypes.
|
|
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
|
|
return archetypeTy->getName().str();
|
|
}
|
|
|
|
// Function types.
|
|
if (auto funcTy = type->getAs<AnyFunctionType>()) {
|
|
if (funcTy->getRepresentation() == AnyFunctionType::Representation::Block)
|
|
return "Block";
|
|
|
|
return "Function";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
Optional<DeclName> TypeChecker::omitNeedlessWords(AbstractFunctionDecl *afd) {
|
|
auto &Context = afd->getASTContext();
|
|
|
|
if (afd->isInvalid() || isa<DestructorDecl>(afd))
|
|
return None;
|
|
|
|
DeclName name = afd->getFullName();
|
|
if (!name)
|
|
return None;
|
|
|
|
// String'ify the arguments.
|
|
StringRef baseNameStr = name.getBaseName().userFacingName();
|
|
SmallVector<StringRef, 4> argNameStrs;
|
|
for (auto arg : name.getArgumentNames()) {
|
|
if (arg.empty())
|
|
argNameStrs.push_back("");
|
|
else
|
|
argNameStrs.push_back(arg.str());
|
|
}
|
|
|
|
// String'ify the parameter types.
|
|
SmallVector<OmissionTypeName, 4> paramTypes;
|
|
|
|
// Always look at the parameters in the last parameter list.
|
|
for (auto param : *afd->getParameters()) {
|
|
paramTypes.push_back(getTypeNameForOmission(param->getInterfaceType())
|
|
.withDefaultArgument(param->isDefaultArgument()));
|
|
}
|
|
|
|
// Handle contextual type, result type, and returnsSelf.
|
|
Type contextType = afd->getDeclContext()->getDeclaredInterfaceType();
|
|
Type resultType;
|
|
bool returnsSelf = afd->hasDynamicSelfResult();
|
|
|
|
if (auto func = dyn_cast<FuncDecl>(afd)) {
|
|
resultType = func->getResultInterfaceType();
|
|
resultType = func->mapTypeIntoContext(resultType);
|
|
} else if (isa<ConstructorDecl>(afd)) {
|
|
resultType = contextType;
|
|
}
|
|
|
|
// Figure out the first parameter name.
|
|
StringRef firstParamName;
|
|
auto params = afd->getParameters();
|
|
if (params->size() != 0 && !params->get(0)->getName().empty())
|
|
firstParamName = params->get(0)->getName().str();
|
|
|
|
StringScratchSpace scratch;
|
|
if (!swift::omitNeedlessWords(baseNameStr, argNameStrs, firstParamName,
|
|
getTypeNameForOmission(resultType),
|
|
getTypeNameForOmission(contextType),
|
|
paramTypes, returnsSelf, false,
|
|
/*allPropertyNames=*/nullptr, scratch))
|
|
return None;
|
|
|
|
/// Retrieve a replacement identifier.
|
|
auto getReplacementIdentifier = [&](StringRef name,
|
|
DeclBaseName old) -> DeclBaseName{
|
|
if (name.empty())
|
|
return Identifier();
|
|
|
|
if (!old.empty() && name == old.userFacingName())
|
|
return old;
|
|
|
|
return Context.getIdentifier(name);
|
|
};
|
|
|
|
auto newBaseName = getReplacementIdentifier(
|
|
baseNameStr, name.getBaseName());
|
|
SmallVector<Identifier, 4> newArgNames;
|
|
auto oldArgNames = name.getArgumentNames();
|
|
for (unsigned i = 0, n = argNameStrs.size(); i != n; ++i) {
|
|
auto argBaseName = getReplacementIdentifier(argNameStrs[i],
|
|
oldArgNames[i]);
|
|
newArgNames.push_back(argBaseName.getIdentifier());
|
|
}
|
|
|
|
return DeclName(Context, newBaseName, newArgNames);
|
|
}
|
|
|
|
Optional<Identifier> TypeChecker::omitNeedlessWords(VarDecl *var) {
|
|
auto &Context = var->getASTContext();
|
|
|
|
if (var->isInvalid())
|
|
return None;
|
|
|
|
if (var->getName().empty())
|
|
return None;
|
|
|
|
auto name = var->getName().str();
|
|
|
|
// Dig out the context type.
|
|
Type contextType = var->getDeclContext()->getDeclaredInterfaceType();
|
|
if (!contextType)
|
|
return None;
|
|
|
|
// Dig out the type of the variable.
|
|
Type type = var->getValueInterfaceType();
|
|
while (auto optObjectTy = type->getOptionalObjectType())
|
|
type = optObjectTy;
|
|
|
|
// Omit needless words.
|
|
StringScratchSpace scratch;
|
|
OmissionTypeName typeName = getTypeNameForOmission(var->getInterfaceType());
|
|
OmissionTypeName contextTypeName = getTypeNameForOmission(contextType);
|
|
if (::omitNeedlessWords(name, { }, "", typeName, contextTypeName, { },
|
|
/*returnsSelf=*/false, true,
|
|
/*allPropertyNames=*/nullptr, scratch)) {
|
|
return Context.getIdentifier(name);
|
|
}
|
|
|
|
return None;
|
|
}
|