Files
swift-mirror/lib/Parse/Lexer.cpp
Chris Lattner c92cf52358 since we allow utf8 source files, start validating utf8 characters in string literals
and test that they continue to work.  Part of rdar://11220029


Swift SVN r1401
2012-04-12 21:47:12 +00:00

752 lines
24 KiB
C++

//===--- Lexer.cpp - Swift Language Lexer ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Lexer and Token interfaces.
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Lexer.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Diagnostics.h"
#include "swift/AST/Identifier.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Setup and Helper Methods
//===----------------------------------------------------------------------===//
Lexer::Lexer(StringRef Buffer, llvm::SourceMgr &SourceMgr,
DiagnosticEngine *Diags, const char *CurrentPosition)
: SourceMgr(SourceMgr), Diags(Diags) {
BufferStart = Buffer.begin();
BufferEnd = Buffer.end();
CurPtr = CurrentPosition;
assert(CurPtr >= BufferStart && CurPtr <= BufferEnd &&
"Current position is out-of-range");
// Prime the lexer.
lexImpl();
}
InFlightDiagnostic Lexer::diagnose(const char *Loc, Diag<> ID) {
if (Diags)
Diags->diagnose(getSourceLoc(Loc), ID);
return InFlightDiagnostic();
}
void Lexer::formToken(tok Kind, const char *TokStart) {
NextToken.setToken(Kind, StringRef(TokStart, CurPtr-TokStart));
}
//===----------------------------------------------------------------------===//
// Lexer Subroutines
//===----------------------------------------------------------------------===//
/// skipSlashSlashComment - Skip to the end of the line of a // comment.
void Lexer::skipSlashSlashComment() {
assert(CurPtr[-1] == '/' && CurPtr[0] == '/' && "Not a // comment");
while (1) {
switch (*CurPtr++) {
case '\n':
case '\r':
return; // If we found the end of the line, return.
default:
break; // Otherwise, eat other characters.
case 0:
// If this is a random nul character in the middle of a buffer, skip it as
// whitespace.
if (CurPtr-1 != BufferEnd) {
diagnose(CurPtr-1, diag::lex_nul_character);
break;
}
// Otherwise, we have a // comment at end of file.
--CurPtr;
return;
}
}
}
/// skipSlashStarComment - /**/ comments are skipped (treated as whitespace).
/// Note that (unlike in C) block comments can be nested.
void Lexer::skipSlashStarComment() {
const char *StartPtr = CurPtr-1;
assert(CurPtr[-1] == '/' && CurPtr[0] == '*' && "Not a /* comment");
// Make sure to advance over the * so that we don't incorrectly handle /*/ as
// the beginning and end of the comment.
++CurPtr;
// /**/ comments can be nested, keep track of how deep we've gone.
unsigned Depth = 1;
while (1) {
switch (*CurPtr++) {
case '*':
// Check for a '*/'
if (*CurPtr == '/') {
++CurPtr;
if (--Depth == 0)
return;
}
break;
case '/':
// Check for a '/*'
if (*CurPtr == '*') {
++CurPtr;
++Depth;
}
break;
default:
break; // Otherwise, eat other characters.
case 0:
// If this is a random nul character in the middle of a buffer, skip it as
// whitespace.
if (CurPtr-1 != BufferEnd) {
diagnose(CurPtr-1, diag::lex_nul_character);
break;
}
// Otherwise, we have an unterminated /* comment.
--CurPtr;
diagnose(CurPtr-(CurPtr[-1] == '\n'),
diag::lex_unterminated_block_comment);
diagnose(StartPtr, diag::lex_comment_start);
return;
}
}
}
static bool isValidStartOfIdentifier(char c) {
return isalpha(c) || c == '_';
}
static bool isValidContinuationOfIdentifier(char c) {
return isalnum(c) || c == '_' || c == '$';
}
/// isIdentifier - Checks whether a string matches the identifier regex.
