Files
swift-mirror/lib/ClangImporter/ImportDecl.cpp
John Hui c94955b571 [SourceKit] Support location info for macro-expanded Clang imports
Currently, when we jump-to-definition for decls that are macro-expanded
from Clang imported decls (e.g., safe overloads generated by
@_SwiftifyImport), setLocationInfo() emits a bongus location pointing to
a generated buffer, leading the IDE to try to jump to a file that does
not exist.

The root cause here is that setLocationInfo() calls getOriginalRange()
(earlier, getOriginalLocation()), which was not written to account for
such cases where a macro is generated from another generated buffer
whose kind is 'AttributeFromClang'.

This patch fixes setLocationInfo() with some refactoring:

-   getOriginalRange() is inlined into setLocationInfo(), so that the
    generated buffer-handling logic is localized to that function. This
    includes how it handles buffers generated for ReplacedFunctionBody.

-   getOriginalLocation() is used in a couple of other places that only
    care about macros expanded from the same buffer (so other generated
    buffers not not relevant). This "macro-chasing" logic is simplified
    and moved from ModuleDecl::getOriginalRange() to a free-standing
    function, getMacroUnexpandedRange() (there is no reason for it to be
    a method of ModuleDecl).

-   GeneratedSourceInfo now carries an extra ClangNode field, which is
    populated by getClangSwiftAttrSourceFile() when constructing
    a generated buffer for an 'AttributeFromClang'. This could probably
    be union'ed with one or more of the other fields in the future.

rdar://151020332
(cherry picked from commit 44aba1382d)
2025-06-12 18:24:04 -07:00

10738 lines
417 KiB
C++

//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for importing Clang declarations into Swift.
//
//===----------------------------------------------------------------------===//
#include "CFTypeInfo.h"
#include "ClangDerivedConformances.h"
#include "ImporterImpl.h"
#include "SwiftDeclSynthesizer.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Attr.h"
#include "swift/AST/AvailabilityInference.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/LifetimeDependence.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/CXXMethodBridging.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Parse/Lexer.h"
#include "swift/Strings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjCCommon.h"
#include "clang/AST/Expr.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <utility>
#define DEBUG_TYPE "Clang module importer"
STATISTIC(NumTotalImportedEntities, "# of imported clang entities");
STATISTIC(NumFactoryMethodsAsInitializers,
"# of factory methods mapped to initializers");
using namespace swift;
using namespace importer;
namespace swift {
namespace inferred_attributes {
enum {
requires_stored_property_inits = 0x01
};
} // end namespace inferred_attributes
} // end namespace swift
namespace {
struct AccessorInfo {
AbstractStorageDecl *Storage;
AccessorKind Kind;
};
} // end anonymous namespace
static bool isInSystemModule(const DeclContext *D) {
return cast<ClangModuleUnit>(D->getModuleScopeContext())->isSystemModule();
}
static FuncDecl *
createFuncOrAccessor(ClangImporter::Implementation &impl, SourceLoc funcLoc,
std::optional<AccessorInfo> accessorInfo, DeclName name,
SourceLoc nameLoc, GenericParamList *genericParams,
ParameterList *bodyParams, Type resultTy, bool async,
bool throws, DeclContext *dc, ClangNode clangNode) {
FuncDecl *decl;
if (accessorInfo) {
decl = AccessorDecl::create(
impl.SwiftContext, funcLoc,
/*accessorKeywordLoc*/ SourceLoc(), accessorInfo->Kind,
accessorInfo->Storage, async, /*AsyncLoc=*/SourceLoc(),
throws, /*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(),
bodyParams, resultTy, dc, clangNode);
} else {
decl = FuncDecl::createImported(impl.SwiftContext, funcLoc, name, nameLoc,
async, throws, /*thrownType=*/Type(),
bodyParams, resultTy,
genericParams, dc, clangNode);
}
impl.importSwiftAttrAttributes(decl);
impl.swiftify(decl);
return decl;
}
void ClangImporter::Implementation::makeComputed(AbstractStorageDecl *storage,
AccessorDecl *getter,
AccessorDecl *setter) {
assert(getter);
// The synthesized computed property can either use a `get` or an
// `unsafeAddress` accessor.
auto isAddress = getter->getAccessorKind() == AccessorKind::Address;
storage->getASTContext().evaluator.cacheOutput(HasStorageRequest{storage}, false);
if (setter) {
if (isAddress)
assert(setter->getAccessorKind() == AccessorKind::MutableAddress);
storage->setImplInfo(
isAddress ? StorageImplInfo(ReadImplKind::Address,
WriteImplKind::MutableAddress,
ReadWriteImplKind::MutableAddress)
: StorageImplInfo::getMutableComputed());
storage->setAccessors(SourceLoc(), {getter, setter}, SourceLoc());
} else {
storage->setImplInfo(isAddress ? StorageImplInfo(ReadImplKind::Address)
: StorageImplInfo::getImmutableComputed());
storage->setAccessors(SourceLoc(), {getter}, SourceLoc());
}
}
bool importer::recordHasReferenceSemantics(
const clang::RecordDecl *decl,
ClangImporter::Implementation *importerImpl) {
if (!isa<clang::CXXRecordDecl>(decl) &&
!importerImpl->SwiftContext.LangOpts.CForeignReferenceTypes)
return false;
// At this point decl might not be fully imported into Swift yet, which
// means we might not have asked Clang to generate its implicit members, such
// as copy or move constructors. This would cause CxxRecordSemanticsRequest to
// return MissingLifetimeOperation if the type is not a foreign reference
// type. Note that this doesn't affect the correctness of this function, since
// those implicit members aren't required for foreign reference types.
auto semanticsKind = evaluateOrDefault(
importerImpl->SwiftContext.evaluator,
CxxRecordSemantics({decl, importerImpl->SwiftContext, importerImpl}),
{});
return semanticsKind == CxxRecordSemanticsKind::Reference;
}
bool importer::hasImmortalAttrs(const clang::RecordDecl *decl) {
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "retain:immortal" ||
swiftAttr->getAttribute() == "release:immortal";
return false;
});
}
#ifndef NDEBUG
static bool verifyNameMapping(MappedTypeNameKind NameMapping,
StringRef left, StringRef right) {
return NameMapping == MappedTypeNameKind::DoNothing || left != right;
}
#endif
/// Map a well-known C type to a swift type from the standard library.
///
/// \param IsError set to true when we know the corresponding swift type name,
/// but we could not find it. (For example, the type was not defined in the
/// standard library or the required standard library module was not imported.)
/// This should be a hard error, we don't want to map the type only sometimes.
///
/// \returns A pair of a swift type and its name that corresponds to a given
/// C type.
static std::pair<Type, StringRef>
getSwiftStdlibType(const clang::TypedefNameDecl *D,
Identifier Name,
ClangImporter::Implementation &Impl,
bool *IsError, MappedTypeNameKind &NameMapping) {
*IsError = false;
MappedCTypeKind CTypeKind;
unsigned Bitwidth;
StringRef SwiftModuleName;
bool IsSwiftModule; // True if SwiftModuleName == STDLIB_NAME.
StringRef SwiftTypeName;
bool CanBeMissing;
do {
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, \
CAN_BE_MISSING, C_NAME_MAPPING) \
if (Name.str() == C_TYPE_NAME) { \
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
Bitwidth = C_TYPE_BITWIDTH; \
SwiftModuleName = SWIFT_MODULE_NAME; \
IsSwiftModule = SwiftModuleName == STDLIB_NAME; \
SwiftTypeName = SWIFT_TYPE_NAME; \
CanBeMissing = CAN_BE_MISSING; \
NameMapping = MappedTypeNameKind::C_NAME_MAPPING; \
assert(verifyNameMapping(MappedTypeNameKind::C_NAME_MAPPING, \
C_TYPE_NAME, SWIFT_TYPE_NAME) && \
"MappedTypes.def: Identical names must use DoNothing"); \
break; \
}
#include "MappedTypes.def"
// We handle `BOOL` as a special case because the selection here is more
// complicated as the type alias exists on multiple platforms as different
// types. It appears in an Objective-C context where it is a `signed char`
// and appears in Windows as an `int`. Furthermore, you can actually have
// the two interoperate, which requires a further bit of logic to
// disambiguate the type aliasing behaviour. To complicate things, the two
// aliases bridge to different types - `ObjCBool` for Objective-C and
// `WindowsBool` for Windows's `BOOL` type.
if (Name.str() == "BOOL") {
auto &CASTContext = Impl.getClangASTContext();
auto &SwiftASTContext = Impl.SwiftContext;
// Default to Objective-C `BOOL`
CTypeKind = MappedCTypeKind::ObjCBool;
if (CASTContext.getTargetInfo().getTriple().isOSWindows()) {
// On Windows fall back to Windows `BOOL`
CTypeKind = MappedCTypeKind::SignedInt;
// If Objective-C interop is enabled, and we match the Objective-C
// `BOOL` type, then switch back to `ObjCBool`.
if (SwiftASTContext.LangOpts.EnableObjCInterop &&
CASTContext.hasSameType(D->getUnderlyingType(),
CASTContext.ObjCBuiltinBoolTy))
CTypeKind = MappedCTypeKind::ObjCBool;
}
if (CTypeKind == MappedCTypeKind::ObjCBool) {
Bitwidth = 8;
SwiftModuleName = StringRef("ObjectiveC");
IsSwiftModule = false;
SwiftTypeName = "ObjCBool";
NameMapping = MappedTypeNameKind::DoNothing;
CanBeMissing = false;
assert(verifyNameMapping(MappedTypeNameKind::DoNothing,
"BOOL", "ObjCBool") &&
"MappedTypes.def: Identical names must use DoNothing");
} else {
assert(CTypeKind == MappedCTypeKind::SignedInt &&
"expected Windows `BOOL` desugared to `int`");
Bitwidth = 32;
SwiftModuleName = StringRef("WinSDK");
IsSwiftModule = false;
SwiftTypeName = "WindowsBool";
NameMapping = MappedTypeNameKind::DoNothing;
CanBeMissing = true;
assert(verifyNameMapping(MappedTypeNameKind::DoNothing,
"BOOL", "WindowsBool") &&
"MappedTypes.def: Identical names must use DoNothing");
}
break;
}
// We did not find this type, thus it is not mapped.
return std::make_pair(Type(), "");
} while (0);
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
auto ClangType = D->getUnderlyingType();
// If the C type does not have the expected size, don't import it as a stdlib
// type.
unsigned ClangTypeSize = ClangCtx.getTypeSize(ClangType);
if (Bitwidth != 0 && Bitwidth != ClangTypeSize)
return std::make_pair(Type(), "");
// Check other expected properties of the C type.
switch(CTypeKind) {
case MappedCTypeKind::UnsignedInt:
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedInt:
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::UnsignedWord:
if (ClangTypeSize != 64 && ClangTypeSize != 32 && ClangTypeSize != 16)
return std::make_pair(Type(), "");
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedWord:
if (ClangTypeSize != 64 && ClangTypeSize != 32 && ClangTypeSize != 16)
return std::make_pair(Type(), "");
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEsingle:
case MappedCTypeKind::FloatIEEEdouble:
case MappedCTypeKind::FloatX87DoubleExtended: {
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
switch(CTypeKind) {
case MappedCTypeKind::FloatIEEEsingle:
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
if (&Sem != &APFloat::IEEEsingle())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEdouble:
assert(Bitwidth == 64 && "FloatIEEEdouble should be 64 bits wide");
if (&Sem != &APFloat::IEEEdouble())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatX87DoubleExtended:
assert(Bitwidth == 80 && "FloatX87DoubleExtended should be 80 bits wide");
if (&Sem != &APFloat::x87DoubleExtended())
return std::make_pair(Type(), "");
break;
default:
llvm_unreachable("should see only floating point types here");
}
}
break;
case MappedCTypeKind::VaList:
switch (ClangCtx.getTargetInfo().getBuiltinVaListKind()) {
case clang::TargetInfo::CharPtrBuiltinVaList:
case clang::TargetInfo::VoidPtrBuiltinVaList:
case clang::TargetInfo::PowerABIBuiltinVaList:
case clang::TargetInfo::AAPCSABIBuiltinVaList:
case clang::TargetInfo::HexagonBuiltinVaList:
assert(ClangCtx.getTypeSize(ClangCtx.VoidPtrTy) == ClangTypeSize &&
"expected va_list type to be sizeof(void *)");
break;
case clang::TargetInfo::AArch64ABIBuiltinVaList:
break;
case clang::TargetInfo::PNaClABIBuiltinVaList:
case clang::TargetInfo::SystemZBuiltinVaList:
case clang::TargetInfo::X86_64ABIBuiltinVaList:
return std::make_pair(Type(), "");
}
break;
case MappedCTypeKind::ObjCBool:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy) &&
!(ClangCtx.getBOOLDecl() &&
ClangCtx.hasSameType(ClangType, ClangCtx.getBOOLType())))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCSel:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCSelType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCSelRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCId:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCIdType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCIdRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCClass:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.getObjCClassType()) &&
!ClangCtx.hasSameType(ClangType,
ClangCtx.getObjCClassRedefinitionType()))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::CGFloat:
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::Block:
if (!ClangType->isBlockPointerType())
return std::make_pair(Type(), "");
break;
}
ModuleDecl *M;
if (IsSwiftModule)
M = Impl.getStdlibModule();
else
M = Impl.getNamedModule(SwiftModuleName);
if (!M) {
// User did not import the library module that contains the type we want to
// substitute.
*IsError = true;
return std::make_pair(Type(), "");
}
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
if (!SwiftType && CTypeKind == MappedCTypeKind::CGFloat) {
// Look for CGFloat in CoreFoundation.
M = Impl.getNamedModule("CoreFoundation");
SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
}
if (!SwiftType && !CanBeMissing) {
// The required type is not defined in the standard library.
// The required type is not defined in the library, or the user has not
// imported the library that defines it (so `M` was null and
// `getNamedSwiftType()` returned early).
*IsError = true;
return std::make_pair(Type(), "");
}
return std::make_pair(SwiftType, SwiftTypeName);
}
static bool isNSDictionaryMethod(const clang::ObjCMethodDecl *MD,
clang::Selector cmd) {
if (MD->getSelector() != cmd)
return false;
if (isa<clang::ObjCProtocolDecl>(MD->getDeclContext()))
return false;
if (MD->getClassInterface()->getName() != "NSDictionary")
return false;
return true;
}
void ClangImporter::Implementation::addSynthesizedTypealias(
NominalTypeDecl *nominal, Identifier name, Type underlyingType) {
auto &ctx = nominal->getASTContext();
auto typealias = new (ctx) TypeAliasDecl(SourceLoc(), SourceLoc(), name,
SourceLoc(), nullptr, nominal);
typealias->setUnderlyingType(underlyingType);
typealias->setAccess(nominal->getFormalAccess());
typealias->setImplicit();
nominal->addMember(typealias);
}
void ClangImporter::Implementation::addSynthesizedProtocolAttrs(
NominalTypeDecl *nominal,
ArrayRef<KnownProtocolKind> synthesizedProtocolAttrs, bool isUnchecked) {
auto &ctx = nominal->getASTContext();
for (auto kind : synthesizedProtocolAttrs) {
// This is unfortunately not an error because some test use mock protocols.
// If those tests were updated, we could assert that
// ctx.getProtocol(kind) != nulltpr which would be nice.
if (auto proto = ctx.getProtocol(kind))
nominal->getAttrs().add(
new (ctx) SynthesizedProtocolAttr(proto, this, isUnchecked));
}
}
/// Retrieve the element interface type and key param decl of a subscript
/// setter.
static std::pair<Type, ParamDecl *> decomposeSubscriptSetter(FuncDecl *setter) {
auto *PL = setter->getParameters();
if (PL->size() != 2)
return {nullptr, nullptr};
// Setter type is (self) -> (elem_type, key_type) -> ()
Type elementType = setter->getInterfaceType()
->castTo<AnyFunctionType>()
->getResult()
->castTo<AnyFunctionType>()
->getParams().front().getParameterType();
ParamDecl *keyDecl = PL->get(1);
return {elementType, keyDecl};
}
/// Rectify the (possibly different) types determined by the
/// getter and setter for a subscript.
///
/// \param canUpdateType whether the type of subscript can be
/// changed from the getter type to something compatible with both
/// the getter and the setter.
///
/// \returns the type to be used for the subscript, or a null type
/// if the types cannot be rectified.
static ImportedType rectifySubscriptTypes(Type getterType, bool getterIsIUO,
Type setterType, bool canUpdateType) {
// If the caller couldn't provide a setter type, there is
// nothing to rectify.
if (!setterType)
return {nullptr, false};
// Trivial case: same type in both cases.
if (getterType->isEqual(setterType))
return {getterType, getterIsIUO};
// The getter/setter types are different. If we cannot update
// the type, we have to fail.
if (!canUpdateType)
return {nullptr, false};
// Unwrap one level of optionality from each.
if (Type getterObjectType = getterType->getOptionalObjectType())
getterType = getterObjectType;
if (Type setterObjectType = setterType->getOptionalObjectType())
setterType = setterObjectType;
// If they are still different, fail.
// FIXME: We could produce the greatest common supertype of the
// two types.
if (!getterType->isEqual(setterType))
return {nullptr, false};
// Create an optional of the object type that can be implicitly
// unwrapped which subsumes both behaviors.
return {OptionalType::get(setterType), true};
}
/// Add an AvailableAttr to the declaration for the given
/// version range.
static void applyAvailableAttribute(Decl *decl, AvailabilityRange &info,
ASTContext &C) {
// If the range is "all", this is the same as not having an available
// attribute.
if (info.isAlwaysAvailable())
return;
auto AvAttr = AvailableAttr::createPlatformVersioned(
C, targetPlatform(C.LangOpts), /*Message=*/"", /*Rename=*/"",
info.getRawMinimumVersion(), /*Deprecated=*/{}, /*Obsoleted=*/{});
decl->getAttrs().add(AvAttr);
}
/// Synthesize availability attributes for protocol requirements
/// based on availability of the types mentioned in the requirements.
static void inferProtocolMemberAvailability(ClangImporter::Implementation &impl,
DeclContext *dc, Decl *member) {
// Don't synthesize attributes if there is already an
// availability annotation.
if (member->getAttrs().hasAttribute<AvailableAttr>())
return;
auto *valueDecl = dyn_cast<ValueDecl>(member);
if (!valueDecl)
return;
AvailabilityRange requiredRange =
AvailabilityInference::inferForType(valueDecl->getInterfaceType());
ASTContext &C = impl.SwiftContext;
const Decl *innermostDecl = dc->getInnermostDeclarationDeclContext();
AvailabilityRange containingDeclRange =
AvailabilityInference::availableRange(innermostDecl);
requiredRange.intersectWith(containingDeclRange);
applyAvailableAttribute(valueDecl, requiredRange, C);
}
/// Synthesizer callback for the error domain property getter.
static std::pair<BraceStmt *, bool>
synthesizeErrorDomainGetterBody(AbstractFunctionDecl *afd, void *context) {
auto getterDecl = cast<AccessorDecl>(afd);
ASTContext &ctx = getterDecl->getASTContext();
auto contextData =
llvm::PointerIntPair<ValueDecl *, 1, bool>::getFromOpaqueValue(context);
auto swiftValueDecl = contextData.getPointer();
bool isImplicit = contextData.getInt();
DeclRefExpr *domainDeclRef = new (ctx)
DeclRefExpr(ConcreteDeclRef(swiftValueDecl), {}, isImplicit);
domainDeclRef->setType(
getterDecl->mapTypeIntoContext(swiftValueDecl->getInterfaceType()));
auto *ret = ReturnStmt::createImplicit(ctx, domainDeclRef);
return { BraceStmt::create(ctx, SourceLoc(), {ret}, SourceLoc(), isImplicit),
/*isTypeChecked=*/true };
}
/// Add a domain error member, as required by conformance to
/// _BridgedStoredNSError.
/// \returns true on success, false on failure
static bool addErrorDomain(NominalTypeDecl *swiftDecl,
clang::NamedDecl *errorDomainDecl,
ClangImporter::Implementation &importer) {
auto &C = importer.SwiftContext;
auto swiftValueDecl = dyn_cast_or_null<ValueDecl>(
importer.importDecl(errorDomainDecl, importer.CurrentVersion));
auto stringTy = C.getStringType();
assert(stringTy && "no string type available");
if (!swiftValueDecl || !swiftValueDecl->getInterfaceType()->isString()) {
// Couldn't actually import it as an error enum, fall back to enum
return false;
}
bool isStatic = true;
bool isImplicit = true;
// Make the property decl
auto errorDomainPropertyDecl = new (C) VarDecl(
/*IsStatic*/isStatic, VarDecl::Introducer::Var,
SourceLoc(), C.Id_errorDomain, swiftDecl);
errorDomainPropertyDecl->setInterfaceType(stringTy);
errorDomainPropertyDecl->setAccess(AccessLevel::Public);
auto *params = ParameterList::createEmpty(C);
auto getterDecl = AccessorDecl::create(
C,
/*FuncLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(), AccessorKind::Get,
errorDomainPropertyDecl,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*ThrownType=*/TypeLoc(), params, stringTy, swiftDecl);
getterDecl->setIsObjC(false);
getterDecl->setIsDynamic(false);
getterDecl->setIsTransparent(false);
swiftDecl->addMember(errorDomainPropertyDecl);
importer.makeComputed(errorDomainPropertyDecl, getterDecl, nullptr);
getterDecl->setImplicit();
getterDecl->setAccess(AccessLevel::Public);
llvm::PointerIntPair<ValueDecl *, 1, bool> contextData(swiftValueDecl,
isImplicit);
getterDecl->setBodySynthesizer(synthesizeErrorDomainGetterBody,
contextData.getOpaqueValue());
return true;
}
/// As addErrorDomain above, but performs a lookup
static bool addErrorDomain(NominalTypeDecl *swiftDecl,
StringRef errorDomainName,
ClangImporter::Implementation &importer) {
auto &clangSema = importer.getClangSema();
clang::IdentifierInfo *errorDomainDeclName =
&clangSema.getASTContext().Idents.get(errorDomainName);
clang::LookupResult lookupResult(
clangSema, clang::DeclarationName(errorDomainDeclName),
clang::SourceLocation(), clang::Sema::LookupNameKind::LookupOrdinaryName);
if (!clangSema.LookupName(lookupResult, clangSema.TUScope)) {
// Couldn't actually import it as an error enum, fall back to enum
return false;
}
auto clangNamedDecl = lookupResult.getAsSingle<clang::NamedDecl>();
if (!clangNamedDecl) {
// Couldn't actually import it as an error enum, fall back to enum
return false;
}
return addErrorDomain(swiftDecl, clangNamedDecl, importer);
}
/// Retrieve the property type as determined by the given accessor.
static clang::QualType
getAccessorPropertyType(const clang::FunctionDecl *accessor, bool isSetter,
std::optional<unsigned> selfIndex) {
// Simple case: the property type of the getter is in the return
// type.
if (!isSetter) return accessor->getReturnType();
// For the setter, first check that we have the right number of
// parameters.
unsigned numExpectedParams = selfIndex ? 2 : 1;
if (accessor->getNumParams() != numExpectedParams)
return clang::QualType();
// Dig out the parameter for the value.
unsigned valueIdx = selfIndex ? (1 - *selfIndex) : 0;
auto param = accessor->getParamDecl(valueIdx);
return param->getType();
}
/// Whether we should suppress importing the Objective-C generic type params
/// of this class as Swift generic type params.
static bool
shouldSuppressGenericParamsImport(const LangOptions &langOpts,
const clang::ObjCInterfaceDecl *decl) {
if (decl->hasAttr<clang::SwiftImportAsNonGenericAttr>())
return true;
// FIXME: This check is only necessary to keep things working even without
// the SwiftImportAsNonGeneric API note. Once we can guarantee that that
// attribute is present in all contexts, we can remove this check.
auto isFromFoundationModule = [](const clang::Decl *decl) -> bool {
clang::Module *module = getClangSubmoduleForDecl(decl).value();
if (!module)
return false;
return module->getTopLevelModuleName() == "Foundation";
};
if (isFromFoundationModule(decl)) {
// In Swift 3 we used a hardcoded list of declarations, and made all of
// their subclasses drop their generic parameters when imported.
while (decl) {
StringRef name = decl->getName();
if (name == "NSArray" || name == "NSDictionary" || name == "NSSet" ||
name == "NSOrderedSet" || name == "NSEnumerator" ||
name == "NSMeasurement") {
return true;
}
decl = decl->getSuperClass();
}
}
return false;
}
/// Determine if the given Objective-C instance method should also
/// be imported as a class method.
///
/// Objective-C root class instance methods are also reflected as
/// class methods.
static bool shouldAlsoImportAsClassMethod(FuncDecl *method) {
// Only instance methods.
if (!method->isInstanceMember())
return false;
// Must be a method within a class or extension thereof.
auto classDecl = method->getDeclContext()->getSelfClassDecl();
if (!classDecl)
return false;
// The class must not have a superclass.
if (classDecl->hasSuperclass())
return false;
// There must not already be a class method with the same
// selector.
auto objcClass =
cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
if (!objcClass)
return false;
auto objcMethod = cast_or_null<clang::ObjCMethodDecl>(method->getClangDecl());
if (!objcMethod)
return false;
return !objcClass->getClassMethod(objcMethod->getSelector(),
/*AllowHidden=*/true);
}
static bool
classImplementsProtocol(const clang::ObjCInterfaceDecl *constInterface,
const clang::ObjCProtocolDecl *constProto,
bool checkCategories) {
auto interface = const_cast<clang::ObjCInterfaceDecl *>(constInterface);
auto proto = const_cast<clang::ObjCProtocolDecl *>(constProto);
return interface->ClassImplementsProtocol(proto, checkCategories);
}
static void
applyPropertyOwnership(VarDecl *prop,
clang::ObjCPropertyAttribute::Kind attrs) {
Type ty = prop->getInterfaceType();
if (auto innerTy = ty->getOptionalObjectType())
ty = innerTy;
if (!ty->is<GenericTypeParamType>() && !ty->isAnyClassReferenceType())
return;
ASTContext &ctx = prop->getASTContext();
if (attrs & clang::ObjCPropertyAttribute::kind_copy) {
prop->getAttrs().add(new (ctx) NSCopyingAttr(false));
return;
}
if (attrs & clang::ObjCPropertyAttribute::kind_weak) {
prop->getAttrs().add(new (ctx)
ReferenceOwnershipAttr(ReferenceOwnership::Weak));
prop->setInterfaceType(WeakStorageType::get(
prop->getInterfaceType(), ctx));
return;
}
if ((attrs & clang::ObjCPropertyAttribute::kind_assign) ||
(attrs & clang::ObjCPropertyAttribute::kind_unsafe_unretained)) {
prop->getAttrs().add(
new (ctx) ReferenceOwnershipAttr(ReferenceOwnership::Unmanaged));
prop->setInterfaceType(UnmanagedStorageType::get(
prop->getInterfaceType(), ctx));
return;
}
}
/// Does this name refer to a method that might shadow Swift.print?
///
/// As a heuristic, methods that have a base name of 'print' but more than
/// one argument are left alone. These can still shadow Swift.print but are
/// less likely to be confused for it, at least.
static bool isPrintLikeMethod(DeclName name, const DeclContext *dc) {
if (!name || name.isSpecial() || name.isSimpleName())
return false;
if (name.getBaseName().userFacingName() != "print")
return false;
if (!dc->isTypeContext())
return false;
if (name.getArgumentNames().size() > 1)
return false;
return true;
}
using MirroredMethodEntry =
std::tuple<const clang::ObjCMethodDecl*, ProtocolDecl*, bool /*isAsync*/>;
static bool areRecordFieldsComplete(const clang::CXXRecordDecl *decl) {
for (const auto *f : decl->fields()) {
auto *fieldRecord = f->getType()->getAsCXXRecordDecl();
if (fieldRecord) {
if (!fieldRecord->isCompleteDefinition()) {
return false;
}
if (!areRecordFieldsComplete(fieldRecord))
return false;
}
}
for (const auto base : decl->bases()) {
if (auto *baseRecord = base.getType()->getAsCXXRecordDecl()) {
if (!areRecordFieldsComplete(baseRecord))
return false;
}
}
return true;
}
namespace {
/// Search the member tables for this class and its superclasses and try to
/// identify the nearest VarDecl that serves as a base for an override. We
/// have to do this ourselves because Objective-C has no semantic notion of
/// overrides, and freely allows users to refine the type of any member
/// property in a derived class.
///
/// The override must be the nearest possible one so there are not breaks
/// in the override chain. That is, suppose C refines B refines A and each
/// successively redeclares a member with a different type. It should be
/// the case that the nearest override from C is B and from B is A. If the
/// override point from C were A, then B would record an override on A as
/// well and we would introduce a semantic ambiguity.
///
/// There is also a special case for finding a method that stomps over a
/// getter. If this is the case and no override point is identified, we will
/// not import the property to force users to explicitly call the method.
static std::pair<VarDecl *, bool>
identifyNearestOverriddenDecl(ClangImporter::Implementation &Impl,
DeclContext *dc,
const clang::ObjCPropertyDecl *decl,
Identifier name,
ClassDecl *subject) {
bool foundMethod = false;
for (; subject; (subject = subject->getSuperclassDecl())) {
llvm::SmallVector<ValueDecl *, 8> lookup;
auto foundNames = Impl.MembersForNominal.find(subject);
if (foundNames != Impl.MembersForNominal.end()) {
auto foundDecls = foundNames->second.find(name);
if (foundDecls != foundNames->second.end()) {
lookup.append(foundDecls->second.begin(), foundDecls->second.end());
}
}
for (auto *&result : lookup) {
if (auto *fd = dyn_cast<FuncDecl>(result)) {
if (fd->isInstanceMember() != decl->isInstanceProperty())
continue;
// We only care about methods with no arguments, because they can
// shadow imported properties.
if (!fd->getName().getArgumentNames().empty())
continue;
// async methods don't conflict with properties because of sync/async
// overloading.
if (fd->hasAsync())
continue;
foundMethod = true;
} else if (auto *var = dyn_cast<VarDecl>(result)) {
if (var->isInstanceMember() != decl->isInstanceProperty())
continue;
// If the selectors of the getter match in Objective-C, we have an
// override.
if (var->getObjCGetterSelector() ==
Impl.importSelector(decl->getGetterName())) {
return {var, foundMethod};
}
}
}
}
return {nullptr, foundMethod};
}
// Attempt to identify the redeclaration of a property.
//
// Note that this function does not perform any additional member loading and
// is therefore subject to the relativistic effects of module import order.
// That is, suppose that a Clang Module and an Overlay module are in play.
// Depending on which module loads members first, a redeclaration point may
// or may not be identifiable.
VarDecl *
identifyPropertyRedeclarationPoint(ClangImporter::Implementation &Impl,
const clang::ObjCPropertyDecl *decl,
ClassDecl *subject, Identifier name) {
llvm::SetVector<Decl *> lookup;
// First, pull in all available members of the base class so we can catch
// redeclarations of APIs that are refined for Swift.
auto currentMembers = subject->getCurrentMembersWithoutLoading();
lookup.insert(currentMembers.begin(), currentMembers.end());
// Now pull in any just-imported members from the overrides table.
auto foundNames = Impl.MembersForNominal.find(subject);
if (foundNames != Impl.MembersForNominal.end()) {
auto foundDecls = foundNames->second.find(name);
if (foundDecls != foundNames->second.end()) {
lookup.insert(foundDecls->second.begin(), foundDecls->second.end());
}
}
for (auto *result : lookup) {
auto *var = dyn_cast<VarDecl>(result);
if (!var)
continue;
if (var->isInstanceMember() != decl->isInstanceProperty())
continue;
// If the selectors of the getter match in Objective-C, we have a
// redeclaration.
if (var->getObjCGetterSelector() ==
Impl.importSelector(decl->getGetterName())) {
return var;
}
}
return nullptr;
}
/// Convert Clang declarations into the corresponding Swift
/// declarations.
class SwiftDeclConverter
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
{
ClangImporter::Implementation &Impl;
bool forwardDeclaration = false;
ImportNameVersion version;
SwiftDeclSynthesizer synthesizer;
/// The version that we're being asked to import for. May not be the version
/// the user requested, as we may be forming an alternate for diagnostic
/// purposes.
ImportNameVersion getVersion() const { return version; }
/// The actual language version the user requested we compile for.
ImportNameVersion getActiveSwiftVersion() const {
return Impl.CurrentVersion;
}
/// Whether the names we're importing are from the language version the user
/// requested, or if these are decls from another version
bool isActiveSwiftVersion() const {
return getVersion().withConcurrency(false) == getActiveSwiftVersion().withConcurrency(false);
}
void recordMemberInContext(const DeclContext *dc, ValueDecl *member) {
assert(member && "Attempted to record null member!");
auto *nominal = dc->getSelfNominalTypeDecl();
auto name = member->getBaseName();
Impl.MembersForNominal[nominal][name].push_back(member);
}
/// Import the name of the given entity.
///
/// This version of importFullName introduces any context-specific
/// name importing options (e.g., if we're importing the Swift 2 version).
///
/// Note: Use this rather than calling Impl.importFullName directly!
std::pair<ImportedName, std::optional<ImportedName>>
importFullName(const clang::NamedDecl *D) {
ImportNameVersion canonicalVersion = getActiveSwiftVersion();
if (isa<clang::TypeDecl>(D) || isa<clang::ObjCContainerDecl>(D)) {
canonicalVersion = ImportNameVersion::forTypes();
}
// First, import based on the Swift name of the canonical declaration:
// the latest version for types and the current version for non-type
// values. If that fails, we won't do anything.
auto canonicalName = Impl.importFullName(D, canonicalVersion);
if (!canonicalName)
return {ImportedName(), std::nullopt};
if (getVersion() == canonicalVersion) {
// Make sure we don't try to import the same type twice as canonical.
if (canonicalVersion != getActiveSwiftVersion()) {
auto activeName = Impl.importFullName(D, getActiveSwiftVersion());
if (activeName &&
activeName.getDeclName() == canonicalName.getDeclName() &&
activeName.getEffectiveContext().equalsWithoutResolving(
canonicalName.getEffectiveContext())) {
return {ImportedName(), std::nullopt};
}
}
return {canonicalName, std::nullopt};
}
// Special handling when we import using the alternate Swift name.
//
// Import using the alternate Swift name. If that fails, or if it's
// identical to the active Swift name, we won't introduce an alternate
// Swift name stub declaration.
auto alternateName = Impl.importFullName(D, getVersion());
if (!alternateName)
return {ImportedName(), std::nullopt};
// Importing for concurrency is special in that the same declaration
// is imported both with a completion handler parameter and as 'async',
// creating two separate declarations.
if (getVersion().supportsConcurrency()) {
// If the resulting name isn't special for concurrency, it's not
// different.
if (!alternateName.getAsyncInfo())
return {ImportedName(), std::nullopt};
// Otherwise, it's a legitimately different import.
return {alternateName, std::nullopt};
}
if (alternateName.getDeclName() == canonicalName.getDeclName() &&
alternateName.getEffectiveContext().equalsWithoutResolving(
canonicalName.getEffectiveContext())) {
if (getVersion() == getActiveSwiftVersion()) {
assert(canonicalVersion != getActiveSwiftVersion());
return {alternateName, std::nullopt};
}
return {ImportedName(), std::nullopt};
}
// Always use the active version as the preferred name, even if the
// canonical name is a different version.
ImportedName correctSwiftName =
Impl.importFullName(D, getActiveSwiftVersion());
assert(correctSwiftName);
return {alternateName, correctSwiftName};
}
/// Create a declaration name for anonymous enums, unions and
/// structs.
///
/// Since Swift does not natively support these features, we fake them by
/// importing them as declarations with generated names. The generated name
/// is derived from the name of the field in the outer type. Since the
/// anonymous type is imported as a nested type of the outer type, this
/// generated name will most likely be unique.
std::pair<ImportedName, std::optional<ImportedName>>
getClangDeclName(const clang::TagDecl *decl) {
// If we have a name for this declaration, use it.
auto result = importFullName(decl);
if (result.first)
return result;
// If that didn't succeed, check whether this is an anonymous tag declaration
// with a corresponding typedef-name declaration.
if (decl->getDeclName().isEmpty()) {
if (auto *typedefForAnon = decl->getTypedefNameForAnonDecl())
return importFullName(typedefForAnon);
}
return {ImportedName(), std::nullopt};
}
bool isFactoryInit(ImportedName &name) {
return name && name.getDeclName().getBaseName().isConstructor() &&
(name.getInitKind() == CtorInitializerKind::Factory ||
name.getInitKind() == CtorInitializerKind::ConvenienceFactory);
}
public:
explicit SwiftDeclConverter(ClangImporter::Implementation &impl,
ImportNameVersion vers)
: Impl(impl), version(vers), synthesizer(Impl) { }
bool hadForwardDeclaration() const {
return forwardDeclaration;
}
Decl *VisitDecl(const clang::Decl *decl) {
return nullptr;
}
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
// Note: translation units are handled specially by importDeclContext.
return nullptr;
}
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
DeclContext *dc = nullptr;
// Do not import namespace declarations marked as 'swift_private'.
if (decl->hasAttr<clang::SwiftPrivateAttr>())
return nullptr;
// Workaround for os module declaring `namespace os` on Darwin, causing
// name lookup issues. That namespace only declares utility functions that
// are not supposed to be used from Swift, so let's just not import the
// namespace (rdar://119044493).
if (decl->getIdentifier() && decl->getName() == "os" &&
decl->getOwningModule() &&
decl->getOwningModule()->getTopLevelModuleName() == "os")
return nullptr;
// If this is a top-level namespace, don't put it in the module we're
// importing, put it in the "__ObjC" module that is implicitly imported.
if (!decl->getParent()->isNamespace())
dc = Impl.ImportedHeaderUnit;
else {
// This is a nested namespace, so just lookup it's parent normally.
auto parentNS = cast<clang::NamespaceDecl>(decl->getParent());
auto parent =
Impl.importDecl(parentNS, getVersion(), /*UseCanonicalDecl*/ false);
// The parent namespace might not be imported if it's `swift_private`.
if (!parent)
return nullptr;
dc = cast<EnumDecl>(parent);
}
ImportedName importedName;
std::tie(importedName, std::ignore) = importFullName(decl);
// If we don't have a name for this declaration, bail. We can't import it.
if (!importedName)
return nullptr;
auto *enumDecl = Impl.createDeclWithClangNode<EnumDecl>(
decl, AccessLevel::Public, Impl.importSourceLoc(decl->getBeginLoc()),
importedName.getBaseIdentifier(Impl.SwiftContext),
Impl.importSourceLoc(decl->getLocation()), std::nullopt, nullptr, dc);
// TODO: we only have this for the sid effect of calling
// "FirstDeclAndLazyMembers.setInt(true)".
// This should never actually try to use Impl as the member loader,
// that should all be done via requests.
enumDecl->setMemberLoader(&Impl, 0);
// Only import one enum for all redecls of a namespace. Because members
// are loaded lazily, we can cache all the redecls to prevent the creation
// of multiple enums.
for (auto redecl : decl->redecls())
Impl.ImportedDecls[{redecl, getVersion()}] = enumDecl;
for (auto redecl : decl->redecls()) {
// Because a namespaces's decl context is the bridging header, make sure
// we add them to the bridging header lookup table.
addEntryToLookupTable(*Impl.BridgingHeaderLookupTable,
const_cast<clang::NamespaceDecl *>(redecl),
Impl.getNameImporter());
}
return enumDecl;
}
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
// Never imported.
return nullptr;
}
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (name.empty())
return nullptr;
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
auto aliasedDecl =
Impl.importDecl(decl->getAliasedNamespace(), getActiveSwiftVersion());
if (!aliasedDecl)
return nullptr;
Type aliasedType;
if (auto aliasedTypeDecl = dyn_cast<TypeDecl>(aliasedDecl))
aliasedType = aliasedTypeDecl->getDeclaredInterfaceType();
else if (auto aliasedExtDecl = dyn_cast<ExtensionDecl>(aliasedDecl))
// This happens if the alias points to its parent namespace.
aliasedType = aliasedExtDecl->getExtendedType();
else
return nullptr;
auto result = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl, AccessLevel::Public, Impl.importSourceLoc(decl->getBeginLoc()),
SourceLoc(), name, Impl.importSourceLoc(decl->getLocation()),
/*GenericParams=*/nullptr, dc);
result->setUnderlyingType(aliasedType);
return result;
}
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
// Labels are function-local, and therefore never imported.
return nullptr;
}
ClassDecl *importCFClassType(const clang::TypedefNameDecl *decl,
Identifier className, CFPointeeInfo info,
EffectiveClangContext effectiveContext);
/// Mark the given declaration as an older Swift version variant of the
/// current name.
void markAsVariant(Decl *decl, ImportedName correctSwiftName) {
// Types always import using the latest version. Make sure all names up
// to that version are considered available.
if (isa<TypeDecl>(decl)) {
cast<TypeAliasDecl>(decl)->markAsCompatibilityAlias();
if (getVersion() >= getActiveSwiftVersion())
return;
}
// If this the active and current Swift versions differ based on
// concurrency, it's not actually a variant.
if (getVersion().supportsConcurrency() !=
getActiveSwiftVersion().supportsConcurrency()) {
return;
}
// TODO: some versions should be deprecated instead of unavailable
ASTContext &ctx = decl->getASTContext();
llvm::SmallString<64> renamed;
{
// Render a swift_name string.
llvm::raw_svector_ostream os(renamed);
// If we're importing a global as a member, we need to provide the
// effective context.
