Files
swift-mirror/stdlib/public/runtime/KeyPaths.cpp
John McCall 3e5165d1ab Change the compiler ABI of keypaths.
Previously, the stdlib provided:

- getters for AnyKeyPath and PartialKeyPath, which have remained;

- a getter for KeyPath, which still exists alongside a new read
  coroutine; and

- a pair of owned mutable addressors that provided modify-like behavior
  for WritableKeyPath and ReferenceWritableKeyPath, which have been
  replaced with modify coroutines and augmented with dedicated setters.

SILGen then uses the most efficient accessor available for the access
it's been asked to do: for example, if it's been asked to produce a
borrowed r-value, it uses the read accessor.

Providing a broad spectrum of accessor functions here seems acceptable
because the code-size hit is fixed-size: we don't need to generate
extra code per storage declaration to support more alternatives for
key paths.

Note that this is just the compiler ABI; the implementation is still
basically what it was.  That means the implementation of the setters
and the read accessor is pretty far from optimal.  But we can improve
the implementation later; we can't improve the ABI.

The coroutine accessors have to be implemented in C++ and used via
hand-rolled declarations in SILGen because it's not currently possible
to declare independent coroutine accessors in Swift.
2018-11-10 02:08:04 -05:00

174 lines
6.2 KiB
C++

//===--- KeyPaths.cpp - Key path helper symbols ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include <cstdint>
#include <cstring>
using namespace swift;
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
void swift_copyKeyPathTrivialIndices(const void *src, void *dest, size_t bytes) {
memcpy(dest, src, bytes);
}
SWIFT_CC(swift)
static bool equateGenericArguments(const void *a, const void *b, size_t bytes) {
// Generic arguments can't affect equality, since an equivalent key path may
// have been formed in a fully concrete context without capturing generic
// arguments.
return true;
}
SWIFT_CC(swift)
static intptr_t hashGenericArguments(const void *src, size_t bytes) {
// Generic arguments can't affect equality, since an equivalent key path may
// have been formed in a fully concrete context without capturing generic
// arguments. The implementation recognizes a hash value return of '0' as
// "no effect on the hash".
return 0;
}
/// A prefab witness table for computed key path components that only include
/// captured generic arguments.
SWIFT_RUNTIME_EXPORT
void *(swift_keyPathGenericWitnessTable[]) = {
nullptr, // no destructor necessary
(void*)(uintptr_t)swift_copyKeyPathTrivialIndices,
(void*)(uintptr_t)equateGenericArguments,
(void*)(uintptr_t)hashGenericArguments,
};
/****************************************************************************/
/** Projection functions ****************************************************/
/****************************************************************************/
namespace {
struct AddrAndOwner {
OpaqueValue *Addr;
HeapObject *Owner;
};
}
// These functions are all implemented in the stdlib. Their type
// parameters are passed impliictly in the isa of the key path.
extern "C"
SWIFT_CC(swift) void
swift_getAtKeyPath(SWIFT_INDIRECT_RESULT void *result,
const OpaqueValue *root, void *keyPath);
extern "C"
SWIFT_CC(swift) AddrAndOwner
_swift_modifyAtWritableKeyPath_impl(OpaqueValue *root, void *keyPath);
extern "C"
SWIFT_CC(swift) AddrAndOwner
_swift_modifyAtReferenceWritableKeyPath_impl(const OpaqueValue *root,
void *keyPath);
namespace {
struct YieldOnceTemporary {
const Metadata *Type;
// Yield-once buffers can't be memcpy'ed, so it doesn't matter that
// isValueInline() returns false for non-bitwise-takable types --- but
// it doesn't hurt, either.
ValueBuffer Buffer;
YieldOnceTemporary(const Metadata *type) : Type(type) {}
static OpaqueValue *allocateIn(const Metadata *type,
YieldOnceBuffer *buffer) {
auto *temp =
new (reinterpret_cast<void*>(buffer)) YieldOnceTemporary(type);
return type->allocateBufferIn(&temp->Buffer);
}
static void destroyAndDeallocateIn(YieldOnceBuffer *buffer) {
auto *temp = reinterpret_cast<YieldOnceTemporary*>(buffer);
temp->Type->vw_destroy(temp->Type->projectBufferFrom(&temp->Buffer));
temp->Type->deallocateBufferIn(&temp->Buffer);
}
};
static_assert(sizeof(YieldOnceTemporary) <= sizeof(YieldOnceBuffer) &&
alignof(YieldOnceTemporary) <= alignof(YieldOnceBuffer),
"temporary doesn't fit in a YieldOnceBuffer");
}
static SWIFT_CC(swift)
void _destroy_temporary_continuation(YieldOnceBuffer *buffer, bool forUnwind) {
YieldOnceTemporary::destroyAndDeallocateIn(buffer);
}
// The resilient offset to the start of KeyPath's class-specific data.
extern "C" size_t MANGLE_SYM(s7KeyPathCMo);
YieldOnceResult<const OpaqueValue*>
swift::swift_readAtKeyPath(YieldOnceBuffer *buffer,
const OpaqueValue *root, void *keyPath) {
// The Value type parameter is passed in the class of the key path object.
// KeyPath is a native class, so we can just load its metadata directly
// even on ObjC-interop targets.
const Metadata *keyPathType = static_cast<HeapObject*>(keyPath)->metadata;
// To find the generic arguments, we just have to find the class-specific
// data section of the class; the generic arguments are always at the start
// of that.
//
// We use the resilient access pattern because it's easy; since we're within
// KeyPath's resilience domain, that's not really necessary, and it would
// be totally valid to hard-code an offset.
auto keyPathGenericArgs =
reinterpret_cast<const Metadata * const *>(
reinterpret_cast<const char*>(keyPathType) + MANGLE_SYM(s7KeyPathCMo));
const Metadata *valueTy = keyPathGenericArgs[1];
// Allocate the buffer.
auto result = YieldOnceTemporary::allocateIn(valueTy, buffer);
// Read into the buffer.
swift_getAtKeyPath(result, root, keyPath);
// Return a continuation that destroys the value in the buffer
// and deallocates it.
return { &_destroy_temporary_continuation, result };
}
static SWIFT_CC(swift)
void _release_owner_continuation(YieldOnceBuffer *buffer, bool forUnwind) {
swift_unknownObjectRelease(buffer->Data[0]);
}
YieldOnceResult<OpaqueValue*>
swift::swift_modifyAtWritableKeyPath(YieldOnceBuffer *buffer,
OpaqueValue *root, void *keyPath) {
auto addrAndOwner =
_swift_modifyAtWritableKeyPath_impl(root, keyPath);
buffer->Data[0] = addrAndOwner.Owner;
return { &_release_owner_continuation, addrAndOwner.Addr };
}
YieldOnceResult<OpaqueValue*>
swift::swift_modifyAtReferenceWritableKeyPath(YieldOnceBuffer *buffer,
const OpaqueValue *root,
void *keyPath) {
auto addrAndOwner =
_swift_modifyAtReferenceWritableKeyPath_impl(root, keyPath);
buffer->Data[0] = addrAndOwner.Owner;
return { &_release_owner_continuation, addrAndOwner.Addr };
}