bool Lexer::isIdentifier(llvm::StringRef string) {
if (string.empty()) return false;
if (!isValidStartOfIdentifier(string[0])) return false;
for (unsigned i = 1, e = string.size(); i != e; ++i)
if (!isValidContinuationOfIdentifier(string[i]))
return false;
return true;
}
/// lexIdentifier - Match [a-zA-Z_][a-zA-Z_$0-9]*
void Lexer::lexIdentifier() {
const char *TokStart = CurPtr-1;
assert(isValidStartOfIdentifier(*TokStart) && "Unexpected start");
// Lex [a-zA-Z_$0-9]*
while (isValidContinuationOfIdentifier(*CurPtr))
++CurPtr;
tok Kind =
llvm::StringSwitch<tok>(StringRef(TokStart, CurPtr-TokStart))
// decl and type keywords
.Case("extension", tok::kw_extension)
.Case("import", tok::kw_import)
.Case("func", tok::kw_func)
.Case("oneof", tok::kw_oneof)
.Case("protocol", tok::kw_protocol)
.Case("struct", tok::kw_struct)
.Case("typealias", tok::kw_typealias)
.Case("var", tok::kw_var)
.Case("static", tok::kw_static)
// Statements
.Case("if", tok::kw_if)
.Case("else", tok::kw_else)
.Case("while", tok::kw_while)
.Case("return", tok::kw_return)
.Default(tok::identifier);
return formToken(Kind, TokStart);
}
/// lexOperatorIdentifier - Match identifiers formed out of punctuation.
void Lexer::lexOperatorIdentifier() {
const char *TokStart = CurPtr-1;
while (Identifier::isOperatorChar(*CurPtr))
++CurPtr;
// Match various reserved words.
if (CurPtr-TokStart == 1) {
switch (TokStart[0]) {
case '=': return formToken(tok::equal, TokStart);
}
} else if (CurPtr-TokStart == 2) {
switch ((TokStart[0] << 8) | TokStart[1]) {
case ('-' << 8) | '>': // ->
return formToken(tok::arrow, TokStart);
}
}
return formToken(tok::oper, TokStart);
}
/// lexDollarIdent - Match $[0-9a-zA-Z_$]*
void Lexer::lexDollarIdent() {
const char *TokStart = CurPtr-1;
assert(*TokStart == '$');
// Lex [a-zA-Z_$0-9]*
while (isalnum(*CurPtr) || *CurPtr == '_' || *CurPtr == '$')
++CurPtr;
return formToken(tok::dollarident, TokStart);
}
// Return true if the string starts with "[eE][+-][0-9]"
static bool isValidExponent(const char *P) {
if (*P != 'e' && *P != 'E')
return false;
++P;
if (*P != '+' && *P != '-')
return false;
++P;
return isdigit(*P);
}
/// lexNumber:
/// integer_literal ::= [0-9]+
/// integer_literal ::= 0x[0-9a-fA-F]+
/// integer_literal ::= 0o[0-7]+
/// integer_literal ::= 0b[01]+
/// floating_literal ::= [0-9]+\.[0-9]+
/// floating_literal ::= [0-9]+(\.[0-9]*)?[eE][+-][0-9]+
/// floating_literal ::= \.[0-9]+([eE][+-][0-9]+)?
void Lexer::lexNumber() {
const char *TokStart = CurPtr-1;
assert((isdigit(*TokStart) || *TokStart == '.') && "Unexpected start");
if (*TokStart == '0' && *CurPtr == 'x') {
// 0x[0-9a-fA-F]+
++CurPtr;
while (isdigit(*CurPtr) ||
(*CurPtr >= 'a' && *CurPtr <= 'f') ||
(*CurPtr >= 'A' && *CurPtr <= 'F'))
++CurPtr;
if (CurPtr - TokStart == 2) {
diagnose(CurPtr, diag::lex_expected_digit_in_int_literal);
return formToken(tok::unknown, TokStart);
}
return formToken(tok::integer_literal, TokStart);
} else if (*TokStart == '0' && *CurPtr == 'o') {
// 0o[0-7]+
++CurPtr;
while (*CurPtr >= '0' && *CurPtr <= '7')
++CurPtr;
if (CurPtr - TokStart == 2) {
diagnose(CurPtr, diag::lex_expected_digit_in_int_literal);
return formToken(tok::unknown, TokStart);
}
return formToken(tok::integer_literal, TokStart);
} else if (*TokStart == '0' && *CurPtr == 'b') {
// 0b[01]+
++CurPtr;
while (*CurPtr == '0' || *CurPtr == '1')
++CurPtr;
if (CurPtr - TokStart == 2) {
diagnose(CurPtr, diag::lex_expected_digit_in_int_literal);
return formToken(tok::unknown, TokStart);
}
return formToken(tok::integer_literal, TokStart);
}
// Handle the leading character here as well.