Impl.printSwiftName(
correctSwiftName, getActiveSwiftVersion(),
/*fullyQualified=*/correctSwiftName.importAsMember(), os);
}
DeclAttribute *attr;
if (isActiveSwiftVersion() || getVersion() == ImportNameVersion::raw()) {
// "Raw" is the Objective-C name, which was never available in Swift.
// Variants within the active version are usually declarations that
// have been superseded, like the accessors of a property.
attr = AvailableAttr::createUnavailableInSwift(
ctx, /*Message*/ StringRef(), ctx.AllocateCopy(renamed.str()));
} else {
unsigned majorVersion = getVersion().majorVersionNumber();
unsigned minorVersion = getVersion().minorVersionNumber();
if (getVersion() < getActiveSwiftVersion()) {
// A Swift 2 name, for example, was obsoleted in Swift 3.
// However, a Swift 4 name is obsoleted in Swift 4.2.
// FIXME: it would be better to have a unified place
// to represent Swift versions for API versioning.
llvm::VersionTuple obsoletedVersion =
(majorVersion == 4 && minorVersion < 2)
? llvm::VersionTuple(4, 2)
: llvm::VersionTuple(majorVersion + 1);
attr = AvailableAttr::createSwiftLanguageModeVersioned(
ctx, /*Message=*/"", ctx.AllocateCopy(renamed.str()),
/*Introduced=*/{}, obsoletedVersion);
} else {
// Future names are introduced in their future version.
assert(getVersion() > getActiveSwiftVersion());
llvm::VersionTuple introducedVersion =
(majorVersion == 4 && minorVersion == 2)
? llvm::VersionTuple(4, 2)
: llvm::VersionTuple(majorVersion);
attr = AvailableAttr::createSwiftLanguageModeVersioned(
ctx, /*Message=*/"", ctx.AllocateCopy(renamed.str()),
introducedVersion, /*Obsoleted=*/{});
}
}
decl->getAttrs().add(attr);
decl->setImplicit();
}
/// Create a typealias for the name of a Clang type declaration in an
/// alternate version of Swift.
Decl *importCompatibilityTypeAlias(const clang::NamedDecl *decl,
ImportedName compatibilityName,
ImportedName correctSwiftName);
/// Create a swift_newtype struct corresponding to a typedef. Returns
/// nullptr if unable.
Decl *importSwiftNewtype(const clang::TypedefNameDecl *decl,
clang::SwiftNewTypeAttr *newtypeAttr,
DeclContext *dc, Identifier name);
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(Decl);
auto Name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (Name.empty())
return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(Decl, importedName,
*correctSwiftName);
Type SwiftType;
auto clangDC = Decl->getDeclContext()->getRedeclContext();
if (clangDC->isTranslationUnit() || clangDC->isStdNamespace()) {
bool IsError;
StringRef StdlibTypeName;
MappedTypeNameKind NameMapping;
std::tie(SwiftType, StdlibTypeName) =
getSwiftStdlibType(Decl, Name, Impl, &IsError, NameMapping);
if (IsError)
return nullptr;
// Import 'typedef struct __Blah *BlahRef;' and
// 'typedef const void *FooRef;' as CF types if they have the
// right attributes or match our list of known types.
if (!SwiftType) {
auto DC = Impl.importDeclContextOf(
Decl, importedName.getEffectiveContext());
if (!DC)
return nullptr;
if (auto pointee = CFPointeeInfo::classifyTypedef(Decl)) {
// If the pointee is a record, consider creating a class type.
if (pointee.isRecord()) {
auto swiftClass = importCFClassType(
Decl, Name, pointee, importedName.getEffectiveContext());
if (!swiftClass) return nullptr;
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
MappedTypeNameKind::DefineAndUse;
return swiftClass;
}
// If the pointee is another CF typedef, create an extra typealias
// for the name without "Ref", but not a separate type.
if (pointee.isTypedef()) {
auto underlying = cast_or_null<TypeDecl>(Impl.importDecl(
pointee.getTypedef(), getActiveSwiftVersion()));
if (!underlying)
return nullptr;
// Check for a newtype
if (auto newtypeAttr =
getSwiftNewtypeAttr(Decl, getVersion()))
if (auto newtype =
importSwiftNewtype(Decl, newtypeAttr, DC, Name))
return newtype;
// Create a typealias for this CF typedef.
TypeAliasDecl *typealias = nullptr;
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
Decl, importer::convertClangAccess(Decl->getAccess()),
Impl.importSourceLoc(Decl->getBeginLoc()), SourceLoc(), Name,
Impl.importSourceLoc(Decl->getLocation()),
/*genericparams*/ nullptr, DC);
typealias->setUnderlyingType(
underlying->getDeclaredInterfaceType());
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
MappedTypeNameKind::DefineAndUse;
return typealias;
}
// If the pointee is 'void', 'CFTypeRef', bring it
// in specifically as AnyObject.
if (pointee.isVoid()) {
// Create a typealias for this CF typedef.
TypeAliasDecl *typealias = nullptr;
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
Decl, importer::convertClangAccess(Decl->getAccess()),
Impl.importSourceLoc(Decl->getBeginLoc()), SourceLoc(), Name,
Impl.importSourceLoc(Decl->getLocation()),
/*genericparams*/ nullptr, DC);
typealias->setUnderlyingType(
Impl.SwiftContext.getAnyObjectType());
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] =
MappedTypeNameKind::DefineAndUse;
return typealias;
}
}
}
if (SwiftType) {
// Note that this typedef-name is special.
Impl.SpecialTypedefNames[Decl->getCanonicalDecl()] = NameMapping;
if (NameMapping == MappedTypeNameKind::DoNothing) {
// Record the remapping using the name of the Clang declaration.
// This will be useful for type checker diagnostics when
// a user tries to use the Objective-C/C type instead of the
// Swift type.
Impl.SwiftContext.RemappedTypes[Decl->getNameAsString()]
= SwiftType;
// Don't create an extra typealias in the imported module because
// doing so will cause confusion (or even lookup ambiguity) between
// the name in the imported module and the same name in the
// standard library.
if (auto *NAT =
dyn_cast<TypeAliasType>(SwiftType.getPointer()))
return NAT->getDecl();
auto *NTD = SwiftType->getAnyNominal();
assert(NTD);
return NTD;
}
}
}
auto DC =
Impl.importDeclContextOf(Decl, importedName.getEffectiveContext());
if (!DC)
return nullptr;
// Check for swift_newtype
if (!SwiftType)
if (auto newtypeAttr = getSwiftNewtypeAttr(Decl, getVersion()))
if (auto newtype = importSwiftNewtype(Decl, newtypeAttr, DC, Name))
return newtype;
if (!SwiftType) {
// Note that the code below checks to see if the typedef allows
// bridging, i.e. if the imported typealias should name a bridged type
// or the original C type.
clang::QualType ClangType = Decl->getUnderlyingType();
SwiftType = Impl.importTypeIgnoreIUO(
ClangType, ImportTypeKind::Typedef,
ImportDiagnosticAdder(Impl, Decl, Decl->getLocation()),
isInSystemModule(DC), getTypedefBridgeability(Decl),
getImportTypeAttrs(Decl), OTK_Optional);
}
if (!SwiftType)
return nullptr;
auto Loc = Impl.importSourceLoc(Decl->getLocation());
auto Result = Impl.createDeclWithClangNode<TypeAliasDecl>(
Decl, importer::convertClangAccess(Decl->getAccess()),
Impl.importSourceLoc(Decl->getBeginLoc()), SourceLoc(), Name, Loc,
/*genericparams*/ nullptr, DC);
Result->setUnderlyingType(SwiftType);
if (SwiftType->isUnsafe())
Result->getAttrs().add(new (Impl.SwiftContext)
UnsafeAttr(/*implicit=*/true));
// Make Objective-C's 'id' unavailable.
if (Impl.SwiftContext.LangOpts.EnableObjCInterop && isObjCId(Decl)) {
auto attr = AvailableAttr::createUnavailableInSwift(
Impl.SwiftContext, "'id' is not available in Swift; use 'Any'", "");
Result->getAttrs().add(attr);
}
return Result;
}
Decl *
VisitUnresolvedUsingTypenameDecl(const
clang::UnresolvedUsingTypenameDecl *decl) {
// Note: only occurs in templates.
return nullptr;
}
/// Import an NS_ENUM constant as a case of a Swift enum.
Decl *importEnumCase(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
EnumDecl *theEnum,
Decl *swift3Decl = nullptr);
/// Import an NS_OPTIONS constant as a static property of a Swift struct.
///
/// This is also used to import enum case aliases.
Decl *importOptionConstant(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
NominalTypeDecl *theStruct);
/// Import \p alias as an alias for the imported constant \p original.
///
/// This builds the getter in a way that's compatible with switch
/// statements. Changing the body here may require changing
/// TypeCheckPattern.cpp as well.
Decl *importEnumCaseAlias(Identifier name,
const clang::EnumConstantDecl *alias,
ValueDecl *original,
const clang::EnumDecl *clangEnum,
NominalTypeDecl *importedEnum,
DeclContext *importIntoDC = nullptr);
NominalTypeDecl *importAsOptionSetType(DeclContext *dc,
Identifier name,
const clang::EnumDecl *decl);
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
// Don't import nominal types that are over-aligned.
if (Impl.isOverAligned(decl))
return nullptr;
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = getClangDeclName(decl);
if (!importedName)
return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
// Create the enum declaration and record it.
ImportDiagnosticAdder addDiag(Impl, decl, decl->getLocation());
StructDecl *errorWrapper = nullptr;
NominalTypeDecl *result;
auto enumInfo = Impl.getEnumInfo(decl);
auto enumKind = enumInfo.getKind();
switch (enumKind) {
case EnumKind::Constants: {
// There is no declaration. Rather, the type is mapped to the
// underlying type.
return nullptr;
}
case EnumKind::Unknown: {
// Compute the underlying type of the enumeration.
auto underlyingType = Impl.importTypeIgnoreIUO(
decl->getIntegerType(), ImportTypeKind::Enum, addDiag,
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
if (!underlyingType)
return nullptr;
auto access = importer::convertClangAccess(decl->getAccess());
auto Loc = Impl.importSourceLoc(decl->getLocation());
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
decl, access, Loc, name, Loc, std::nullopt, nullptr, dc);
auto options = getDefaultMakeStructRawValuedOptions();
options |= MakeStructRawValuedFlags::MakeUnlabeledValueInit;
options -= MakeStructRawValuedFlags::IsLet;
options -= MakeStructRawValuedFlags::IsImplicit;
synthesizer.makeStructRawValued(structDecl, underlyingType,
{KnownProtocolKind::RawRepresentable,
KnownProtocolKind::Equatable,
KnownProtocolKind::Hashable},
options, /*setterAccess=*/access);
result = structDecl;
break;
}
case EnumKind::NonFrozenEnum:
case EnumKind::FrozenEnum: {
auto &C = Impl.SwiftContext;
EnumDecl *nativeDecl;
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
if (declaredNative && nativeDecl)
return nativeDecl;
// Compute the underlying type.
auto underlyingType = Impl.importTypeIgnoreIUO(
decl->getIntegerType(), ImportTypeKind::Enum, addDiag,
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
if (!underlyingType)
return nullptr;
/// Basic information about the enum type we're building.
Identifier enumName = name;
DeclContext *enumDC = dc;
SourceLoc loc = Impl.importSourceLoc(decl->getBeginLoc());
// If this is an error enum, form the error wrapper type,
// which is a struct containing an NSError instance.
ProtocolDecl *bridgedNSError = nullptr;
ClassDecl *nsErrorDecl = nullptr;
ProtocolDecl *errorCodeProto = nullptr;
if (enumInfo.isErrorEnum() &&
(bridgedNSError =
C.getProtocol(KnownProtocolKind::BridgedStoredNSError)) &&
(nsErrorDecl = C.getNSErrorDecl()) &&
(errorCodeProto =
C.getProtocol(KnownProtocolKind::ErrorCodeProtocol))) {
assert(
decl->getAccess() != clang::AS_private &&
decl->getAccess() != clang::AS_protected &&
"NSError enums shouldn't be defined as non-public C++ members");
// Create the wrapper struct.
errorWrapper =
new (C) StructDecl(loc, name, loc, std::nullopt, nullptr, dc);
SourceLoc end = Impl.importSourceLoc(decl->getEndLoc());
errorWrapper->setBraces(SourceRange(loc, end));
errorWrapper->setAccess(AccessLevel::Public);
errorWrapper->getAttrs().add(
new (Impl.SwiftContext) FrozenAttr(/*IsImplicit*/true));
StringRef nameForMangling;
ClangImporterSynthesizedTypeAttr::Kind relatedEntityKind;
if (decl->getDeclName().isEmpty()) {
nameForMangling = decl->getTypedefNameForAnonDecl()->getName();
relatedEntityKind =
ClangImporterSynthesizedTypeAttr::Kind::NSErrorWrapperAnon;
} else {
nameForMangling = decl->getName();
relatedEntityKind =
ClangImporterSynthesizedTypeAttr::Kind::NSErrorWrapper;
}
errorWrapper->getAttrs().add(new (C) ClangImporterSynthesizedTypeAttr(
nameForMangling, relatedEntityKind));
// Add inheritance clause.
Impl.addSynthesizedProtocolAttrs(
errorWrapper, {KnownProtocolKind::BridgedStoredNSError});
// Create the _nsError member.
// public let _nsError: NSError
auto nsErrorType = nsErrorDecl->getDeclaredInterfaceType();
auto nsErrorProp = new (C) VarDecl(/*IsStatic*/false,
VarDecl::Introducer::Let,
loc, C.Id_nsError,
errorWrapper);
nsErrorProp->setImplicit();
nsErrorProp->setAccess(AccessLevel::Public);
nsErrorProp->setInterfaceType(nsErrorType);
// Create a pattern binding to describe the variable.
Pattern *nsErrorPattern =
synthesizer.createTypedNamedPattern(nsErrorProp);
auto *nsErrorBinding = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, nsErrorPattern, /*InitExpr*/ nullptr,
/*ParentDC*/ errorWrapper, /*VarLoc*/ loc);
errorWrapper->addMember(nsErrorProp);
errorWrapper->addMember(nsErrorBinding);
// Create the _nsError initializer.
// public init(_nsError error: NSError)
VarDecl *members[1] = {nsErrorProp};
auto nsErrorInit =
synthesizer.createValueConstructor(errorWrapper, members,
/*wantCtorParamNames=*/true,
/*wantBody=*/true);
errorWrapper->addMember(nsErrorInit);
// Add the domain error member.
// public static var errorDomain: String { return error-domain }
addErrorDomain(errorWrapper, enumInfo.getErrorDomain(), Impl);
// Note: the Code will be added after it's created.
// The enum itself will be nested within the error wrapper,
// and be named Code.
enumDC = errorWrapper;
enumName = C.Id_Code;
}
// Create the enumeration.
auto enumDecl = Impl.createDeclWithClangNode<EnumDecl>(
decl, importer::convertClangAccess(decl->getAccess()), loc,
enumName, Impl.importSourceLoc(decl->getLocation()), std::nullopt,
nullptr, enumDC);
enumDecl->setHasFixedRawValues();
// Annotate as 'frozen' if appropriate.
if (enumKind == EnumKind::FrozenEnum)
enumDecl->getAttrs().add(new (C) FrozenAttr(/*implicit*/false));
// Set up the C underlying type as its Swift raw type.
enumDecl->setRawType(underlyingType);
// Add the C name.
addObjCAttribute(enumDecl,
Impl.importIdentifier(decl->getIdentifier()));
// Add protocol declarations to the enum declaration.
SmallVector<InheritedEntry, 2> inheritedTypes;
inheritedTypes.push_back(
InheritedEntry(TypeLoc::withoutLoc(underlyingType)));
enumDecl->setInherited(C.AllocateCopy(inheritedTypes));
if (errorWrapper) {
Impl.addSynthesizedProtocolAttrs(
enumDecl, {KnownProtocolKind::ErrorCodeProtocol,
KnownProtocolKind::RawRepresentable});
} else {
Impl.addSynthesizedProtocolAttrs(
enumDecl, {KnownProtocolKind::RawRepresentable});
}
// Provide custom implementations of the init(rawValue:) and rawValue
// conversions that just do a bitcast. We can't reliably filter a
// C enum without additional knowledge that the type has no
// undeclared values, and won't ever add cases.
auto rawValueConstructor =
synthesizer.makeEnumRawValueConstructor(enumDecl);
auto varName = C.Id_rawValue;
auto rawValue = new (C) VarDecl(/*IsStatic*/false,
VarDecl::Introducer::Var,
SourceLoc(), varName,
enumDecl);
rawValue->setImplicit();
rawValue->copyFormalAccessFrom(enumDecl);
rawValue->setSetterAccess(AccessLevel::Private);
rawValue->setInterfaceType(underlyingType);
// Create a pattern binding to describe the variable.
Pattern *varPattern = synthesizer.createTypedNamedPattern(rawValue);
auto *rawValueBinding = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, varPattern, /*InitExpr*/ nullptr,
enumDecl);
synthesizer.makeEnumRawValueGetter(enumDecl, rawValue);
enumDecl->addMember(rawValueConstructor);
enumDecl->addMember(rawValue);
enumDecl->addMember(rawValueBinding);
Impl.addSynthesizedTypealias(enumDecl, C.Id_RawValue, underlyingType);
Impl.RawTypes[enumDecl] = underlyingType;
// If we have an error wrapper, finish it up now that its
// nested enum has been constructed.
if (errorWrapper) {
assert(
decl->getAccess() != clang::AS_private &&
decl->getAccess() != clang::AS_protected &&
"NSError enums shouldn't be defined as non-public C++ members");
// Add the ErrorType alias:
// public typealias ErrorType
auto alias = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl,
AccessLevel::Public, loc, SourceLoc(),
C.Id_ErrorType, loc,
/*genericparams=*/nullptr, enumDecl);
alias->setUnderlyingType(errorWrapper->getDeclaredInterfaceType());
enumDecl->addMember(alias);
// Add the 'Code' enum to the error wrapper.
errorWrapper->addMember(enumDecl);
Impl.addAlternateDecl(enumDecl, errorWrapper);
// Stash the 'Code' enum so we can find it later.
Impl.ErrorCodeEnums[errorWrapper] = enumDecl;
}
// The enumerators go into this enumeration.
result = enumDecl;
break;
}
case EnumKind::Options: {
result = importAsOptionSetType(dc, name, decl);
if (!result)
return nullptr;
// HACK: Make sure PrintAsClang always omits the 'enum' tag for
// option set enums.
Impl.DeclsWithSuperfluousTypedefs.insert(decl);
break;
}
}
const clang::EnumDecl *canonicalClangDecl = decl->getCanonicalDecl();
Impl.ImportedDecls[{canonicalClangDecl, getVersion()}] = result;
// Import each of the enumerators.
bool addEnumeratorsAsMembers;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
addEnumeratorsAsMembers = false;
break;
case EnumKind::Options:
case EnumKind::NonFrozenEnum:
case EnumKind::FrozenEnum:
addEnumeratorsAsMembers = true;
break;
}
/// A table mapping each raw value used in this enum to the clang or
/// Swift decl for the "canonical" constant corresponding to that raw
/// value. The clang decls represent cases that haven't yet been imported;
/// the Swift decls represent cases that have been imported before.
///
/// The problem we are trying to solve here is that C allows several
/// constants in the same enum to have the same raw value, but Swift does
/// not. We must therefore resolve collisions by selecting one case to be
/// the "canonical" one that will be imported as an \c EnumElementDecl
/// and importing the others as static \c VarDecl aliases of it. This
/// map knows which constants are canonical and can map a constant's raw
/// value to its corresponding canonical constant.
///
/// Note that unavailable constants don't get inserted into this table,
/// so if an unavailable constant has no available alias, it simply won't
/// be present here. (Potential raw value conflicts doesn't really matter
/// for them because they will be imported as unavailable anyway.)
llvm::SmallDenseMap<llvm::APSInt,
PointerUnion<const clang::EnumConstantDecl *,
EnumElementDecl *>, 8> canonicalEnumConstants;
// Fill in `canonicalEnumConstants` if it will be used.
if (enumKind == EnumKind::NonFrozenEnum ||
enumKind == EnumKind::FrozenEnum) {
for (auto constant : decl->enumerators()) {
if (Impl.isUnavailableInSwift(constant))
continue;
canonicalEnumConstants.insert({constant->getInitVal(), constant});
}
}
auto contextIsEnum = [&](const ImportedName &name) -> bool {
EffectiveClangContext importContext = name.getEffectiveContext();
switch (importContext.getKind()) {
case EffectiveClangContext::DeclContext:
return importContext.getAsDeclContext() == canonicalClangDecl;
case EffectiveClangContext::TypedefContext: {
auto *typedefName = importContext.getTypedefName();
clang::QualType underlyingTy = typedefName->getUnderlyingType();
return underlyingTy->getAsTagDecl() == canonicalClangDecl;
}
case EffectiveClangContext::UnresolvedContext:
// Assume this is a context other than the enum.
return false;
}
llvm_unreachable("unhandled kind");
};
for (auto constant : decl->enumerators()) {
Decl *enumeratorDecl = nullptr;
TinyPtrVector<Decl *> variantDecls;
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown:
Impl.forEachDistinctName(constant,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
Decl *imported = Impl.importDecl(constant, nameVersion);
if (!imported)
return false;
if (nameVersion == getActiveSwiftVersion())
enumeratorDecl = imported;
else
variantDecls.push_back(imported);
return true;
});
break;
case EnumKind::Options:
Impl.forEachDistinctName(constant,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (!contextIsEnum(newName))
return true;
SwiftDeclConverter converter(Impl, nameVersion);
Decl *imported =
converter.importOptionConstant(constant, decl, result);
if (!imported)
return false;
if (nameVersion == getActiveSwiftVersion())
enumeratorDecl = imported;
else
variantDecls.push_back(imported);
return true;
});
break;
case EnumKind::NonFrozenEnum:
case EnumKind::FrozenEnum: {
auto canonicalCaseIter =
canonicalEnumConstants.find(constant->getInitVal());
if (canonicalCaseIter == canonicalEnumConstants.end()) {
// Unavailable declarations get no special treatment.
enumeratorDecl =
SwiftDeclConverter(Impl, getActiveSwiftVersion())
.importEnumCase(constant, decl, cast<EnumDecl>(result));
} else {
// Will initially be nullptr if `canonicalCaseIter` points to a
// memoized result.
const clang::EnumConstantDecl *canonConstant =
canonicalCaseIter->
second.dyn_cast<const clang::EnumConstantDecl *>();
// First, either import the canonical constant for this case,
// or extract the memoized result of a previous import (and use it
// to populate `canonConstant`).
if (canonConstant) {
enumeratorDecl = SwiftDeclConverter(Impl, getActiveSwiftVersion())
.importEnumCase(canonConstant, decl, cast<EnumDecl>(result));
if (enumeratorDecl) {
// Memoize so we end up in the `else` branch next time.
canonicalCaseIter->getSecond() =
cast<EnumElementDecl>(enumeratorDecl);
}
} else {
enumeratorDecl =
canonicalCaseIter->second.get<EnumElementDecl *>();
canonConstant =
cast<clang::EnumConstantDecl>(enumeratorDecl->getClangDecl());
}
// If `constant` wasn't the `canonConstant`, import it as an alias.
if (canonConstant != constant && enumeratorDecl) {
ImportedName importedName =
Impl.importFullName(constant, getActiveSwiftVersion());
Identifier name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (name.empty()) {
// Clear the existing declaration so we don't try to process it
// twice later.
enumeratorDecl = nullptr;
} else {
auto original = cast<ValueDecl>(enumeratorDecl);
enumeratorDecl = importEnumCaseAlias(name, constant, original,
decl, result);
}
}
}
// Now import each of the constant's alternate names.
Impl.forEachDistinctName(constant,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (nameVersion == getActiveSwiftVersion())
return true;
if (!contextIsEnum(newName))
return true;
SwiftDeclConverter converter(Impl, nameVersion);
Decl *imported =
converter.importEnumCase(constant, decl, cast<EnumDecl>(result),
enumeratorDecl);
if (!imported)
return false;
variantDecls.push_back(imported);
return true;
});
break;
}
}
if (!enumeratorDecl)
continue;
if (addEnumeratorsAsMembers) {
// Add a member enumerator to the given nominal type.
auto addDecl = [&](NominalTypeDecl *nominal, Decl *decl) {
if (!decl) return;
nominal->addMember(decl);
};
addDecl(result, enumeratorDecl);
for (auto *variant : variantDecls)
addDecl(result, variant);
// If there is an error wrapper, add an alias within the
// wrapper to the corresponding value within the enumerator
// context.
if (errorWrapper) {
auto enumeratorValue = cast<ValueDecl>(enumeratorDecl);
auto name = enumeratorValue->getBaseIdentifier();
auto alias = importEnumCaseAlias(name,
constant,
enumeratorValue,
decl,
result,
errorWrapper);
addDecl(errorWrapper, alias);
}
}
}
// We don't always add an imported canonical constant to the enum's
// members right away, but we should have by the time we leave the loop.
// Verify that they are all in the enum's member list. (rdar://148213237)
if (CONDITIONAL_ASSERT_enabled()) {
for (const auto &entry : canonicalEnumConstants) {
auto importedCase = entry.second.dyn_cast<EnumElementDecl *>();
if (!importedCase)
continue;
ASSERT(llvm::is_contained(result->getCurrentMembers(), importedCase));
}
}
return result;
}
bool recordHasReferenceSemantics(const clang::RecordDecl *decl) {
return importer::recordHasReferenceSemantics(decl, &Impl);
}
bool recordHasMoveOnlySemantics(const clang::RecordDecl *decl) {
auto semanticsKind = evaluateOrDefault(
Impl.SwiftContext.evaluator,
CxxRecordSemantics({decl, Impl.SwiftContext, &Impl}), {});
return semanticsKind == CxxRecordSemanticsKind::MoveOnly;
}
void markReturnsUnsafeNonescapable(AbstractFunctionDecl *fd) {
fd->getAttrs().add(new (Impl.SwiftContext) UnsafeAttr(/*Implicit=*/true));
unsigned resultIndex = fd->getParameters()->size();
if (fd->hasImplicitSelfDecl()) {
++resultIndex;
}
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
LifetimeDependenceInfo immortalLifetime(nullptr, nullptr, resultIndex,
/*isImmortal*/ true);
lifetimeDependencies.push_back(immortalLifetime);
Impl.SwiftContext.evaluator.cacheOutput(
LifetimeDependenceInfoRequest{fd},
Impl.SwiftContext.AllocateCopy(lifetimeDependencies));
return;
}
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
// Track whether this record contains fields we can't reference in Swift
// as stored properties.
bool hasUnreferenceableStorage = false;
// Track whether this record contains fields that can't be zero-
// initialized.
bool hasZeroInitializableStorage = true;
// Track whether all fields in this record can be referenced in Swift,
// either as stored or computed properties, in which case the record type
// gets a memberwise initializer.
bool hasMemberwiseInitializer = true;
if (decl->isUnion()) {
hasUnreferenceableStorage = true;
// We generate initializers specially for unions below.
hasMemberwiseInitializer = false;
}
// FIXME: Skip Microsoft __interfaces.
if (decl->isInterface())
return nullptr;
if (!decl->getDefinition()) {
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::incomplete_record, Impl.SwiftContext.AllocateCopy(
decl->getNameAsString())),
decl->getLocation());
}
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
// TODO(https://github.com/apple/swift/issues/56206): Fix this once we support dependent types.
if (decl->getTypeForDecl()->isDependentType() &&
!Impl.importSymbolicCXXDecls) {
Impl.addImportDiagnostic(
decl, Diagnostic(
diag::record_is_dependent,
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
decl->getLocation());
return nullptr;
}
// Don't import nominal types that are over-aligned.
if (Impl.isOverAligned(decl)) {
Impl.addImportDiagnostic(
decl, Diagnostic(
diag::record_over_aligned,
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
decl->getLocation());
return nullptr;
}
auto isNonTrivialDueToAddressDiversifiedPtrAuth =
[](const clang::RecordDecl *decl) {
for (auto *field : decl->fields()) {
if (!field->getType().isNonTrivialToPrimitiveCopy()) {
continue;
}
if (field->getType().isNonTrivialToPrimitiveCopy() !=
clang::QualType::PCK_PtrAuth) {
return false;
}
}
return true;
};
bool isNonTrivialPtrAuth = false;
// FIXME: We should actually support strong ARC references and similar in
// C structs. That'll require some SIL and IRGen work, though.
if (decl->isNonTrivialToPrimitiveCopy() ||
decl->isNonTrivialToPrimitiveDestroy()) {
isNonTrivialPtrAuth = Impl.SwiftContext.SILOpts
.EnableImportPtrauthFieldFunctionPointers &&
isNonTrivialDueToAddressDiversifiedPtrAuth(decl);
if (!isNonTrivialPtrAuth) {
// Note that there is a third predicate related to these,
// isNonTrivialToPrimitiveDefaultInitialize. That one's not important
// for us because Swift never "trivially default-initializes" a struct
// (i.e. uses whatever bits were lying around as an initial value).
// FIXME: It would be nice to instead import the declaration but mark
// it as unavailable, but then it might get used as a type for an
// imported function and the developer would be able to use it without
// referencing the name, which would sidestep our availability
// diagnostics.
Impl.addImportDiagnostic(
decl,
Diagnostic(
diag::record_non_trivial_copy_destroy,
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
decl->getLocation());
return nullptr;
}
}
// Import the name.
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = getClangDeclName(decl);
if (!importedName)
return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc) {
Impl.addImportDiagnostic(
decl, Diagnostic(
diag::record_parent_unimportable,
Impl.SwiftContext.AllocateCopy(decl->getNameAsString())),
decl->getLocation());
return nullptr;
}
// Create the struct declaration and record it.
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
NominalTypeDecl *result = nullptr;
// Try to find an already-imported struct. This case happens any time
// there are nested structs. The "Parent" struct will import the "Child"
// struct at which point it attempts to import its decl context which is
// the "Parent" struct. Without trying to look up already-imported structs
// this will cause an infinite loop.
auto alreadyImportedResult =
Impl.ImportedDecls.find({decl->getCanonicalDecl(), getVersion()});
if (alreadyImportedResult != Impl.ImportedDecls.end())
return alreadyImportedResult->second;
auto loc = Impl.importSourceLoc(decl->getLocation());
if (recordHasReferenceSemantics(decl))
result = Impl.createDeclWithClangNode<ClassDecl>(
decl, importer::convertClangAccess(decl->getAccess()), loc, name,
loc, ArrayRef<InheritedEntry>{}, nullptr, dc, false);
else
result = Impl.createDeclWithClangNode<StructDecl>(
decl, importer::convertClangAccess(decl->getAccess()), loc, name,
loc, std::nullopt, nullptr, dc);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
if (recordHasMoveOnlySemantics(decl)) {
if (decl->isInStdNamespace() && decl->getName() == "promise") {
// Do not import std::promise.
return nullptr;
}
result->getAttrs().add(new (Impl.SwiftContext)
MoveOnlyAttr(/*Implicit=*/true));
}
// FIXME: Figure out what to do with superclasses in C++. One possible
// solution would be to turn them into members and add conversion
// functions.
if (auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(decl)) {
for (auto base : cxxRecordDecl->bases()) {
if (auto *baseRecordDecl = base.getType()->getAsCXXRecordDecl()) {
Impl.importDecl(baseRecordDecl, getVersion());
}
}
}
// We have to do this after populating ImportedDecls to avoid importing
// the same decl multiple times. Also after we imported the bases.
if (const auto *ctsd =
dyn_cast<clang::ClassTemplateSpecializationDecl>(decl)) {
for (auto arg : ctsd->getTemplateArgs().asArray()) {
llvm::SmallVector<clang::TemplateArgument, 1> nonPackArgs;
if (arg.getKind() == clang::TemplateArgument::Pack) {
auto pack = arg.getPackAsArray();
nonPackArgs.assign(pack.begin(), pack.end());
} else {
nonPackArgs.push_back(arg);
}
for (auto realArg : nonPackArgs) {
if (realArg.getKind() != clang::TemplateArgument::Type)
continue;
auto SwiftType = Impl.importTypeIgnoreIUO(
realArg.getAsType(), ImportTypeKind::Abstract,
[](Diagnostic &&diag) {}, false, Bridgeability::None,
ImportTypeAttrs());
if (SwiftType && SwiftType->isUnsafe()) {
auto attr = new (Impl.SwiftContext) UnsafeAttr(/*implicit=*/true);
result->getAttrs().add(attr);
break;
}
}
}
}
bool isNonEscapable = false;
if (evaluateOrDefault(
Impl.SwiftContext.evaluator,
ClangTypeEscapability({decl->getTypeForDecl(), &Impl}),
CxxEscapability::Unknown) == CxxEscapability::NonEscapable) {
result->getAttrs().add(new (Impl.SwiftContext)
NonEscapableAttr(/*Implicit=*/true));
isNonEscapable = true;
}
// Import each of the members.
SmallVector<VarDecl *, 4> members;
SmallVector<FuncDecl *, 4> methods;
SmallVector<ConstructorDecl *, 4> ctors;
// The name of every member.
llvm::DenseSet<StringRef> allMemberNames;
// FIXME: Import anonymous union fields and support field access when
// it is nested in a struct.
for (auto m : decl->decls()) {
if (isa<clang::AccessSpecDecl>(m)) {
// The presence of AccessSpecDecls themselves does not influence
// whether we can generate a member-wise initializer.
continue;
}
if (auto friendDecl = dyn_cast<clang::FriendDecl>(m)) {
if (friendDecl->getFriendDecl()) {
m = friendDecl->getFriendDecl();
}
}
auto nd = dyn_cast<clang::NamedDecl>(m);
if (!nd) {
// We couldn't import the member, so we can't reference it in Swift.
hasUnreferenceableStorage = true;
hasMemberwiseInitializer = false;
continue;
}
if (auto field = dyn_cast<clang::FieldDecl>(nd)) {
// Non-nullable pointers can't be zero-initialized.
if (auto nullability =
field->getType()->getNullability()) {
if (*nullability == clang::NullabilityKind::NonNull)
hasZeroInitializableStorage = false;
}
// TODO: If we had the notion of a closed enum with no private
// cases or resilience concerns, then complete NS_ENUMs with
// no case corresponding to zero would also not be zero-
// initializable.
// Unnamed bitfields are just for padding and should not
// inhibit creation of a memberwise initializer.
if (field->isUnnamedBitField()) {
hasUnreferenceableStorage = true;
continue;
}
}
Decl *member = Impl.importDecl(nd, getActiveSwiftVersion());
if (!member) {
if (!isa<clang::TypeDecl>(nd) && !isa<clang::FunctionDecl>(nd) &&
!isa<clang::TypeAliasTemplateDecl>(nd) &&
!isa<clang::FunctionTemplateDecl>(nd)) {
// We don't know what this member is.
// Assume it may be important in C.
hasUnreferenceableStorage = true;
hasMemberwiseInitializer = false;
}
continue;
}
if (nd->getDeclName().isIdentifier())
allMemberNames.insert(nd->getName());
if (isa<TypeDecl>(member)) {
// TODO: we have a problem lazily looking up unnamed members, so we
// add them here.
if (isa<clang::RecordDecl>(nd) &&
!cast<clang::RecordDecl>(nd)->hasNameForLinkage())
result->addMemberToLookupTable(member);
continue;
}
if (auto CD = dyn_cast<ConstructorDecl>(member)) {
ctors.push_back(CD);
continue;
}
if (auto MD = dyn_cast<FuncDecl>(member)) {
methods.push_back(MD);
continue;
}
if (isa<VarDecl>(member) && isa<clang::CXXMethodDecl>(nd)) {
result->addMember(member);
continue;
}
auto *vd = cast<VarDecl>(member);
if (!isNonEscapable) {
if (const auto *fd = dyn_cast<clang::FieldDecl>(nd))
if (evaluateOrDefault(
Impl.SwiftContext.evaluator,
ClangTypeEscapability({fd->getType().getTypePtr(), &Impl}),
CxxEscapability::Unknown) ==
CxxEscapability::NonEscapable) {
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::nonescapable_field_of_escapable, decl,
nd->getName()),
decl->getLocation());
return nullptr;
}
}
members.push_back(vd);
}
bool hasReferenceableFields = !members.empty();
for (auto member : members) {
auto nd = cast<clang::NamedDecl>(member->getClangDecl());
// Bitfields are imported as computed properties with Clang-generated
// accessors.
bool isBitField = false;
if (auto field = dyn_cast<clang::FieldDecl>(nd)) {
if (field->isBitField()) {
// We can't represent this struct completely in SIL anymore,
// but we're still able to define a memberwise initializer.
hasUnreferenceableStorage = true;
isBitField = true;
synthesizer.makeBitFieldAccessors(
const_cast<clang::RecordDecl *>(decl), result,
const_cast<clang::FieldDecl *>(field), member);
}
}
if (auto ind = dyn_cast<clang::IndirectFieldDecl>(nd)) {
// Indirect fields are created as computed property accessible the
// fields on the anonymous field from which they are injected.
synthesizer.makeIndirectFieldAccessors(ind, members, result, member);
} else if (decl->isUnion() && !isBitField) {
// Union fields should only be available indirectly via a computed
// property. Since the union is made of all of the fields at once,
// this is a trivial accessor that casts self to the correct
// field type.
synthesizer.makeUnionFieldAccessors(result, member);
// Union accessors are always unsafe.
member->getAttrs().add(new (Impl.SwiftContext) UnsafeAttr(/*Implicit=*/true));
// Create labeled initializers for unions that take one of the
// fields, which only initializes the data for that field.
auto valueCtor =
synthesizer.createValueConstructor(result, member,
/*want param names*/ true,
/*wantBody=*/true);
if (isNonEscapable)
markReturnsUnsafeNonescapable(valueCtor);
ctors.push_back(valueCtor);
}
// TODO: we have a problem lazily looking up members of an unnamed
// record, so we add them here. To fix this `translateContext` needs to
// somehow translate unnamed contexts so that `SwiftLookupTable::lookup`
// can find members in unnamed contexts.
if (!decl->hasNameForLinkage())
result->addMemberToLookupTable(member);
}
const clang::CXXRecordDecl *cxxRecordDecl =
dyn_cast<clang::CXXRecordDecl>(decl);
bool hasBaseClasses = cxxRecordDecl && !cxxRecordDecl->bases().empty();
if (hasBaseClasses) {
hasUnreferenceableStorage = true;
hasMemberwiseInitializer = false;
}
bool needsEmptyInitializer = true;
if (cxxRecordDecl) {
needsEmptyInitializer = !cxxRecordDecl->isAbstract() &&
(!cxxRecordDecl->hasDefaultConstructor() ||
cxxRecordDecl->ctors().empty());
}
// TODO: builtin "zeroInitializer" does not work with non-escapable
// types yet. Don't generate an initializer.
if (hasZeroInitializableStorage && needsEmptyInitializer &&
!isNonEscapable) {
// Add default constructor for the struct if compiling in C mode.
// If we're compiling for C++:
// 1. If a default constructor is declared, don't synthesize one.
// 2. If a default constructor is deleted, don't try to synthesize one.
// 3. If there is no default constructor, synthesize a C-like default
// constructor that zero-initializes the backing memory of the
// struct. This is important to maintain source compatibility when a
// client enables C++ interop in an existing project that uses C
// interop and might rely on the fact that C structs have a default
// constructor available in Swift.
ConstructorDecl *defaultCtor =
synthesizer.createDefaultConstructor(result);
if (cxxRecordDecl) {
auto attr = AvailableAttr::createUniversallyDeprecated(
defaultCtor->getASTContext(),
"This zero-initializes the backing memory of the struct, which "
"is unsafe for some C++ structs. Consider adding an explicit "
"default initializer for this C++ struct.",
"");
defaultCtor->getAttrs().add(attr);
}
ctors.push_back(defaultCtor);
}
bool forceMemberwiseInitializer = false;
if (cxxRecordDecl && cxxRecordDecl->isInStdNamespace() &&
cxxRecordDecl->getIdentifier() &&
cxxRecordDecl->getName() == "pair") {
forceMemberwiseInitializer = true;
}
// We can assume that it is possible to correctly construct the object by
// simply initializing its member variables to arbitrary supplied values
// only when the same is possible in C++. While we could check for that
// exactly, checking whether the C++ class is an aggregate
// (C++ [dcl.init.aggr]) has the same effect.
bool isAggregate = !cxxRecordDecl || cxxRecordDecl->isAggregate();
if ((hasReferenceableFields && hasMemberwiseInitializer && isAggregate) ||
forceMemberwiseInitializer) {
// The default zero initializer suppresses the implicit value
// constructor that would normally be formed, so we have to add that
// explicitly as well.