--CurPtr;
// Handle a leading [0-9]+, lexing an integer or falling through if we have a
// floating point value.
if (isdigit(*CurPtr)) {
while (isdigit(*CurPtr))
++CurPtr;
// Floating literals must have '.', 'e', or 'E' after digits. If it is
// something else, then this is the end of the token.
if (*CurPtr != '.' && *CurPtr != 'e' && *CurPtr != 'E')
return formToken(tok::integer_literal, TokStart);
// Lex things like 4.x as '4' followed by a tok::period.
if (*CurPtr == '.' && !isdigit(CurPtr[1]) && !isValidExponent(CurPtr+1))
return formToken(tok::integer_literal, TokStart);
}
// Lex decimal point.
if (*CurPtr == '.') {
++CurPtr;
// Lex any digits after the decimal point.
while (isdigit(*CurPtr))
++CurPtr;
}
// Lex exponent.
if (*CurPtr == 'e' || *CurPtr == 'E') {
++CurPtr; // Eat the 'e'
if (*CurPtr != '+' && *CurPtr != '-') {
diagnose(CurPtr, diag::lex_expected_sign_in_fp);
return formToken(tok::unknown, TokStart);
}
++CurPtr; // Eat the sign.
if (!isdigit(*CurPtr)) {
diagnose(CurPtr, diag::lex_expected_digit_in_fp_exponent);
return formToken(tok::unknown, TokStart);
}
while (isdigit(*CurPtr))
++CurPtr;
}
return formToken(tok::floating_literal, TokStart);
}
/// EncodeToUTF8 - Encode the specified code point into a UTF8 stream. Return
/// true if it is an erroneous code point.
static bool EncodeToUTF8(unsigned CharValue,
llvm::SmallVectorImpl<char> &Result) {
assert(CharValue >= 0x80 && "Single-byte encoding should be already handled");
// Number of bits in the value, ignoring leading zeros.
unsigned NumBits = 32-llvm::CountLeadingZeros_32(CharValue);
// Handle the leading byte, based on the number of bits in the value.
unsigned NumTrailingBytes;
if (NumBits <= 5+6) {
// Encoding is 0x110aaaaa 10bbbbbb
Result.push_back(char(0xC0 | (CharValue >> 6)));
NumTrailingBytes = 1;
} else if (NumBits <= 4+6+6) {
// Encoding is 0x1110aaaa 10bbbbbb 10cccccc
Result.push_back(char(0xE0 | (CharValue >> (6+6))));
NumTrailingBytes = 2;
// UTF-16 surrogate pair values are not valid code points.
if (CharValue >= 0xD800 && CharValue <= 0xDFFF)
return true;
} else if (NumBits <= 3+6+6+6) {
// Encoding is 0x11110aaa 10bbbbbb 10cccccc 10dddddd
Result.push_back(char(0xF0 | (CharValue >> (6+6+6))));
NumTrailingBytes = 3;
// Reject over-large code points. These cannot be encoded as UTF-16
// surrogate pairs, so UTF-32 doesn't allow them.
if (CharValue > 0x10FFFF)
return true;
} else {
return true; // UTF8 can encode these, but they aren't valid code points.
}
// Emit all of the trailing bytes.
while (NumTrailingBytes--)
Result.push_back(char(0x80 | (0x3F & (CharValue >> (NumTrailingBytes*6)))));
return false;
}
/// CLO8 - Return the number of leading ones in the specified 8-bit value.
static unsigned CLO8(unsigned char C) {
return llvm::CountLeadingOnes_32(uint32_t(C) << 24);
}
/// isStartOfUTF8Character - Return true if this isn't a UTF8 continuation
/// character, which will be of the form 0b10XXXXXX
static bool isStartOfUTF8Character(unsigned char C) {
return (signed char)C >= 0 || C >= 0xC0; // C0 = 0b11000000
}
/// validateUTF8CharacterAndAdvance - Given a pointer to the starting byte of a
/// UTF8 character, validate it and advance the lexer past it. This returns the
/// encoded character or ~0U if the encoding is invalid.