//
// If we can completely represent the struct in SIL, leave the body
// implicit, otherwise synthesize one to call property setters.
auto valueCtor = synthesizer.createValueConstructor(
result, members,
/*want param names*/ true,
/*want body*/ hasUnreferenceableStorage);
if (!hasUnreferenceableStorage)
valueCtor->setIsMemberwiseInitializer();
if (isNonEscapable)
markReturnsUnsafeNonescapable(valueCtor);
ctors.push_back(valueCtor);
}
if (isa<StructDecl>(result)) {
for (auto ctor : ctors) {
// Add ctors directly as they cannot always be looked up from the
// clang decl (some are synthesized by Swift).
result->addMember(ctor);
}
} else {
if (!Impl.SwiftContext.LangOpts.hasFeature(
Feature::SuppressCXXForeignReferenceTypeInitializers)) {
assert(
isa<ClassDecl>(result) &&
"Expected result to be a ClassDecl as it cannot be a StructDecl");
// When we add full support for C foreign reference types then we
// should synthesize static factories for them as well
if (auto *cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(decl)) {
bool hasUserProvidedStaticFactory = llvm::any_of(
cxxRecordDecl->methods(),
[](const clang::CXXMethodDecl *method) {
return method->isStatic() &&
llvm::any_of(
method->specific_attrs<clang::SwiftNameAttr>(),
[](const auto *attr) {
return attr->getName().starts_with("init(");
});
});
if (!hasUserProvidedStaticFactory) {
auto generatedCxxMethodDecls =
synthesizer.synthesizeStaticFactoryForCXXForeignRef(
cxxRecordDecl);
for (auto *methodDecl : generatedCxxMethodDecls) {
if (Decl *importedInitDecl =
Impl.SwiftContext.getClangModuleLoader()
->importDeclDirectly(methodDecl))
result->addMember(importedInitDecl);
}
}
}
}
}
if (auto structResult = dyn_cast<StructDecl>(result)) {
structResult->setHasUnreferenceableStorage(hasUnreferenceableStorage);
if (isNonTrivialPtrAuth) {
structResult->setHasNonTrivialPtrAuth(true);
}
}
if (cxxRecordDecl) {
if (auto structResult = dyn_cast<StructDecl>(result)) {
// Address-only type is a type that can't be passed in registers.
// Address-only types are typically non-trivial, however some
// non-trivial types can be loadable as well (although such types
// are not yet available in Swift).
bool isAddressOnly = !cxxRecordDecl->canPassInRegisters();
// Check if the given type is non-trivial to ensure we can
// still perform the right copy/move/destroy even if it's
// not an address-only type.
auto isNonTrivial = [](const clang::CXXRecordDecl *decl) -> bool {
return decl->hasNonTrivialCopyConstructor() ||
decl->hasNonTrivialMoveConstructor() ||
!decl->hasTrivialDestructor();
};
if (!isAddressOnly &&
Impl.SwiftContext.LangOpts.Target.isWindowsMSVCEnvironment() &&
isNonTrivial(cxxRecordDecl)) {
// MSVC ABI allows non-trivially destroyed C++ types
// to be passed in register. This is not supported, as such
// type wouldn't be destroyed in Swift correctly. Therefore,
// mark this type as unavailable.
// FIXME: Support can pass in registers for MSVC correctly.
Impl.markUnavailable(result, "non-trivial C++ class with trivial "
"ABI is not yet available in Swift");
}
structResult->setIsCxxNonTrivial(isAddressOnly);
}
for (auto &getterAndSetter : Impl.GetterSetterMap[result]) {
auto getter = getterAndSetter.second.first;
auto setter = getterAndSetter.second.second;
// We cannot make a computed property without a getter.
if (!getter || getter->getDeclContext() != result)
continue;
// If we have a getter and a setter make sure the types line up.
if (setter && !getter->getResultInterfaceType()->isEqual(
setter->getParameters()->get(0)->getTypeInContext()))
continue;
// If the name that we would import this as already exists, then don't
// add a computed property, because it will conflict with an existing
// name and make both APIs unusable.
CXXMethodBridging cxxMethodBridging(
cast<clang::CXXMethodDecl>(getter->getClangDecl()));
if (allMemberNames.contains(
cxxMethodBridging.importNameAsCamelCaseName()))
continue;
auto p =
synthesizer.makeComputedPropertyFromCXXMethods(getter, setter);
// Add computed properties directly because they won't be found from
// the clang decl during lazy member lookup.
result->addMember(p);
}
for (auto &subscriptInfo : Impl.cxxSubscripts) {
auto declAndParameterType = subscriptInfo.first;
if (declAndParameterType.first != result)
continue;
auto getterAndSetter = subscriptInfo.second;
auto subscript = synthesizer.makeSubscript(getterAndSetter.first,
getterAndSetter.second);
// Also add subscripts directly because they won't be found from the
// clang decl.
result->addMember(subscript);
// Add the subscript as an alternative for the getter so that it gets
// carried into derived classes.
auto *subscriptImpl = getterAndSetter.first ? getterAndSetter.first : getterAndSetter.second;
Impl.addAlternateDecl(subscriptImpl, subscript);
}
auto getterAndSetterIt = Impl.cxxDereferenceOperators.find(result);
if (getterAndSetterIt != Impl.cxxDereferenceOperators.end()) {
// If this type has a dereference operator, synthesize a computed
// property called `pointee` for it.
auto getterAndSetter = getterAndSetterIt->second;
VarDecl *pointeeProperty =
synthesizer.makeDereferencedPointeeProperty(
getterAndSetter.first, getterAndSetter.second);
// Import the attributes from clang decl of dereference operator to
// synthesized pointee property.
FuncDecl *getterOrSetterImpl = getterAndSetter.first
? getterAndSetter.first
: getterAndSetter.second;
Impl.importAttributesFromClangDeclToSynthesizedSwiftDecl(
getterOrSetterImpl, pointeeProperty);
result->addMember(pointeeProperty);
}
}
result->setMemberLoader(&Impl, 0);
return result;
}
void validatePrivateFileIDAttributes(const clang::CXXRecordDecl *decl) {
auto anns = importer::getPrivateFileIDAttrs(decl);
if (anns.size() > 1) {
Impl.diagnose(HeaderLoc(decl->getLocation()),
diag::private_fileid_attr_repeated, decl->getName());
for (auto ann : anns)
Impl.diagnose(HeaderLoc(ann.second), diag::private_fileid_attr_here);
} else if (anns.size() == 1) {
auto ann = anns[0];
if (!SourceFile::FileIDStr::parse(ann.first)) {
Impl.diagnose(HeaderLoc(ann.second),
diag::private_fileid_attr_format_invalid,
decl->getName());
Impl.diagnose({}, diag::private_fileid_attr_format_specification);
if (ann.first.count('/') > 1) {
// Try to construct a suggestion from predictable mistakes.
SmallString<32> suggestion;
// Mistake #1: confusing fileID for filePath => writing too many
// '/'s
suggestion.append(ann.first.split('/').first);
suggestion.push_back('/');
suggestion.append(ann.first.rsplit('/').second);
// Mistake #2: forgetting to use filename with .swift extension
if (!suggestion.ends_with(".swift"))
suggestion.append(".swift");
if (SourceFile::FileIDStr::parse(suggestion))
Impl.diagnose({}, diag::private_fileid_attr_format_suggestion,
suggestion);
}
}
}
}
void validateForeignReferenceType(const clang::CXXRecordDecl *decl,
ClassDecl *classDecl) {
enum class RetainReleaseOperationKind {
notAfunction,
doesntReturnVoidOrSelf,
invalidParameters,
valid
};
auto getOperationValidity =
[&](ValueDecl *operation,
CustomRefCountingOperationKind operationKind)
-> RetainReleaseOperationKind {
auto operationFn = dyn_cast<FuncDecl>(operation);
if (!operationFn)
return RetainReleaseOperationKind::notAfunction;
if (operationFn->getParameters()->size() != 1)
return RetainReleaseOperationKind::invalidParameters;
Type paramType =
operationFn->getParameters()->get(0)->getInterfaceType();
// Unwrap if paramType is an OptionalType
if (Type optionalType = paramType->getOptionalObjectType()) {
paramType = optionalType;
}
swift::NominalTypeDecl *paramDecl = paramType->getAnyNominal();
// The return type should be void (for release functions), or void
// or the parameter type (for retain functions).
auto resultInterfaceType = operationFn->getResultInterfaceType();
if (!resultInterfaceType->isVoid()) {
if (operationKind == CustomRefCountingOperationKind::release ||
!resultInterfaceType->lookThroughSingleOptionalType()->isEqual(paramType))
return RetainReleaseOperationKind::doesntReturnVoidOrSelf;
}
// The parameter of the retain/release function should be pointer to the
// same FRT or a base FRT.
if (paramDecl != classDecl) {
if (const clang::Decl *paramClangDecl = paramDecl->getClangDecl()) {
if (const auto *paramTypeDecl =
dyn_cast<clang::CXXRecordDecl>(paramClangDecl)) {
if (decl->isDerivedFrom(paramTypeDecl)) {
return RetainReleaseOperationKind::valid;
}
}
}
return RetainReleaseOperationKind::invalidParameters;
}
return RetainReleaseOperationKind::valid;
};
auto retainOperation = evaluateOrDefault(
Impl.SwiftContext.evaluator,
CustomRefCountingOperation(
{classDecl, CustomRefCountingOperationKind::retain}),
{});
if (retainOperation.kind ==
CustomRefCountingOperationResult::noAttribute) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc, diag::reference_type_must_have_retain_release_attr,
false, decl->getNameAsString());
} else if (retainOperation.kind ==
CustomRefCountingOperationResult::tooManyAttributes) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc, diag::too_many_reference_type_retain_release_attr,
false, decl->getNameAsString());
} else if (retainOperation.kind ==
CustomRefCountingOperationResult::notFound) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc,
diag::foreign_reference_types_cannot_find_retain_release,
false, retainOperation.name, decl->getNameAsString());
if (!Impl.SwiftContext.LangOpts
.DisableExperimentalClangImporterDiagnostics) {
Impl.diagnoseTopLevelValue(
DeclName(Impl.SwiftContext.getIdentifier(retainOperation.name)));
}
} else if (retainOperation.kind ==
CustomRefCountingOperationResult::tooManyFound) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc,
diag::too_many_reference_type_retain_release_operations,
false, retainOperation.name, decl->getNameAsString());
} else if (retainOperation.kind ==
CustomRefCountingOperationResult::foundOperation) {
RetainReleaseOperationKind operationKind =
getOperationValidity(retainOperation.operation,
CustomRefCountingOperationKind::retain);
HeaderLoc loc(decl->getLocation());
switch (operationKind) {
case RetainReleaseOperationKind::notAfunction:
Impl.diagnose(
loc,
diag::foreign_reference_types_retain_release_not_a_function_decl,
false, retainOperation.name);
break;
case RetainReleaseOperationKind::doesntReturnVoidOrSelf:
Impl.diagnose(
loc,
diag::foreign_reference_types_retain_non_void_or_self_return_type,
retainOperation.name);
break;
case RetainReleaseOperationKind::invalidParameters:
Impl.diagnose(loc,
diag::foreign_reference_types_invalid_retain_release,
false, retainOperation.name, classDecl->getNameStr());
break;
case RetainReleaseOperationKind::valid:
break;
}
} else {
// Nothing to do.
assert(retainOperation.kind ==
CustomRefCountingOperationResult::immortal);
}
auto releaseOperation = evaluateOrDefault(
Impl.SwiftContext.evaluator,
CustomRefCountingOperation(
{classDecl, CustomRefCountingOperationKind::release}),
{});
if (releaseOperation.kind ==
CustomRefCountingOperationResult::noAttribute) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc, diag::reference_type_must_have_retain_release_attr,
true, decl->getNameAsString());
} else if (releaseOperation.kind ==
CustomRefCountingOperationResult::tooManyAttributes) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc, diag::too_many_reference_type_retain_release_attr,
true, decl->getNameAsString());
} else if (releaseOperation.kind ==
CustomRefCountingOperationResult::notFound) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc,
diag::foreign_reference_types_cannot_find_retain_release,
true, releaseOperation.name, decl->getNameAsString());
if (!Impl.SwiftContext.LangOpts
.DisableExperimentalClangImporterDiagnostics) {
Impl.diagnoseTopLevelValue(
DeclName(Impl.SwiftContext.getIdentifier(releaseOperation.name)));
}
} else if (releaseOperation.kind ==
CustomRefCountingOperationResult::tooManyFound) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc,
diag::too_many_reference_type_retain_release_operations,
true, releaseOperation.name, decl->getNameAsString());
} else if (releaseOperation.kind ==
CustomRefCountingOperationResult::foundOperation) {
RetainReleaseOperationKind operationKind =
getOperationValidity(releaseOperation.operation,
CustomRefCountingOperationKind::release);
HeaderLoc loc(decl->getLocation());
switch (operationKind) {
case RetainReleaseOperationKind::notAfunction:
Impl.diagnose(
loc,
diag::foreign_reference_types_retain_release_not_a_function_decl,
true, releaseOperation.name);
break;
case RetainReleaseOperationKind::doesntReturnVoidOrSelf:
Impl.diagnose(
loc,
diag::foreign_reference_types_release_non_void_return_type,
releaseOperation.name);
break;
case RetainReleaseOperationKind::invalidParameters:
Impl.diagnose(loc,
diag::foreign_reference_types_invalid_retain_release,
true, releaseOperation.name, classDecl->getNameStr());
break;
case RetainReleaseOperationKind::valid:
break;
}
} else {
// Nothing to do.
assert(releaseOperation.kind ==
CustomRefCountingOperationResult::immortal);
}
}
Decl *VisitCXXRecordDecl(const clang::CXXRecordDecl *decl) {
// This can be called from lldb without C++ interop being enabled: There
// may be C++ declarations in imported modules, but the interface for
// those modules may be a pure C or Objective-C interface.
// To avoid crashing in Clang's Sema, fall back to importing this as a
// plain RecordDecl.
if (!Impl.SwiftContext.LangOpts.EnableCXXInterop)
return VisitRecordDecl(decl);
if (!decl->getDefinition()) {
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::incomplete_record, Impl.SwiftContext.AllocateCopy(
decl->getNameAsString())),
decl->getLocation());
auto attrs = importer::getPrivateFileIDAttrs(decl);
if (!attrs.empty()) {
Impl.diagnose(HeaderLoc(decl->getLocation()),
diag::private_fileid_attr_on_incomplete_type,
decl->getName());
for (auto attr : attrs)
Impl.diagnose(HeaderLoc(attr.second),
diag::private_fileid_attr_here);
}
}
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
// Bail if this is `std::chrono::tzdb`. This type causes issues in copy
// constructor instantiation.
// FIXME: https://github.com/apple/swift/issues/73037
if (decl->getDeclContext()->isNamespace() &&
decl->getDeclContext()->getParent()->isStdNamespace() &&
decl->getIdentifier() &&
(decl->getName() == "tzdb" || decl->getName() == "time_zone_link" ||
decl->getName() == "__compressed_pair" ||
decl->getName() == "time_zone"))
return nullptr;
auto &clangSema = Impl.getClangSema();
// Make Clang define any implicit constructors it may need (copy,
// default). Make sure we only do this if the class has been fully defined
// with complete fields, and we're not in a dependent context(this is
// equivalent to the logic in CanDeclareSpecialMemberFunction in Clang's
// SemaLookup.cpp).
assert(!decl->isBeingDefined() && "can only import fully defined decls");
if (!decl->isDependentContext() && areRecordFieldsComplete(decl)) {
if (decl->hasInheritedConstructor()) {
for (auto member : decl->decls()) {
if (auto usingDecl = dyn_cast<clang::UsingDecl>(member)) {
for (auto usingShadowDecl : usingDecl->shadows()) {
if (auto ctorUsingShadowDecl =
dyn_cast<clang::ConstructorUsingShadowDecl>(
usingShadowDecl)) {
auto baseCtorDecl = dyn_cast<clang::CXXConstructorDecl>(
ctorUsingShadowDecl->getTargetDecl());
if (!baseCtorDecl || baseCtorDecl->isDeleted())
continue;
auto loc = ctorUsingShadowDecl->getLocation();
auto derivedCtorDecl = clangSema.findInheritingConstructor(
loc, baseCtorDecl, ctorUsingShadowDecl);
if (!derivedCtorDecl->isDefined() &&
!derivedCtorDecl->isDeleted())
clangSema.DefineInheritingConstructor(loc, derivedCtorDecl);
}
}
}
}
}
if (decl->needsImplicitDefaultConstructor()) {
clang::CXXConstructorDecl *ctor =
clangSema.DeclareImplicitDefaultConstructor(
const_cast<clang::CXXRecordDecl *>(decl));
if (!ctor->isDeleted())
clangSema.DefineImplicitDefaultConstructor(clang::SourceLocation(),
ctor);
}
clang::CXXConstructorDecl *copyCtor = nullptr;
clang::CXXConstructorDecl *moveCtor = nullptr;
clang::CXXConstructorDecl *defaultCtor = nullptr;
if (decl->needsImplicitCopyConstructor()) {
copyCtor = clangSema.DeclareImplicitCopyConstructor(
const_cast<clang::CXXRecordDecl *>(decl));
}
if (decl->needsImplicitMoveConstructor()) {
moveCtor = clangSema.DeclareImplicitMoveConstructor(
const_cast<clang::CXXRecordDecl *>(decl));
}
if (decl->needsImplicitDefaultConstructor()) {
defaultCtor = clangSema.DeclareImplicitDefaultConstructor(
const_cast<clang::CXXRecordDecl *>(decl));
}
// We may have a defaulted copy/move/default constructor that needs to
// be defined. Try to find it.
for (auto methods : decl->methods()) {
if (auto declCtor = dyn_cast<clang::CXXConstructorDecl>(methods)) {
if (declCtor->isDefaulted() &&
declCtor->getAccess() == clang::AS_public &&
!declCtor->isDeleted() &&
// Note: we use "doesThisDeclarationHaveABody" here because
// that's what "DefineImplicitCopyConstructor" checks.
!declCtor->doesThisDeclarationHaveABody()) {
if (declCtor->isCopyConstructor()) {
if (!copyCtor)
copyCtor = declCtor;
} else if (declCtor->isMoveConstructor()) {
if (!moveCtor)
moveCtor = declCtor;
} else if (declCtor->isDefaultConstructor()) {
if (!defaultCtor)
defaultCtor = declCtor;
}
}
}
}
if (copyCtor) {
clangSema.DefineImplicitCopyConstructor(clang::SourceLocation(),
copyCtor);
}
if (moveCtor) {
clangSema.DefineImplicitMoveConstructor(clang::SourceLocation(),
moveCtor);
}
if (defaultCtor) {
clangSema.DefineImplicitDefaultConstructor(clang::SourceLocation(),
defaultCtor);
}
if (decl->needsImplicitDestructor()) {
auto dtor = clangSema.DeclareImplicitDestructor(
const_cast<clang::CXXRecordDecl *>(decl));
clangSema.DefineImplicitDestructor(clang::SourceLocation(), dtor);
}
}
// It is important that we bail on an unimportable record *before* we import
// any of its members or cache the decl.
auto semanticsKind = evaluateOrDefault(
Impl.SwiftContext.evaluator,
CxxRecordSemantics({decl, Impl.SwiftContext, &Impl}), {});
if ((semanticsKind == CxxRecordSemanticsKind::MissingLifetimeOperation ||
semanticsKind == CxxRecordSemanticsKind::UnavailableConstructors) &&
// Let un-specialized class templates through. We'll sort out their
// members once they're instantiated.
!Impl.importSymbolicCXXDecls) {
HeaderLoc loc(decl->getLocation());
if (hasUnsafeAPIAttr(decl))
Impl.diagnose(loc, diag::api_pattern_attr_ignored, "import_unsafe",
decl->getNameAsString());
if (hasOwnedValueAttr(decl))
Impl.diagnose(loc, diag::api_pattern_attr_ignored, "import_owned",
decl->getNameAsString());
if (hasIteratorAPIAttr(decl))
Impl.diagnose(loc, diag::api_pattern_attr_ignored, "import_iterator",
decl->getNameAsString());
if (semanticsKind == CxxRecordSemanticsKind::UnavailableConstructors) {
Impl.addImportDiagnostic(
decl, Diagnostic(diag::record_unsupported_default_args),
decl->getLocation());
}
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::record_not_automatically_importable,
Impl.SwiftContext.AllocateCopy(decl->getNameAsString()),
"it must have a copy/move constructor and a destructor"),
decl->getLocation());
return nullptr;
}
if (semanticsKind == CxxRecordSemanticsKind::SwiftClassType) {
// FIXME: add a diagnostic here for unsupported imported use of Swift
// type?
return nullptr;
}
auto result = VisitRecordDecl(decl);
if (!result)
return nullptr;
if (decl->hasAttr<clang::TrivialABIAttr>()) {
// We cannot yet represent trivial_abi C++ records in Swift.
// Clang tells us such type can be passed in registers, so
// we avoid using AddressOnly type-layout for such type, which means
// that it then does not use C++'s copy and destroy semantics from
// Swift.
Impl.markUnavailable(cast<ValueDecl>(result),
"C++ classes with `trivial_abi` Clang attribute "
"are not yet available in Swift");
}
validatePrivateFileIDAttributes(decl);
if (auto classDecl = dyn_cast<ClassDecl>(result)) {
validateForeignReferenceType(decl, classDecl);
auto availability = Impl.SwiftContext.getSwift58Availability();
if (!availability.isAlwaysAvailable()) {
assert(availability.hasMinimumVersion());
auto AvAttr = AvailableAttr::createPlatformVersioned(
Impl.SwiftContext, targetPlatform(Impl.SwiftContext.LangOpts),
/*Message=*/"", /*Rename=*/"",
availability.getRawMinimumVersion(), /*Deprecated=*/{},
/*Obsoleted=*/{});
classDecl->getAttrs().add(AvAttr);
}
if (decl->isEffectivelyFinal())
classDecl->getAttrs().add(new (Impl.SwiftContext)
FinalAttr(/*IsImplicit=*/true));
}
// If this module is declared as a C++ module, try to synthesize
// conformances to Swift protocols from the Cxx module.
auto clangModule = Impl.getClangOwningModule(result->getClangNode());
if (!clangModule || requiresCPlusPlus(clangModule)) {
if (auto nominalDecl = dyn_cast<NominalTypeDecl>(result)) {
conformToCxxIteratorIfNeeded(Impl, nominalDecl, decl);
conformToCxxSequenceIfNeeded(Impl, nominalDecl, decl);
conformToCxxConvertibleToBoolIfNeeded(Impl, nominalDecl, decl);
conformToCxxSetIfNeeded(Impl, nominalDecl, decl);
conformToCxxDictionaryIfNeeded(Impl, nominalDecl, decl);
conformToCxxPairIfNeeded(Impl, nominalDecl, decl);
conformToCxxOptionalIfNeeded(Impl, nominalDecl, decl);
conformToCxxVectorIfNeeded(Impl, nominalDecl, decl);
conformToCxxFunctionIfNeeded(Impl, nominalDecl, decl);
conformToCxxSpanIfNeeded(Impl, nominalDecl, decl);
}
}
if (auto *ntd = dyn_cast<NominalTypeDecl>(result))
addExplicitProtocolConformances(ntd, decl);
return result;
}
void
addExplicitProtocolConformances(NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
// Propagate conforms_to attribute from public base classes.
for (auto base : clangDecl->bases()) {
if (base.getAccessSpecifier() != clang::AccessSpecifier::AS_public)
continue;
if (auto *baseClangDecl = base.getType()->getAsCXXRecordDecl())
addExplicitProtocolConformances(decl, baseClangDecl);
}
if (!clangDecl->hasAttrs())
return;
SmallVector<ValueDecl *, 1> results;
auto conformsToAttr =
llvm::find_if(clangDecl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute().starts_with("conforms_to:");
return false;
});
if (conformsToAttr == clangDecl->getAttrs().end())
return;
auto conformsToValue = cast<clang::SwiftAttrAttr>(*conformsToAttr)
->getAttribute()
.drop_front(StringRef("conforms_to:").size())
.str();
auto names = StringRef(conformsToValue).split('.');
auto moduleName = names.first;
auto protocolName = names.second;
if (protocolName.empty()) {
HeaderLoc attrLoc((*conformsToAttr)->getLocation());
Impl.diagnose(attrLoc, diag::conforms_to_missing_dot, conformsToValue);
return;
}
auto *mod = Impl.SwiftContext.getModuleByIdentifier(
Impl.SwiftContext.getIdentifier(moduleName));
if (!mod) {
HeaderLoc attrLoc((*conformsToAttr)->getLocation());
Impl.diagnose(attrLoc, diag::cannot_find_conforms_to_module,
conformsToValue, moduleName);
return;
}
mod->lookupValue(Impl.SwiftContext.getIdentifier(protocolName),
NLKind::UnqualifiedLookup, results);
if (results.empty()) {
HeaderLoc attrLoc((*conformsToAttr)->getLocation());
Impl.diagnose(attrLoc, diag::cannot_find_conforms_to, protocolName,
moduleName);
return;
} else if (results.size() != 1) {
HeaderLoc attrLoc((*conformsToAttr)->getLocation());
Impl.diagnose(attrLoc, diag::conforms_to_ambiguous, protocolName,
moduleName);
return;
}
auto result = results.front();
if (auto protocol = dyn_cast<ProtocolDecl>(result)) {
decl->getAttrs().add(
new (Impl.SwiftContext) SynthesizedProtocolAttr(protocol, &Impl, false));
} else {
HeaderLoc attrLoc((*conformsToAttr)->getLocation());
Impl.diagnose(attrLoc, diag::conforms_to_not_protocol,
result->getDescriptiveKind(), result, conformsToValue);
}
}
bool isSpecializationDepthGreaterThan(
const clang::ClassTemplateSpecializationDecl *decl, unsigned maxDepth) {
for (auto arg : decl->getTemplateArgs().asArray()) {
if (arg.getKind() == clang::TemplateArgument::Type) {
if (auto classSpec =
dyn_cast_or_null<clang::ClassTemplateSpecializationDecl>(
arg.getAsType()->getAsCXXRecordDecl())) {
if (maxDepth == 0 ||
isSpecializationDepthGreaterThan(classSpec, maxDepth - 1))
return true;
}
}
}
return false;
}
Decl *VisitClassTemplateSpecializationDecl(
const clang::ClassTemplateSpecializationDecl *decl) {
// Treat a specific specialization like the unspecialized class template
// when importing it in symbolic mode.
if (Impl.importSymbolicCXXDecls)
return Impl.importDecl(decl->getSpecializedTemplate(),
Impl.CurrentVersion);
bool isPair = decl->getSpecializedTemplate()->isInStdNamespace() &&
decl->getSpecializedTemplate()->getName() == "pair";
// Before we go any further, check if we've already got tens of thousands
// of specializations. If so, it means we're likely instantiating a very
// deep/complex template, or we've run into an infinite loop. In either
// case, its not worth the compile time, so bail.
// TODO: this could be configurable at some point.
size_t specializationLimit = !isPair ? 1000 : 10000;
if (size_t(
llvm::size(decl->getSpecializedTemplate()->specializations())) >
specializationLimit) {
// Note: it would be nice to import a dummy unavailable struct,
// but we would then need to instantiate the template here,
// as we cannot import a struct without a definition. That would
// defeat the purpose. Also, we can't make the dummy
// struct simply unavailable, as that still makes the
// typelias that references it available.
return nullptr;
}
// `decl->getDefinition()` can return nullptr before the call to sema and
// return its definition afterwards.
clang::Sema &clangSema = Impl.getClangSema();
if (!decl->getDefinition()) {
bool notInstantiated = clangSema.InstantiateClassTemplateSpecialization(
decl->getLocation(),
const_cast<clang::ClassTemplateSpecializationDecl *>(decl),
clang::TemplateSpecializationKind::TSK_ImplicitInstantiation,
/*Complain*/ false);
// If the template can't be instantiated, bail.
if (notInstantiated)
return nullptr;
}
if (!decl->getDefinition()) {
// If we got nullptr definition now it means the type is not complete.
// We don't import incomplete types.
return nullptr;
}
auto def = dyn_cast<clang::ClassTemplateSpecializationDecl>(
decl->getDefinition());
assert(def && "Class template instantiation didn't have definition");
// Currently this is a relatively low number, in the future we might
// consider increasing it, but this should keep compile time down,
// especially for types that become exponentially large when
// instantiating.
if (isSpecializationDepthGreaterThan(def, 8))
return nullptr;
// For class template instantiations, we need to add their member
// operators to the lookup table to make them discoverable with
// unqualified lookup. This makes it possible to implement a Swift
// protocol requirement with an instantiation of a C++ member operator.
// This cannot be done when building the lookup table,
// because templates are instantiated lazily.
for (auto member : def->decls()) {
if (auto friendDecl = dyn_cast<clang::FriendDecl>(member))
if (auto underlyingDecl = friendDecl->getFriendDecl())
member = underlyingDecl;
if (auto method = dyn_cast<clang::FunctionDecl>(member)) {
if (method->isOverloadedOperator()) {
addEntryToLookupTable(*Impl.findLookupTable(decl), method,
Impl.getNameImporter());
}
}
}
return VisitCXXRecordDecl(def);
}
Decl *VisitClassTemplatePartialSpecializationDecl(
const clang::ClassTemplatePartialSpecializationDecl *decl) {
// Note: partial template specializations are not imported.
return nullptr;
}
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName) return nullptr;
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (name.empty())
return nullptr;
auto enumKind = Impl.getEnumKind(clangEnum);
switch (enumKind) {
case EnumKind::Constants:
case EnumKind::Unknown: {
// The enumeration was simply mapped to an integral type. Create a
// constant with that integral type.
// The context where the constant will be introduced.
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// Enumeration type.
auto &clangContext = Impl.getClangASTContext();
auto type = Impl.importTypeIgnoreIUO(
clangContext.getTagDeclType(clangEnum), ImportTypeKind::Value,
ImportDiagnosticAdder(Impl, clangEnum, clangEnum->getLocation()),
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
if (!type)
return nullptr;
// Create the global constant.
bool isStatic = dc->isTypeContext();
auto result = synthesizer.createConstant(
name, dc, type, clang::APValue(decl->getInitVal()),
enumKind == EnumKind::Unknown ? ConstantConvertKind::Construction
: ConstantConvertKind::None,
isStatic, decl,
importer::convertClangAccess(clangEnum->getAccess()));
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
case EnumKind::NonFrozenEnum:
case EnumKind::FrozenEnum:
case EnumKind::Options: {
// The enumeration was mapped to a high-level Swift type, and its
// elements were created as children of that enum. They aren't available
// independently.
return nullptr;
}
}
llvm_unreachable("Invalid EnumKind.");
}
Decl *
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName) return nullptr;
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// If we encounter an IndirectFieldDecl, ensure that its parent is
// importable before attempting to import it because they are dependent
// when it comes to getter/setter generation.
if (auto parent = dyn_cast<clang::CXXRecordDecl>(
decl->getAnonField()->getParent())) {
auto semanticsKind = evaluateOrDefault(
Impl.SwiftContext.evaluator,
CxxRecordSemantics({parent, Impl.SwiftContext, &Impl}), {});
if (semanticsKind == CxxRecordSemanticsKind::MissingLifetimeOperation)
return nullptr;
}
auto importedType =
Impl.importType(decl->getType(), ImportTypeKind::Variable,
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
isInSystemModule(dc), Bridgeability::None,
getImportTypeAttrs(decl));
if (!importedType)
return nullptr;
auto type = importedType.getType();
// Map this indirect field to a Swift variable.
auto result = Impl.createDeclWithClangNode<VarDecl>(
decl, importer::convertClangAccess(decl->getAccess()),
/*IsStatic*/ false, VarDecl::Introducer::Var,
Impl.importSourceLoc(decl->getBeginLoc()), name, dc);
result->setInterfaceType(type);
result->setIsObjC(false);
result->setIsDynamic(false);
Impl.recordImplicitUnwrapForDecl(result,
importedType.isImplicitlyUnwrapped());
// If this is a compatibility stub, mark is as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
// Don't import unavailable fields that have no associated storage.
// TODO: is there any way we could bail here before we allocate/construct
// the VarDecl?
if (result->isUnavailable())
return nullptr;
return result;
}
ParameterList *
getNonSelfParamList(DeclContext *dc, const clang::FunctionDecl *decl,
std::optional<unsigned> selfIdx,
ArrayRef<Identifier> argNames,
bool allowNSUIntegerAsInt, bool isAccessor,
ArrayRef<GenericTypeParamDecl *> genericParams) {
if (bool(selfIdx)) {
assert(((decl->getNumParams() == argNames.size() + 1) || isAccessor) &&
(*selfIdx < decl->getNumParams()) && "where's self?");
} else {
unsigned numParamsAdjusted =
decl->getNumParams() + (decl->isVariadic() ? 1 : 0);
assert(numParamsAdjusted == argNames.size() || isAccessor);
}
SmallVector<const clang::ParmVarDecl *, 4> nonSelfParams;
for (unsigned i = 0; i < decl->getNumParams(); ++i) {
if (selfIdx && i == *selfIdx)
continue;
nonSelfParams.push_back(decl->getParamDecl(i));
}
return Impl.importFunctionParameterList(
dc, decl, nonSelfParams, decl->isVariadic(), allowNSUIntegerAsInt,
argNames, genericParams, /*resultType=*/nullptr);
}
Decl *
importGlobalAsInitializer(const clang::FunctionDecl *decl, DeclName name,
DeclContext *dc, CtorInitializerKind initKind,
std::optional<ImportedName> correctSwiftName);
/// Create an implicit property given the imported name of one of
/// the accessors.
VarDecl *getImplicitProperty(ImportedName importedName,
const clang::FunctionDecl *accessor);
bool foreignReferenceTypePassedByRef(const clang::FunctionDecl *decl) {
bool anyParamPassesByVal =
llvm::any_of(decl->parameters(), [this, decl](auto *param) {
if (auto recordType = dyn_cast<clang::RecordType>(
param->getType().getCanonicalType())) {
if (recordHasReferenceSemantics(recordType->getDecl())) {
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::reference_passed_by_value,
Impl.SwiftContext.AllocateCopy(
recordType->getDecl()->getNameAsString()),
"a parameter"),
decl->getLocation());
return true;
}
}
return false;
});
if (anyParamPassesByVal)
return true;
if (auto recordType = dyn_cast<clang::RecordType>(
decl->getReturnType().getCanonicalType())) {
if (recordHasReferenceSemantics(recordType->getDecl())) {
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::reference_passed_by_value,
Impl.SwiftContext.AllocateCopy(
recordType->getDecl()->getNameAsString()),
"the return"),
decl->getLocation());
return true;
}
}
return false;
}
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
// Import the name of the function.
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName)
return nullptr;
// Don't import functions that pass a foreign reference type by value
// (either as a parameter or return type).
if (foreignReferenceTypePassedByRef(decl))
return nullptr;
switch (importedName.getAccessorKind()) {
case ImportedAccessorKind::None:
case ImportedAccessorKind::SubscriptGetter:
case ImportedAccessorKind::SubscriptSetter:
case ImportedAccessorKind::DereferenceGetter:
case ImportedAccessorKind::DereferenceSetter:
break;
case ImportedAccessorKind::PropertyGetter: {
auto property = getImplicitProperty(importedName, decl);
if (!property) return nullptr;
return property->getParsedAccessor(AccessorKind::Get);
}
case ImportedAccessorKind::PropertySetter:
auto property = getImplicitProperty(importedName, decl);
if (!property) return nullptr;
return property->getParsedAccessor(AccessorKind::Set);
}
checkBridgingAttrs(decl);
return importFunctionDecl(decl, importedName, correctSwiftName,
std::nullopt);
}
/// Emit diagnostics for incorrect usage of SWIFT_RETURNS_RETAINED and
/// SWIFT_RETURNS_UNRETAINED
void checkBridgingAttrs(const clang::NamedDecl *decl) {
assert(isa<clang::FunctionDecl>(decl) ||
isa<clang::ObjCMethodDecl>(decl) &&
"checkBridgingAttrs called with a clang::NamedDecl which is "
"neither clang::FunctionDecl nor clang::ObjCMethodDecl");
bool returnsRetainedAttrIsPresent = false;
bool returnsUnretainedAttrIsPresent = false;
if (decl->hasAttrs()) {
for (const auto *attr : decl->getAttrs()) {
if (const auto *swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr)) {
if (swiftAttr->getAttribute() == "returns_unretained") {
returnsUnretainedAttrIsPresent = true;
} else if (swiftAttr->getAttribute() == "returns_retained") {
returnsRetainedAttrIsPresent = true;
}
}
}
}
HeaderLoc loc(decl->getLocation());
const auto retType =
isa<clang::FunctionDecl>(decl)
? cast<clang::FunctionDecl>(decl)->getReturnType()
: cast<clang::ObjCMethodDecl>(decl)->getReturnType();
clang::QualType pointeeType = retType;
if (retType->isPointerType() || retType->isReferenceType()) {
pointeeType = retType->getPointeeType();
}
clang::RecordDecl *recordDecl = nullptr;
if (const auto *recordType = pointeeType->getAs<clang::RecordType>()) {
recordDecl = recordType->getDecl();
}
if (recordDecl && recordHasReferenceSemantics(recordDecl) &&
!hasImmortalAttrs(recordDecl)) {
if (returnsRetainedAttrIsPresent && returnsUnretainedAttrIsPresent) {
Impl.diagnose(loc, diag::both_returns_retained_returns_unretained,
decl);
} else if (!returnsRetainedAttrIsPresent &&
!returnsUnretainedAttrIsPresent) {
bool unannotatedAPIWarningNeeded = false;
if (isa<clang::FunctionDecl>(decl) &&
!isa<clang::CXXDeductionGuideDecl>(decl)) {
if (const auto *methodDecl = dyn_cast<clang::CXXMethodDecl>(decl)) {
// FIXME: In the future we should support SWIFT_RETURNS_RETAINED
// and SWIFT_RETURNS_UNRETAINED for overloaded C++ operators
// returning SWIFT_SHARED_REFERENCE types
if (!isa<clang::CXXConstructorDecl>(methodDecl) &&
!isa<clang::CXXDestructorDecl>(methodDecl) &&
!methodDecl->isOverloadedOperator() &&
methodDecl->isUserProvided()) {
// normal c++ member method
unannotatedAPIWarningNeeded = true;
}
} else {
// global or top-level C/C++ function
unannotatedAPIWarningNeeded = true;
}
} else if (isa<clang::ObjCMethodDecl>(decl)) {
unannotatedAPIWarningNeeded = true;
}
unannotatedAPIWarningNeeded = false;
if (unannotatedAPIWarningNeeded) {
HeaderLoc loc(decl->getLocation());
Impl.diagnose(loc, diag::no_returns_retained_returns_unretained,
decl);
}
} else if (const auto *methodDecl =
dyn_cast<clang::CXXMethodDecl>(decl)) {
// Warning for annotated overloaded C++ operators as they currently
// follow Swift method's convention and always return owned.
if (methodDecl->isOverloadedOperator()) {
Impl.diagnose(
loc,
diag::
returns_retained_returns_unretained_on_overloaded_operator,
decl);
}
}
} else {
if (returnsRetainedAttrIsPresent || returnsUnretainedAttrIsPresent) {
if (const auto *functionDecl = dyn_cast<clang::FunctionDecl>(decl)) {
if (functionDecl->isTemplateInstantiation()) {
return;
}
}
Impl.diagnose(
loc,
diag::
returns_retained_or_returns_unretained_for_non_cxx_frt_values,
decl);
}
}
}
/// Handles special functions such as subscripts and dereference operators.
bool
processSpecialImportedFunc(FuncDecl *func, ImportedName importedName,
clang::OverloadedOperatorKind cxxOperatorKind) {
if (cxxOperatorKind == clang::OverloadedOperatorKind::OO_None)
return true;
auto dc = func->getDeclContext();
auto typeDecl = dc->getSelfNominalTypeDecl();
if (!typeDecl)
return true;
if (importedName.isSubscriptAccessor()) {
assert(func->getParameters()->size() == 1);
auto parameter = func->getParameters()->get(0);
auto parameterType = parameter->getTypeInContext();
if (!typeDecl || !parameterType)
return false;
if (parameter->isInOut())
// Subscripts with inout parameters are not allowed in Swift.
return false;
// Subscript setter is marked as mutating in Swift even if the
// C++ `operator []` is `const`.
if (importedName.getAccessorKind() ==
ImportedAccessorKind::SubscriptSetter &&
!dc->isModuleScopeContext() &&
!typeDecl->getDeclaredType()->isForeignReferenceType())
func->setSelfAccessKind(SelfAccessKind::Mutating);
auto &getterAndSetter = Impl.cxxSubscripts[{typeDecl, parameterType}];
switch (importedName.getAccessorKind()) {
case ImportedAccessorKind::SubscriptGetter:
getterAndSetter.first = func;
break;
case ImportedAccessorKind::SubscriptSetter:
getterAndSetter.second = func;
break;
default:
llvm_unreachable("invalid subscript kind");
}
Impl.markUnavailable(func, "use subscript");
return true;
}
if (importedName.isDereferenceAccessor()) {
auto &getterAndSetter = Impl.cxxDereferenceOperators[typeDecl];
switch (importedName.getAccessorKind()) {
case ImportedAccessorKind::DereferenceGetter:
getterAndSetter.first = func;
break;
case ImportedAccessorKind::DereferenceSetter:
getterAndSetter.second = func;
break;
default:
llvm_unreachable("invalid dereference operator kind");
}
Impl.markUnavailable(func, "use .pointee property");
return true;
}
if (cxxOperatorKind == clang::OverloadedOperatorKind::OO_PlusPlus) {
// Make sure the type is not a foreign reference type.