static uint32_t validateUTF8CharacterAndAdvance(const char *&Ptr) {
assert((signed char)(*Ptr) < 0 && "Not the start of an encoded letter");
unsigned char CurByte = *Ptr++;
// Read the number of high bits set, which indicates the number of bytes in
// the character.
unsigned EncodedBytes = CLO8(CurByte);
// If this is 0b10XXXXXX, then it is a continuation character.
if (EncodedBytes == 1 ||
// If the number of encoded bytes is > 4, then this is an invalid
// character in the range of 0xF5 and above. These would start an
// encoding for something that couldn't be represented with UTF16
// digraphs, so Unicode rejects them.
EncodedBytes > 4) {
// Skip until we get the start of another character. This is guaranteed to
// at least stop at the nul at the end of the buffer.
while (!isStartOfUTF8Character(*Ptr))
++Ptr;
return ~0U;
}
// Drop the high bits indicating the # bytes of the result.
unsigned CharValue = (unsigned char)(CurByte << EncodedBytes) >> EncodedBytes;
// Read and validate the continuation bytes.
for (unsigned i = 1; i != EncodedBytes; ++i) {
CurByte = *Ptr;
// If the high bit isn't set or the second bit isn't clear, then this is not
// a continuation byte!
if (CurByte < 0x80 || CurByte >= 0xC0) return ~0U;
// Accumulate our result.
CharValue <<= 6;
CharValue |= CurByte & 0x3F;
++Ptr;
}
// If we got here, we read the appropriate number of accumulated bytes.
// Verify that the encoding was actually minimal.
// Number of bits in the value, ignoring leading zeros.
unsigned NumBits = 32-llvm::CountLeadingZeros_32(CharValue);
if (NumBits <= 5+6)
return EncodedBytes == 2 ? CharValue : ~0U;
if (NumBits <= 4+6+6)
return EncodedBytes == 3 ? CharValue : ~0U;
if (NumBits <= 3+6+6+6)
return EncodedBytes == 4 ? CharValue : ~0U;
return EncodedBytes == 5 ? CharValue : ~0U;
}
/// lexStringLiteral:
/// string_literal ::= ["]([^"\\\n\r]|string_escape)*["]
///
/// string_escape ::= [\][\] | [\]t | [\]n | [\]r | [\]" | [\]'
/// string_escape ::= [\]x hex hex
/// string_escape ::= [\]u hex hex hex hex
/// string_escape ::= [\]U hex hex hex hex hex hex hex hex
/// hex ::= [0-9a-fA-F]
void Lexer::lexStringLiteral() {
const char *TokStart = CurPtr-1;
assert(*TokStart == '"' && "Unexpected start");
llvm::SmallString<64> TempString;
while (1) {
unsigned CharValue = 0;
const char *CharStart = CurPtr;
switch (*CurPtr++) {
default: // Normal characters are part of the string.
// If this is a "high" UTF-8 character, validate it.
if ((signed char)(CurPtr[-1]) < 0) {
--CurPtr;
if (validateUTF8CharacterAndAdvance(CurPtr) == ~0U)
diagnose(CharStart, diag::lex_invalid_utf8_character);
}
continue;
// If we found the closing " character, we're done.
case '"':
return formToken(tok::string_literal, TokStart);
case 0:
if (CurPtr-2 != BufferEnd) {
diagnose(CurPtr-2, diag::lex_nul_character);
continue;
}
--CurPtr;
// FALL THROUGH.
case '\n': // String literals cannot have \n or \r in them.
case '\r':
diagnose(TokStart, diag::lex_unterminated_string);
return;
case '\\': // Escapes.
switch (*CurPtr) {
default: // Invalid escape.
diagnose(CurPtr, diag::lex_invalid_string_escape);
continue;
// Simple single-character escapes.
case 't':
case 'n':
case 'r':
case '"':
case '\'':
case '\\':
++CurPtr;
continue;
// Unicode escapes of various lengths.
case 'x': // \x HEX HEX
if (!isxdigit(CurPtr[1]) || !isxdigit(CurPtr[2])) {
diagnose(CurPtr, diag::lex_invalid_string_x_escape);
continue;
}
StringRef(CurPtr+1, 2).getAsInteger(16, CharValue);
// Reject \x80 and above, since it is going to encode into a multibyte
// unicode encoding, which is something that C folks may not expect.
if (CharValue >= 0x80)
diagnose(CurPtr, diag::lex_invalid_hex_escape);
CurPtr += 3;
break;
case 'u': // \u HEX HEX HEX HEX
if (!isxdigit(CurPtr[1]) || !isxdigit(CurPtr[2]) ||
!isxdigit(CurPtr[3]) || !isxdigit(CurPtr[4])) {
diagnose(CurPtr, diag::lex_invalid_string_u_escape);
continue;
}
StringRef(CurPtr+1, 4).getAsInteger(16, CharValue);
CurPtr += 5;
break;
case 'U': // \U HEX HEX HEX HEX HEX HEX HEX HEX
if (!isxdigit(CurPtr[1]) || !isxdigit(CurPtr[2]) ||
!isxdigit(CurPtr[3]) || !isxdigit(CurPtr[4]) ||
!isxdigit(CurPtr[5]) || !isxdigit(CurPtr[6]) ||
!isxdigit(CurPtr[7]) || !isxdigit(CurPtr[8])) {
diagnose(CurPtr, diag::lex_invalid_string_U_escape);
continue;
}
StringRef(CurPtr+1, 8).getAsInteger(16, CharValue);
CurPtr += 9;
break;
}
}
// Check to see if the encoding is valid.
if (CharValue >= 0x80 && EncodeToUTF8(CharValue, TempString))
diagnose(CharStart, diag::lex_invalid_unicode_code_point);
}
}
/// getEncodedStringLiteral - Given a string literal token, return the bytes
/// that the actual string literal should codegen to. If a copy needs to be
/// made, it will be allocated out of the ASTContext allocator.
StringRef Lexer::getEncodedStringLiteral(const Token &Str, ASTContext &Ctx) {
// Get the bytes behind the string literal, dropping the double quotes.
StringRef Bytes = Str.getText().drop_front().drop_back();
llvm::SmallString<64> TempString;
// Note that it is always safe to read one over the end of "Bytes" because
// we know that there is a terminating " character. Use BytesPtr to avoid a
// range check subscripting on the StringRef.
const char *BytesPtr = Bytes.begin();
while (BytesPtr != Bytes.end()) {
char CurChar = *BytesPtr++;
if (CurChar != '\\') {
TempString += CurChar;
continue;
}
// Invalid escapes are accepted by the lexer but diagnosed as an error. We
// just ignore them here.
unsigned CharValue; // Unicode character value for \x, \u, \U.
switch (*BytesPtr++) {
default:
continue; // Invalid escape, ignore it.
// Simple single-character escapes.
case 't': TempString += '\t'; continue;
case 'n': TempString += '\n'; continue;
case 'r': TempString += '\r'; continue;
case '"': TempString += '"'; continue;
case '\'': TempString += '\''; continue;
case '\\': TempString += '\\'; continue;
// Unicode escapes of various lengths.
case 'x': // \x HEX HEX
if (!isxdigit(BytesPtr[0]) || !isxdigit(BytesPtr[1]))
continue; // Ignore invalid escapes.
StringRef(BytesPtr, 2).getAsInteger(16, CharValue);
BytesPtr += 2;
break;
case 'u': // \u HEX HEX HEX HEX
if (!isxdigit(BytesPtr[0]) || !isxdigit(BytesPtr[1]) ||
!isxdigit(BytesPtr[2]) || !isxdigit(BytesPtr[3]))
continue; // Ignore invalid escapes.
StringRef(BytesPtr, 4).getAsInteger(16, CharValue);
BytesPtr += 4;
break;
case 'U': // \U HEX HEX HEX HEX HEX HEX HEX HEX
if (!isxdigit(BytesPtr[0]) || !isxdigit(BytesPtr[1]) ||
!isxdigit(BytesPtr[2]) || !isxdigit(BytesPtr[3]) ||
!isxdigit(BytesPtr[4]) || !isxdigit(BytesPtr[5]) ||
!isxdigit(BytesPtr[6]) || !isxdigit(BytesPtr[7]))
continue; // Ignore invalid escapes.