// We cannot handle `operator++` for those types, since the
// current implementation creates a new instance of the type.
if (func->getParameters()->size() == 0 && !isa<ClassDecl>(typeDecl)) {
// This is a pre-increment operator. We synthesize a
// non-mutating function called `successor() -> Self`.
FuncDecl *successorFunc = synthesizer.makeSuccessorFunc(func);
// Import the clang decl attributes to synthesized successor function.
Impl.importAttributesFromClangDeclToSynthesizedSwiftDecl(func, successorFunc);
typeDecl->addMember(successorFunc);
Impl.markUnavailable(func, "use .successor()");
} else {
Impl.markUnavailable(func, "unable to create .successor() func");
}
func->overwriteAccess(AccessLevel::Private);
return true;
}
// Check if this method _is_ an overloaded operator but is not a
// call / subscript / dereference / increment. Those
// operators do not need static versions.
if (cxxOperatorKind != clang::OverloadedOperatorKind::OO_Call) {
auto opFuncDecl = synthesizer.makeOperator(func, cxxOperatorKind);
Impl.addAlternateDecl(func, opFuncDecl);
Impl.markUnavailable(
func, (Twine("use ") + clang::getOperatorSpelling(cxxOperatorKind) +
" instead")
.str());
// Make sure the synthesized decl can be found by lookupDirect.
typeDecl->addMemberToLookupTable(opFuncDecl);
return true;
}
return true;
}
template <typename T>
static const T *
getImplicitObjectParamAnnotation(const clang::FunctionDecl *FD) {
const clang::TypeSourceInfo *TSI = FD->getTypeSourceInfo();
if (!TSI)
return nullptr;
clang::AttributedTypeLoc ATL;
for (clang::TypeLoc TL = TSI->getTypeLoc();
(ATL = TL.getAsAdjusted<clang::AttributedTypeLoc>());
TL = ATL.getModifiedLoc()) {
if (auto attr = ATL.getAttrAs<T>())
return attr;
}
return nullptr;
}
static bool isClangNamespace(const DeclContext *dc) {
if (const auto *ed = dc->getSelfEnumDecl())
return isa<clang::NamespaceDecl>(ed->getClangDecl());
return false;
}
Decl *importFunctionDecl(
const clang::FunctionDecl *decl, ImportedName importedName,
std::optional<ImportedName> correctSwiftName,
std::optional<AccessorInfo> accessorInfo,
const clang::FunctionTemplateDecl *funcTemplate = nullptr) {
if (decl->isDeleted())
return nullptr;
if (Impl.SwiftContext.LangOpts.EnableCXXInterop &&
!isa<clang::CXXMethodDecl>(decl)) {
// Do not import math functions from the C++ standard library, as
// they're also imported from the Darwin/Glibc module, and their
// presence in the C++ standard library will cause overloading
// ambiguities or other type checking errors in Swift.
auto isAlternativeCStdlibFunctionFromTextualHeader =
[this](const clang::FunctionDecl *d) -> bool {
// stdlib.h might be a textual header in libc++'s module map.
// in this case, check for known ambiguous functions by their name
// instead of checking if they come from the `std` module.
if (!d->getDeclName().isIdentifier())
return false;
if (Impl.SwiftContext.LangOpts.Target.isOSDarwin())
return d->getName() == "strstr" || d->getName() == "sin" ||
d->getName() == "cos" || d->getName() == "exit";
return false;
};
if (clang::Module *owningModule = decl->getOwningModule();
owningModule && importer::isCxxStdModule(owningModule)) {
if (isAlternativeCStdlibFunctionFromTextualHeader(decl)) {
return nullptr;
}
auto &sourceManager = Impl.getClangPreprocessor().getSourceManager();
if (auto file = sourceManager.getFileEntryRefForID(
sourceManager.getFileID(decl->getLocation()))) {
auto filename = file->getName();
if ((file->getDir() == owningModule->Directory) &&
(filename.ends_with("cmath") || filename.ends_with("math.h") ||
filename.ends_with("stdlib.h") || filename.ends_with("cstdlib"))) {
return nullptr;
}
}
}
}
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// We may have already imported this function decl before we imported the
// parent record. In such a case it's important we don't re-import.
auto known = Impl.ImportedDecls.find({decl, getVersion()});
if (known != Impl.ImportedDecls.end()) {
return known->second;
}
bool isOperator = decl->getDeclName().getNameKind() ==
clang::DeclarationName::CXXOperatorName;
bool isNonSubscriptOperator =
isOperator && (decl->getDeclName().getCXXOverloadedOperator() !=
clang::OO_Subscript);
// For now, we don't support non-subscript operators which are templated
if (isNonSubscriptOperator && decl->isTemplated()) {
return nullptr;
}
DeclName name = accessorInfo ? DeclName() : importedName.getDeclName();
auto selfIdx = importedName.getSelfIndex();
auto templateParamTypeUsedInSignature =
[decl](clang::TemplateTypeParmDecl *type) -> bool {
// TODO(https://github.com/apple/swift/issues/56206): We will want to update this to handle dependent types when those are supported.
if (hasSameUnderlyingType(decl->getReturnType().getTypePtr(), type))
return true;
for (unsigned i : range(0, decl->getNumParams())) {
if (hasSameUnderlyingType(
decl->getParamDecl(i)->getType().getTypePtr(), type))
return true;
}
return false;
};
ImportedType importedType;
bool selfIsInOut = false;
ParameterList *bodyParams = nullptr;
GenericParamList *genericParams = nullptr;
SmallVector<GenericTypeParamDecl *, 4> templateParams;
if (funcTemplate) {
unsigned i = 0;
for (auto param : *funcTemplate->getTemplateParameters()) {
auto templateTypeParam = cast<clang::TemplateTypeParmDecl>(param);
// If the template type parameter isn't used in the signature then we
// won't be able to deduce what it is when the function template is
// called in Swift code. This is OK if there's a defaulted type we can
// use (in which case we just don't add a correspond generic). This
// also means sometimes we will import a function template as a
// "normal" (non-generic) Swift function.
//
// If the defaulted template type parameter is used in the signature,
// then still add a generic so that it can be overrieded.
// TODO(https://github.com/apple/swift/issues/57184): In the future we might want to import two overloads in this case so that the default type could still be used.
if (templateTypeParam->hasDefaultArgument() &&
!templateParamTypeUsedInSignature(templateTypeParam)) {
// We do not yet support instantiation of default values of template
// parameters when the function template is instantiated, so do not
// import the function template if the template parameter has
// dependent default value.
auto &defaultArgument =
templateTypeParam->getDefaultArgument().getArgument();
if (defaultArgument.isDependent())
return nullptr;
continue;
}
auto *typeParam = Impl.createDeclWithClangNode<GenericTypeParamDecl>(
param, AccessLevel::Public, dc,
Impl.SwiftContext.getIdentifier(param->getName()),
/*nameLoc*/ Impl.importSourceLoc(param->getLocation()),
/*specifierLoc*/ SourceLoc(),
/*depth*/ 0, /*index*/ i, GenericTypeParamKind::Type);
templateParams.push_back(typeParam);
(void)++i;
}
if (!templateParams.empty())
genericParams = GenericParamList::create(
Impl.SwiftContext, SourceLoc(), templateParams, SourceLoc());
}
bool importFuncWithoutSignature =
isa<clang::CXXMethodDecl>(decl) && Impl.importSymbolicCXXDecls;
if (!dc->isModuleScopeContext() && !isClangNamespace(dc) &&
!isa<clang::CXXMethodDecl>(decl)) {
// Handle initializers.
if (name.getBaseName().isConstructor()) {
assert(!accessorInfo);
return importGlobalAsInitializer(decl, name, dc,
importedName.getInitKind(),
correctSwiftName);
}
if (dc->getSelfProtocolDecl() && !selfIdx) {
// FIXME: source location...
Impl.diagnose({}, diag::swift_name_protocol_static, /*isInit=*/false);
Impl.diagnose({}, diag::note_while_importing, decl->getName());
return nullptr;
}
if (!decl->hasPrototype()) {
// FIXME: source location...
Impl.diagnose({}, diag::swift_name_no_prototype);
Impl.diagnose({}, diag::note_while_importing, decl->getName());
return nullptr;
}
// There is an inout 'self' when the parameter is a pointer to a
// non-const instance of the type we're importing onto. Importing this
// as a method means that the method should be treated as mutating in
// this situation.
if (selfIdx &&
!dc->getDeclaredInterfaceType()->hasReferenceSemantics()) {
auto selfParam = decl->getParamDecl(*selfIdx);
auto selfParamTy = selfParam->getType();
if ((selfParamTy->isPointerType() ||
selfParamTy->isReferenceType()) &&
!selfParamTy->getPointeeType().isConstQualified()) {
selfIsInOut = true;
// If there's a swift_newtype, check the levels of indirection: self
// is only inout if this is a pointer to the typedef type (which
// itself is a pointer).
if (auto nominalTypeDecl = dc->getSelfNominalTypeDecl()) {
if (auto clangDCTy = dyn_cast_or_null<clang::TypedefNameDecl>(
nominalTypeDecl->getClangDecl()))
if (getSwiftNewtypeAttr(clangDCTy, getVersion()))
if (clangDCTy->getUnderlyingType().getCanonicalType() !=
selfParamTy->getPointeeType().getCanonicalType())
selfIsInOut = false;
}
}
}
bool allowNSUIntegerAsInt =
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule(dc), decl);
bodyParams =
getNonSelfParamList(dc, decl, selfIdx, name.getArgumentNames(),
allowNSUIntegerAsInt, !name, templateParams);
// If we can't import a param for some reason (ex. it's a dependent
// type), bail.
if (!bodyParams)
return nullptr;
if (decl->getReturnType()->isScalarType())
importedType =
Impl.importFunctionReturnType(dc, decl, allowNSUIntegerAsInt);
} else {
if (importFuncWithoutSignature) {
importedType = ImportedType{Impl.SwiftContext.getVoidType(), false};
if (decl->param_empty())
bodyParams = ParameterList::createEmpty(Impl.SwiftContext);
else {
llvm::SmallVector<ParamDecl *, 4> params;
for (const auto &param : decl->parameters()) {
Identifier bodyName =
Impl.importFullName(param, Impl.CurrentVersion)
.getBaseIdentifier(Impl.SwiftContext);
auto paramInfo = Impl.createDeclWithClangNode<ParamDecl>(
param, AccessLevel::Private, SourceLoc(), SourceLoc(),
Identifier(), Impl.importSourceLoc(param->getLocation()),
bodyName, Impl.ImportedHeaderUnit);
paramInfo->setSpecifier(ParamSpecifier::Default);
paramInfo->setInterfaceType(Impl.SwiftContext.TheAnyType);
if (param->hasDefaultArg()) {
paramInfo->setDefaultArgumentKind(DefaultArgumentKind::Normal);
paramInfo->setDefaultValueStringRepresentation("cxxDefaultArg");
}
params.push_back(paramInfo);
}
bodyParams = ParameterList::create(Impl.SwiftContext, params);
}
} else {
// Import the function type. If we have parameters, make sure their
// names get into the resulting function type.
importedType = Impl.importFunctionParamsAndReturnType(
dc, decl, {decl->param_begin(), decl->param_size()},
decl->isVariadic(), isInSystemModule(dc), name, bodyParams,
templateParams);
}
if (auto *mdecl = dyn_cast<clang::CXXMethodDecl>(decl)) {
if (mdecl->isStatic()) {
selfIdx = std::nullopt;
} else {
// Swift imports the "self" param last, even for clang functions.
selfIdx = bodyParams ? bodyParams->size() : 0;
// If the method is imported as mutating, this implicitly makes the
// parameter indirect.
selfIsInOut =
!isa<ClassDecl>(dc) &&
Impl.SwiftContext.getClangModuleLoader()->isCXXMethodMutating(
mdecl);
}
}
}
if (!bodyParams) {
Impl.addImportDiagnostic(
decl, Diagnostic(diag::invoked_func_not_imported, decl),
decl->getSourceRange().getBegin());
return nullptr;
}
if (name && name.isSimpleName()) {
assert(importedName.hasCustomName() &&
"imported function with simple name?");
// Just fill in empty argument labels.
name = DeclName(Impl.SwiftContext, name.getBaseName(), bodyParams);
}
if (name && name.getArgumentNames().size() != bodyParams->size()) {
// We synthesized additional parameters so rebuild the DeclName.
name = DeclName(Impl.SwiftContext, name.getBaseName(), bodyParams);
}
auto loc = Impl.importSourceLoc(decl->getLocation());
ClangNode clangNode = decl;
if (funcTemplate)
clangNode = funcTemplate;
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
if (auto method = dyn_cast<clang::CXXMethodDecl>(decl);
method && method->isStatic() && name.getBaseName().isConstructor()) {
return importGlobalAsInitializer(
decl, name, dc, importedName.getInitKind(), correctSwiftName);
}
AbstractFunctionDecl *result = nullptr;
if (auto *ctordecl = dyn_cast<clang::CXXConstructorDecl>(decl)) {
// Don't import copy constructor or move constructor -- these will be
// provided through the value witness table.
if (ctordecl->isCopyConstructor() || ctordecl->isMoveConstructor())
return nullptr;
// Don't import the generic ctors of std::span, rely on the ctors that
// we instantiate when conforming to the overlay. These generic ctors
// can cause crashes in codegen.
// FIXME: figure out why.
const auto *parent = ctordecl->getParent();
if (funcTemplate && parent->isInStdNamespace() &&
parent->getIdentifier() && parent->getName() == "span")
return nullptr;
DeclName ctorName(Impl.SwiftContext, DeclBaseName::createConstructor(),
bodyParams);
result = Impl.createDeclWithClangNode<ConstructorDecl>(
clangNode, importer::convertClangAccess(ctordecl->getAccess()),
ctorName, loc,
/*failable=*/false, /*FailabilityLoc=*/SourceLoc(),
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*ThrownType=*/TypeLoc(), bodyParams, genericParams, dc);
} else {
auto resultTy = importedType.getType();
FuncDecl *func = createFuncOrAccessor(
Impl, loc, accessorInfo, name, nameLoc, genericParams, bodyParams,
resultTy,
/*async=*/false, /*throws=*/false, dc, clangNode);
result = func;
if (!dc->isModuleScopeContext()) {
if (selfIsInOut)
func->setSelfAccessKind(SelfAccessKind::Mutating);
else {
if (getImplicitObjectParamAnnotation<clang::LifetimeBoundAttr>(
decl))
func->setSelfAccessKind(SelfAccessKind::Borrowing);
else
func->setSelfAccessKind(SelfAccessKind::NonMutating);
}
if (selfIdx) {
func->setSelfIndex(selfIdx.value());
if (Impl.SwiftContext.LangOpts.hasFeature(
Feature::AddressableParameters))
func->getImplicitSelfDecl()->setAddressable();
} else {
func->setStatic();
func->setImportAsStaticMember();
}
}
func->setAccess(importer::convertClangAccess(decl->getAccess()));
if (!importFuncWithoutSignature) {
bool success = processSpecialImportedFunc(
func, importedName, decl->getOverloadedOperator());
if (!success)
return nullptr;
}
}
result->setIsObjC(false);
result->setIsDynamic(false);
Impl.recordImplicitUnwrapForDecl(result,
importedType.isImplicitlyUnwrapped());
if (dc->getSelfClassDecl())
// FIXME: only if the class itself is not marked final
result->getAttrs().add(new (Impl.SwiftContext)
FinalAttr(/*IsImplicit=*/true));
finishFuncDecl(decl, result);
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
static bool isNonEscapableAnnotatedType(const clang::Type *t) {
if (const auto *rd = t->getAsRecordDecl()) {
return hasNonEscapableAttr(rd);
}
return false;
}
static bool isEscapableAnnotatedType(const clang::Type *t) {
if (const auto *rd = t->getAsRecordDecl()) {
return hasEscapableAttr(rd);
}
return false;
}
void addLifetimeDependencies(const clang::FunctionDecl *decl,
AbstractFunctionDecl *result) {
if (decl->getTemplatedKind() == clang::FunctionDecl::TK_FunctionTemplate)
return;
// FIXME: support C functions imported as members.
if (!isClangNamespace(result->getDeclContext()) &&
result->getImportAsMemberStatus().isImportAsMember() &&
!isa<clang::CXXMethodDecl, clang::ObjCMethodDecl>(decl))
return;
auto isEscapable = [this](clang::QualType ty) {
return evaluateOrDefault(
Impl.SwiftContext.evaluator,
ClangTypeEscapability({ty.getTypePtr(), &Impl}),
CxxEscapability::Unknown) != CxxEscapability::NonEscapable;
};
// FIXME: this uses '0' as the result index. That only works for
// standalone functions with no parameters.
// See markReturnsUnsafeNonescapable() for a general approach.
auto &ASTContext = result->getASTContext();
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
LifetimeDependenceInfo immortalLifetime(nullptr, nullptr, 0,
/*isImmortal*/ true);
if (hasUnsafeAPIAttr(decl) && !isEscapable(decl->getReturnType())) {
lifetimeDependencies.push_back(immortalLifetime);
Impl.SwiftContext.evaluator.cacheOutput(
LifetimeDependenceInfoRequest{result},
Impl.SwiftContext.AllocateCopy(lifetimeDependencies));
return;
}
auto retType = decl->getReturnType();
auto warnForEscapableReturnType = [&] {
if (isEscapableAnnotatedType(retType.getTypePtr())) {
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::return_escapable_with_lifetimebound,
Impl.SwiftContext.AllocateCopy(retType.getAsString())),
decl->getLocation());
}
};
auto swiftParams = result->getParameters();
bool hasSelf =
result->hasImplicitSelfDecl() && !isa<ConstructorDecl>(result);
const auto dependencyVecSize = swiftParams->size() + hasSelf;
SmallBitVector inheritLifetimeParamIndicesForReturn(dependencyVecSize);
SmallBitVector scopedLifetimeParamIndicesForReturn(dependencyVecSize);
SmallBitVector paramHasAnnotation(dependencyVecSize);
std::map<unsigned, SmallBitVector> inheritedArgDependences;
auto processLifetimeBound = [&](unsigned idx, clang::QualType ty) {
warnForEscapableReturnType();
paramHasAnnotation[idx] = true;
if (isEscapable(ty))
scopedLifetimeParamIndicesForReturn[idx] = true;
else
inheritLifetimeParamIndicesForReturn[idx] = true;
};
auto processLifetimeCaptureBy =
[&](const clang::LifetimeCaptureByAttr *attr, unsigned idx,
clang::QualType ty) {
// FIXME: support scoped lifetimes. This is not straightforward as
// const T& is imported as taking a value
// and we assume the address of T would not escape. An
// annotation in this case contradicts our assumptions. We
// should diagnose that, and support this for the non-const
// case.
if (isEscapable(ty))
return;
for (auto param : attr->params()) {
// FIXME: Swift assumes no escaping to globals. We should diagnose
// this.
if (param == clang::LifetimeCaptureByAttr::GLOBAL ||
param == clang::LifetimeCaptureByAttr::UNKNOWN ||
param == clang::LifetimeCaptureByAttr::INVALID)
continue;
paramHasAnnotation[idx] = true;
if (isa<clang::CXXMethodDecl>(decl) &&
param == clang::LifetimeCaptureByAttr::THIS) {
auto [it, inserted] = inheritedArgDependences.try_emplace(
result->getSelfIndex(), SmallBitVector(dependencyVecSize));
it->second[idx] = true;
} else {
auto [it, inserted] = inheritedArgDependences.try_emplace(
param - isa<clang::CXXMethodDecl>(decl),
SmallBitVector(dependencyVecSize));
it->second[idx] = true;
}
}
};
for (auto [idx, param] : llvm::enumerate(decl->parameters())) {
if (param->hasAttr<clang::LifetimeBoundAttr>())
processLifetimeBound(idx, param->getType());
if (const auto *attr = param->getAttr<clang::LifetimeCaptureByAttr>())
processLifetimeCaptureBy(attr, idx, param->getType());
}
if (getImplicitObjectParamAnnotation<clang::LifetimeBoundAttr>(decl))
processLifetimeBound(
result->getSelfIndex(),
cast<clang::CXXMethodDecl>(decl)->getThisType()->getPointeeType());
if (auto attr =
getImplicitObjectParamAnnotation<clang::LifetimeCaptureByAttr>(
decl))
processLifetimeCaptureBy(
attr, result->getSelfIndex(),
cast<clang::CXXMethodDecl>(decl)->getThisType()->getPointeeType());
for (auto& [idx, inheritedDepVec]: inheritedArgDependences) {
lifetimeDependencies.push_back(LifetimeDependenceInfo(inheritedDepVec.any() ? IndexSubset::get(Impl.SwiftContext,
inheritedDepVec): nullptr, nullptr, idx, /*isImmortal=*/false));
}
if (inheritLifetimeParamIndicesForReturn.any() ||
scopedLifetimeParamIndicesForReturn.any())
lifetimeDependencies.push_back(LifetimeDependenceInfo(
inheritLifetimeParamIndicesForReturn.any()
? IndexSubset::get(Impl.SwiftContext,
inheritLifetimeParamIndicesForReturn)
: nullptr,
scopedLifetimeParamIndicesForReturn.any()
? IndexSubset::get(Impl.SwiftContext,
scopedLifetimeParamIndicesForReturn)
: nullptr,
swiftParams->size() + hasSelf,
/*isImmortal*/ false));
else if (auto *ctordecl = dyn_cast<clang::CXXConstructorDecl>(decl)) {
// Assume default constructed view types have no dependencies.
if (ctordecl->isDefaultConstructor() &&
evaluateOrDefault(
Impl.SwiftContext.evaluator,
ClangTypeEscapability(
{ctordecl->getParent()->getTypeForDecl(), &Impl}),
CxxEscapability::Unknown) == CxxEscapability::NonEscapable)
lifetimeDependencies.push_back(immortalLifetime);
}
if (lifetimeDependencies.empty()) {
if (isNonEscapableAnnotatedType(retType.getTypePtr())) {
Impl.addImportDiagnostic(
decl,
Diagnostic(diag::return_nonescapable_without_lifetimebound,
Impl.SwiftContext.AllocateCopy(retType.getAsString())),
decl->getLocation());
}
} else {
Impl.SwiftContext.evaluator.cacheOutput(
LifetimeDependenceInfoRequest{result},
Impl.SwiftContext.AllocateCopy(lifetimeDependencies));
}
for (auto [idx, param] : llvm::enumerate(decl->parameters())) {
if (isEscapable(param->getType()))
continue;
if (param->hasAttr<clang::NoEscapeAttr>() || paramHasAnnotation[idx])
continue;
// We have a nonescapable parameter that does not have its lifetime
// annotated nor is it marked noescape.
auto attr = new (ASTContext) UnsafeAttr(/*implicit=*/true);
result->getAttrs().add(attr);
break;
}
Impl.diagnoseTargetDirectly(decl);
}
void finishFuncDecl(const clang::FunctionDecl *decl,
AbstractFunctionDecl *result) {
// Set availability.
if (decl->isVariadic()) {
Impl.markUnavailable(result, "Variadic function is unavailable");
}
addLifetimeDependencies(decl, result);
if (decl->hasAttr<clang::ReturnsTwiceAttr>()) {
// The Clang 'returns_twice' attribute is used for functions like
// 'vfork' or 'setjmp'. Because these functions may return control flow
// of a Swift program to an arbitrary point, Swift's guarantees of
// definitive initialization of variables cannot be upheld. As a result,
// functions like these cannot be used in Swift.
Impl.markUnavailable(
result,
"Functions that may return more than one time (annotated with the "
"'returns_twice' attribute) are unavailable in Swift");
}
recordObjCOverride(result);
}
static bool hasComputedPropertyAttr(const clang::Decl *decl) {
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "import_computed_property";
return false;
});
}
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
// The static `operator ()` introduced in C++ 23 is still callable as an
// instance operator in C++, and we want to preserve the ability to call
// it as an instance method in Swift as well for source compatibility.
// Therefore, we synthesize a C++ instance member that invokes the
// operator and import it instead.
if (decl->getOverloadedOperator() ==
clang::OverloadedOperatorKind::OO_Call &&
decl->isStatic()) {
auto result = synthesizer.makeInstanceToStaticOperatorCallMethod(decl);
if (result)
return result;
}
auto method = VisitFunctionDecl(decl);
// Do not expose constructors of abstract C++ classes.
if (auto recordDecl =
dyn_cast<clang::CXXRecordDecl>(decl->getDeclContext())) {
if (isa<clang::CXXConstructorDecl>(decl) && recordDecl->isAbstract() &&
isa_and_nonnull<ValueDecl>(method)) {
Impl.markUnavailable(
cast<ValueDecl>(method),
"constructors of abstract C++ classes are unavailable in Swift");
return method;
}
}
if (decl->isVirtual()) {
if (auto funcDecl = dyn_cast_or_null<FuncDecl>(method)) {
if (isa_and_nonnull<StructDecl>(method->getDeclContext())) {
// If this is a method of a Swift struct, any possible override of
// this method would get sliced away, and an invocation would get
// dispatched statically. This is fine because it matches the C++
// behavior.
if (decl->isPureVirtual()) {
// If this is a pure virtual method, we won't have any
// implementation of it to invoke.
Impl.markUnavailable(funcDecl,
"virtual function is not available in Swift "
"because it is pure");
}
} else if (isa_and_nonnull<ClassDecl>(funcDecl->getDeclContext())) {
// This is a foreign reference type. Since `class T` on the Swift
// side is mapped from `T*` on the C++ side, an invocation of a
// virtual method `t->method()` should get dispatched dynamically.
// Create a thunk that will perform dynamic dispatch.
// TODO: we don't have to import the actual `method` in this case,
// we can just synthesize a thunk and import that instead.
auto result = synthesizer.makeVirtualMethod(decl);
if (result) {
return result;
} else {
Impl.markUnavailable(
funcDecl, "virtual function is not available in Swift");
}
}
}
}
if (Impl.SwiftContext.LangOpts.CxxInteropGettersSettersAsProperties ||
hasComputedPropertyAttr(decl)) {
if (auto funcDecl = dyn_cast_or_null<FuncDecl>(method)) {
auto parent = funcDecl->getParent()->getSelfNominalTypeDecl();
CXXMethodBridging bridgingInfo(decl);
if (bridgingInfo.classify() == CXXMethodBridging::Kind::getter) {
auto name = bridgingInfo.getClangName().drop_front(3);
Impl.GetterSetterMap[parent][name].first = funcDecl;
} else if (bridgingInfo.classify() ==
CXXMethodBridging::Kind::setter) {
auto name = bridgingInfo.getClangName().drop_front(3);
Impl.GetterSetterMap[parent][name].second = funcDecl;
}
}
}
return method;
}
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
if (!Impl.importSymbolicCXXDecls &&
decl->hasAttr<clang::NoUniqueAddressAttr>()) {
if (const auto *rd = decl->getType()->getAsRecordDecl()) {
// Clang can store the next field in the padding of this one. Swift
// does not support this yet so let's not import the field and
// represent it with an opaque blob in codegen.
//
// This check is not relevant when importing the decl symbolically
// (since that isn't used for codegen). In fact, we need to avoid this
// check because symbolic imports can expose us to dependent types
// whose ASTRecordLayout cannot be queried.
const auto &fieldLayout =
decl->getASTContext().getASTRecordLayout(rd);
auto &clangCtx = decl->getASTContext();
if (!decl->isZeroSize(clangCtx) &&
fieldLayout.getDataSize() != fieldLayout.getSize()) {
const auto *parent = decl->getParent();
auto currIdx = decl->getFieldIndex();
auto nextIdx = currIdx + 1;
const auto &parentLayout = clangCtx.getASTRecordLayout(parent);
if (parentLayout.getFieldCount() > nextIdx &&
parentLayout.getFieldOffset(nextIdx) <
(parentLayout.getFieldOffset(currIdx) +
clangCtx.toBits(fieldLayout.getSize())))
return nullptr;
}
}
}
// Fields are imported as variables.
std::optional<ImportedName> correctSwiftName;
ImportedName importedName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName) {
return nullptr;
}
if (correctSwiftName) {
// FIXME: We should import this as a variant, but to do that, we'll also
// need to make this a computed variable or otherwise fix how the rest
// of the compiler thinks about stored properties in imported structs.
// For now, just don't import it at all. (rdar://86069786)
return nullptr;
}
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
auto known = Impl.importDeclCached(decl, getVersion());
if (known.has_value())
return known.value();
// TODO: do we want to emit a diagnostic here?
// Types that are marked as foreign references cannot be stored by value.
if (auto recordType =
dyn_cast<clang::RecordType>(decl->getType().getCanonicalType())) {
if (recordHasReferenceSemantics(recordType->getDecl()))
return nullptr;
}
auto fieldType = desugarIfElaborated(decl->getType());
ImportedType importedType = importer::findOptionSetEnum(fieldType, Impl);
if (!importedType)
importedType =
Impl.importType(decl->getType(), ImportTypeKind::RecordField,
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
isInSystemModule(dc), Bridgeability::None,
getImportTypeAttrs(decl));
if (!importedType) {
Impl.addImportDiagnostic(
decl, Diagnostic(diag::record_field_not_imported, decl),
decl->getSourceRange().getBegin());
return nullptr;
}
auto type = importedType.getType();
auto result = Impl.createDeclWithClangNode<VarDecl>(
decl, importer::convertClangAccess(decl->getAccess()),
/*IsStatic*/ false, VarDecl::Introducer::Var,
Impl.importSourceLoc(decl->getLocation()), name, dc);
if (decl->getType().isConstQualified()) {
// Note that in C++ there are ways to change the values of const
// members, so we don't use WriteImplKind::Immutable storage.
assert(result->supportsMutation());
result->overwriteSetterAccess(AccessLevel::Private);
}
result->setIsObjC(false);
result->setIsDynamic(false);
result->setInterfaceType(type);
Impl.recordImplicitUnwrapForDecl(result,
importedType.isImplicitlyUnwrapped());
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getAttrs().add(
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
// FIXME: Handle IBOutletCollection.
// If this is a compatibility stub, handle it as such.
if (correctSwiftName)
// FIXME: Temporarily unreachable because of check above.
markAsVariant(result, *correctSwiftName);
return result;
}
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
// Disallow direct ivar access (and avoid conflicts with property names).
return nullptr;
}
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
// @defs is an anachronism; ignore it.
return nullptr;
}
Decl *VisitVarDecl(const clang::VarDecl *decl) {
// Variables are imported as... variables.
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName) return nullptr;
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
// If we've imported this variable as a member, it's a static
// member.
bool isStatic = false;
if (dc->isTypeContext())
isStatic = true;
// For now we don't import static constexpr
if (isStatic && decl->isConstexpr())
return nullptr;
auto introducer = Impl.shouldImportGlobalAsLet(decl->getType())
? VarDecl::Introducer::Let
: VarDecl::Introducer::Var;
auto result = Impl.createDeclWithClangNode<VarDecl>(
decl, importer::convertClangAccess(decl->getAccess()),
/*IsStatic*/ isStatic, introducer,
Impl.importSourceLoc(decl->getLocation()), name, dc);
result->setIsObjC(false);
result->setIsDynamic(false);
// If imported as member, the member should be final.
if (dc->getSelfClassDecl())
result->getAttrs().add(new (Impl.SwiftContext)
FinalAttr(/*IsImplicit=*/true));
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitFunctionTemplateDecl(const clang::FunctionTemplateDecl *decl) {
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) =
importFullName(decl->getAsFunction());
if (!importedName)
return nullptr;
// All template parameters must be template type parameters.
if (!llvm::all_of(*decl->getTemplateParameters(), [](auto param) {
return isa<clang::TemplateTypeParmDecl>(param);
}))
return nullptr;
return importFunctionDecl(decl->getAsFunction(), importedName,
correctSwiftName, std::nullopt, decl);
}
Decl *VisitClassTemplateDecl(const clang::ClassTemplateDecl *decl) {
ImportedName importedName;
std::tie(importedName, std::ignore) = importFullName(decl);
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (name.empty())
return nullptr;
if (Impl.importSymbolicCXXDecls)
// Import an unspecialized C++ class template as a Swift value/class
// type in symbolic mode.
return Impl.importDecl(decl->getTemplatedDecl(), Impl.CurrentVersion);
auto loc = Impl.importSourceLoc(decl->getLocation());
auto dc = Impl.importDeclContextOf(
decl, importedName.getEffectiveContext());
SmallVector<GenericTypeParamDecl *, 4> genericParams;
for (auto &param : *decl->getTemplateParameters()) {
auto genericParamDecl =
Impl.createDeclWithClangNode<GenericTypeParamDecl>(
param, AccessLevel::Public, dc,
Impl.SwiftContext.getIdentifier(param->getName()),
Impl.importSourceLoc(param->getLocation()),
/*specifierLoc*/ SourceLoc(), /*depth*/ 0,
/*index*/ genericParams.size(), GenericTypeParamKind::Type);
genericParams.push_back(genericParamDecl);
}
auto genericParamList = GenericParamList::create(
Impl.SwiftContext, loc, genericParams, loc);
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
decl, importer::convertClangAccess(decl->getAccess()), loc, name, loc,
std::nullopt, genericParamList, dc);
auto attr = AvailableAttr::createUniversallyUnavailable(
Impl.SwiftContext, "Un-specialized class templates are not currently "
"supported. Please use a specialization of this "
"type.");
structDecl->getAttrs().add(attr);
return structDecl;
}
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
// See VisitUsingShadowDecl below.
return nullptr;
}
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
// Only import:
// 1. Types
// 2. C++ methods from privately inherited base classes
if (!isa<clang::TypeDecl>(decl->getTargetDecl()) &&
!isa<clang::CXXMethodDecl>(decl->getTargetDecl()))
return nullptr;
// Constructors (e.g. `using BaseClass::BaseClass`) are handled in
// VisitCXXRecordDecl, since we need them to determine whether a struct
// can be imported into Swift.
if (isa<clang::CXXConstructorDecl>(decl->getTargetDecl()))
return nullptr;
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
// Don't import something that doesn't have a name.
if (importedName.getDeclName().isSpecial())
return nullptr;
auto Name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (Name.empty())
return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto importedDC =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!importedDC)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
auto known = Impl.importDeclCached(decl, getVersion());
if (known.has_value())
return known.value();
if (isa<clang::TypeDecl>(decl->getTargetDecl())) {
Decl *SwiftDecl = Impl.importDecl(decl->getUnderlyingDecl(), getActiveSwiftVersion());
if (!SwiftDecl)
return nullptr;
const TypeDecl *SwiftTypeDecl = dyn_cast<TypeDecl>(SwiftDecl);
if (!SwiftTypeDecl)
return nullptr;
auto Loc = Impl.importSourceLoc(decl->getLocation());
auto Result = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl, importer::convertClangAccess(decl->getAccess()),
Impl.importSourceLoc(decl->getBeginLoc()), SourceLoc(), Name, Loc,
/*genericparams*/ nullptr, importedDC);
Result->setUnderlyingType(SwiftTypeDecl->getDeclaredInterfaceType());
return Result;
}
if (auto targetMethod =
dyn_cast<clang::CXXMethodDecl>(decl->getTargetDecl())) {
auto *derivedRecord =
dyn_cast_or_null<clang::CXXRecordDecl>(decl->getDeclContext());
auto *baseRecord = dyn_cast_or_null<clang::CXXRecordDecl>(
targetMethod->getDeclContext());
if (!derivedRecord || !baseRecord ||
!derivedRecord->isDerivedFrom(baseRecord))
return nullptr;
// TODO: If the derived class already has a member with the same name,
// parameter list, and qualifications, the derived class member should
// hide or override (rather than conflict with) the member that is
// introduced from the base class. Need to check this.
auto importedBaseMethod = dyn_cast_or_null<FuncDecl>(
Impl.importDecl(targetMethod, getActiveSwiftVersion()));
if (!importedBaseMethod)
return nullptr;
auto clonedMethod =
dyn_cast_or_null<FuncDecl>(Impl.importBaseMemberDecl(
importedBaseMethod, importedDC, ClangInheritanceInfo()));
if (!clonedMethod)
return nullptr;
clonedMethod->overwriteAccess(
importer::convertClangAccess(decl->getAccess()));
bool success = processSpecialImportedFunc(
clonedMethod, importedName, targetMethod->getOverloadedOperator());
if (!success)
return nullptr;
return clonedMethod;
}
return nullptr;
}
/// Add an @objc(name) attribute with the given, optional name expressed as
/// selector.
///
/// The importer should use this rather than adding the attribute directly.
void addObjCAttribute(Decl *decl, std::optional<ObjCSelector> name) {
auto &ctx = Impl.SwiftContext;
if (name) {
decl->getAttrs().add(ObjCAttr::create(ctx, name,
/*implicitName=*/true));
}
if (auto VD = dyn_cast<ValueDecl>(decl)) {
VD->setIsObjC(true);
VD->setIsDynamic(true);
}
// If the declaration we attached the 'objc' attribute to is within a
// type, record it in the type.
if (auto contextTy = decl->getDeclContext()->getDeclaredInterfaceType()) {
if (auto tyDecl = contextTy->getNominalOrBoundGenericNominal()) {
if (auto method = dyn_cast<AbstractFunctionDecl>(decl)) {
if (name)
tyDecl->recordObjCMethod(method, *name);
}
}
}
}
/// Add an @objc(name) attribute with the given, optional name expressed as
/// selector.
///
/// The importer should use this rather than adding the attribute directly.
void addObjCAttribute(Decl *decl, Identifier name) {
addObjCAttribute(decl, ObjCSelector(Impl.SwiftContext, 0, name));
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
if (!dc)
return nullptr;
checkBridgingAttrs(decl);
// While importing the DeclContext, we might have imported the decl
// itself.
auto Known = Impl.importDeclCached(decl, getVersion());
if (Known.has_value())
return Known.value();
ImportedName importedName;
std::tie(importedName, std::ignore) = importFullName(decl);
if (!importedName)
return nullptr;
// some ObjC method decls are imported as computed properties.
switch(importedName.getAccessorKind()) {
case ImportedAccessorKind::PropertyGetter:
if (importedName.getAsyncInfo())
return importObjCMethodAsEffectfulProp(decl, dc, importedName);
// if there is no valid async info, then fall-back to method import.
LLVM_FALLTHROUGH;
case ImportedAccessorKind::PropertySetter:
case ImportedAccessorKind::SubscriptGetter:
case ImportedAccessorKind::SubscriptSetter:
case ImportedAccessorKind::None:
return importObjCMethodDecl(decl, dc, std::nullopt);
case ImportedAccessorKind::DereferenceGetter:
case ImportedAccessorKind::DereferenceSetter:
llvm_unreachable("dereference operators only exist in C++");
}
}
/// Check whether we have already imported a method with the given
/// selector in the given context.
bool isMethodAlreadyImported(ObjCSelector selector, ImportedName importedName,
bool isInstance, const DeclContext *dc,
llvm::function_ref<bool(AbstractFunctionDecl *fn)> filter) {
// We only need to perform this check for classes.
auto *classDecl = dc->getSelfClassDecl();
if (!classDecl)
return false;
auto matchesImportedDecl = [&](Decl *member) -> bool {
auto *afd = dyn_cast<AbstractFunctionDecl>(member);
if (!afd)
return false;
// Instance-ness must match.
if (afd->isObjCInstanceMethod() != isInstance)
return false;
// Both the selector and imported name must match.
if (afd->getObjCSelector() != selector ||
importedName.getDeclName() != afd->getName()) {
return false;
}
// Finally, the provided filter must match.
return filter(afd);
};
// First check to see if we've already imported a method with the same
// selector.
auto importedMembers = Impl.MembersForNominal.find(classDecl);
if (importedMembers != Impl.MembersForNominal.end()) {
auto baseName = importedName.getDeclName().getBaseName();
auto membersForName = importedMembers->second.find(baseName);
if (membersForName != importedMembers->second.end()) {
return llvm::any_of(membersForName->second, matchesImportedDecl);
}
}
// Then, for a deserialized Swift class, check to see if it has brought in
// any matching @objc methods.
if (classDecl->wasDeserialized()) {
auto &ctx = Impl.SwiftContext;
TinyPtrVector<AbstractFunctionDecl *> deserializedMethods;
ctx.loadObjCMethods(classDecl, selector, isInstance,
/*prevGeneration*/ 0, deserializedMethods,
/*swiftOnly*/ true);
return llvm::any_of(deserializedMethods, matchesImportedDecl);
}
return false;
}
Decl *importObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc,
std::optional<AccessorInfo> accessorInfo) {
return importObjCMethodDecl(decl, dc, false, accessorInfo);
}
private:
static bool
isAcceptableResultOrNull(Decl *fn,
std::optional<AccessorInfo> accessorInfo) {
if (nullptr == fn)
return true;
// We can't safely re-use the same declaration if it disagrees
// in accessor-ness.
auto accessor = dyn_cast<AccessorDecl>(fn);
if (!accessorInfo)
return accessor == nullptr;
// For consistency with previous behavior, allow it even if it's been
// imported for some other property.
return (accessor && accessor->getAccessorKind() == accessorInfo->Kind);
}
/// Creates a fresh VarDecl with a single 'get' accessor to represent
/// an ObjC method that takes no arguments other than a completion-handler
/// (where the handler may have an NSError argument).
Decl *importObjCMethodAsEffectfulProp(const clang::ObjCMethodDecl *decl,
DeclContext *dc,
ImportedName name) {
assert(name.getAsyncInfo() && "expected to be for an effectful prop!");
if (name.getAccessorKind() != ImportedAccessorKind::PropertyGetter) {
assert(false && "unexpected accessor kind as a computed prop");
// NOTE: to handle setters, we would need to search for an existing
// VarDecl corresponding to the one we might have already created
// for the 'get' accessor, and tack this accessor onto it.
return nullptr;
}
auto importedType = Impl.importEffectfulPropertyType(decl, dc, name,
isInSystemModule(dc));
if (!importedType)
return nullptr;
auto type = importedType.getType();
const auto access = getOverridableAccessLevel(dc);
auto ident = name.getBaseIdentifier(Impl.SwiftContext);
auto propDecl = Impl.createDeclWithClangNode<VarDecl>(decl, access,
/*IsStatic*/decl->isClassMethod(), VarDecl::Introducer::Var,
Impl.importSourceLoc(decl->getLocation()), ident, dc);
propDecl->setInterfaceType(type);
Impl.recordImplicitUnwrapForDecl(propDecl,
importedType.isImplicitlyUnwrapped());
////
// Build the getter
AccessorInfo info{propDecl, AccessorKind::Get};
auto *getter = cast_or_null<AccessorDecl>(
importObjCMethodDecl(decl, dc, info));
if (!getter)
return nullptr;
Impl.importAttributes(decl, getter);
////
// Combine the getter and the VarDecl into a computed property.
// NOTE: since it's an ObjC method we're turning into a Swift computed
// property, we infer that it has no ObjC 'atomic' guarantees.
auto inferredObjCPropertyAttrs =
static_cast<clang::ObjCPropertyAttribute::Kind>
( clang::ObjCPropertyAttribute::Kind::kind_readonly
| clang::ObjCPropertyAttribute::Kind::kind_nonatomic
| (decl->isInstanceMethod()
? clang::ObjCPropertyAttribute::Kind::kind_class
: clang::ObjCPropertyAttribute::Kind::kind_noattr)
);
// FIXME: Fake locations for '{' and '}'?
propDecl->setIsSetterMutating(false);
Impl.makeComputed(propDecl, getter, /*setter=*/nullptr);
addObjCAttribute(propDecl, Impl.importIdentifier(decl->getIdentifier()));
applyPropertyOwnership(propDecl, inferredObjCPropertyAttrs);
////
// Check correctness
if (getter->getParameters()->size() != 0) {
assert(false && "this should not happen!");
return nullptr;
}
return propDecl;
}
Decl *importObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc, bool forceClassMethod,
std::optional<AccessorInfo> accessorInfo) {
// If we have an init method, import it as an initializer.
if (isInitMethod(decl)) {
// Cannot import initializers as accessors.
if (accessorInfo)
return nullptr;
// Cannot force initializers into class methods.
if (forceClassMethod)
return nullptr;
return importConstructor(decl, dc, /*implicit=*/false, std::nullopt,
/*required=*/false);
}
// Check whether we already imported this method.
if (!forceClassMethod &&
dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
// FIXME: Should also be able to do this for forced class
// methods.
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
getVersion()});
if (known != Impl.ImportedDecls.end()) {
auto decl = known->second;
if (isAcceptableResultOrNull(decl, accessorInfo))
return decl;
}
}
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName)
return nullptr;
// Check whether another method with the same selector has already been
// imported into this context.
ObjCSelector selector = Impl.importSelector(decl->getSelector());
bool isInstance = decl->isInstanceMethod() && !forceClassMethod;
if (isActiveSwiftVersion()) {
if (isMethodAlreadyImported(selector, importedName, isInstance, dc,
[&](AbstractFunctionDecl *fn) {
return isAcceptableResultOrNull(fn, accessorInfo);
})) {
return nullptr;
}
}
// Normal case applies when we're importing an older name, or when we're
// not an init
if (!isFactoryInit(importedName)) {
auto result = importNonInitObjCMethodDecl(decl, dc, importedName,
selector, forceClassMethod,
accessorInfo);
if (!isActiveSwiftVersion() && result)
markAsVariant(result, *correctSwiftName);
return result;
}
// We can't import a factory-initializer as an accessor.
if (accessorInfo)
return nullptr;
// We don't want to suppress init formation in Swift 3 names. Instead, we
// want the normal Swift 3 name, and a "raw" name for diagnostics. The
// "raw" name will be imported as unavailable with a more helpful and
// specific message.
++NumFactoryMethodsAsInitializers;
ConstructorDecl *existing = nullptr;
auto result =
importConstructor(decl, dc, false, importedName.getInitKind(),
/*required=*/false, selector, importedName,
{decl->param_begin(), decl->param_size()},
decl->isVariadic(), existing);
if (!isActiveSwiftVersion() && result)
markAsVariant(result, *correctSwiftName);
return result;
}
Decl *
importNonInitObjCMethodDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc, ImportedName importedName,
ObjCSelector selector, bool forceClassMethod,
std::optional<AccessorInfo> accessorInfo) {
assert(dc->isTypeContext() && "Method in non-type context?");
assert(isa<ClangModuleUnit>(dc->getModuleScopeContext()) &&
"Clang method in Swift context?");
// FIXME: We should support returning "Self.Type" for a root class
// instance method mirrored as a class method, but it currently causes
// problems for the type checker.
if (forceClassMethod && decl->hasRelatedResultType())
return nullptr;
// Hack: avoid importing methods named "print" that aren't available in
// the current version of Swift. We'd rather just let the user use
// Swift.print in that case.
if (!isActiveSwiftVersion() &&
isPrintLikeMethod(importedName.getDeclName(), dc)) {
return nullptr;
}
SpecialMethodKind kind = SpecialMethodKind::Regular;
if (isNSDictionaryMethod(decl, Impl.objectForKeyedSubscript))
kind = SpecialMethodKind::NSDictionarySubscriptGetter;
// Import the type that this method will have.
std::optional<ForeignAsyncConvention> asyncConvention;
std::optional<ForeignErrorConvention> errorConvention;
// If we have a property accessor, find the corresponding property
// declaration.
const clang::ObjCPropertyDecl *prop = nullptr;
if (decl->isPropertyAccessor()) {
prop = decl->findPropertyDecl();
if (!prop) return nullptr;
// If we're importing just the accessors (not the property), ignore
// the property.
if (shouldImportPropertyAsAccessors(prop))
prop = nullptr;
}
const bool nameImportIsGetter =
importedName.getAccessorKind() == ImportedAccessorKind::PropertyGetter;
const bool needAccessorDecl = prop || nameImportIsGetter;
// If we have an accessor-import request, but didn't find a property
// or it's ImportedName doesn't indicate a getter,
// then reject the import request.
if (accessorInfo && !needAccessorDecl)
return nullptr;
// Import the parameter list and result type.
ParameterList *bodyParams = nullptr;
ImportedType importedType;
if (prop) {
// If the matching property is in a superclass, or if the getter and
// setter are redeclared in a potentially incompatible way, bail out.
if (prop->getGetterMethodDecl() != decl &&
prop->getSetterMethodDecl() != decl)
return nullptr;
importedType =
Impl.importAccessorParamsAndReturnType(dc, prop, decl,
isInSystemModule(dc),
importedName, &bodyParams);
} else {
importedType = Impl.importMethodParamsAndReturnType(
dc, decl, decl->parameters(), decl->isVariadic(),
isInSystemModule(dc), &bodyParams, importedName,
asyncConvention, errorConvention, kind);
if (!importedType) {
Impl.addImportDiagnostic(
decl, Diagnostic(diag::record_method_not_imported, decl),
decl->getSourceRange().getBegin());
}
}
if (!importedType)
return nullptr;
// Check whether we recursively imported this method
if (!forceClassMethod &&
dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
// FIXME: Should also be able to do this for forced class
// methods.
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
getVersion()});
if (known != Impl.ImportedDecls.end()) {
auto decl = known->second;
if (isAcceptableResultOrNull(decl, accessorInfo))
return decl;
}
}
// Determine whether the function is throwing and/or async.
bool throws = importedName.getErrorInfo().has_value();
bool async = false;
auto asyncInfo = importedName.getAsyncInfo();
if (asyncInfo) {
async = true;
if (asyncInfo->isThrowing())
throws = true;
}
auto resultTy = importedType.getType();
auto isIUO = importedType.isImplicitlyUnwrapped();
// If the method has a related result type that is representable
// in Swift as DynamicSelf, do so.
if (!needAccessorDecl && decl->hasRelatedResultType()) {
resultTy = dc->getSelfInterfaceType();
if (dc->getSelfClassDecl())
resultTy = DynamicSelfType::get(resultTy, Impl.SwiftContext);
isIUO = false;
OptionalTypeKind nullability = OTK_ImplicitlyUnwrappedOptional;
if (auto typeNullability = decl->getReturnType()->getNullability()) {
// If the return type has nullability, use it.
nullability = translateNullability(*typeNullability);
}
if (nullability != OTK_None && !errorConvention.has_value()) {
resultTy = OptionalType::get(resultTy);
isIUO = nullability == OTK_ImplicitlyUnwrappedOptional;
}
}
auto result = createFuncOrAccessor(Impl,
/*funcLoc*/ SourceLoc(), accessorInfo,
importedName.getDeclName(),
/*nameLoc*/ SourceLoc(),
/*genericParams=*/nullptr, bodyParams,
resultTy, async, throws, dc, decl);
result->setAccess(decl->isDirectMethod() ? AccessLevel::Public
: getOverridableAccessLevel(dc));
// Optional methods in protocols.
if (decl->getImplementationControl() ==
clang::ObjCImplementationControl::Optional &&
isa<ProtocolDecl>(dc))
result->getAttrs().add(new (Impl.SwiftContext)
OptionalAttr(/*implicit*/false));
// Mark class methods as static.
if (decl->isClassMethod() || forceClassMethod)
result->setStatic();
if (forceClassMethod)
result->setImplicit();
Impl.recordImplicitUnwrapForDecl(result, isIUO);
// Mark this method @objc.
addObjCAttribute(result, selector);
// If this method overrides another method, mark it as such.
recordObjCOverride(result);
// Make a note that we've imported this method into this context.
recordMemberInContext(dc, result);
// Record the error convention.
if (errorConvention) {
result->setForeignErrorConvention(*errorConvention);
}
// Record the async convention.
if (asyncConvention) {
result->setForeignAsyncConvention(*asyncConvention);
}
// Handle attributes.
if (decl->hasAttr<clang::IBActionAttr>() &&
isa<FuncDecl>(result) &&
cast<FuncDecl>(result)->isPotentialIBActionTarget()) {
result->getAttrs().add(
new (Impl.SwiftContext) IBActionAttr(/*IsImplicit=*/false));
}
// FIXME: Is there an IBSegueAction equivalent?
// Check whether there's some special method to import.
if (!forceClassMethod) {
if (dc == Impl.importDeclContextOf(decl, decl->getDeclContext()))
Impl.ImportedDecls.try_emplace(
{decl->getCanonicalDecl(), getVersion()}, result);
if (importedName.isSubscriptAccessor()) {
// If this was a subscript accessor, try to create a
// corresponding subscript declaration.
(void)importSubscript(result, decl);
} else if (shouldAlsoImportAsClassMethod(result)) {
// If we should import this instance method also as a class
// method, do so and mark the result as an alternate
// declaration.
if (auto imported = importObjCMethodDecl(decl, dc,
/*forceClassMethod=*/true,
/*accessor*/ std::nullopt))
Impl.addAlternateDecl(result, cast<ValueDecl>(imported));
}
}
return result;
}
public:
/// Record the function or initializer overridden by the given Swift method.
void recordObjCOverride(AbstractFunctionDecl *decl);
/// Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(capacity: 1024)
/// \endcode
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
const DeclContext *dc, bool implicit,
std::optional<CtorInitializerKind> kind,
bool required);
/// Returns the latest "introduced" version on the current platform for
/// \p D.
llvm::VersionTuple findLatestIntroduction(const clang::Decl *D);
/// Returns true if importing \p objcMethod will produce a "better"
/// initializer than \p existingCtor.
bool
existingConstructorIsWorse(const ConstructorDecl *existingCtor,
const clang::ObjCMethodDecl *objcMethod,
CtorInitializerKind kind);
/// Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(capacity: 1024)
/// \endcode
///
/// This variant of the function is responsible for actually binding the
/// constructor declaration appropriately.
ConstructorDecl *importConstructor(const clang::ObjCMethodDecl *objcMethod,
const DeclContext *dc,
bool implicit,
CtorInitializerKind kind,
bool required,
ObjCSelector selector,
ImportedName importedName,
ArrayRef<const clang::ParmVarDecl*> args,
bool variadic,
ConstructorDecl *&existing);
void recordObjCOverride(SubscriptDecl *subscript);
/// Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod);
/// Import the accessor and its attributes.
AccessorDecl *importAccessor(const clang::ObjCMethodDecl *clangAccessor,
AbstractStorageDecl *storage,
AccessorKind accessorKind,
DeclContext *dc);
public:
/// Recursively add the given protocol and its inherited protocols to the
/// given vector, guarded by the known set of protocols.
void addProtocols(ProtocolDecl *protocol,
SmallVectorImpl<ProtocolDecl *> &protocols,
llvm::SmallPtrSetImpl<ProtocolDecl *> &known);
// Import the given Objective-C protocol list, along with any
// implicitly-provided protocols, and attach them to the given
// declaration.
void importObjCProtocols(Decl *decl,
const clang::ObjCProtocolList &clangProtocols,
SmallVectorImpl<InheritedEntry> &inheritedTypes);
// Returns None on error. Returns nullptr if there is no type param list to
// import or we suppress its import, as in the case of NSArray, NSSet, and
// NSDictionary.
std::optional<GenericParamList *>
importObjCGenericParams(const clang::ObjCInterfaceDecl *decl,
DeclContext *dc);
/// Import the members of all of the protocols to which the given
/// Objective-C class, category, or extension explicitly conforms into
/// the given list of members, so long as the method was not already
/// declared in the class.
///
/// FIXME: This whole thing is a hack, because name lookup should really
/// just find these members when it looks in the protocol. Unfortunately,
/// that's not something the name lookup code can handle right now, and
/// it may still be necessary when the protocol's instance methods become
/// class methods on a root class (e.g. NSObject-the-protocol's instance
/// methods become class methods on NSObject).
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
DeclContext *dc,
std::optional<DeclBaseName> name,
SmallVectorImpl<Decl *> &newMembers);
void importNonOverriddenMirroredMethods(DeclContext *dc,
MutableArrayRef<MirroredMethodEntry> entries,
SmallVectorImpl<Decl *> &newMembers);
/// Import constructors from our superclasses (and their
/// categories/extensions), effectively "inheriting" constructors.
void importInheritedConstructors(const ClassDecl *classDecl,
SmallVectorImpl<Decl *> &newMembers);
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
// If the declaration is invalid, fail.
if (decl->isInvalidDecl()) return nullptr;
// Objective-C categories and extensions map to Swift extensions.
if (importer::hasNativeSwiftDecl(decl))
return nullptr;
// Find the Swift class being extended.
auto objcClass = castIgnoringCompatibilityAlias<ClassDecl>(
Impl.importDecl(decl->getClassInterface(), getActiveSwiftVersion()));
if (!objcClass)
return nullptr;
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
if (!dc)
return nullptr;
auto loc = Impl.importSourceLoc(decl->getBeginLoc());
auto result = ExtensionDecl::create(
Impl.SwiftContext, loc,
nullptr,
{ }, dc, nullptr, decl);
Impl.SwiftContext.evaluator.cacheOutput(ExtendedTypeRequest{result},
objcClass->getDeclaredType());
Impl.SwiftContext.evaluator.cacheOutput(ExtendedNominalRequest{result},
std::move(objcClass));
Identifier categoryName;
if (!decl->getName().empty())
categoryName = Impl.SwiftContext.getIdentifier(decl->getName());
addObjCAttribute(result, categoryName);
// Create the extension declaration and record it.
objcClass->addExtension(result);
Impl.ImportedDecls[{decl, getVersion()}] = result;
SmallVector<InheritedEntry, 4> inheritedTypes;
importObjCProtocols(result, decl->getReferencedProtocols(),
inheritedTypes);
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
result->setMemberLoader(&Impl, 0);
return result;
}
template <typename T, typename U>
T *resolveSwiftDeclImpl(const U *decl, Identifier name,
bool hasKnownSwiftName, ModuleDecl *module,
bool allowObjCMismatchFallback,
bool cacheResult) {
auto isMatch = [&](const T *singleResult, bool baseNameMatches,
bool allowObjCMismatch) -> bool {
const DeclAttributes &attrs = singleResult->getAttrs();
// Skip versioned variants.
if (singleResult->isUnavailableInCurrentSwiftVersion())
return false;
// If Clang decl has a custom Swift name, then we know that the name we
// did direct lookup for is correct.
// 'allowObjCMismatch' shouldn't exist, but we need it for source
// compatibility where a previous version of the compiler didn't check
// @objc-ness at all.
if (hasKnownSwiftName || allowObjCMismatch) {
assert(baseNameMatches);
return allowObjCMismatch || singleResult->isObjC();
}
// Skip if a different name is used for Objective-C.
if (auto objcAttr = attrs.getAttribute<ObjCAttr>())
if (auto objcName = objcAttr->getName())
return objcName->getSimpleName() == name;
return baseNameMatches && singleResult->isObjC();
};
// First look at Swift types with the same name.
SmallVector<ValueDecl *, 4> swiftDeclsByName;
module->lookupValue(name, NLKind::QualifiedLookup, swiftDeclsByName);
T *found = nullptr;
for (auto result : swiftDeclsByName) {
if (auto singleResult = dyn_cast<T>(result)) {
if (isMatch(singleResult, /*baseNameMatches=*/true,
/*allowObjCMismatch=*/false)) {
if (found)
return nullptr;
found = singleResult;
}
}
}
if (!found && hasKnownSwiftName)
return nullptr;
if (!found) {
// Try harder to find a match looking at just custom Objective-C names.
// Limit what we deserialize to decls with an @objc attribute.
SmallVector<Decl *, 4> matchingTopLevelDecls;
// Get decls with a matching @objc attribute
module->getTopLevelDeclsWhereAttributesMatch(
matchingTopLevelDecls, [&name](const DeclAttributes attrs) -> bool {
if (auto objcAttr = attrs.getAttribute<ObjCAttr>())
if (auto objcName = objcAttr->getName())
return objcName->getSimpleName() == name;
return false;
});
// Filter by decl kind
for (auto result : matchingTopLevelDecls) {
if (auto singleResult = dyn_cast<T>(result)) {
if (found)
return nullptr;
found = singleResult;
}
}
}
if (!found && allowObjCMismatchFallback) {
// Go back to the first list and find classes with matching Swift names
// *even if the ObjC name doesn't match.*
// This shouldn't be allowed but we need it for source compatibility;
// people used `\@class SwiftNameOfClass` as a workaround for not
// having the previous loop, and it "worked".
for (auto result : swiftDeclsByName) {
if (auto singleResult = dyn_cast<T>(result)) {
if (isMatch(singleResult, /*baseNameMatches=*/true,
/*allowObjCMismatch=*/true)) {
if (found)
return nullptr;
found = singleResult;
}
}
}
}
if (found && cacheResult)
Impl.ImportedDecls[{decl->getCanonicalDecl(),
getActiveSwiftVersion()}] = found;
return found;
}
template <typename T, typename U>
T *resolveSwiftDecl(const U *decl, Identifier name,
bool hasKnownSwiftName, ClangModuleUnit *clangModule) {
if (auto overlay = clangModule->getOverlayModule())
return resolveSwiftDeclImpl<T>(decl, name, hasKnownSwiftName, overlay,
/*allowObjCMismatchFallback*/ true, /*cacheResult*/ true);
if (clangModule == Impl.ImportedHeaderUnit) {
// Use an index-based loop because new owners can come in as we're
// iterating.
for (size_t i = 0; i < Impl.ImportedHeaderOwners.size(); ++i) {
ModuleDecl *owner = Impl.ImportedHeaderOwners[i];
if (T *result =
resolveSwiftDeclImpl<T>(decl, name, hasKnownSwiftName, owner,
/*allowObjCMismatchFallback*/ true, /*cacheResult*/ true))
return result;
}
}
return nullptr;
}
/// Given some forward declared Objective-C type `\@class Foo` or `\@protocol Bar`, this
/// method attempts to find a matching @objc annotated Swift declaration `@objc class Foo {}`
/// or `@objc protocol Bar {}`, in an imported Swift module. That is if the Clang node is in
/// a Clang module, the Swift overlay for that module does not count as "non-local". Similarly,
/// if the Clang node is in a bridging header, any owners of that header also do not count as
/// "non-local". This is intended to find @objc exposed Swift declarations in a different module
/// that share the name as the forward declaration.
///
/// Pass \p hasKnownSwiftName when the Clang declaration is annotated with NS_SWIFT_NAME or similar,
/// such that the @objc provided name is known.
template <typename T, typename U>
T* hasNonLocalNativeSwiftDecl(U *decl, Identifier name, bool hasKnownSwiftName) {
assert(!decl->hasDefinition() && "This method is only intended to be used on incomplete Clang types");
// We intentionally do not consider if the declaration has a clang::ExternalSourceSymbolAttr
// attribute, since we can't know if the corresponding Swift definition is "local" (ie.
// in the overlay or bridging header owner) or not.
// Check first if the Swift definition is "local"
auto owningClangModule = Impl.getClangModuleForDecl(decl, /*allowForwardDeclaration*/ true);
if (owningClangModule && resolveSwiftDecl<T>(decl, name, hasKnownSwiftName, owningClangModule))
return nullptr;
// If not, check all imported Swift modules for a definition
if (auto mainModule = Impl.SwiftContext.MainModule) {
llvm::SmallVector<ValueDecl *> results;
llvm::SmallVector<ImportedModule> importedModules;
mainModule->getImportedModules(importedModules,
ModuleDecl::getImportFilterAll());
for (auto &import : importedModules) {
if (import.importedModule->isNonSwiftModule())
continue;
if (T *result = resolveSwiftDeclImpl<T>(
decl, name, hasKnownSwiftName, import.importedModule,
/*allowObjCMismatchFallback*/ false, /*cacheResult*/ false))
return result;
}
}
return nullptr;
}
template <typename T, typename U>
bool hasNativeSwiftDecl(const U *decl, Identifier name,
const DeclContext *dc, T *&swiftDecl,
bool hasKnownSwiftName = true) {
if (!importer::hasNativeSwiftDecl(decl))
return false;
auto wrapperUnit = cast<ClangModuleUnit>(dc->getModuleScopeContext());
swiftDecl = resolveSwiftDecl<T>(decl, name, hasKnownSwiftName,
wrapperUnit);
return true;
}
void markMissingSwiftDecl(ValueDecl *VD) {
const char *message;
if (isa<ClassDecl>(VD))
message = "cannot find Swift declaration for this class";
else if (isa<ProtocolDecl>(VD))
message = "cannot find Swift declaration for this protocol";
else
llvm_unreachable("unknown bridged decl kind");
auto attr = AvailableAttr::createUniversallyUnavailable(Impl.SwiftContext,
message);
VD->getAttrs().add(attr);
}
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName) return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
Identifier name = importedName.getBaseIdentifier(Impl.SwiftContext);
bool hasKnownSwiftName = importedName.hasCustomName();
if (!decl->hasDefinition()) {
// Check if this protocol is implemented in its overlay.
if (auto clangModule = Impl.getClangModuleForDecl(decl, true))
if (auto native = resolveSwiftDecl<ProtocolDecl>(decl, name,
hasKnownSwiftName,
clangModule))
return native;
Impl.addImportDiagnostic(
decl, Diagnostic(diag::forward_declared_protocol_label, decl),
decl->getSourceRange().getBegin());
if (Impl.ImportForwardDeclarations) {
if (auto native = hasNonLocalNativeSwiftDecl<ProtocolDecl>(decl, name, hasKnownSwiftName)) {
const ModuleDecl* moduleForNativeDecl = native->getParentModule();
assert(moduleForNativeDecl);
Impl.addImportDiagnostic(decl, Diagnostic(diag::forward_declared_protocol_clashes_with_imported_objc_Swift_protocol,
decl, Decl::getDescriptiveKindName(native->getDescriptiveKind()), moduleForNativeDecl->getNameStr()),
decl->getSourceRange().getBegin());
} else {
auto result = Impl.createDeclWithClangNode<ProtocolDecl>(
decl, AccessLevel::Public,
Impl.getClangModuleForDecl(decl->getCanonicalDecl(),
/*allowForwardDeclaration=*/true),
Impl.importSourceLoc(decl->getBeginLoc()),
Impl.importSourceLoc(decl->getLocation()), name,
ArrayRef<PrimaryAssociatedTypeName>(), std::nullopt,
/*TrailingWhere=*/nullptr);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
result->setAddedImplicitInitializers(); // suppress all initializers
addObjCAttribute(result,
Impl.importIdentifier(decl->getIdentifier()));
result->setImplicit();
auto attr = AvailableAttr::createUniversallyUnavailable(
Impl.SwiftContext,
"This Objective-C protocol has only been forward-declared; "
"import its owning module to use it");
result->getAttrs().add(attr);
result->getAttrs().add(new (Impl.SwiftContext)
ForbidSerializingReferenceAttr(true));
return result;
}
}
forwardDeclaration = true;
return nullptr;
}
decl = decl->getDefinition();
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
ProtocolDecl *nativeDecl;
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
if (declaredNative && nativeDecl)
return nativeDecl;
// Create the protocol declaration and record it.
auto result = Impl.createDeclWithClangNode<ProtocolDecl>(
decl, AccessLevel::Public, dc,
Impl.importSourceLoc(decl->getBeginLoc()),
Impl.importSourceLoc(decl->getLocation()), name,
ArrayRef<PrimaryAssociatedTypeName>(), std::nullopt,
/*TrailingWhere=*/nullptr);
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
if (declaredNative)
markMissingSwiftDecl(result);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
// Import protocols this protocol conforms to.
SmallVector<InheritedEntry, 4> inheritedTypes;
importObjCProtocols(result, decl->getReferencedProtocols(),
inheritedTypes);
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
result->setMemberLoader(&Impl, 0);
return result;
}
// Add inferred attributes.
void addInferredAttributes(Decl *decl, unsigned attributes) {
using namespace inferred_attributes;
if (attributes & requires_stored_property_inits) {
auto a = new (Impl.SwiftContext)
RequiresStoredPropertyInitsAttr(/*IsImplicit=*/true);
decl->getAttrs().add(a);
}
}
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
auto createFakeClass = [=](Identifier name, bool cacheResult,
bool inheritFromNSObject,
DeclContext *dc = nullptr) -> ClassDecl * {
if (!dc) {
dc = Impl.getClangModuleForDecl(decl->getCanonicalDecl(),
/*allowForwardDeclaration=*/true);
}
auto result = Impl.createDeclWithClangNode<ClassDecl>(
decl, AccessLevel::Public, SourceLoc(), name, SourceLoc(),
std::nullopt, nullptr, dc,
/*isActor*/ false);
if (cacheResult)
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
if (inheritFromNSObject)
result->setSuperclass(Impl.getNSObjectType());
else
result->setSuperclass(Type());
result->setAddedImplicitInitializers(); // suppress all initializers
result->setHasMissingVTableEntries(false);
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
return result;
};
// Special case for Protocol, which gets forward-declared as an ObjC
// class which is hidden in modern Objective-C runtimes.
// We treat it as a foreign class (like a CF type) because it doesn't
// have a real public class object.
clang::ASTContext &clangCtx = Impl.getClangASTContext();
if (decl->getCanonicalDecl() ==
clangCtx.getObjCProtocolDecl()->getCanonicalDecl()) {
Type nsObjectTy = Impl.getNSObjectType();
if (!nsObjectTy)
return nullptr;
const ClassDecl *nsObjectDecl =
nsObjectTy->getClassOrBoundGenericClass();
auto result = createFakeClass(Impl.SwiftContext.Id_Protocol,
/* cacheResult */ false,
/* inheritFromNSObject */ false,
nsObjectDecl->getDeclContext());
result->setForeignClassKind(ClassDecl::ForeignKind::RuntimeOnly);
return result;
}
if (auto *definition = decl->getDefinition())
decl = definition;
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
if (!importedName) return nullptr;
// If we've been asked to produce a compatibility stub, handle it via a
// typealias.
if (correctSwiftName)
return importCompatibilityTypeAlias(decl, importedName,
*correctSwiftName);
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
bool hasKnownSwiftName = importedName.hasCustomName();
if (!decl->hasDefinition()) {
// Check if this class is implemented in its overlay.
if (auto clangModule = Impl.getClangModuleForDecl(decl, true)) {
if (auto native = resolveSwiftDecl<ClassDecl>(decl, name,
hasKnownSwiftName,
clangModule)) {
return native;
}
}
Impl.addImportDiagnostic(
decl, Diagnostic(diag::forward_declared_interface_label, decl),
decl->getSourceRange().getBegin());
if (Impl.ImportForwardDeclarations) {
if (auto native = hasNonLocalNativeSwiftDecl<ClassDecl>(decl, name, hasKnownSwiftName)) {
const ModuleDecl* moduleForNativeDecl = native->getParentModule();
assert(moduleForNativeDecl);
Impl.addImportDiagnostic(decl, Diagnostic(diag::forward_declared_interface_clashes_with_imported_objc_Swift_interface,
decl, Decl::getDescriptiveKindName(native->getDescriptiveKind()), moduleForNativeDecl->getNameStr()),
decl->getSourceRange().getBegin());
} else {
// Fake it by making an unavailable opaque @objc root class.
auto result = createFakeClass(name, /* cacheResult */ true,
/* inheritFromNSObject */ true);
result->setImplicit();
auto attr = AvailableAttr::createUniversallyUnavailable(
Impl.SwiftContext,
"This Objective-C class has only been forward-declared; "
"import its owning module to use it");
result->getAttrs().add(attr);
result->getAttrs().add(
new (Impl.SwiftContext) ForbidSerializingReferenceAttr(true));
return result;
}
}
forwardDeclaration = true;
return nullptr;
}
auto dc =
Impl.importDeclContextOf(decl, importedName.getEffectiveContext());
if (!dc)
return nullptr;
ClassDecl *nativeDecl;
bool declaredNative = hasNativeSwiftDecl(decl, name, dc, nativeDecl);
if (declaredNative && nativeDecl)
return nativeDecl;
auto access = AccessLevel::Open;
if (decl->hasAttr<clang::ObjCSubclassingRestrictedAttr>() &&
Impl.SwiftContext.isSwiftVersionAtLeast(5)) {
access = AccessLevel::Public;
}
// Create the class declaration and record it.
auto result = Impl.createDeclWithClangNode<ClassDecl>(
decl, access, Impl.importSourceLoc(decl->getBeginLoc()), name,
Impl.importSourceLoc(decl->getLocation()), std::nullopt, nullptr, dc,
/*isActor*/ false);
// Import generic arguments, if any.
if (auto gpImportResult = importObjCGenericParams(decl, dc)) {
auto genericParams = *gpImportResult;
if (genericParams) {
result->getASTContext().evaluator.cacheOutput(
GenericParamListRequest{result}, std::move(genericParams));
auto sig = Impl.buildGenericSignature(genericParams, dc);
result->setGenericSignature(sig);
}
} else {
return nullptr;
}
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = result;
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
if (declaredNative)
markMissingSwiftDecl(result);
if (decl->getAttr<clang::ObjCRuntimeVisibleAttr>()) {
result->setForeignClassKind(ClassDecl::ForeignKind::RuntimeOnly);
}
// If this Objective-C class has a supertype, import it.
SmallVector<InheritedEntry, 4> inheritedTypes;
Type superclassType;
if (decl->getSuperClass()) {
clang::QualType clangSuperclassType =
decl->getSuperClassType()->stripObjCKindOfTypeAndQuals(clangCtx);
clangSuperclassType =
clangCtx.getObjCObjectPointerType(clangSuperclassType);
superclassType = Impl.importTypeIgnoreIUO(
clangSuperclassType, ImportTypeKind::Abstract,
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
if (superclassType) {
assert(superclassType->is<ClassType>() ||
superclassType->is<BoundGenericClassType>());
inheritedTypes.push_back(TypeLoc::withoutLoc(superclassType));
}
}
result->setSuperclass(superclassType);
// Import protocols this class conforms to.
importObjCProtocols(result, decl->getReferencedProtocols(),
inheritedTypes);
result->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
// Add inferred attributes.
#define INFERRED_ATTRIBUTES(ModuleName, ClassName, AttributeSet) \
if (name.str() == #ClassName && \
result->getParentModule()->getName().str() == #ModuleName) { \
using namespace inferred_attributes; \
addInferredAttributes(result, AttributeSet); \
}
#include "InferredAttributes.def"
if (decl->isArcWeakrefUnavailable())
result->setIsIncompatibleWithWeakReferences();
result->setHasMissingVTableEntries(false);
result->setMemberLoader(&Impl, 0);
// GetDestructorRequest does not trigger lazy member loading
// And typechecking may ask for destructor before member loading is
// triggered. Create deinit explicitly
auto deallocII = &clangCtx.Idents.get("dealloc");
auto deallocSelector = clangCtx.Selectors.getNullarySelector(deallocII);
auto deallocName = clang::DeclarationName(deallocSelector);
for (auto nd : decl->lookup(deallocName)) {
if (auto deallocDecl = dyn_cast<clang::ObjCMethodDecl>(nd)) {
if (deallocDecl->isInstanceMethod()) {
auto loc = Impl.importSourceLoc(deallocDecl->getLocation());
auto dtor = Impl.createDeclWithClangNode<DestructorDecl>(
deallocDecl, access, loc, result);
result->addMember(dtor);
}
}
}
return result;
}
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
// Implementations of Objective-C classes and categories are not
// reflected into Swift.
return nullptr;
}
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
auto dc = Impl.importDeclContextOf(decl, decl->getDeclContext());
if (!dc)
return nullptr;
// While importing the DeclContext, we might have imported the decl
// itself.
auto Known = Impl.importDeclCached(decl, getVersion());
if (Known.has_value())
return Known.value();
return importObjCPropertyDecl(decl, dc);
}
/// Hack: Handle the case where a property is declared \c readonly in the
/// main class interface (either explicitly or because of an adopted
/// protocol) and then \c readwrite in a category/extension.
///
/// \see VisitObjCPropertyDecl
void handlePropertyRedeclaration(VarDecl *original,
const clang::ObjCPropertyDecl *redecl) {
// If the property isn't from Clang, we can't safely update it.
if (!original->hasClangNode())
return;
// If the original declaration was implicit, we may want to change that.
if (original->isImplicit() && !redecl->isImplicit() &&
!isa<clang::ObjCProtocolDecl>(redecl->getDeclContext()))
original->setImplicit(false);
if (!original->getAttrs().hasAttribute<ReferenceOwnershipAttr>() &&
!original->getAttrs().hasAttribute<NSCopyingAttr>()) {
applyPropertyOwnership(original,
redecl->getPropertyAttributesAsWritten());
}
auto clangSetter = redecl->getSetterMethodDecl();
if (!clangSetter)
return;
// The only other transformation we know how to do safely is add a
// setter. If the property is already settable, we're done.
if (original->isSettable(nullptr))
return;
AccessorDecl *setter = importAccessor(clangSetter,
original, AccessorKind::Set,
original->getDeclContext());
if (!setter)
return;
// Check that the redeclared property's setter uses the same type as the
// original property. Objective-C can get away with the types being
// different (usually in something like nullability), but for Swift it's
// an AST invariant that's assumed and asserted elsewhere. If the type is
// different, just drop the setter, and leave the property as get-only.
assert(setter->getParameters()->size() == 1);
const ParamDecl *param = setter->getParameters()->get(0);
if (!param->getInterfaceType()->isEqual(original->getInterfaceType()))
return;
original->setComputedSetter(setter);
}
Decl *importObjCPropertyDecl(const clang::ObjCPropertyDecl *decl,
DeclContext *dc) {
assert(dc);
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (name.empty())
return nullptr;
if (shouldImportPropertyAsAccessors(decl))
return nullptr;
VarDecl *overridden = nullptr;
// Check whether there is a function with the same name as this
// property. If so, suppress the property; the user will have to use
// the methods directly, to avoid ambiguities.
if (auto *subject = dc->getSelfClassDecl()) {
if (auto *classDecl = dyn_cast<ClassDecl>(dc)) {
// Start looking into the superclass.
subject = classDecl->getSuperclassDecl();
}
bool foundMethod = false;
std::tie(overridden, foundMethod)
= identifyNearestOverriddenDecl(Impl, dc, decl, name, subject);
if (foundMethod && !overridden)
return nullptr;
if (overridden) {
const DeclContext *overrideContext = overridden->getDeclContext();
// It's okay to compare interface types directly because Objective-C
// does not have constrained extensions.
if (overrideContext != dc && overridden->hasClangNode() &&
overrideContext->getSelfNominalTypeDecl()
== dc->getSelfNominalTypeDecl()) {
// We've encountered a redeclaration of the property.
handlePropertyRedeclaration(overridden, decl);
return nullptr;
}
}
// Try searching the class for a property redeclaration. We can use
// the redeclaration to refine the already-imported property with a
// setter and also cut off any double-importing behavior.
auto *redecl
= identifyPropertyRedeclarationPoint(Impl, decl,
dc->getSelfClassDecl(), name);
if (redecl) {
handlePropertyRedeclaration(redecl, decl);
return nullptr;
}
}
auto fieldType = desugarIfElaborated(decl->getType());
ImportedType importedType = importer::findOptionSetEnum(fieldType, Impl);
if (!importedType)
importedType = Impl.importPropertyType(decl, isInSystemModule(dc));
if (!importedType) {
Impl.addImportDiagnostic(
decl, Diagnostic(diag::objc_property_not_imported, decl),
decl->getSourceRange().getBegin());
return nullptr;
}
// Check whether the property already got imported.
if (dc == Impl.importDeclContextOf(decl, decl->getDeclContext())) {
auto known = Impl.ImportedDecls.find({decl->getCanonicalDecl(),
getVersion()});
if (known != Impl.ImportedDecls.end())
return known->second;
}
auto type = importedType.getType();
const auto access = decl->isDirectProperty() ? AccessLevel::Public
: getOverridableAccessLevel(dc);
auto result = Impl.createDeclWithClangNode<VarDecl>(decl, access,
/*IsStatic*/decl->isClassProperty(), VarDecl::Introducer::Var,
Impl.importSourceLoc(decl->getLocation()), name, dc);
result->setInterfaceType(type);
Impl.recordImplicitUnwrapForDecl(result,
importedType.isImplicitlyUnwrapped());
// Recover from a missing getter in no-asserts builds. We're still not
// sure under what circumstances this occurs, but we shouldn't crash.
auto clangGetter = decl->getGetterMethodDecl();
assert(clangGetter && "ObjC property without getter");
if (!clangGetter)
return nullptr;
// Import the getter.
AccessorDecl *getter = importAccessor(clangGetter, result,
AccessorKind::Get, dc);
if (!getter)
return nullptr;
// Import the setter, if there is one.
AccessorDecl *setter = nullptr;
if (auto clangSetter = decl->getSetterMethodDecl()) {
setter = importAccessor(clangSetter, result, AccessorKind::Set, dc);
if (!setter)
return nullptr;
}
// Turn this into a computed property.
// FIXME: Fake locations for '{' and '}'?
result->setIsSetterMutating(false);
Impl.makeComputed(result, getter, setter);
addObjCAttribute(result, Impl.importIdentifier(decl->getIdentifier()));
applyPropertyOwnership(result, decl->getPropertyAttributesAsWritten());
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getAttrs().add(
new (Impl.SwiftContext) IBOutletAttr(/*IsImplicit=*/false));
if (decl->getPropertyImplementation() ==
clang::ObjCPropertyDecl::Optional &&
isa<ProtocolDecl>(dc) &&
!result->getAttrs().hasAttribute<OptionalAttr>())
result->getAttrs().add(new (Impl.SwiftContext)
OptionalAttr(/*implicit*/false));
// FIXME: Handle IBOutletCollection.