StringRef(BytesPtr, 8).getAsInteger(16, CharValue);
BytesPtr += 8;
break;
}
if (CharValue < 0x80)
TempString += (char)CharValue;
else
EncodeToUTF8(CharValue, TempString);
}
// If we didn't escape or reprocess anything, then we don't need to reallocate
// a copy of the string, just point to the lexer's version. We know that this
// is safe because unescaped strings are always shorter than their escaped
// forms (in a valid string).
if (TempString.size() == Bytes.size())
return Bytes;
auto Res = Ctx.AllocateCopy(TempString);
return StringRef(Res.data(), Res.size()); // ArrayRef to StringRef.
}
//===----------------------------------------------------------------------===//
// Main Lexer Loop
//===----------------------------------------------------------------------===//
void Lexer::lexImpl() {
assert(CurPtr >= BufferStart &&
CurPtr <= BufferEnd && "Cur Char Pointer out of range!");
Restart:
// Remember the start of the token so we can form the text range.
const char *TokStart = CurPtr;
switch (*CurPtr++) {
default:
diagnose(CurPtr-1, diag::lex_invalid_character);
return formToken(tok::unknown, TokStart);
case ' ':
case '\t':
case '\n':
case '\r':
goto Restart; // Skip whitespace.
case 0:
// If this is a random nul character in the middle of a buffer, skip it as
// whitespace.
if (CurPtr-1 != BufferEnd) {
diagnose(CurPtr-1, diag::lex_nul_character);
goto Restart;
}
// Otherwise, this is the end of the buffer. Return EOF.
return formToken(tok::eof, TokStart);
case '(': {
// This is either l_paren or l_paren_space depending on whether there is
// whitespace before it.
bool PrecededBySpace;
// For these purposes, the start of the file is considered to be
// preceeded by infinite whitespace.
if (CurPtr - 1 == BufferStart) {
PrecededBySpace = true;
// Otherwise, our list of whitespace characters is pretty short.
} else {
char LastChar = *(CurPtr - 2);
PrecededBySpace = (isspace(LastChar) || LastChar == '\0');
}
if (PrecededBySpace)
return formToken(tok::l_paren_space, TokStart);
return formToken(tok::l_paren, TokStart);
}
case ')': return formToken(tok::r_paren, TokStart);
case '{': return formToken(tok::l_brace, TokStart);
case '}': return formToken(tok::r_brace, TokStart);
case '[': return formToken(tok::l_square, TokStart);
case ']': return formToken(tok::r_square, TokStart);
case '.':
if (isdigit(CurPtr[0])) // .42
return lexNumber();
return formToken(tok::period, TokStart);
case ',': return formToken(tok::comma, TokStart);
case ';': return formToken(tok::semi, TokStart);
case ':': return formToken(tok::colon, TokStart);
// Punctuator identifier characters.
case '/':
if (CurPtr[0] == '/') { // "//"
skipSlashSlashComment();
goto Restart;
}
if (CurPtr[0] == '*') { // "/*"
skipSlashStarComment();
goto Restart;
}
// '/' starts an operator identifier.
return lexOperatorIdentifier();
case '=':
case '-':
case '+':
case '*':
case '%':
case '<':
case '>':
case '!':
case '&':
case '|':
case '^':
return lexOperatorIdentifier();
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N':
case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U':
case 'V': case 'W': case 'X': case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
case 'v': case 'w': case 'x': case 'y': case 'z':
case '_':
return lexIdentifier();
case '$':
return lexDollarIdent();
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
return lexNumber();
case '"':
return lexStringLiteral();
}
}
SourceLoc Lexer::getLocForEndOfToken(llvm::SourceMgr &SM, SourceLoc Loc) {
// Don't try to do anything with an invalid location.
if (!Loc.isValid())
return Loc;
// Figure out which buffer contains this location.
int BufferID = SM.FindBufferContainingLoc(Loc.Value);
if (BufferID < 0)
return SourceLoc();
const llvm::MemoryBuffer *Buffer = SM.getMemoryBuffer(BufferID);
if (!Buffer)
return SourceLoc();
Lexer L(Buffer->getBuffer(), SM, 0, Loc.Value.getPointer());
unsigned Length = L.peekNextToken().getLength();
return Loc.getAdvancedLoc(Length);
}