// Only record overrides of class members.
if (overridden) {
result->setOverriddenDecl(overridden);
getter->setOverriddenDecl(overridden->getParsedAccessor(AccessorKind::Get));
if (auto parentSetter = overridden->getParsedAccessor(AccessorKind::Set))
if (setter)
setter->setOverriddenDecl(parentSetter);
}
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
recordMemberInContext(dc, result);
return result;
}
Decl *
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
// Import Objective-C's @compatibility_alias as typealias.
EffectiveClangContext effectiveContext(decl->getDeclContext()->getRedeclContext());
auto dc = Impl.importDeclContextOf(decl, effectiveContext);
if (!dc) return nullptr;
ImportedName importedName;
std::tie(importedName, std::ignore) = importFullName(decl);
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (name.empty()) return nullptr;
Decl *importedDecl =
Impl.importDecl(decl->getClassInterface(), getActiveSwiftVersion());
auto typeDecl = dyn_cast_or_null<TypeDecl>(importedDecl);
if (!typeDecl) return nullptr;
// Create typealias.
TypeAliasDecl *typealias = nullptr;
typealias = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl, AccessLevel::Public,
Impl.importSourceLoc(decl->getBeginLoc()),
SourceLoc(), name,
Impl.importSourceLoc(decl->getLocation()),
/*genericparams=*/nullptr, dc);
if (auto *GTD = dyn_cast<GenericTypeDecl>(typeDecl)) {
typealias->setGenericSignature(GTD->getGenericSignature());
if (GTD->isGeneric()) {
typealias->getASTContext().evaluator.cacheOutput(
GenericParamListRequest{typealias},
std::move(GTD->getGenericParams()->clone(typealias)));
}
}
typealias->setUnderlyingType(typeDecl->getDeclaredInterfaceType());
return typealias;
}
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
// Linkage specifications are not imported.
return nullptr;
}
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
// @synthesize and @dynamic are not imported, since they are not part
// of the interface to a class.
return nullptr;
}
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
return nullptr;
}
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
return nullptr;
}
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
// Static assertions are an implementation detail.
return nullptr;
}
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
// Blocks are not imported (although block types can be imported).
return nullptr;
}
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
// Transitive module imports are not handled at the declaration level.
// Rather, they are understood from the module itself.
return nullptr;
}
};
} // end anonymous namespace
/// Try to strip "Mutable" out of a type name.
static clang::IdentifierInfo *
getImmutableCFSuperclassName(const clang::TypedefNameDecl *decl, clang::ASTContext &ctx) {
StringRef name = decl->getName();
// Split at the first occurrence of "Mutable".
StringRef _mutable = "Mutable";
auto mutableIndex = camel_case::findWord(name, _mutable);
if (mutableIndex == StringRef::npos)
return nullptr;
StringRef namePrefix = name.substr(0, mutableIndex);
StringRef nameSuffix = name.substr(mutableIndex + _mutable.size());
// Abort if "Mutable" appears twice.
if (camel_case::findWord(nameSuffix, _mutable) != StringRef::npos)
return nullptr;
llvm::SmallString<128> buffer;
buffer += namePrefix;
buffer += nameSuffix;
return &ctx.Idents.get(buffer.str());
}
/// Check whether this CF typedef is a Mutable type, and if so,
/// look for a non-Mutable typedef.
///
/// If the "subclass" is:
/// typedef struct __foo *XXXMutableYYY;
/// then we look for a "superclass" that matches:
/// typedef const struct __foo *XXXYYY;
static Type findImmutableCFSuperclass(ClangImporter::Implementation &impl,
const clang::TypedefNameDecl *decl,
CFPointeeInfo subclassInfo) {
// If this type is already immutable, it has no immutable
// superclass.
if (subclassInfo.isConst())
return Type();
// If this typedef name does not contain "Mutable", it has no
// immutable superclass.
auto superclassName =
getImmutableCFSuperclassName(decl, impl.getClangASTContext());
if (!superclassName)
return Type();
// Look for a typedef that successfully classifies as a CF
// typedef with the same underlying record.
auto superclassTypedef = impl.lookupTypedef(superclassName);
if (!superclassTypedef)
return Type();
auto superclassInfo = CFPointeeInfo::classifyTypedef(superclassTypedef);
if (!superclassInfo || !superclassInfo.isRecord() ||
!declaresSameEntity(superclassInfo.getRecord(), subclassInfo.getRecord()))
return Type();
// Try to import the superclass.
Decl *importedSuperclassDecl =
impl.importDeclReal(superclassTypedef, impl.CurrentVersion);
if (!importedSuperclassDecl)
return Type();
auto importedSuperclass =
cast<TypeDecl>(importedSuperclassDecl)->getDeclaredInterfaceType();
assert(importedSuperclass->is<ClassType>() && "must have class type");
return importedSuperclass;
}
/// Attempt to find a superclass for the given CF typedef.
static Type findCFSuperclass(ClangImporter::Implementation &impl,
const clang::TypedefNameDecl *decl,
CFPointeeInfo info) {
if (Type immutable = findImmutableCFSuperclass(impl, decl, info))
return immutable;
// TODO: use NSObject if it exists?
return Type();
}
ClassDecl *
SwiftDeclConverter::importCFClassType(const clang::TypedefNameDecl *decl,
Identifier className, CFPointeeInfo info,
EffectiveClangContext effectiveContext) {
auto dc = Impl.importDeclContextOf(decl, effectiveContext);
if (!dc)
return nullptr;
Type superclass = findCFSuperclass(Impl, decl, info);
// TODO: maybe use NSObject as the superclass if we can find it?
// TODO: try to find a non-mutable type to use as the superclass.
auto theClass = Impl.createDeclWithClangNode<ClassDecl>(
decl, AccessLevel::Public, SourceLoc(), className, SourceLoc(),
std::nullopt, nullptr, dc, /*isActor*/ false);
theClass->setSuperclass(superclass);
theClass->setAddedImplicitInitializers(); // suppress all initializers
theClass->setHasMissingVTableEntries(false);
theClass->setForeignClassKind(ClassDecl::ForeignKind::CFType);
addObjCAttribute(theClass, std::nullopt);
if (superclass) {
SmallVector<InheritedEntry, 4> inheritedTypes;
inheritedTypes.push_back(TypeLoc::withoutLoc(superclass));
theClass->setInherited(Impl.SwiftContext.AllocateCopy(inheritedTypes));
}
Impl.addSynthesizedProtocolAttrs(theClass, {KnownProtocolKind::CFObject});
// Look for bridging attributes on the clang record. We can
// just check the most recent redeclaration, which will inherit
// any attributes from earlier declarations.
auto record = info.getRecord()->getMostRecentDecl();
if (info.isConst()) {
if (auto attr = record->getAttr<clang::ObjCBridgeAttr>()) {
// Record the Objective-C class to which this CF type is toll-free
// bridged.
if (ClassDecl *objcClass = dynCastIgnoringCompatibilityAlias<ClassDecl>(
Impl.importDeclByName(attr->getBridgedType()->getName()))) {
theClass->getAttrs().add(new (Impl.SwiftContext)
ObjCBridgedAttr(objcClass));
}
}
} else {
if (auto attr = record->getAttr<clang::ObjCBridgeMutableAttr>()) {
// Record the Objective-C class to which this CF type is toll-free
// bridged.
if (ClassDecl *objcClass = dynCastIgnoringCompatibilityAlias<ClassDecl>(
Impl.importDeclByName(attr->getBridgedType()->getName()))) {
theClass->getAttrs().add(new (Impl.SwiftContext)
ObjCBridgedAttr(objcClass));
}
}
}
return theClass;
}
Decl *SwiftDeclConverter::importCompatibilityTypeAlias(
const clang::NamedDecl *decl,
ImportedName compatibilityName,
ImportedName correctSwiftName) {
// Import the referenced declaration. If it doesn't come in as a type,
// we don't care.
Decl *importedDecl = nullptr;
if (getVersion() >= getActiveSwiftVersion())
importedDecl = Impl.importDecl(decl, ImportNameVersion::forTypes());
if (!importedDecl && getVersion() != getActiveSwiftVersion())
importedDecl = Impl.importDecl(decl, getActiveSwiftVersion());
auto typeDecl = dyn_cast_or_null<TypeDecl>(importedDecl);
if (!typeDecl)
return nullptr;
auto dc = Impl.importDeclContextOf(decl,
compatibilityName.getEffectiveContext());
if (!dc)
return nullptr;
// Create the type alias.
auto alias = Impl.createDeclWithClangNode<TypeAliasDecl>(
decl, importer::convertClangAccess(decl->getAccess()),
Impl.importSourceLoc(decl->getBeginLoc()), SourceLoc(),
compatibilityName.getBaseIdentifier(Impl.SwiftContext),
Impl.importSourceLoc(decl->getLocation()), /*generic params*/ nullptr,
dc);
auto *GTD = dyn_cast<GenericTypeDecl>(typeDecl);
if (GTD && !isa<ProtocolDecl>(GTD)) {
alias->setGenericSignature(GTD->getGenericSignature());
if (GTD->isGeneric()) {
alias->getASTContext().evaluator.cacheOutput(
GenericParamListRequest{alias},
std::move(GTD->getGenericParams()->clone(alias)));
}
}
alias->setUnderlyingType(typeDecl->getDeclaredInterfaceType());
// Record that this is the official version of this declaration.
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = alias;
markAsVariant(alias, correctSwiftName);
return alias;
}
namespace {
template<typename D>
bool inheritanceListContainsProtocol(D decl, const ProtocolDecl *proto) {
bool anyObject = false;
InvertibleProtocolSet inverses;
for (const auto &found :
getDirectlyInheritedNominalTypeDecls(decl, inverses, anyObject)) {
if (auto protoDecl = dyn_cast<ProtocolDecl>(found.Item))
if (protoDecl == proto || protoDecl->inheritsFrom(proto))
return true;
}
return false;
}
} // end anonymous namespace
static bool conformsToProtocolInOriginalModule(NominalTypeDecl *nominal,
const ProtocolDecl *proto) {
if (inheritanceListContainsProtocol(nominal, proto))
return true;
for (auto attr : nominal->getAttrs().getAttributes<SynthesizedProtocolAttr>()) {
auto *otherProto = attr->getProtocol();
if (otherProto == proto || otherProto->inheritsFrom(proto))
return true;
}
// Only consider extensions from the original module...or from an overlay
// or the Swift half of a mixed-source framework.
const DeclContext *containingFile = nominal->getModuleScopeContext();
ModuleDecl *originalModule = containingFile->getParentModule();
ModuleDecl *overlayModule = nullptr;
if (auto *clangUnit = dyn_cast<ClangModuleUnit>(containingFile))
overlayModule = clangUnit->getOverlayModule();
for (ExtensionDecl *extension : nominal->getExtensions()) {
ModuleDecl *extensionModule = extension->getParentModule();
if (extensionModule != originalModule && extensionModule != overlayModule &&
!extensionModule->isFoundationModule()) {
continue;
}
if (inheritanceListContainsProtocol(extension, proto))
return true;
}
return false;
}
Decl *
SwiftDeclConverter::importSwiftNewtype(const clang::TypedefNameDecl *decl,
clang::SwiftNewTypeAttr *newtypeAttr,
DeclContext *dc, Identifier name) {
// The only (current) difference between swift_newtype(struct) and
// swift_newtype(enum), until we can get real enum support, is that enums
// have no un-labeled inits(). This is because enums are to be considered
// closed, and if constructed from a rawValue, should be very explicit.
bool unlabeledCtor = false;
switch (newtypeAttr->getNewtypeKind()) {
case clang::SwiftNewTypeAttr::NK_Enum:
unlabeledCtor = false;
// TODO: import as enum instead
break;
case clang::SwiftNewTypeAttr::NK_Struct:
unlabeledCtor = true;
break;
// No other cases yet
}
auto &ctx = Impl.SwiftContext;
auto Loc = Impl.importSourceLoc(decl->getLocation());
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
decl, importer::convertClangAccess(decl->getAccess()), Loc, name, Loc,
std::nullopt, nullptr, dc);
// Import the type of the underlying storage
ImportDiagnosticAdder addImportDiag(Impl, decl, decl->getLocation());
auto storedUnderlyingType = Impl.importTypeIgnoreIUO(
decl->getUnderlyingType(), ImportTypeKind::Value, addImportDiag,
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs(), OTK_None);
if (!storedUnderlyingType)
return nullptr;
if (auto objTy = storedUnderlyingType->getOptionalObjectType())
storedUnderlyingType = objTy;
// If the type is Unmanaged, that is it is not CF ARC audited,
// we will store the underlying type and leave it up to the use site
// to determine whether to use this new_type, or an Unmanaged<CF...> type.
if (auto genericType = storedUnderlyingType->getAs<BoundGenericType>()) {
if (genericType->isUnmanaged()) {
assert(genericType->getGenericArgs().size() == 1 && "other args?");
storedUnderlyingType = genericType->getGenericArgs()[0];
}
}
// Find a bridged type, which may be different
auto computedPropertyUnderlyingType = Impl.importTypeIgnoreIUO(
decl->getUnderlyingType(), ImportTypeKind::Property, addImportDiag,
isInSystemModule(dc), Bridgeability::Full, ImportTypeAttrs(), OTK_None);
if (auto objTy = computedPropertyUnderlyingType->getOptionalObjectType())
computedPropertyUnderlyingType = objTy;
bool isBridged =
!storedUnderlyingType->isEqual(computedPropertyUnderlyingType);
// Determine the set of protocols to which the synthesized
// type will conform.
SmallVector<KnownProtocolKind, 4> synthesizedProtocols;
// Local function to add a known protocol.
auto addKnown = [&](KnownProtocolKind kind) {
synthesizedProtocols.push_back(kind);
};
// Add conformances that are always available.
addKnown(KnownProtocolKind::RawRepresentable);
addKnown(KnownProtocolKind::SwiftNewtypeWrapper);
// Local function to add a known protocol only when the
// underlying type conforms to it.
auto computedNominal = computedPropertyUnderlyingType->getAnyNominal();
if (auto existential =
computedPropertyUnderlyingType->getAs<ExistentialType>())
computedNominal = existential->getConstraintType()->getAnyNominal();
auto transferKnown = [&](KnownProtocolKind kind) {
if (!computedNominal)
return false;
auto proto = ctx.getProtocol(kind);
if (!proto)
return false;
if (auto *computedProto = dyn_cast<ProtocolDecl>(computedNominal)) {
return (computedProto == proto || computedProto->inheritsFrom(proto));
}
// Break circularity by only looking for declared conformances in the
// original module, or possibly its overlay.
if (conformsToProtocolInOriginalModule(computedNominal, proto)) {
synthesizedProtocols.push_back(kind);
return true;
}
// HACK: This method may be called before all extensions have been bound.
// This is a problem for newtypes in Foundation, which is what provides the
// `String: _ObjectiveCBridgeable` conformance; it can cause us to create
// `String`-backed newtypes which aren't bridgeable, causing typecheck
// failures and crashes down the line (rdar://142693093). Hardcode knowledge
// that this conformance will exist.
// FIXME: Defer adding conformances to newtypes instead of this. (#78731)
if (structDecl->getModuleContext()->isFoundationModule()
&& kind == KnownProtocolKind::ObjectiveCBridgeable
&& computedNominal == ctx.getStringDecl()) {
synthesizedProtocols.push_back(kind);
return true;
}
return false;
};
// Transfer conformances. Each of these needs a forwarding
// implementation in the standard library.
transferKnown(KnownProtocolKind::Equatable);
transferKnown(KnownProtocolKind::Hashable);
bool hasObjCBridgeable =
transferKnown(KnownProtocolKind::ObjectiveCBridgeable);
bool wantsObjCBridgeableTypealias = hasObjCBridgeable && isBridged;
// Wrappers around ObjC classes and protocols are also bridgeable.
if (!hasObjCBridgeable) {
if (isBridged) {
if (auto *proto = dyn_cast_or_null<ProtocolDecl>(computedNominal))
if (proto->getKnownProtocolKind() == KnownProtocolKind::Error)
hasObjCBridgeable = true;
} else {
if (auto *objcClass = dyn_cast_or_null<ClassDecl>(computedNominal)) {
switch (objcClass->getForeignClassKind()) {
case ClassDecl::ForeignKind::Normal:
case ClassDecl::ForeignKind::RuntimeOnly:
if (objcClass->hasClangNode())
hasObjCBridgeable = true;
break;
case ClassDecl::ForeignKind::CFType:
break;
}
} else if (storedUnderlyingType->isObjCExistentialType()) {
hasObjCBridgeable = true;
}
}
if (hasObjCBridgeable) {
addKnown(KnownProtocolKind::ObjectiveCBridgeable);
wantsObjCBridgeableTypealias = true;
}
}
if (!isBridged) {
// Simple, our stored type is equivalent to our computed
// type.
auto options = getDefaultMakeStructRawValuedOptions();
if (unlabeledCtor)
options |= MakeStructRawValuedFlags::MakeUnlabeledValueInit;
synthesizer.makeStructRawValued(structDecl, storedUnderlyingType,
synthesizedProtocols, options);
} else {
// We need to make a stored rawValue or storage type, and a
// computed one of bridged type.
synthesizer.makeStructRawValuedWithBridge(
structDecl, storedUnderlyingType, computedPropertyUnderlyingType,
synthesizedProtocols,
/*makeUnlabeledValueInit=*/unlabeledCtor);
}
if (wantsObjCBridgeableTypealias) {
Impl.addSynthesizedTypealias(structDecl, ctx.Id_ObjectiveCType,
storedUnderlyingType);
}
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = structDecl;
return structDecl;
}
Decl *SwiftDeclConverter::importEnumCase(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
EnumDecl *theEnum,
Decl *correctDecl) {
auto &context = Impl.SwiftContext;
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(decl);
auto name = importedName.getBaseIdentifier(Impl.SwiftContext);
if (name.empty())
return nullptr;
if (correctSwiftName) {
// We're creating a compatibility stub. Treat it as an enum case alias.
auto correctCase = dyn_cast_or_null<EnumElementDecl>(correctDecl);
if (!correctCase)
return nullptr;
// If the correct declaration was unavailable, don't map to it.
// FIXME: This eliminates spurious errors, but affects QoI.
if (correctCase->isUnavailable())
return nullptr;
auto compatibilityCase =
importEnumCaseAlias(name, decl, correctCase, clangEnum, theEnum);
if (compatibilityCase)
markAsVariant(compatibilityCase, *correctSwiftName);
return compatibilityCase;
}
// Use the constant's underlying value as its raw value in Swift.
bool negative = false;
llvm::APSInt rawValue = decl->getInitVal();
if (clangEnum->getIntegerType()->isSignedIntegerOrEnumerationType() &&
rawValue.slt(0)) {
rawValue = -rawValue;
negative = true;
}
llvm::SmallString<12> rawValueText;
rawValue.toString(rawValueText, 10, /*signed*/ false);
StringRef rawValueTextC = context.AllocateCopy(StringRef(rawValueText));
auto rawValueExpr =
new (context) IntegerLiteralExpr(rawValueTextC, SourceLoc(),
/*implicit*/ false);
if (negative)
rawValueExpr->setNegative(SourceLoc());
auto element = Impl.createDeclWithClangNode<EnumElementDecl>(
decl, importer::convertClangAccess(clangEnum->getAccess()), SourceLoc(),
name, nullptr, SourceLoc(), rawValueExpr, theEnum);
Impl.importAttributes(decl, element);
return element;
}
Decl *
SwiftDeclConverter::importOptionConstant(const clang::EnumConstantDecl *decl,
const clang::EnumDecl *clangEnum,
NominalTypeDecl *theStruct) {
ImportedName nameInfo;
std::optional<ImportedName> correctSwiftName;
std::tie(nameInfo, correctSwiftName) = importFullName(decl);
Identifier name = nameInfo.getBaseIdentifier(Impl.SwiftContext);
if (name.empty())
return nullptr;
// Create the constant.
auto convertKind = ConstantConvertKind::Construction;
if (isa<EnumDecl>(theStruct))
convertKind = ConstantConvertKind::ConstructionWithUnwrap;
Decl *CD = synthesizer.createConstant(
name, theStruct, theStruct->getDeclaredInterfaceType(),
clang::APValue(decl->getInitVal()), convertKind, /*isStatic*/ true, decl,
importer::convertClangAccess(clangEnum->getAccess()));
Impl.importAttributes(decl, CD);
// NS_OPTIONS members that have a value of 0 (typically named "None") do
// not operate as a set-like member. Mark them unavailable with a message
// that says that they should be used as [].
if (decl->getInitVal() == 0 && !nameInfo.hasCustomName() &&
!CD->isUnavailable()) {
/// Create an AvailableAttr that indicates specific availability
/// for all platforms.
auto attr = AvailableAttr::createUniversallyUnavailable(
Impl.SwiftContext, "use [] to construct an empty option set");
CD->getAttrs().add(attr);
}
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(CD, *correctSwiftName);
return CD;
}
Decl *SwiftDeclConverter::importEnumCaseAlias(
Identifier name, const clang::EnumConstantDecl *alias, ValueDecl *original,
const clang::EnumDecl *clangEnum, NominalTypeDecl *importedEnum,
DeclContext *importIntoDC) {
if (name.empty())
return nullptr;
// Default the DeclContext to the enum type.
if (!importIntoDC)
importIntoDC = importedEnum;
Type importedEnumTy = importedEnum->getDeclaredInterfaceType();
auto typeRef = TypeExpr::createImplicit(importedEnumTy, Impl.SwiftContext);
Expr *result = nullptr;
if (auto *enumElt = dyn_cast<EnumElementDecl>(original)) {
assert(!enumElt->hasAssociatedValues());
// Construct the original constant. Enum constants without payloads look
// like simple values, but actually have type 'MyEnum.Type -> MyEnum'.
auto constantRef =
new (Impl.SwiftContext) DeclRefExpr(enumElt, DeclNameLoc(),
/*implicit*/ true);
constantRef->setType(enumElt->getInterfaceType());
auto instantiate =
DotSyntaxCallExpr::create(Impl.SwiftContext, constantRef, SourceLoc(),
Argument::unlabeled(typeRef));
instantiate->setType(importedEnumTy);
instantiate->setThrows(nullptr);
result = instantiate;
} else {
assert(isa<VarDecl>(original));
result =
new (Impl.SwiftContext) MemberRefExpr(typeRef, SourceLoc(),
original, DeclNameLoc(),
/*implicit*/ true);
result->setType(original->getInterfaceType());
}
Decl *CD = synthesizer.createConstant(
name, importIntoDC, importedEnumTy, result, ConstantConvertKind::None,
/*isStatic*/ true, alias,
importer::convertClangAccess(clangEnum->getAccess()));
Impl.importAttributes(alias, CD);
return CD;
}
NominalTypeDecl *
SwiftDeclConverter::importAsOptionSetType(DeclContext *dc, Identifier name,
const clang::EnumDecl *decl) {
ASTContext &ctx = Impl.SwiftContext;
auto Loc = Impl.importSourceLoc(decl->getLocation());
// Create a struct with the underlying type as a field.
auto structDecl = Impl.createDeclWithClangNode<StructDecl>(
decl, importer::convertClangAccess(decl->getAccess()), Loc, name, Loc,
std::nullopt, nullptr, dc);
Impl.ImportedDecls[{decl->getCanonicalDecl(), getVersion()}] = structDecl;
// Compute the underlying type.
auto underlyingType = Impl.importTypeIgnoreIUO(
decl->getIntegerType(), ImportTypeKind::Enum,
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
isInSystemModule(dc), Bridgeability::None, ImportTypeAttrs());
if (!underlyingType)
return nullptr;
synthesizer.makeStructRawValued(structDecl, underlyingType,
{KnownProtocolKind::OptionSet});
auto selfType = structDecl->getDeclaredInterfaceType();
Impl.addSynthesizedTypealias(structDecl, ctx.Id_Element, selfType);
Impl.addSynthesizedTypealias(structDecl, ctx.Id_ArrayLiteralElement,
selfType);
return structDecl;
}
Decl *SwiftDeclConverter::importGlobalAsInitializer(
const clang::FunctionDecl *decl, DeclName name, DeclContext *dc,
CtorInitializerKind initKind,
std::optional<ImportedName> correctSwiftName) {
// TODO: Should this be an error? How can this come up?
assert(dc->isTypeContext() && "cannot import as member onto non-type");
// Check for some invalid imports
if (dc->getSelfProtocolDecl()) {
// FIXME: clang source location
Impl.diagnose({}, diag::swift_name_protocol_static, /*isInit=*/true);
Impl.diagnose({}, diag::note_while_importing, decl->getName());
return nullptr;
}
bool allowNSUIntegerAsInt =
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule(dc), decl);
ArrayRef<Identifier> argNames = name.getArgumentNames();
ParameterList *parameterList = nullptr;
DeclName nameBeforeAdjustment;
if (argNames.size() == 1 && decl->getNumParams() == 0) {
// Special case: We need to create an empty first parameter for our
// argument label
auto *paramDecl =
new (Impl.SwiftContext) ParamDecl(
SourceLoc(), SourceLoc(), argNames.front(),
SourceLoc(), argNames.front(), dc);
paramDecl->setSpecifier(ParamSpecifier::Default);
paramDecl->setInterfaceType(Impl.SwiftContext.TheEmptyTupleType);
parameterList = ParameterList::createWithoutLoc(paramDecl);
} else {
parameterList = Impl.importFunctionParameterList(
dc, decl, {decl->param_begin(), decl->param_end()}, decl->isVariadic(),
allowNSUIntegerAsInt, argNames, /*genericParams=*/{},
/*resultType=*/nullptr);
if (name && parameterList && argNames.size() != parameterList->size()) {
// Remember that the name has changed.
nameBeforeAdjustment = name;
// Add or remove argument labels as needed to match `parameterList`.
SmallVector<Identifier, 16> newArgNames;
llvm::append_range(newArgNames, argNames);
while (newArgNames.size() > parameterList->size())
newArgNames.pop_back();
while (newArgNames.size() < parameterList->size()) {
auto param = parameterList->get(newArgNames.size());
newArgNames.push_back(param->getArgumentName());
}
// Construct the new name.
name = DeclName(Impl.SwiftContext, name.getBaseName(), newArgNames);
argNames = name.getArgumentNames();
}
}
if (!parameterList)
return nullptr;
auto importedType =
Impl.importFunctionReturnType(dc, decl, allowNSUIntegerAsInt);
// Update the failability appropriately based on the imported method type.
bool failable = false, isIUO = false;
if (!importedType.getType().isNull() &&
importedType.isImplicitlyUnwrapped()) {
assert(importedType.getType()->getOptionalObjectType());
failable = true;
isIUO = true;
} else if (importedType.getType()->getOptionalObjectType()) {
failable = true;
}
auto result = Impl.createDeclWithClangNode<ConstructorDecl>(
decl, importer::convertClangAccess(decl->getAccess()), name,
Impl.importSourceLoc(decl->getLocation()), failable,
/*FailabilityLoc=*/SourceLoc(),
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(),
parameterList, /*GenericParams=*/nullptr, dc);
result->setImplicitlyUnwrappedOptional(isIUO);
result->getASTContext().evaluator.cacheOutput(InitKindRequest{result},
std::move(initKind));
result->setImportAsStaticMember();
Impl.recordImplicitUnwrapForDecl(result,
importedType.isImplicitlyUnwrapped());
result->setOverriddenDecls({ });
result->setIsObjC(false);
result->setIsDynamic(false);
if (nameBeforeAdjustment) {
SmallString<16> message;
llvm::raw_svector_ostream os(message);
os << "declared Swift name '" << nameBeforeAdjustment
<< "' was adjusted to '" << name
<< "' because it does not have the correct number of parameters ("
<< nameBeforeAdjustment.getArgumentNames().size() << " vs. "
<< name.getArgumentNames().size()
<< "); please report this to its maintainer";
auto attr = AvailableAttr::createUniversallyDeprecated(Impl.SwiftContext,
Impl.SwiftContext.AllocateCopy(message.str()), "");
result->getAttrs().add(attr);
}
finishFuncDecl(decl, result);
if (correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
/// Create an implicit property given the imported name of one of
/// the accessors.
VarDecl *
SwiftDeclConverter::getImplicitProperty(ImportedName importedName,
const clang::FunctionDecl *accessor) {
// Check whether we already know about the property.
auto knownProperty = Impl.FunctionsAsProperties.find(accessor);
if (knownProperty != Impl.FunctionsAsProperties.end())
return knownProperty->second;
// Determine whether we have the getter or setter.
const clang::FunctionDecl *getter = nullptr;
ImportedName getterName;
std::optional<ImportedName> swift3GetterName;
const clang::FunctionDecl *setter = nullptr;
ImportedName setterName;
std::optional<ImportedName> swift3SetterName;
switch (importedName.getAccessorKind()) {
case ImportedAccessorKind::None:
case ImportedAccessorKind::SubscriptGetter:
case ImportedAccessorKind::SubscriptSetter:
case ImportedAccessorKind::DereferenceGetter:
case ImportedAccessorKind::DereferenceSetter:
llvm_unreachable("Not a property accessor");
case ImportedAccessorKind::PropertyGetter:
getter = accessor;
getterName = importedName;
break;
case ImportedAccessorKind::PropertySetter:
setter = accessor;
setterName = importedName;
break;
}
// Find the other accessor, if it exists.
auto propertyName = importedName.getBaseIdentifier(Impl.SwiftContext);
auto lookupTable =
Impl.findLookupTable(*getClangSubmoduleForDecl(accessor));
assert(lookupTable && "No lookup table?");
bool foundAccessor = false;
for (auto entry : lookupTable->lookup(SerializedSwiftName(propertyName),
importedName.getEffectiveContext())) {
auto decl = entry.dyn_cast<clang::NamedDecl *>();
if (!decl)
continue;
auto function = dyn_cast<clang::FunctionDecl>(decl);
if (!function)
continue;
if (function->getCanonicalDecl() == accessor->getCanonicalDecl()) {
foundAccessor = true;
continue;
}
if (!getter) {
// Find the self index for the getter.
std::tie(getterName, swift3GetterName) = importFullName(function);
if (!getterName)
continue;
getter = function;
continue;
}
if (!setter) {
// Find the self index for the setter.
std::tie(setterName, swift3SetterName) = importFullName(function);
if (!setterName)
continue;
setter = function;
continue;
}
// We already have both a getter and a setter; something is
// amiss, so bail out.
return nullptr;
}
assert(foundAccessor && "Didn't find the original accessor? "
"Try clearing your module cache");
// If there is no getter, there's nothing we can do.
if (!getter)
return nullptr;
// Retrieve the type of the property that is implied by the getter.
auto propertyType =
getAccessorPropertyType(getter, false, getterName.getSelfIndex());
if (propertyType.isNull())
return nullptr;
propertyType = desugarIfElaborated(propertyType);
// If there is a setter, check that the property it implies
// matches that of the getter.
if (setter) {
auto setterPropertyType =
getAccessorPropertyType(setter, true, setterName.getSelfIndex());
if (setterPropertyType.isNull())
return nullptr;
// If the inferred property types don't match up, we can't
// form a property.
if (!getter->getASTContext().hasSameType(propertyType, setterPropertyType))
return nullptr;
}
// Import the property's context.
auto dc = Impl.importDeclContextOf(getter, getterName.getEffectiveContext());
if (!dc)
return nullptr;
// Is this a static property?
bool isStatic = false;
if (dc->isTypeContext() && !getterName.getSelfIndex())
isStatic = true;
ImportedType importedType = importer::findOptionSetEnum(propertyType, Impl);
if (!importedType) {
// Compute the property type.
bool isFromSystemModule = isInSystemModule(dc);
importedType = Impl.importType(
propertyType, ImportTypeKind::Property,
ImportDiagnosticAdder(Impl, getter, getter->getLocation()),
Impl.shouldAllowNSUIntegerAsInt(isFromSystemModule, getter),
Bridgeability::Full, getImportTypeAttrs(accessor),
OTK_ImplicitlyUnwrappedOptional);
}
if (!importedType)
return nullptr;
Type swiftPropertyType = importedType.getType();
auto property = Impl.createDeclWithClangNode<VarDecl>(
getter, importer::convertClangAccess(getter->getAccess()),
/*IsStatic*/ isStatic, VarDecl::Introducer::Var, SourceLoc(),
propertyName, dc);
property->setInterfaceType(swiftPropertyType);
property->setIsObjC(false);
property->setIsDynamic(false);
Impl.recordImplicitUnwrapForDecl(property,
importedType.isImplicitlyUnwrapped());
// Note that we've formed this property.
Impl.FunctionsAsProperties[getter] = property;
if (setter)
Impl.FunctionsAsProperties[setter] = property;
// If this property is in a class or class extension context,
// add "final".
if (dc->getSelfClassDecl())
property->getAttrs().add(new (Impl.SwiftContext)
FinalAttr(/*IsImplicit=*/true));
// Import the getter.
auto *swiftGetter = dyn_cast_or_null<AccessorDecl>(
importFunctionDecl(getter, getterName, std::nullopt,
AccessorInfo{property, AccessorKind::Get}));
if (!swiftGetter)
return nullptr;
Impl.importAttributes(getter, swiftGetter);
Impl.ImportedDecls[{getter, getVersion()}] = swiftGetter;
if (swift3GetterName)
markAsVariant(swiftGetter, *swift3GetterName);
// Import the setter.
AccessorDecl *swiftSetter = nullptr;
if (setter) {
swiftSetter = dyn_cast_or_null<AccessorDecl>(
importFunctionDecl(setter, setterName, std::nullopt,
AccessorInfo{property, AccessorKind::Set}));
if (!swiftSetter)
return nullptr;
Impl.importAttributes(setter, swiftSetter);
Impl.ImportedDecls[{setter, getVersion()}] = swiftSetter;
if (swift3SetterName)
markAsVariant(swiftSetter, *swift3SetterName);
}
if (swiftGetter) property->setIsGetterMutating(swiftGetter->isMutating());
if (swiftSetter) property->setIsSetterMutating(swiftSetter->isMutating());
// Make this a computed property.
Impl.makeComputed(property, swiftGetter, swiftSetter);
// Make the property the alternate declaration for the getter.
Impl.addAlternateDecl(swiftGetter, property);
return property;
}
ConstructorDecl *SwiftDeclConverter::importConstructor(
const clang::ObjCMethodDecl *objcMethod, const DeclContext *dc,
bool implicit, std::optional<CtorInitializerKind> kind, bool required) {
// Only methods in the 'init' family can become constructors.
assert(isInitMethod(objcMethod) && "Not a real init method");
// Check whether we've already created the constructor.
auto known =
Impl.Constructors.find(std::make_tuple(objcMethod, dc, getVersion()));
if (known != Impl.Constructors.end())
return known->second;
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(objcMethod);
if (!importedName)
return nullptr;
// Check whether there is already a method with this selector.
auto selector = Impl.importSelector(objcMethod->getSelector());
if (isActiveSwiftVersion() &&
isMethodAlreadyImported(selector, importedName, /*isInstance=*/true, dc,
[](AbstractFunctionDecl *fn) {
return true;
}))
return nullptr;
// Map the name and complete the import.
ArrayRef<const clang::ParmVarDecl *> params{objcMethod->param_begin(),
objcMethod->param_end()};
bool variadic = objcMethod->isVariadic();
// If we dropped the variadic, handle it now.
if (importedName.droppedVariadic()) {
selector = ObjCSelector(Impl.SwiftContext, selector.getNumArgs() - 1,
selector.getSelectorPieces().drop_back());
params = params.drop_back(1);
variadic = false;
}
ConstructorDecl *existing;
auto result = importConstructor(objcMethod, dc, implicit,
kind.value_or(importedName.getInitKind()),
required, selector, importedName, params,
variadic, existing);
// If this is a compatibility stub, mark it as such.
if (result && correctSwiftName)
markAsVariant(result, *correctSwiftName);
return result;
}
/// Returns the latest "introduced" version on the current platform for
/// \p D.
llvm::VersionTuple
SwiftDeclConverter::findLatestIntroduction(const clang::Decl *D) {
llvm::VersionTuple result;
for (auto *attr : D->specific_attrs<clang::AvailabilityAttr>()) {
if (attr->getPlatform()->getName() == "swift") {
llvm::VersionTuple maxVersion{~0U, ~0U, ~0U};
return maxVersion;
}
// Does this availability attribute map to the platform we are
// currently targeting?
if (!Impl.platformAvailability.isPlatformRelevant(
attr->getPlatform()->getName())) {
continue;
}
// Take advantage of the empty version being 0.0.0.0.
result = std::max(result, attr->getIntroduced());
}
return result;
}
/// Returns true if importing \p objcMethod will produce a "better"
/// initializer than \p existingCtor.
bool SwiftDeclConverter::existingConstructorIsWorse(
const ConstructorDecl *existingCtor,
const clang::ObjCMethodDecl *objcMethod, CtorInitializerKind kind) {
CtorInitializerKind existingKind = existingCtor->getInitKind();
// If one constructor is unavailable in Swift and the other is
// not, keep the available one.
bool existingIsUnavailable = existingCtor->isUnavailable();
bool newIsUnavailable = Impl.isUnavailableInSwift(objcMethod);
if (existingIsUnavailable != newIsUnavailable)
return existingIsUnavailable;
// If the new kind is the same as the existing kind, stick with
// the existing constructor.
if (existingKind == kind)
return false;
// Check for cases that are obviously better or obviously worse.
if (kind == CtorInitializerKind::Designated ||
existingKind == CtorInitializerKind::Factory)
return true;
if (kind == CtorInitializerKind::Factory ||
existingKind == CtorInitializerKind::Designated)
return false;
assert(kind == CtorInitializerKind::Convenience ||
kind == CtorInitializerKind::ConvenienceFactory);
assert(existingKind == CtorInitializerKind::Convenience ||
existingKind == CtorInitializerKind::ConvenienceFactory);
// Between different kinds of convenience initializers, keep the one that
// was introduced first.
// FIXME: But if one of them is now deprecated, should we prefer the
// other?
llvm::VersionTuple introduced = findLatestIntroduction(objcMethod);
AvailabilityRange existingAvailability =
AvailabilityInference::availableRange(existingCtor);
assert(!existingAvailability.isKnownUnreachable());
if (existingAvailability.isAlwaysAvailable()) {
if (!introduced.empty())
return false;
} else {
auto existingIntroduced = existingAvailability.getRawMinimumVersion();
if (introduced != existingIntroduced) {
return introduced < existingIntroduced;
}
}
// The "introduced" versions are the same. Prefer Convenience over
// ConvenienceFactory, but otherwise prefer leaving things as they are.
if (kind == CtorInitializerKind::Convenience &&
existingKind == CtorInitializerKind::ConvenienceFactory)
return true;
return false;
}
/// Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling object construction syntax, e.g.,
///
/// \code
/// // in objc: [[NSArray alloc] initWithCapacity:1024]
/// NSArray(capacity: 1024)
/// \endcode
///
/// This variant of the function is responsible for actually binding the
/// constructor declaration appropriately.
ConstructorDecl *SwiftDeclConverter::importConstructor(
const clang::ObjCMethodDecl *objcMethod, const DeclContext *dc, bool implicit,
CtorInitializerKind kind, bool required, ObjCSelector selector,
ImportedName importedName, ArrayRef<const clang::ParmVarDecl *> args,
bool variadic, ConstructorDecl *&existing) {
existing = nullptr;
// Figure out the type of the container.
auto ownerNominal = dc->getSelfNominalTypeDecl();
assert(ownerNominal && "Method in non-type context?");
// Import the type that this method will have.
std::optional<ForeignAsyncConvention> asyncConvention;
std::optional<ForeignErrorConvention> errorConvention;
ParameterList *bodyParams;
auto importedType = Impl.importMethodParamsAndReturnType(
dc, objcMethod, args, variadic, isInSystemModule(dc), &bodyParams,
importedName, asyncConvention, errorConvention,
SpecialMethodKind::Constructor);
assert(!asyncConvention && "Initializers don't have async conventions");
if (!importedType)
return nullptr;
// Determine the failability of this initializer.
bool resultIsOptional = (bool) importedType.getType()->getOptionalObjectType();
// Update the failability appropriately based on the imported method type.
assert(resultIsOptional || !importedType.isImplicitlyUnwrapped());
OptionalTypeKind failability = OTK_None;
if (resultIsOptional) {
failability = OTK_Optional;
if (importedType.isImplicitlyUnwrapped())
failability = OTK_ImplicitlyUnwrappedOptional;
}
// Rebuild the function type with the appropriate result type;
Type resultTy = dc->getSelfInterfaceType();
if (resultIsOptional)
resultTy = OptionalType::get(resultTy);
// Look for other imported constructors that occur in this context with
// the same name.
SmallVector<AnyFunctionType::Param, 4> allocParams;
bodyParams->getParams(allocParams);
TinyPtrVector<ConstructorDecl *> ctors;
auto found = Impl.ConstructorsForNominal.find(ownerNominal);
if (found != Impl.ConstructorsForNominal.end())
ctors = found->second;
for (auto ctor : ctors) {
if (ctor->isInvalid() || ctor->isUnavailable() || !ctor->getClangDecl())
continue;
// If the types don't match, this is a different constructor with
// the same selector. This can happen when an overlay overloads an
// existing selector with a Swift-only signature.
auto ctorParams = ctor->getInterfaceType()
->castTo<AnyFunctionType>()
->getResult()
->castTo<AnyFunctionType>()
->getParams();
if (!AnyFunctionType::equalParams(ctorParams, allocParams)) {
continue;
}
// If the existing constructor has a less-desirable kind, mark
// the existing constructor unavailable.
if (existingConstructorIsWorse(ctor, objcMethod, kind)) {
// Show exactly where this constructor came from.
llvm::SmallString<32> errorStr;
errorStr += "superseded by import of ";
if (objcMethod->isClassMethod())
errorStr += "+[";
else
errorStr += "-[";
auto objcDC = objcMethod->getDeclContext();
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(objcDC)) {
errorStr += objcClass->getName();
errorStr += ' ';
} else if (auto objcCat = dyn_cast<clang::ObjCCategoryDecl>(objcDC)) {
errorStr += objcCat->getClassInterface()->getName();
auto catName = objcCat->getName();
if (!catName.empty()) {
errorStr += '(';
errorStr += catName;
errorStr += ')';
}
errorStr += ' ';
} else if (auto objcProto = dyn_cast<clang::ObjCProtocolDecl>(objcDC)) {
errorStr += objcProto->getName();
errorStr += ' ';
}
errorStr += objcMethod->getSelector().getAsString();
errorStr += ']';
auto attr = AvailableAttr::createUniversallyUnavailable(
Impl.SwiftContext, Impl.SwiftContext.AllocateCopy(errorStr.str()));
ctor->getAttrs().add(attr);
continue;
}
// Otherwise, we shouldn't create a new constructor, because
// it will be no better than the existing one.
existing = ctor;
return nullptr;
}
// Check whether we've already created the constructor.
auto known =
Impl.Constructors.find(std::make_tuple(objcMethod, dc, getVersion()));
if (known != Impl.Constructors.end())
return known->second;
// Create the actual constructor.
assert(!importedName.getAsyncInfo());
auto result = Impl.createDeclWithClangNode<ConstructorDecl>(
objcMethod, AccessLevel::Public, importedName.getDeclName(),
/*NameLoc=*/Impl.importSourceLoc(objcMethod->getLocation()), failability,
/*FailabilityLoc=*/SourceLoc(),
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/importedName.getErrorInfo().has_value(),
/*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(), bodyParams,
/*GenericParams=*/nullptr, const_cast<DeclContext *>(dc));
addObjCAttribute(result, selector);
recordMemberInContext(dc, result);
Impl.recordImplicitUnwrapForDecl(result,
importedType.isImplicitlyUnwrapped());
if (implicit)
result->setImplicit();
// Set the kind of initializer.
result->getASTContext().evaluator.cacheOutput(InitKindRequest{result},
std::move(kind));
// Consult API notes to determine whether this initializer is required.
if (!required && isRequiredInitializer(objcMethod))
required = true;
// Check whether this initializer satisfies a requirement in a protocol.
if (!required && !isa<ProtocolDecl>(dc) && objcMethod->isInstanceMethod()) {
auto objcParent =
cast<clang::ObjCContainerDecl>(objcMethod->getDeclContext());
if (isa<clang::ObjCProtocolDecl>(objcParent)) {
// An initializer declared in a protocol is required.
required = true;
} else {
// If the class in which this initializer was declared conforms to a
// protocol that requires this initializer, then this initializer is
// required.
SmallPtrSet<clang::ObjCProtocolDecl *, 8> objcProtocols;
objcParent->getASTContext().CollectInheritedProtocols(objcParent,
objcProtocols);
for (auto objcProto : objcProtocols) {
for (auto decl : objcProto->lookup(objcMethod->getSelector())) {
if (cast<clang::ObjCMethodDecl>(decl)->isInstanceMethod()) {
required = true;
break;
}
}
if (required)
break;
}
}
}
// If this initializer is required, add the appropriate attribute.
if (required) {
result->getAttrs().add(new (Impl.SwiftContext)
RequiredAttr(/*IsImplicit=*/true));
}
// Record the error convention.
if (errorConvention) {
result->setForeignErrorConvention(*errorConvention);
}
// Record the constructor for future re-use.
Impl.Constructors[std::make_tuple(objcMethod, dc, getVersion())] = result;
Impl.ConstructorsForNominal[ownerNominal].push_back(result);
// If this constructor overrides another constructor, mark it as such.
recordObjCOverride(result);
// If we ignored a custom Swift name because it wasn't suitable for an init,
// diagnose that now.
if (importedName.hasInvalidCustomName() && isActiveSwiftVersion()) {
if (auto customName = NameImporter::findCustomName(objcMethod, version)) {
result->diagnose(diag::invalid_swift_name_for_decl, *customName, result);
}
}
return result;
}
void SwiftDeclConverter::recordObjCOverride(AbstractFunctionDecl *decl) {
// Make sure that we always set the overridden declarations.
SWIFT_DEFER {
if (!decl->overriddenDeclsComputed())
decl->setOverriddenDecls({ });
};
// Figure out the class in which this method occurs.
auto classDecl = decl->getDeclContext()->getSelfClassDecl();
if (!classDecl)
return;
auto superDecl = classDecl->getSuperclassDecl();
if (!superDecl)
return;
// Dig out the Objective-C superclass.
SmallVector<ValueDecl *, 4> results;
superDecl->lookupQualified(
superDecl, DeclNameRef(decl->getName()), decl->getLoc(),
NL_QualifiedDefault | NL_IgnoreMissingImports, results);
for (auto member : results) {
if (member->getKind() != decl->getKind() ||
member->isInstanceMember() != decl->isInstanceMember() ||
member->isObjC() != decl->isObjC())
continue;
// Set function override.
if (auto func = dyn_cast<FuncDecl>(decl)) {
auto foundFunc = cast<FuncDecl>(member);
// Require a selector match.
if (foundFunc->isObjC() &&
func->getObjCSelector() != foundFunc->getObjCSelector())
continue;
func->setOverriddenDecl(foundFunc);
func->getAttrs().add(new (func->getASTContext()) OverrideAttr(true));
return;
}
// Set constructor override.
auto ctor = cast<ConstructorDecl>(decl);
auto memberCtor = cast<ConstructorDecl>(member);
// Require a selector match.
if (ctor->isObjC() &&
ctor->getObjCSelector() != memberCtor->getObjCSelector())
continue;
ctor->setOverriddenDecl(memberCtor);
ctor->getAttrs().add(new (ctor->getASTContext()) OverrideAttr(true));
// Propagate 'required' to subclass initializers.
if (memberCtor->isRequired() &&
!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
ctor->getAttrs().add(new (Impl.SwiftContext)
RequiredAttr(/*IsImplicit=*/true));
}
}
}
// Note: This function ignores labels.
static bool areParameterTypesEqual(const ParameterList &params1,
const ParameterList &params2) {
if (params1.size() != params2.size())
return false;
for (unsigned i : indices(params1)) {
if (!params1[i]->getInterfaceType()->isEqual(
params2[i]->getInterfaceType())) {
return false;
}
if (params1[i]->getValueOwnership() !=
params2[i]->getValueOwnership()) {
return false;
}
}
return true;
}
void SwiftDeclConverter::recordObjCOverride(SubscriptDecl *subscript) {
// Figure out the class in which this subscript occurs.
auto classTy = subscript->getDeclContext()->getSelfClassDecl();
if (!classTy)
return;
auto superDecl = classTy->getSuperclassDecl();
if (!superDecl)
return;
// Determine whether this subscript operation overrides another subscript
// operation.
SmallVector<ValueDecl *, 2> lookup;
subscript->getModuleContext()->lookupQualified(
superDecl, DeclNameRef(subscript->getName()),
subscript->getLoc(), NL_QualifiedDefault, lookup);
for (auto result : lookup) {
auto parentSub = dyn_cast<SubscriptDecl>(result);
if (!parentSub)
continue;
if (!areParameterTypesEqual(*subscript->getIndices(),
*parentSub->getIndices()))
continue;
// The index types match. This is an override, so mark it as such.
subscript->setOverriddenDecl(parentSub);
auto getterThunk = subscript->getParsedAccessor(AccessorKind::Get);
getterThunk->setOverriddenDecl(parentSub->getParsedAccessor(AccessorKind::Get));
if (auto parentSetter = parentSub->getParsedAccessor(AccessorKind::Set)) {
if (auto setterThunk = subscript->getParsedAccessor(AccessorKind::Set))
setterThunk->setOverriddenDecl(parentSetter);
}
// FIXME: Eventually, deal with multiple overrides.
break;
}
}
/// Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *
SwiftDeclConverter::importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod) {
assert(objcMethod->isInstanceMethod() && "Caller must filter");
// If the method we're attempting to import has the
// swift_private attribute, don't import as a subscript.
if (objcMethod->hasAttr<clang::SwiftPrivateAttr>())
return nullptr;
// Figure out where to look for the counterpart.
const clang::ObjCInterfaceDecl *interface = nullptr;
const clang::ObjCProtocolDecl *protocol =
dyn_cast<clang::ObjCProtocolDecl>(objcMethod->getDeclContext());
if (!protocol)
interface = objcMethod->getClassInterface();
auto lookupInstanceMethod = [&](
clang::Selector Sel) -> const clang::ObjCMethodDecl * {
if (interface)
return interface->lookupInstanceMethod(Sel);
return protocol->lookupInstanceMethod(Sel);
};
auto findCounterpart = [&](clang::Selector sel) -> FuncDecl * {
// If the declaration we're starting from is in a class, first check to see
// if we've already imported an instance method with a matching selector.
if (auto classDecl = decl->getDeclContext()->getSelfClassDecl()) {
auto swiftSel = Impl.importSelector(sel);
auto importedMembers = Impl.MembersForNominal.find(classDecl);
if (importedMembers != Impl.MembersForNominal.end()) {
for (auto membersForName : importedMembers->second) {
for (auto *member : membersForName.second) {
// Must be an instance method.
auto *afd = dyn_cast<FuncDecl>(member);
if (!afd || !afd->isInstanceMember())
continue;
// Selector must match.
if (afd->getObjCSelector() == swiftSel)
return afd;
}
}
}
}
// Find based on selector within the current type.
auto counterpart = lookupInstanceMethod(sel);
if (!counterpart)
return nullptr;
// If we're looking at a class but the getter was found in a protocol,
// we're going to build the subscript later when we mirror the protocol
// member. Bail out here, otherwise we'll build it twice.
if (interface &&
isa<clang::ObjCProtocolDecl>(counterpart->getDeclContext()))
return nullptr;
return cast_or_null<FuncDecl>(
Impl.importDecl(counterpart, getActiveSwiftVersion()));
};
// Determine the selector of the counterpart.
FuncDecl *getter = nullptr, *setter = nullptr;
const clang::ObjCMethodDecl *getterObjCMethod = nullptr,
*setterObjCMethod = nullptr;
clang::Selector counterpartSelector;
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
getter = cast<FuncDecl>(decl);
getterObjCMethod = objcMethod;
counterpartSelector = Impl.setObjectAtIndexedSubscript;
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript) {
setter = cast<FuncDecl>(decl);
setterObjCMethod = objcMethod;
counterpartSelector = Impl.objectAtIndexedSubscript;
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
getter = cast<FuncDecl>(decl);
getterObjCMethod = objcMethod;
counterpartSelector = Impl.setObjectForKeyedSubscript;
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
setter = cast<FuncDecl>(decl);
setterObjCMethod = objcMethod;
counterpartSelector = Impl.objectForKeyedSubscript;
} else {
llvm_unreachable("Unknown getter/setter selector");
}
// Find the counterpart.
bool optionalMethods = (objcMethod->getImplementationControl() ==
clang::ObjCImplementationControl::Optional);
if (auto *counterpart = findCounterpart(counterpartSelector)) {
const clang::ObjCMethodDecl *counterpartMethod = nullptr;
// If the counterpart to the method we're attempting to import has the
// swift_private attribute, don't import as a subscript.
if (auto importedFrom = counterpart->getClangDecl()) {
if (importedFrom->hasAttr<clang::SwiftPrivateAttr>())
return nullptr;
counterpartMethod = cast<clang::ObjCMethodDecl>(importedFrom);
if (optionalMethods)
optionalMethods = (counterpartMethod->getImplementationControl() ==
clang::ObjCImplementationControl::Optional);
}
assert(!counterpart || !counterpart->isStatic());
if (getter) {
setter = counterpart;
setterObjCMethod = counterpartMethod;
} else {
getter = counterpart;
getterObjCMethod = counterpartMethod;
}
}
// Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
// Check whether we've already created a subscript operation for
// this getter/setter pair.
if (auto subscript = Impl.Subscripts[{getter, setter}]) {
return subscript->getDeclContext() == decl->getDeclContext() ? subscript
: nullptr;
}
// Find the getter indices and make sure they match.
ParamDecl *getterIndex;
{
auto params = getter->getParameters();
if (params->size() != 1)
return nullptr;
getterIndex = params->get(0);
}
// Compute the element type based on the getter, looking through
// the implicit 'self' parameter and the normal function
// parameters.
auto elementTy = getter->getResultInterfaceType();
// Local function to mark the setter unavailable.
auto makeSetterUnavailable = [&] {
if (setter && !setter->isUnavailable())
Impl.markUnavailable(setter, "use subscripting");
};
// If we have a setter, rectify it with the getter.
ParamDecl *setterIndex;
bool getterAndSetterInSameType = false;
bool isIUO = getter->isImplicitlyUnwrappedOptional();
if (setter) {
// Whether there is an existing read-only subscript for which
// we have now found a setter.
SubscriptDecl *existingSubscript = Impl.Subscripts[{getter, nullptr}];
// Are the getter and the setter in the same type.
getterAndSetterInSameType =
(getter->getDeclContext()->getSelfNominalTypeDecl() ==
setter->getDeclContext()->getSelfNominalTypeDecl());
// Whether we can update the types involved in the subscript
// operation.
bool canUpdateSubscriptType =
!existingSubscript && getterAndSetterInSameType;
// Determine the setter's element type and indices.
Type setterElementTy;
std::tie(setterElementTy, setterIndex) = decomposeSubscriptSetter(setter);
// Rectify the setter element type with the getter's element type,
// and determine if the result is an implicitly unwrapped optional
// type.
auto importedType = rectifySubscriptTypes(elementTy, isIUO, setterElementTy,
canUpdateSubscriptType);
if (!importedType)
return decl == getter ? existingSubscript : nullptr;
isIUO = importedType.isImplicitlyUnwrapped();
// Update the element type.
elementTy = importedType.getType();
// Make sure that the index types are equivalent.
// FIXME: Rectify these the same way we do for element types.
if (!setterIndex->getInterfaceType()->isEqual(
getterIndex->getInterfaceType())) {
// If there is an existing subscript operation, we're done.
if (existingSubscript)
return decl == getter ? existingSubscript : nullptr;
// Otherwise, just forget we had a setter.
// FIXME: This feels very, very wrong.
setter = nullptr;
setterObjCMethod = nullptr;
setterIndex = nullptr;
}
// If there is an existing subscript within this context, we
// cannot create a new subscript. Update it if possible.
if (setter && existingSubscript && getterAndSetterInSameType) {
// Can we update the subscript by adding the setter?
if (existingSubscript->hasClangNode() &&
!existingSubscript->supportsMutation()) {
// Create the setter thunk.
auto setterThunk = synthesizer.buildSubscriptSetterDecl(
existingSubscript, setter, elementTy, setter->getDeclContext(),
setterIndex);
// Set the computed setter.
existingSubscript->setComputedSetter(setterThunk);
// Mark the setter as unavailable; one should use
// subscripting when it is present.
makeSetterUnavailable();
}
return decl == getter ? existingSubscript : nullptr;
}
}
// The context into which the subscript should go. We prefer wherever the
// getter is declared unless the two accessors are in different types and the
// one we started with is the setter. This happens when:
// - A read-only subscript is made read/write is a subclass.
// - A setter is redeclared in a subclass, but not the getter.
// And not when:
// - A getter is redeclared in a subclass, but not the setter.
// - The getter and setter are part of the same type.
// - There is no setter.
bool associateWithSetter = !getterAndSetterInSameType && setter == decl;
DeclContext *dc =
associateWithSetter ? setter->getDeclContext() : getter->getDeclContext();
// Build the subscript declaration.
auto &C = Impl.SwiftContext;
auto bodyParams = ParameterList::create(C, getterIndex);
DeclName name(C, DeclBaseName::createSubscript(), {Identifier()});
auto *const subscript = SubscriptDecl::createImported(C,
name, decl->getLoc(),
bodyParams, decl->getLoc(),
elementTy, dc,
/*genericParams=*/nullptr,
getter->getClangNode());
bool IsObjCDirect = false;
if (auto objCDecl = dyn_cast<clang::ObjCMethodDecl>(getter->getClangDecl())) {
IsObjCDirect = objCDecl->isDirectMethod();
}
const auto access = IsObjCDirect ? AccessLevel::Public
: getOverridableAccessLevel(dc);
subscript->setAccess(access);
subscript->setSetterAccess(access);
// Build the thunks.
AccessorDecl *getterThunk = synthesizer.buildSubscriptGetterDecl(
subscript, getter, elementTy, dc, getterIndex);
AccessorDecl *setterThunk = nullptr;
if (setter)
setterThunk = synthesizer.buildSubscriptSetterDecl(
subscript, setter, elementTy, dc, setterIndex);
// Record the subscript as an alternative declaration.
Impl.addAlternateDecl(associateWithSetter ? setter : getter, subscript);
// Import attributes for the accessors if there is a pair.
Impl.importAttributes(getterObjCMethod, getterThunk);
if (setterObjCMethod)
Impl.importAttributes(setterObjCMethod, setterThunk);
subscript->setIsSetterMutating(false);
Impl.makeComputed(subscript, getterThunk, setterThunk);
Impl.recordImplicitUnwrapForDecl(subscript, isIUO);
addObjCAttribute(subscript, std::nullopt);
// Optional subscripts in protocols.
if (optionalMethods && isa<ProtocolDecl>(dc))
subscript->getAttrs().add(new (Impl.SwiftContext) OptionalAttr(true));
// Note that we've created this subscript.
Impl.Subscripts[{getter, setter}] = subscript;
if (setter)
Impl.Subscripts.try_emplace({getter, nullptr}, subscript);
// Make the getter/setter methods unavailable.
if (!getter->isUnavailable())
Impl.markUnavailable(getter, "use subscripting");
makeSetterUnavailable();
// Wire up overrides.
recordObjCOverride(subscript);
return subscript;
}
AccessorDecl *
SwiftDeclConverter::importAccessor(const clang::ObjCMethodDecl *clangAccessor,
AbstractStorageDecl *storage,
AccessorKind accessorKind,
DeclContext *dc) {
SwiftDeclConverter converter(Impl, getActiveSwiftVersion());
auto *accessor = cast_or_null<AccessorDecl>(
converter.importObjCMethodDecl(clangAccessor, dc,
AccessorInfo{storage, accessorKind}));
if (!accessor) {
return nullptr;
}
Impl.importAttributes(clangAccessor, accessor);
return accessor;
}
void SwiftDeclConverter::addProtocols(
ProtocolDecl *protocol, SmallVectorImpl<ProtocolDecl *> &protocols,
llvm::SmallPtrSetImpl<ProtocolDecl *> &known) {
if (!known.insert(protocol).second)
return;
protocols.push_back(protocol);
for (auto inherited : protocol->getInheritedProtocols())
addProtocols(inherited, protocols, known);
}
void SwiftDeclConverter::importObjCProtocols(
Decl *decl, const clang::ObjCProtocolList &clangProtocols,
SmallVectorImpl<InheritedEntry> &inheritedTypes) {
SmallVector<ProtocolDecl *, 4> protocols;
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
if (auto classDecl = dyn_cast<ClassDecl>(decl)) {
classDecl->getImplicitProtocols(protocols);
knownProtocols.insert(protocols.begin(), protocols.end());
}
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
cp != cpEnd; ++cp) {
if (auto proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
Impl.importDecl(*cp, getActiveSwiftVersion()))) {
addProtocols(proto, protocols, knownProtocols);
inheritedTypes.push_back(
InheritedEntry(TypeLoc::withoutLoc(proto->getDeclaredInterfaceType()),
ProtocolConformanceOptions()));
}
}
Impl.recordImportedProtocols(decl, protocols);
}
std::optional<GenericParamList *> SwiftDeclConverter::importObjCGenericParams(
const clang::ObjCInterfaceDecl *decl, DeclContext *dc) {
auto typeParamList = decl->getTypeParamList();
if (!typeParamList) {
return nullptr;
}
if (shouldSuppressGenericParamsImport(Impl.SwiftContext.LangOpts, decl)) {
return nullptr;
}
assert(typeParamList->size() > 0);
SmallVector<GenericTypeParamDecl *, 4> genericParams;
for (auto *objcGenericParam : *typeParamList) {
auto genericParamDecl = Impl.createDeclWithClangNode<GenericTypeParamDecl>(
objcGenericParam, AccessLevel::Public, dc,
Impl.SwiftContext.getIdentifier(objcGenericParam->getName()),
Impl.importSourceLoc(objcGenericParam->getLocation()),
/*specifierLoc*/ SourceLoc(),
/*depth*/ 0, /*index*/ genericParams.size(),
GenericTypeParamKind::Type);
// NOTE: depth is always 0 for ObjC generic type arguments, since only
// classes may have generic types in ObjC, and ObjC classes cannot be
// nested.
// Import parameter constraints.
SmallVector<InheritedEntry, 1> inherited;
if (objcGenericParam->hasExplicitBound()) {
assert(!objcGenericParam->getUnderlyingType().isNull());
auto underlyingTy = objcGenericParam->getUnderlyingType();
auto clangBound = underlyingTy
->castAs<clang::ObjCObjectPointerType>();
ImportTypeAttrs attrs;
getConcurrencyAttrs(Impl.SwiftContext, ImportTypeKind::Abstract, attrs,
underlyingTy);
if (clangBound->getInterfaceDecl()) {
auto unqualifiedClangBound =
clangBound->stripObjCKindOfTypeAndQuals(Impl.getClangASTContext());
assert(!objcGenericParam->hasAttrs()
&& "ObjC generics can have attributes now--we should use 'em");
Type superclassType = Impl.importTypeIgnoreIUO(
clang::QualType(unqualifiedClangBound, 0), ImportTypeKind::Abstract,
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
false, Bridgeability::None, ImportTypeAttrs());
if (!superclassType) {
return std::nullopt;
}
inherited.push_back(TypeLoc::withoutLoc(superclassType));
}
if (attrs.contains(ImportTypeAttr::Sendable)) {
if (auto *sendable =
Impl.SwiftContext.getProtocol(KnownProtocolKind::Sendable)) {
inherited.push_back(
TypeLoc::withoutLoc(sendable->getDeclaredInterfaceType()));
}
}
for (clang::ObjCProtocolDecl *clangProto : clangBound->quals()) {
ProtocolDecl *proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
Impl.importDecl(clangProto, getActiveSwiftVersion()));
if (!proto) {
return std::nullopt;
}
inherited.push_back(
TypeLoc::withoutLoc(proto->getDeclaredInterfaceType()));
}
}
inherited.push_back(
TypeLoc::withoutLoc(Impl.SwiftContext.getAnyObjectConstraint()));
genericParamDecl->setInherited(Impl.SwiftContext.AllocateCopy(inherited));
genericParams.push_back(genericParamDecl);
}
return GenericParamList::create(
Impl.SwiftContext, Impl.importSourceLoc(typeParamList->getLAngleLoc()),
genericParams, Impl.importSourceLoc(typeParamList->getRAngleLoc()));
}
void ClangImporter::Implementation::importMirroredProtocolMembers(
const clang::ObjCContainerDecl *decl, DeclContext *dc,
std::optional<DeclBaseName> name, SmallVectorImpl<Decl *> &members) {
SwiftDeclConverter converter(*this, CurrentVersion);
converter.importMirroredProtocolMembers(decl, dc, name, members);
}
void SwiftDeclConverter::importMirroredProtocolMembers(
const clang::ObjCContainerDecl *decl, DeclContext *dc,
std::optional<DeclBaseName> name, SmallVectorImpl<Decl *> &members) {
assert(dc);
const clang::ObjCInterfaceDecl *interfaceDecl = nullptr;
const ClangModuleUnit *declModule;
const ClangModuleUnit *interfaceModule;
// Try to import only the most specific methods with a particular name.
// We use a MapVector to get deterministic iteration order later.
llvm::MapVector<clang::Selector, std::vector<MirroredMethodEntry>>
methodsByName;
for (auto proto : Impl.getImportedProtocols(dc->getAsDecl())) {
auto clangProto =
cast_or_null<clang::ObjCProtocolDecl>(proto->getClangDecl());
if (!clangProto)
continue;
if (!interfaceDecl) {
declModule = Impl.getClangModuleForDecl(decl);
if ((interfaceDecl = dyn_cast<clang::ObjCInterfaceDecl>(decl))) {
interfaceModule = declModule;
} else {
auto category = cast<clang::ObjCCategoryDecl>(decl);
interfaceDecl = category->getClassInterface();
interfaceModule = Impl.getClangModuleForDecl(interfaceDecl);
}
}
// Don't import a protocol's members if the superclass already adopts
// the protocol, or (for categories) if the class itself adopts it
// in its main @interface.
if (decl != interfaceDecl)
if (classImplementsProtocol(interfaceDecl, clangProto, false))
continue;
if (auto superInterface = interfaceDecl->getSuperClass())
if (classImplementsProtocol(superInterface, clangProto, true))
continue;
auto importProtocolRequirement = [&](Decl *member) {
// Skip compatibility stubs; there's no reason to mirror them.
if (member->isUnavailableInCurrentSwiftVersion())
return;
if (auto prop = dyn_cast<VarDecl>(member)) {
auto objcProp =
dyn_cast_or_null<clang::ObjCPropertyDecl>(prop->getClangDecl());
if (!objcProp)
return;
// We can't import a property if there's already a method with this
// name. (This also covers other properties with that same name.)
// FIXME: We should still mirror the setter as a method if it's
// not already there.
clang::Selector sel = objcProp->getGetterName();
if (interfaceDecl->getInstanceMethod(sel))
return;
bool inNearbyCategory =
std::any_of(interfaceDecl->known_categories_begin(),
interfaceDecl->known_categories_end(),
[=](const clang::ObjCCategoryDecl *category) -> bool {
if (!Impl.getClangSema().isVisible(category)) {
return false;
}
if (category != decl) {
auto *categoryModule =
Impl.getClangModuleForDecl(category);
if (categoryModule != declModule &&
categoryModule != interfaceModule) {
return false;
}
}
return category->getInstanceMethod(sel);
});
if (inNearbyCategory)
return;
if (auto imported =
Impl.importMirroredDecl(objcProp, dc, getVersion(), proto)) {
members.push_back(imported);
// FIXME: We should mirror properties of the root class onto the
// metatype.
}
return;
}
auto afd = dyn_cast<AbstractFunctionDecl>(member);
if (!afd)
return;
if (isa<AccessorDecl>(afd))
return;
auto objcMethod =
dyn_cast_or_null<clang::ObjCMethodDecl>(member->getClangDecl());
if (!objcMethod)
return;
// For now, just remember that we saw this method.
methodsByName[objcMethod->getSelector()]
.push_back(std::make_tuple(objcMethod, proto, afd->hasAsync()));
};
if (name) {
// If we're asked to import a specific name only, look for that in the
// protocol.
auto results = proto->lookupDirect(*name);
for (auto *member : results)
if (member->getDeclContext() == proto)
importProtocolRequirement(member);
} else {
// Otherwise, import all mirrored members.
for (auto *member : proto->getMembers())
importProtocolRequirement(member);
}
}
// Process all the methods, now that we've arranged them by selector.
for (auto &mapEntry : methodsByName) {
importNonOverriddenMirroredMethods(dc, mapEntry.second, members);
}
}
enum MirrorImportComparison {
// There's no suppression relationship between the methods.
NoSuppression,
// The first method suppresses the second.
Suppresses,
// The second method suppresses the first.
IsSuppressed,
};
/// Should the mirror import of the first method be suppressed in favor
/// of the second method? The methods are known to have the same selector
/// and (because this is mirror-import) to be declared on protocols.
///
/// The algorithm that uses this assumes that it is transitive.
static bool isMirrorImportSuppressedBy(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *first,
const clang::ObjCMethodDecl *second) {
if (first->isInstanceMethod() != second->isInstanceMethod())
return false;
auto firstProto = cast<clang::ObjCProtocolDecl>(first->getDeclContext());
auto secondProto = cast<clang::ObjCProtocolDecl>(second->getDeclContext());
// If the first method's protocol is a super-protocol of the second's,
// then the second method overrides the first and we should suppress.
// Clang provides a function to check that, phrased in terms of whether
// a value of one protocol (the RHS) can be assigned to an l-value of
// the other (the LHS).
auto &ctx = importer.getClangASTContext();
return ctx.ProtocolCompatibleWithProtocol(
const_cast<clang::ObjCProtocolDecl*>(firstProto),
const_cast<clang::ObjCProtocolDecl*>(secondProto));
}
/// Compare two methods for mirror-import purposes.
static MirrorImportComparison
compareMethodsForMirrorImport(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *first,
const clang::ObjCMethodDecl *second) {
if (isMirrorImportSuppressedBy(importer, first, second))
return IsSuppressed;
if (isMirrorImportSuppressedBy(importer, second, first))
return Suppresses;
return NoSuppression;
}
/// Mark any methods in the given array that are overridden by this method
/// as suppressed by nulling their entries out.
/// Return true if this method is overridden by any methods in the array.
static bool suppressOverriddenMethods(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *method,
bool isAsync,
MutableArrayRef<MirroredMethodEntry> entries) {
assert(method && "method was already suppressed");
for (auto &entry: entries) {
auto otherMethod = std::get<0>(entry);
if (!otherMethod) continue;
if (isAsync != std::get<2>(entry)) continue;
assert(method != otherMethod && "found same method twice?");
switch (compareMethodsForMirrorImport(importer, method, otherMethod)) {
// If the second method is suppressed, null it out.
case Suppresses:
std::get<0>(entry) = nullptr;
continue;
// If the first method is suppressed, return immediately. We should
// be able to suppress any following methods.
case IsSuppressed:
return true;
case NoSuppression:
continue;
}
llvm_unreachable("bad comparison result");
}
return false;
}
void addCompletionHandlerAttribute(Decl *asyncImport,
ArrayRef<Decl *> members,
ASTContext &SwiftContext) {
auto *asyncFunc = dyn_cast_or_null<AbstractFunctionDecl>(asyncImport);
// Completion handler functions can be imported as getters, but the decl
// given back from the import is the property. Grab the underlying getter
if (auto *property = dyn_cast_or_null<AbstractStorageDecl>(asyncImport))
asyncFunc = property->getAccessor(AccessorKind::Get);
if (!asyncFunc)
return;
for (auto *member : members) {
if (member == asyncImport)
continue;
auto afd = dyn_cast<AbstractFunctionDecl>(member);
if (!afd)
continue;
// Only add the attribute to functions that don't already have availability
if (afd->getAttrs().hasAttribute<AvailableAttr>())
continue;
llvm::VersionTuple NoVersion;
auto *attr = new (SwiftContext) AvailableAttr(
SourceLoc(), SourceRange(), AvailabilityDomain::forUniversal(),
SourceLoc(), AvailableAttr::Kind::Default,
/*Message=*/"", /*Rename=*/"", /*Introduced=*/NoVersion, SourceRange(),
/*Deprecated=*/NoVersion, SourceRange(),
/*Obsoleted=*/NoVersion, SourceRange(),
/*Implicit=*/true,
/*SPI=*/false);
afd->setRenamedDecl(attr, asyncFunc);
afd->getAttrs().add(attr);
}
}
/// Given a set of methods with the same selector, each taken from a
/// different protocol in the protocol hierarchy of a class into which
/// we want to introduce mirror imports, import only the methods which
/// are not overridden by another method in the set.
///
/// It's possible that we'll end up selecting multiple methods to import
/// here, in the cases where there's no hierarchical relationship between
/// two methods. The importer already has code to handle this case.
void SwiftDeclConverter::importNonOverriddenMirroredMethods(DeclContext *dc,
MutableArrayRef<MirroredMethodEntry> entries,
SmallVectorImpl<Decl *> &members) {
// Keep track of the async imports. We'll come back to them.
llvm::SmallMapVector<const clang::ObjCMethodDecl*, Decl *, 4> asyncImports;
// Keep track of all of the synchronous imports.
llvm::SmallMapVector<
const clang::ObjCMethodDecl*, llvm::TinyPtrVector<Decl *>, 4>
syncImports;
for (size_t i = 0, e = entries.size(); i != e; ++i) {
auto objcMethod = std::get<0>(entries[i]);
bool isAsync = std::get<2>(entries[i]);
// If the method was suppressed by a previous method, ignore it.
if (!objcMethod)
continue;
// Compare this method to all the following methods, suppressing any
// that it overrides. If it is overridden by any of them, suppress it
// instead; but there's no need to mark that in the array, just continue
// on to the next method.
if (suppressOverriddenMethods(
Impl, objcMethod, isAsync, entries.slice(i + 1)))
continue;
// Okay, the method wasn't suppressed, import it.
// When mirroring an initializer, make it designated and required.
if (isInitMethod(objcMethod)) {
// Import the constructor.
if (auto imported = importConstructor(objcMethod, dc, /*implicit=*/true,
CtorInitializerKind::Designated,
/*required=*/true)) {
members.push_back(imported);
}
continue;
}
// Import the method.
auto proto = std::get<1>(entries[i]);
if (auto imported =
Impl.importMirroredDecl(objcMethod, dc,
getVersion().withConcurrency(isAsync),
proto)) {
size_t start = members.size();
members.push_back(imported);
for (auto alternate : Impl.getAlternateDecls(imported)) {
if (imported->getDeclContext() == alternate->getDeclContext())
members.push_back(alternate);
}
if (isAsync) {
asyncImports[objcMethod] = imported;
} else {
syncImports[objcMethod] = llvm::TinyPtrVector<Decl *>(
llvm::ArrayRef(members).drop_front(start + 1));
}
}
}
// Write up sync and async versions.
for (const auto &asyncImport : asyncImports) {
addCompletionHandlerAttribute(
asyncImport.second,
syncImports[asyncImport.first],
Impl.SwiftContext);
}
}
void SwiftDeclConverter::importInheritedConstructors(
const ClassDecl *classDecl, SmallVectorImpl<Decl *> &newMembers) {
auto superclassDecl = classDecl->getSuperclassDecl();
if (!superclassDecl)
return;
auto superclassClangDecl = superclassDecl->getClangDecl();
if (!superclassClangDecl ||
!isa<clang::ObjCInterfaceDecl>(superclassClangDecl))
return;
auto curObjCClass = cast<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
// The kind of initializer to import. If this class has designated
// initializers, everything it inherits is a convenience initializer.
std::optional<CtorInitializerKind> kind;
if (curObjCClass->hasDesignatedInitializers())
kind = CtorInitializerKind::Convenience;
auto members = superclassDecl->lookupDirect(
DeclBaseName::createConstructor());
for (auto member : members) {
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor)
continue;
// Don't inherit compatibility stubs.
if (ctor->isUnavailableInCurrentSwiftVersion())
continue;
// Don't inherit (non-convenience) factory initializers.
// Note that convenience factories return instancetype and can be
// inherited.
switch (ctor->getInitKind()) {
case CtorInitializerKind::Factory:
continue;
case CtorInitializerKind::ConvenienceFactory:
case CtorInitializerKind::Convenience:
case CtorInitializerKind::Designated:
break;
}
auto objcMethod =
dyn_cast_or_null<clang::ObjCMethodDecl>(ctor->getClangDecl());
if (!objcMethod)
continue;
auto &clangSourceMgr = Impl.getClangASTContext().getSourceManager();
clang::PrettyStackTraceDecl trace(objcMethod, clang::SourceLocation(),
clangSourceMgr,
"importing (inherited)");
// If this initializer came from a factory method, inherit
// it as an initializer.
if (objcMethod->isClassMethod()) {
assert(ctor->getInitKind() == CtorInitializerKind::ConvenienceFactory);
ImportedName importedName;
std::optional<ImportedName> correctSwiftName;
std::tie(importedName, correctSwiftName) = importFullName(objcMethod);
assert(
!correctSwiftName &&
"Import inherited initializers never references correctSwiftName");
importedName.setHasCustomName();
ConstructorDecl *existing;
if (auto newCtor =
importConstructor(objcMethod, classDecl,
/*implicit=*/true, ctor->getInitKind(),
/*required=*/false, ctor->getObjCSelector(),
importedName, objcMethod->parameters(),
objcMethod->isVariadic(), existing)) {
// If this is a compatibility stub, mark it as such.
if (correctSwiftName)
markAsVariant(newCtor, *correctSwiftName);
Impl.importAttributes(objcMethod, newCtor, curObjCClass);
newMembers.push_back(newCtor);
} else if (existing && existing->getInitKind() ==
CtorInitializerKind::ConvenienceFactory &&
existing->getClangDecl()) {
// Check that the existing constructor the prevented new creation is
// really an inherited factory initializer and not a class member.
auto existingMD = cast<clang::ObjCMethodDecl>(existing->getClangDecl());
if (existingMD->getClassInterface() != curObjCClass) {
newMembers.push_back(existing);
}
}
continue;
}
// Figure out what kind of constructor this will be.
CtorInitializerKind myKind;
bool isRequired = false;
if (ctor->isRequired()) {
// Required initializers are always considered designated.
isRequired = true;
myKind = CtorInitializerKind::Designated;
} else if (kind) {
myKind = *kind;
} else {
myKind = ctor->getInitKind();
}
// Import the constructor into this context.
if (auto newCtor =
importConstructor(objcMethod, classDecl,
/*implicit=*/true, myKind, isRequired)) {
Impl.importAttributes(objcMethod, newCtor, curObjCClass);
newMembers.push_back(newCtor);
}
}
}
std::optional<Decl *> ClangImporter::Implementation::importDeclCached(
const clang::NamedDecl *ClangDecl, ImportNameVersion version,
bool UseCanonical) {
auto Known = ImportedDecls.find(
{ UseCanonical? ClangDecl->getCanonicalDecl(): ClangDecl, version });
if (Known == ImportedDecls.end())
return std::nullopt;
return Known->second;
}
/// Checks if we don't need to import the typedef itself. If the typedef
/// should be skipped, returns the underlying declaration that the typedef
/// refers to -- this declaration should be imported instead.
static const clang::TagDecl *
canSkipOverTypedef(ClangImporter::Implementation &Impl,
const clang::NamedDecl *D,
bool &TypedefIsSuperfluous) {
// If we have a typedef that refers to a tag type of the same name,
// skip the typedef and import the tag type directly.
TypedefIsSuperfluous = false;
auto *ClangTypedef = dyn_cast<clang::TypedefNameDecl>(D);
if (!ClangTypedef)
return nullptr;
const clang::DeclContext *RedeclContext =
ClangTypedef->getDeclContext()->getRedeclContext();
if (!RedeclContext->isTranslationUnit())
return nullptr;
clang::QualType UnderlyingType = ClangTypedef->getUnderlyingType();
if (auto elaborated = dyn_cast<clang::ElaboratedType>(UnderlyingType))
UnderlyingType = elaborated->desugar();
// A typedef to a typedef should get imported as a typealias.
auto *TypedefT = UnderlyingType->getAs<clang::TypedefType>();
if (TypedefT)
return nullptr;
auto *TT = UnderlyingType->getAs<clang::TagType>();
if (!TT)
return nullptr;
clang::TagDecl *UnderlyingDecl = TT->getDecl();
if (UnderlyingDecl->getDeclContext()->getRedeclContext() != RedeclContext)
return nullptr;
if (UnderlyingDecl->getDeclName().isEmpty())
return UnderlyingDecl;
auto TypedefName = ClangTypedef->getDeclName();
auto TagDeclName = UnderlyingDecl->getDeclName();
if (TypedefName != TagDeclName)
return nullptr;
TypedefIsSuperfluous = true;
return UnderlyingDecl;
}
StringRef ClangImporter::Implementation::
getSwiftNameFromClangName(StringRef replacement) {
auto &clangSema = getClangSema();
clang::IdentifierInfo *identifier =
&clangSema.getASTContext().Idents.get(replacement);
clang::LookupResult lookupResult(clangSema, identifier,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (!clangSema.LookupName(lookupResult, clangSema.TUScope))
return "";
auto clangDecl = lookupResult.getAsSingle<clang::NamedDecl>();
if (!clangDecl)
return "";
auto importedName = importFullName(clangDecl, CurrentVersion);
if (!importedName)
return "";
llvm::SmallString<64> renamed;
{
// Render a swift_name string.
llvm::raw_svector_ostream os(renamed);
printSwiftName(importedName, CurrentVersion, /*fullyQualified=*/true, os);
}
return SwiftContext.AllocateCopy(StringRef(renamed));
}
bool importer::isSpecialUIKitStructZeroProperty(const clang::NamedDecl *decl) {
// FIXME: Once UIKit removes the "nonswift" availability in their versioned
// API notes, this workaround can go away.
auto *constant = dyn_cast<clang::VarDecl>(decl);
if (!constant)
return false;
clang::DeclarationName name = constant->getDeclName();
const clang::IdentifierInfo *ident = name.getAsIdentifierInfo();
if (!ident)
return false;
return ident->isStr("UIEdgeInsetsZero") || ident->isStr("UIOffsetZero");
}
bool importer::hasSameUnderlyingType(const clang::Type *a,
const clang::TemplateTypeParmDecl *b) {
while (a->isPointerType() || a->isReferenceType())
a = a->getPointeeType().getTypePtr();
return a == b->getTypeForDecl();
}
SourceFile &ClangImporter::Implementation::getClangSwiftAttrSourceFile(
Decl *MappedDecl, StringRef attributeText, bool cached) {
auto *module = MappedDecl->getDeclContext()->getParentModule();
::TinyPtrVector<SourceFile *> *sourceFiles = nullptr;
if (cached) {
sourceFiles = &ClangSwiftAttrSourceFiles[attributeText];
// Check whether we've already created a source file.
for (auto sourceFile : *sourceFiles) {
if (sourceFile->getParentModule() == module)
return *sourceFile;
}
}
// Create a new buffer with a copy of the attribute text,
// so we don't need to rely on Clang keeping it around.
auto &sourceMgr = SwiftContext.SourceMgr;
auto bufferID = sourceMgr.addMemBufferCopy(attributeText);
auto info = GeneratedSourceInfo{GeneratedSourceInfo::AttributeFromClang,
CharSourceRange(),
sourceMgr.getRangeForBuffer(bufferID)};
info.astNode = static_cast<void *>(module);
info.clangNode = MappedDecl->getClangNode();
sourceMgr.setGeneratedSourceInfo(bufferID, info);
// Create the source file.
auto sourceFile =
new (SwiftContext) SourceFile(*module, SourceFileKind::Library, bufferID);
if (cached)
sourceFiles->push_back(sourceFile);
return *sourceFile;
}
bool swift::importer::isMainActorAttr(const clang::SwiftAttrAttr *swiftAttr) {
return swiftAttr->getAttribute() == "@MainActor" ||
swiftAttr->getAttribute() == "@UIActor";
}
bool swift::importer::isMutabilityAttr(const clang::SwiftAttrAttr *swiftAttr) {
return swiftAttr->getAttribute() == "mutating" ||
swiftAttr->getAttribute() == "nonmutating";
}
void ClangImporter::Implementation::importNontrivialAttribute(
Decl *MappedDecl, llvm::StringRef AttrString) {
bool cached = true;
while (true) {
// Dig out a source file we can use for parsing.
auto &sourceFile =
getClangSwiftAttrSourceFile(MappedDecl, AttrString, cached);
auto topLevelDecls = sourceFile.getTopLevelDecls();
// If we're using the cached version, check whether we can correctly
// clone the attribute.
if (cached) {
bool hasNonclonableAttribute = false;
for (auto decl : topLevelDecls) {
if (hasNonclonableAttribute)
break;
for (auto attr : decl->getAttrs()) {
if (!attr->canClone()) {
hasNonclonableAttribute = true;
break;
}
}
}
// We cannot clone one of the attributes. Go back and build a new
// source file without caching it.
if (hasNonclonableAttribute) {
cached = false;
continue;
}
}
// Collect the attributes from the synthesized top-level declaration in
// the source file. If we're using a cached copy, clone the attribute.
for (auto decl : topLevelDecls) {
SmallVector<DeclAttribute *, 2> attrs(decl->getAttrs().begin(),
decl->getAttrs().end());
for (auto attr : attrs) {
MappedDecl->getAttrs().add(cached ? attr->clone(SwiftContext) : attr);
}
}
break;
}
}
void
ClangImporter::Implementation::importSwiftAttrAttributes(Decl *MappedDecl) {
auto ClangDecl =
dyn_cast_or_null<clang::NamedDecl>(MappedDecl->getClangDecl());
if (!ClangDecl)
return;
// Subscripts are special-cased since there isn't a 1:1 mapping
// from its accessor(s) to the subscript declaration.
if (isa<SubscriptDecl>(MappedDecl))
return;
if (auto maybeDefinition = getDefinitionForClangTypeDecl(ClangDecl))
if (maybeDefinition.value())
ClangDecl = cast<clang::NamedDecl>(maybeDefinition.value());
std::optional<const clang::SwiftAttrAttr *> seenMainActorAttr;
const clang::SwiftAttrAttr *seenMutabilityAttr = nullptr;
auto importAttrsFromDecl = [&](const clang::NamedDecl *ClangDecl) {
//
// __attribute__((swift_attr("attribute")))
//
bool seenUnsafe = false;
for (auto swiftAttr : ClangDecl->specific_attrs<clang::SwiftAttrAttr>()) {
// FIXME: Hard-code @MainActor and @UIActor, because we don't have a
// point at which to do name lookup for imported entities.
if (isMainActorAttr(swiftAttr)) {
if (seenMainActorAttr) {
// Cannot add main actor annotation twice. We'll keep the first
// one and raise a warning about the duplicate.
HeaderLoc attrLoc(swiftAttr->getLocation());
diagnose(attrLoc, diag::import_multiple_mainactor_attr,
swiftAttr->getAttribute(),
seenMainActorAttr.value()->getAttribute());
continue;
}
if (Type mainActorType = SwiftContext.getMainActorType()) {
auto typeExpr = TypeExpr::createImplicit(mainActorType, SwiftContext);
auto attr = CustomAttr::create(SwiftContext, SourceLoc(), typeExpr);
MappedDecl->getAttrs().add(attr);
seenMainActorAttr = swiftAttr;
}
continue;
}
if (isMutabilityAttr(swiftAttr)) {
StringRef attr = swiftAttr->getAttribute();
// Check if 'nonmutating' attr is applicable
if (attr == "nonmutating") {
if (auto *method = dyn_cast<clang::CXXMethodDecl>(ClangDecl)) {
if (!method->isConst()) {
diagnose(HeaderLoc(swiftAttr->getLocation()),
diag::nonmutating_without_const);
}
if (!method->getParent()->hasMutableFields()) {
diagnose(HeaderLoc(swiftAttr->getLocation()),
diag::nonmutating_without_mutable_fields);
}
}
}
// Check for contradicting mutability attr
if (seenMutabilityAttr) {
StringRef previous = seenMutabilityAttr->getAttribute();
if (previous != attr) {
diagnose(HeaderLoc(swiftAttr->getLocation()),
diag::contradicting_mutation_attrs, attr, previous);
continue;
}
}
seenMutabilityAttr = swiftAttr;
}
// Hard-code @actorIndependent, until Objective-C clients start
// using nonisolated.
if (swiftAttr->getAttribute() == "@actorIndependent") {
auto attr = NonisolatedAttr::createImplicit(SwiftContext);
MappedDecl->getAttrs().add(attr);
continue;
}
if (swiftAttr->getAttribute() == "BitwiseCopyable") {
auto *protocol =
SwiftContext.getProtocol(KnownProtocolKind::BitwiseCopyable);
auto *nominal = dyn_cast<NominalTypeDecl>(MappedDecl);
if (!nominal)
continue;
// Don't synthesize a conformance if one already exists.
auto ty = nominal->getDeclaredInterfaceType();
if (lookupConformance(ty, protocol))
continue;
auto conformance = SwiftContext.getNormalConformance(
ty, protocol, nominal->getLoc(), nominal->getDeclContextForModule(),
ProtocolConformanceState::Complete,
ProtocolConformanceOptions());
conformance->setSourceKindAndImplyingConformance(
ConformanceEntryKind::Synthesized, nullptr);
nominal->registerProtocolConformance(conformance, /*synthesized=*/true);
}
if (swiftAttr->getAttribute() == "sending") {
// Swallow this if the feature is not enabled.
if (!SwiftContext.LangOpts.hasFeature(Feature::SendingArgsAndResults))
continue;
auto *funcDecl = dyn_cast<FuncDecl>(MappedDecl);
if (!funcDecl)
continue;
funcDecl->setSendingResult();
continue;
}
if (swiftAttr->getAttribute() == "sensitive") {
if (!SwiftContext.LangOpts.hasFeature(Feature::Sensitive))
continue;
auto attr = new (SwiftContext) SensitiveAttr(/*implicit=*/true);
MappedDecl->getAttrs().add(attr);
continue;
}
if (swiftAttr->getAttribute() == "unsafe") {
seenUnsafe = true;
continue;
}
importNontrivialAttribute(MappedDecl, swiftAttr->getAttribute());
}
bool importUnsafeHeuristic =
isa<clang::CXXMethodDecl>(ClangDecl) &&
!evaluateOrDefault(SwiftContext.evaluator,
IsSafeUseOfCxxDecl({ClangDecl}), {});
if (seenUnsafe || importUnsafeHeuristic) {
auto attr = new (SwiftContext) UnsafeAttr(/*implicit=*/!seenUnsafe);
MappedDecl->getAttrs().add(attr);
}
};
importAttrsFromDecl(ClangDecl);
// If the Clang declaration is from an anonymous tag that was given a
// name via a typedef, look for attributes on the typedef as well.
if (auto tag = dyn_cast<clang::TagDecl>(ClangDecl)) {
if (tag->getName().empty()) {
if (auto typedefDecl = tag->getTypedefNameForAnonDecl())
importAttrsFromDecl(typedefDecl);
}
}
// The rest of this concerns '@Sendable' and '@_nonSendable`. These don't
// affect typealiases, even when there's an underlying nominal type in clang.
if (isa<TypeAliasDecl>(MappedDecl))
return;
// `@Sendable` on non-types is treated as an `ImportTypeAttr` and shouldn't
// be treated as an attribute on the declaration. (Particularly, @Sendable on
// a function or method should be treated as making the return value Sendable,
// *not* as making the function/method itself Sendable, because
// `@Sendable func` is primarily meant for local functions.)
if (!isa<TypeDecl>(MappedDecl))
while (auto attr = MappedDecl->getAttrs().getEffectiveSendableAttr())
MappedDecl->getAttrs().removeAttribute(attr);
// Some types have an implicit '@Sendable' attribute.
if (ClangDecl->hasAttr<clang::SwiftNewTypeAttr>() ||
ClangDecl->hasAttr<clang::EnumExtensibilityAttr>() ||
ClangDecl->hasAttr<clang::FlagEnumAttr>() ||
ClangDecl->hasAttr<clang::NSErrorDomainAttr>())
MappedDecl->getAttrs().add(
new (SwiftContext) SendableAttr(/*isImplicit=*/true));
// 'Error' conforms to 'Sendable', so error wrappers have to be 'Sendable'
// and it doesn't make sense for the 'Code' enum to be non-'Sendable'.
if (ClangDecl->hasAttr<clang::NSErrorDomainAttr>()) {
// If any @_nonSendable attributes are running the show, invalidate and
// diagnose them.
while (NonSendableAttr *attr = dyn_cast_or_null<NonSendableAttr>(
MappedDecl->getAttrs().getEffectiveSendableAttr())) {
assert(attr->Specificity == NonSendableKind::Specific &&
"didn't we just add an '@Sendable' that should beat this "
"'@_nonSendable(_assumed)'?");
attr->setInvalid();
diagnose(HeaderLoc(ClangDecl->getLocation()),
diag::clang_error_code_must_be_sendable,
ClangDecl->getNameAsString());
}
}
// Now that we've collected all @Sendable and @_nonSendable attributes, we
// can see if we should synthesize a Sendable conformance.
if (auto nominal = dyn_cast<NominalTypeDecl>(MappedDecl)) {
auto sendability = nominal->getAttrs().getEffectiveSendableAttr();
if (isa_and_nonnull<SendableAttr>(sendability)) {
addSynthesizedProtocolAttrs(nominal, {KnownProtocolKind::Sendable},
/*isUnchecked=*/true);
}
}
// Special handling of `NSNotificationName` static immutable properties.
//
// These constants could be used with observer APIs from a different isolation
// context, so it's more convenient to import them as `nonisolated` unless
// they are explicitly isolated to a MainActor.
if (!seenMainActorAttr) {
auto *DC = MappedDecl->getDeclContext();
if (DC->isTypeContext() && isa<VarDecl>(MappedDecl)) {
auto *mappedVar = cast<VarDecl>(MappedDecl);
if (mappedVar->isStatic() && mappedVar->isLet() &&
isNSNotificationName(cast<clang::ValueDecl>(ClangDecl)->getType())) {
MappedDecl->getAttrs().add(
NonisolatedAttr::createImplicit(SwiftContext));
}
}
}
}
namespace {
class SwiftifyInfoPrinter {
public:
static const ssize_t SELF_PARAM_INDEX = -2;
static const ssize_t RETURN_VALUE_INDEX = -1;
clang::ASTContext &ctx;
ASTContext &SwiftContext;
llvm::raw_ostream &out;
bool firstParam = true;
SwiftifyInfoPrinter(clang::ASTContext &ctx, ASTContext &SwiftContext, llvm::raw_ostream &out)
: ctx(ctx), SwiftContext(SwiftContext), out(out) {
out << "@_SwiftifyImport(";
}
~SwiftifyInfoPrinter() { out << ")"; }
void printCountedBy(const clang::CountAttributedType *CAT,
ssize_t pointerIndex) {
printSeparator();
clang::Expr *countExpr = CAT->getCountExpr();
bool isSizedBy = CAT->isCountInBytes();
out << ".";
if (isSizedBy)
out << "sizedBy";
else
out << "countedBy";
out << "(pointer: ";
printParamOrReturn(pointerIndex);
out << ", ";
if (isSizedBy)
out << "size";
else
out << "count";
out << ": \"";
countExpr->printPretty(
out, {}, {ctx.getLangOpts()}); // TODO: map clang::Expr to Swift Expr
out << "\")";
}
void printNonEscaping(int idx) {
printSeparator();
out << ".nonescaping(pointer: ";
printParamOrReturn(idx);
out << ")";
}
void printLifetimeboundReturn(int idx, bool borrow) {
printSeparator();
out << ".lifetimeDependence(dependsOn: ";
printParamOrReturn(idx);
out << ", pointer: .return, type: ";
out << (borrow ? ".borrow" : ".copy");
out << ")";
}
void printTypeMapping(const llvm::StringMap<std::string> &mapping) {
printSeparator();
out << "typeMappings: [";
if (mapping.empty()) {
out << ":]";
return;
}
llvm::interleaveComma(mapping, out, [&](const auto &entry) {
out << '"' << entry.getKey() << "\" : \"" << entry.getValue() << '"';
});
out << "]";
}
void printAvailability() {
printSeparator();
out << "spanAvailability: ";
printAvailabilityOfType("Span");
}
private:
ValueDecl *getDecl(StringRef DeclName) {
SmallVector<ValueDecl *, 1> decls;
SwiftContext.lookupInSwiftModule(DeclName, decls);
assert(decls.size() == 1);
if (decls.size() != 1) return nullptr;
return decls[0];
}
void printAvailabilityOfType(StringRef Name) {
ValueDecl *D = getDecl(Name);
out << "\"";
llvm::SaveAndRestore<bool> hasAvailbilitySeparatorRestore(firstParam, true);
for (auto attr : D->getSemanticAvailableAttrs(/*includingInactive=*/true)) {
auto introducedOpt = attr.getIntroduced();
if (!introducedOpt.has_value()) continue;
printSeparator();
out << prettyPlatformString(attr.getPlatform()) << " " << introducedOpt.value();
}
out << "\"";
}
void printSeparator() {
if (!firstParam) {
out << ", ";
} else {
firstParam = false;
}
}
void printParamOrReturn(ssize_t pointerIndex) {
if (pointerIndex == SELF_PARAM_INDEX)
out << ".self";
else if (pointerIndex == RETURN_VALUE_INDEX)
out << ".return";
else
out << ".param(" << pointerIndex + 1 << ")";
}
};
} // namespace
namespace {
/// Look for any side effects within a Stmt.
struct CATExprValidator : clang::ConstStmtVisitor<CATExprValidator, bool> {
bool VisitDeclRefExpr(const clang::DeclRefExpr *e) { return true; }
bool VisitIntegerLiteral(const clang::IntegerLiteral *) { return true; }
bool VisitImplicitCastExpr(const clang::ImplicitCastExpr *c) { return this->Visit(c->getSubExpr()); }
bool VisitParenExpr(const clang::ParenExpr *p) { return this->Visit(p->getSubExpr()); }
#define SUPPORTED_UNOP(UNOP) \
bool VisitUnary ## UNOP(const clang::UnaryOperator *unop) { \
return this->Visit(unop->getSubExpr()); \
}
SUPPORTED_UNOP(Plus)
SUPPORTED_UNOP(Minus)
SUPPORTED_UNOP(Not)
#undef SUPPORTED_UNOP
#define SUPPORTED_BINOP(BINOP) \
bool VisitBin ## BINOP(const clang::BinaryOperator *binop) { \
return this->Visit(binop->getLHS()) && this->Visit(binop->getRHS()); \
}
SUPPORTED_BINOP(Add)
SUPPORTED_BINOP(Sub)
SUPPORTED_BINOP(Div)
SUPPORTED_BINOP(Mul)
SUPPORTED_BINOP(Rem)
SUPPORTED_BINOP(Shl)
SUPPORTED_BINOP(Shr)
SUPPORTED_BINOP(And)
SUPPORTED_BINOP(Xor)
SUPPORTED_BINOP(Or)
#undef SUPPORTED_BINOP
bool VisitStmt(const clang::Stmt *) { return false; }
};
} // namespace
static bool SwiftifiableCAT(const clang::CountAttributedType *CAT) {
return CAT && CATExprValidator().Visit(CAT->getCountExpr());
}
static bool SwiftifiablePointerType(Type swiftType) {
// don't try to transform any Swift types that _SwiftifyImport doesn't know how to handle
Type nonnullType = swiftType->lookThroughSingleOptionalType();
PointerTypeKind PTK;
return nonnullType->isOpaquePointer() ||
(nonnullType->getAnyPointerElementType(PTK) && PTK != PTK_AutoreleasingUnsafeMutablePointer);
}
void ClangImporter::Implementation::swiftify(FuncDecl *MappedDecl) {
if (!SwiftContext.LangOpts.hasFeature(Feature::SafeInteropWrappers))
return;
if (importSymbolicCXXDecls)
return;
auto ClangDecl =
dyn_cast_or_null<clang::FunctionDecl>(MappedDecl->getClangDecl());
if (!ClangDecl)
return;
if (ClangDecl->getNumParams() != MappedDecl->getParameters()->size())
return;
llvm::SmallString<128> MacroString;
// We only attach the macro if it will produce an overload. Any __counted_by
// will produce an overload, since UnsafeBufferPointer is still an improvement
// over UnsafePointer, but std::span will only produce an overload if it also
// has lifetime information, since std::span already contains bounds info.
bool attachMacro = false;
{
llvm::raw_svector_ostream out(MacroString);
llvm::StringMap<std::string> typeMapping;
auto registerStdSpanTypeMapping =
[&typeMapping](Type swiftType, const clang::QualType clangType) {
const auto *decl = clangType->getAsTagDecl();
if (decl && decl->isInStdNamespace() && decl->getName() == "span") {
typeMapping.insert(
std::make_pair(swiftType->getString(),
swiftType->getDesugaredType()->getString()));
return true;
}
return false;
};
SwiftifyInfoPrinter printer(getClangASTContext(), SwiftContext, out);
Type swiftReturnTy = MappedDecl->getResultInterfaceType();
bool returnIsStdSpan = registerStdSpanTypeMapping(
swiftReturnTy, ClangDecl->getReturnType());
auto *CAT = ClangDecl->getReturnType()->getAs<clang::CountAttributedType>();
if (SwiftifiableCAT(CAT) && SwiftifiablePointerType(swiftReturnTy)) {
printer.printCountedBy(CAT, SwiftifyInfoPrinter::RETURN_VALUE_INDEX);
attachMacro = true;
}
bool returnHasLifetimeInfo = false;
if (SwiftDeclConverter::getImplicitObjectParamAnnotation<
clang::LifetimeBoundAttr>(ClangDecl)) {
printer.printLifetimeboundReturn(SwiftifyInfoPrinter::SELF_PARAM_INDEX,
true);
returnHasLifetimeInfo = true;
}
for (auto [index, clangParam] : llvm::enumerate(ClangDecl->parameters())) {
auto clangParamTy = clangParam->getType();
auto swiftParam = MappedDecl->getParameters()->get(index);
Type swiftParamTy = swiftParam->getInterfaceType();
bool paramHasBoundsInfo = false;
auto *CAT = clangParamTy->getAs<clang::CountAttributedType>();
if (SwiftifiableCAT(CAT) && SwiftifiablePointerType(swiftParamTy)) {
printer.printCountedBy(CAT, index);
attachMacro = paramHasBoundsInfo = true;
}
bool paramIsStdSpan = registerStdSpanTypeMapping(
swiftParamTy, clangParamTy);
paramHasBoundsInfo |= paramIsStdSpan;
bool paramHasLifetimeInfo = false;
if (clangParam->hasAttr<clang::NoEscapeAttr>()) {
printer.printNonEscaping(index);
paramHasLifetimeInfo = true;
}
if (clangParam->hasAttr<clang::LifetimeBoundAttr>()) {
printer.printLifetimeboundReturn(
index, !paramHasBoundsInfo &&
swiftParamTy->isEscapable());
paramHasLifetimeInfo = true;
returnHasLifetimeInfo = true;
}
if (paramIsStdSpan && paramHasLifetimeInfo)
attachMacro = true;
}
if (returnIsStdSpan && returnHasLifetimeInfo)
attachMacro = true;
printer.printAvailability();
printer.printTypeMapping(typeMapping);
}
if (attachMacro) {
if (clang::RawComment *raw =
getClangASTContext().getRawCommentForDeclNoCache(ClangDecl)) {
// swift::RawDocCommentAttr doesn't contain its text directly, but instead
// references the source range of the parsed comment. Instead of creating
// a new source file just to parse the doc comment, we can add the
// comment to the macro invocation attribute, which the macro has access
// to. Waiting until we know that the macro will be attached before
// emitting the comment to the string, despite the comment occurring
// first, avoids copying a bunch of potentially long comments for nodes
// that don't end up with wrappers.
auto commentString =
raw->getRawText(getClangASTContext().getSourceManager());
importNontrivialAttribute(MappedDecl,
(commentString + "\n" + MacroString).str());
} else {
importNontrivialAttribute(MappedDecl, MacroString);
}
}
}
static bool isUsingMacroName(clang::SourceManager &SM,
clang::SourceLocation loc,
StringRef MacroName) {
if (!loc.isMacroID())
return false;
auto Sloc = SM.getExpansionLoc(loc);
if (Sloc.isInvalid())
return false;
auto Eloc = Sloc.getLocWithOffset(MacroName.size());
if (Eloc.isInvalid())
return false;
StringRef content(SM.getCharacterData(Sloc), MacroName.size());
return content == MacroName;
}
void ClangImporter::Implementation::importAttributesFromClangDeclToSynthesizedSwiftDecl(Decl *sourceDecl, Decl* synthesizedDecl)
{
// sourceDecl->getClangDecl() can be null because some lazily instantiated cases like C++ members that were instantiated from using-shadow-decls have no corresponding Clang decl.
// FIXME: Need to include the cases where correspondoing clang decl is not present.
if (auto clangDeclForSource =
dyn_cast_or_null<clang::NamedDecl>(
sourceDecl->getClangDecl())) {
importAttributes(clangDeclForSource, synthesizedDecl);
}
}
/// Import Clang attributes as Swift attributes.
void ClangImporter::Implementation::importAttributes(
const clang::NamedDecl *ClangDecl,
Decl *MappedDecl,
const clang::ObjCContainerDecl *NewContext)
{
// Subscripts are special-cased since there isn't a 1:1 mapping
// from its accessor(s) to the subscript declaration.
if (isa<SubscriptDecl>(MappedDecl))
return;
ASTContext &C = SwiftContext;
if (auto maybeDefinition = getDefinitionForClangTypeDecl(ClangDecl))
if (maybeDefinition.value())
ClangDecl = cast<clang::NamedDecl>(maybeDefinition.value());
// Determine whether this is an async import.
bool isAsync = false;
if (auto func = dyn_cast<AbstractFunctionDecl>(MappedDecl))
isAsync = func->hasAsync();
// Scan through Clang attributes and map them onto Swift
// equivalents.
bool AnyUnavailable = MappedDecl->isUnavailable();
for (clang::NamedDecl::attr_iterator AI = ClangDecl->attr_begin(),
AE = ClangDecl->attr_end(); AI != AE; ++AI) {
//
// __attribute__((unavailable))
//
// Mapping: @available(*,unavailable)
//
if (auto unavailable = dyn_cast<clang::UnavailableAttr>(*AI)) {
auto Message = unavailable->getMessage();
auto attr = AvailableAttr::createUniversallyUnavailable(C, Message);
MappedDecl->getAttrs().add(attr);
AnyUnavailable = true;
continue;
}
//
// __attribute__((annotate(swift1_unavailable)))
//
// Mapping: @available(*, unavailable)
//
if (auto unavailable_annot = dyn_cast<clang::AnnotateAttr>(*AI))
if (unavailable_annot->getAnnotation() == "swift1_unavailable") {
auto attr = AvailableAttr::createUnavailableInSwift(C, "", "");
MappedDecl->getAttrs().add(attr);
AnyUnavailable = true;
continue;
}
//
// __attribute__((deprecated))
//
// Mapping: @available(*,deprecated)
//
if (auto deprecated = dyn_cast<clang::DeprecatedAttr>(*AI)) {
auto Message = deprecated->getMessage();
auto attr = AvailableAttr::createUniversallyDeprecated(C, Message, "");
MappedDecl->getAttrs().add(attr);
continue;
}
// __attribute__((availability))
//
if (auto avail = dyn_cast<clang::AvailabilityAttr>(*AI)) {
StringRef Platform = avail->getPlatform()->getName();
// Is this our special "availability(swift, unavailable)" attribute?
if (Platform == "swift") {
// FIXME: Until Apple gets a chance to update UIKit's API notes, ignore
// the Swift-unavailability for certain properties.
if (isSpecialUIKitStructZeroProperty(ClangDecl))
continue;
auto replacement = avail->getReplacement();
StringRef swiftReplacement = "";
if (!replacement.empty())
swiftReplacement = getSwiftNameFromClangName(replacement);
auto attr = AvailableAttr::createUnavailableInSwift(
C, avail->getMessage(), swiftReplacement);
MappedDecl->getAttrs().add(attr);
AnyUnavailable = true;
continue;
}
// Does this availability attribute map to the platform we are
// currently targeting?
if (!platformAvailability.isPlatformRelevant(Platform))
continue;
auto platformK =
llvm::StringSwitch<std::optional<PlatformKind>>(Platform)
.Case("ios", PlatformKind::iOS)
.Case("macos", PlatformKind::macOS)
.Case("maccatalyst", PlatformKind::macCatalyst)
.Case("tvos", PlatformKind::tvOS)
.Case("watchos", PlatformKind::watchOS)
.Case("xros", PlatformKind::visionOS)
.Case("visionos", PlatformKind::visionOS)
.Case("ios_app_extension", PlatformKind::iOSApplicationExtension)
.Case("maccatalyst_app_extension",
PlatformKind::macCatalystApplicationExtension)
.Case("macos_app_extension",
PlatformKind::macOSApplicationExtension)
.Case("tvos_app_extension",
PlatformKind::tvOSApplicationExtension)
.Case("watchos_app_extension",
PlatformKind::watchOSApplicationExtension)
.Case("xros_app_extension",
PlatformKind::visionOSApplicationExtension)
.Default(std::nullopt);
if (!platformK)
continue;
// Is this declaration marked platform-agnostically unavailable?
auto AttrKind = AvailableAttr::Kind::Default;
if (avail->getUnavailable()) {
AttrKind = AvailableAttr::Kind::Unavailable;
AnyUnavailable = true;
}
auto IsSPI = isUsingMacroName(getClangASTContext().getSourceManager(),
avail->getLoc(), "SPI_AVAILABLE") ||
isUsingMacroName(getClangASTContext().getSourceManager(),
avail->getLoc(), "__SPI_AVAILABLE");
StringRef message = avail->getMessage();
llvm::VersionTuple deprecated = avail->getDeprecated();
if (!deprecated.empty()) {
if (platformAvailability.treatDeprecatedAsUnavailable(
ClangDecl, deprecated, isAsync)) {
AttrKind = AvailableAttr::Kind::Unavailable;
AnyUnavailable = true;
if (message.empty()) {
if (isAsync) {
message =
platformAvailability.asyncDeprecatedAsUnavailableMessage;
} else {
message = platformAvailability.deprecatedAsUnavailableMessage;
}
}
}
}
llvm::VersionTuple obsoleted = avail->getObsoleted();
llvm::VersionTuple introduced = avail->getIntroduced();
const auto &replacement = avail->getReplacement();
StringRef swiftReplacement = "";
if (!replacement.empty())
swiftReplacement = getSwiftNameFromClangName(replacement);
auto AvAttr = new (C) AvailableAttr(
SourceLoc(), SourceRange(),
AvailabilityDomain::forPlatform(*platformK), SourceLoc(), AttrKind,
message, swiftReplacement, introduced, SourceRange(), deprecated,
SourceRange(), obsoleted, SourceRange(),
/*Implicit=*/false, EnableClangSPI && IsSPI);
MappedDecl->getAttrs().add(AvAttr);
}
// __attribute__((availability(domain:)))
//
if (auto avail = dyn_cast<clang::DomainAvailabilityAttr>(*AI)) {
auto *declContext = MappedDecl->getInnermostDeclContext();
// FIXME: [availability] Don't look up the availability domain. Clang
// should be serializing the resolved VarDecl for the availability domain
// it found when type checking the attribute.
auto domainIdentifier = SwiftContext.getIdentifier(avail->getDomain());
llvm::SmallVector<AvailabilityDomain, 4> results;
declContext->lookupAvailabilityDomains(domainIdentifier, results);
if (results.size() > 0) {
// FIXME: [availability] Diagnose ambiguous availabilty domain name?
auto AttrKind = avail->getUnavailable()
? AvailableAttr::Kind::Unavailable
: AvailableAttr::Kind::Default;
auto avAttr = new (C) AvailableAttr(
SourceLoc(), SourceRange(), results.front(), SourceLoc(), AttrKind,
/*Message=*/"", /*Rename=*/"", /*Introduced=*/{}, SourceRange(),
/*Deprecated=*/{}, SourceRange(), /*Obsoleted=*/{}, SourceRange(),
/*Implicit=*/false, /*IsSPI=*/false);
MappedDecl->getAttrs().add(avAttr);
}
}
// __attribute__((swift_attr("attribute"))) are handled by
// importSwiftAttrAttributes(). Other attributes are ignored.
}
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
if (method->isDirectMethod() && !AnyUnavailable) {
assert(isa<AbstractFunctionDecl>(MappedDecl) &&
"objc_direct declarations are expected to be an AbstractFunctionDecl");
MappedDecl->getAttrs().add(new (C) FinalAttr(/*IsImplicit=*/true));
if (auto accessorDecl = dyn_cast<AccessorDecl>(MappedDecl)) {
auto attr = new (C) FinalAttr(/*isImplicit=*/true);
accessorDecl->getStorage()->getAttrs().add(attr);
}
}
}
// If the declaration is unavailable, we're done.
if (AnyUnavailable)
return;
if (auto ID = dyn_cast<clang::ObjCInterfaceDecl>(ClangDecl)) {
// Ban NSInvocation.
if (ID->getName() == "NSInvocation") {
auto attr = AvailableAttr::createUniversallyUnavailable(C, "");
MappedDecl->getAttrs().add(attr);
return;
}
// Map Clang's swift_objc_members attribute to @objcMembers.
if (ID->hasAttr<clang::SwiftObjCMembersAttr>() &&
isa<ClassDecl>(MappedDecl)) {
if (!MappedDecl->getAttrs().hasAttribute<ObjCMembersAttr>()) {
auto attr = new (C) ObjCMembersAttr(/*IsImplicit=*/true);
MappedDecl->getAttrs().add(attr);
}
}
// Infer @objcMembers on XCTestCase.
if (ID->getName() == "XCTestCase") {
if (!MappedDecl->getAttrs().hasAttribute<ObjCMembersAttr>()) {
auto attr = new (C) ObjCMembersAttr(/*IsImplicit=*/true);
MappedDecl->getAttrs().add(attr);
}
}
}
// Ban CFRelease|CFRetain|CFAutorelease(CFTypeRef) as well as custom ones
// such as CGColorRelease(CGColorRef).
if (auto FD = dyn_cast<clang::FunctionDecl>(ClangDecl)) {
if (FD->getNumParams() == 1 && FD->getDeclName().isIdentifier() &&
(FD->getName().ends_with("Release") ||
FD->getName().ends_with("Retain") ||
FD->getName().ends_with("Autorelease")) &&
!FD->getAttr<clang::SwiftNameAttr>()) {
if (auto t = FD->getParamDecl(0)->getType()->getAs<clang::TypedefType>()){
if (isCFTypeDecl(t->getDecl())) {
auto attr = AvailableAttr::createUniversallyUnavailable(
C, "Core Foundation objects are automatically memory managed");
MappedDecl->getAttrs().add(attr);
return;
}
}
}
}
// Hack: mark any method named "print" with less than two parameters as
// warn_unqualified_access.
if (auto MD = dyn_cast<FuncDecl>(MappedDecl)) {
if (isPrintLikeMethod(MD->getName(), MD->getDeclContext())) {
// Use a non-implicit attribute so it shows up in the generated
// interface.
MD->getAttrs().add(new (C) WarnUnqualifiedAccessAttr(/*implicit*/false));
}
}
// Map __attribute__((warn_unused_result)).
if (!ClangDecl->hasAttr<clang::WarnUnusedResultAttr>()) {
if (auto MD = dyn_cast<FuncDecl>(MappedDecl)) {
// Ask if the clang function's return type is void to prevent eagerly
// loading the result type of the imported function.
bool hasVoidReturnType = false;
if (auto clangFunction = dyn_cast<clang::FunctionDecl>(ClangDecl))
hasVoidReturnType = clangFunction->getReturnType()->isVoidType();
if (auto clangMethod = dyn_cast<clang::ObjCMethodDecl>(ClangDecl))
hasVoidReturnType = clangMethod->getReturnType()->isVoidType();
// Async functions might get re-written to be non-void, so if this is an
// async function, eagerly load the result type and check.
if (MD->hasAsync())
hasVoidReturnType = MD->getResultInterfaceType()->isVoid();
if (!hasVoidReturnType)
MD->getAttrs().add(new (C) DiscardableResultAttr(/*implicit*/true));
}
}
// Map __attribute__((const)).
if (ClangDecl->hasAttr<clang::ConstAttr>()) {
MappedDecl->getAttrs().add(new (C) EffectsAttr(EffectsKind::ReadNone));
}
// Map __attribute__((pure)).
if (ClangDecl->hasAttr<clang::PureAttr>()) {
MappedDecl->getAttrs().add(new (C) EffectsAttr(EffectsKind::ReadOnly));
}
}
Decl *
ClangImporter::Implementation::importDeclImpl(const clang::NamedDecl *ClangDecl,
ImportNameVersion version,
bool &TypedefIsSuperfluous,
bool &HadForwardDeclaration) {
assert(ClangDecl);
// If this decl isn't valid, don't import it. Bail now.
if (ClangDecl->isInvalidDecl())
return nullptr;
bool SkippedOverTypedef = false;
Decl *Result = nullptr;
if (auto *UnderlyingDecl = canSkipOverTypedef(*this, ClangDecl,
TypedefIsSuperfluous)) {
Result = importDecl(UnderlyingDecl, version);
SkippedOverTypedef = true;
}
if (!Result) {
SwiftDeclConverter converter(*this, version);
Result = converter.Visit(ClangDecl);
HadForwardDeclaration = converter.hadForwardDeclaration();
}
if (!Result && version == CurrentVersion) {
// If we couldn't import this Objective-C entity, determine
// whether it was a required member of a protocol, or a designated
// initializer of a class.
bool hasMissingRequiredMember = false;
if (auto clangProto
= dyn_cast<clang::ObjCProtocolDecl>(ClangDecl->getDeclContext())) {
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
if (method->getImplementationControl() ==
clang::ObjCImplementationControl::Required)
hasMissingRequiredMember = true;
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(ClangDecl)) {
if (prop->getPropertyImplementation() ==
clang::ObjCPropertyDecl::Required)
hasMissingRequiredMember = true;
}
if (hasMissingRequiredMember) {
// Mark the protocol as having missing requirements.
if (auto proto = castIgnoringCompatibilityAlias<ProtocolDecl>(
importDecl(clangProto, CurrentVersion))) {
proto->setHasMissingRequirements(true);
}
}
}
if (auto method = dyn_cast<clang::ObjCMethodDecl>(ClangDecl)) {
if (method->isDesignatedInitializerForTheInterface()) {
const clang::ObjCInterfaceDecl *theClass = method->getClassInterface();
assert(theClass && "cannot be a protocol method here");
// Only allow this to affect declarations in the same top-level module
// as the original class.
if (getClangModuleForDecl(theClass) == getClangModuleForDecl(method)) {
if (auto swiftClass = castIgnoringCompatibilityAlias<ClassDecl>(
importDecl(theClass, CurrentVersion))) {
SwiftContext.evaluator.cacheOutput(
HasMissingDesignatedInitializersRequest{swiftClass}, true);
}
}
}
}
return nullptr;
}
// Finalize the imported declaration.
auto finalizeDecl = [&](Decl *result) {
importAttributes(ClangDecl, result);
// Hack to deal with Objective-C protocols without availability annotation.
// If the protocol comes from clang and is not annotated and the protocol
// requirement itself is not annotated, then infer availability of the
// requirement based on its types. This makes it possible for a type to
// conform to an Objective-C protocol that is missing annotations but whose
// requirements use types that are less available than the conforming type.
auto dc = result->getDeclContext();
auto *proto = dyn_cast<ProtocolDecl>(dc);
if (!proto || proto->getAttrs().hasAttribute<AvailableAttr>())
return;
inferProtocolMemberAvailability(*this, dc, result);
};
if (Result) {
finalizeDecl(Result);
for (auto alternate : getAlternateDecls(Result))
finalizeDecl(alternate);
}
#ifndef NDEBUG
auto Canon = cast<clang::NamedDecl>(ClangDecl->getCanonicalDecl());
// Note that the decl was imported from Clang. Don't mark Swift decls as
// imported.
if (Result &&
(!Result->getDeclContext()->isModuleScopeContext() ||
isa<ClangModuleUnit>(Result->getDeclContext()))) {
// For using declarations that expose a method of a base class, the Clang
// decl is synthesized lazily when the method is actually used from Swift.
bool hasSynthesizedClangNode =
isa<clang::UsingShadowDecl>(ClangDecl) && isa<FuncDecl>(Result);
// Either the Swift declaration was from stdlib,
// or we imported the underlying decl of the typedef,
// or we imported the decl itself.
bool ImportedCorrectly =
!Result->getClangDecl() || SkippedOverTypedef ||
hasSynthesizedClangNode ||
Result->getClangDecl()->getCanonicalDecl() == Canon;
// Or the other type is a typedef,
if (!ImportedCorrectly &&
isa<clang::TypedefNameDecl>(Result->getClangDecl())) {
// both types are ValueDecls:
if (isa<clang::ValueDecl>(Result->getClangDecl())) {
ImportedCorrectly =
getClangASTContext().hasSameType(
cast<clang::ValueDecl>(Result->getClangDecl())->getType(),
cast<clang::ValueDecl>(Canon)->getType());
} else if (isa<clang::TypeDecl>(Result->getClangDecl())) {
// both types are TypeDecls:
ImportedCorrectly =
getClangASTContext().hasSameUnqualifiedType(
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Result->getClangDecl())),
getClangASTContext().getTypeDeclType(
cast<clang::TypeDecl>(Canon)));
}
assert(ImportedCorrectly);
}
assert(Result->hasClangNode() || hasSynthesizedClangNode);
}
#else
(void)SkippedOverTypedef;
#endif
return Result;
}
void ClangImporter::Implementation::startedImportingEntity() {
++NumTotalImportedEntities;
// FIXME: (transitional) increment the redundant "always-on" counter.
if (auto *Stats = SwiftContext.Stats)
++Stats->getFrontendCounters().NumTotalClangImportedEntities;
}
/// Look up associated type requirements in the conforming type.
static void finishTypeWitnesses(
NormalProtocolConformance *conformance) {
auto *dc = conformance->getDeclContext();
auto nominal = dc->getSelfNominalTypeDecl();
auto *proto = conformance->getProtocol();
auto selfType = conformance->getType();
for (auto *assocType : proto->getAssociatedTypeMembers()) {
// FIXME: This should not happen?
if (conformance->hasTypeWitness(assocType)) continue;
bool satisfied = false;
SmallVector<ValueDecl *, 4> lookupResults;
NLOptions options = (NL_QualifiedDefault |
NL_OnlyTypes |
NL_ProtocolMembers);
dc->lookupQualified(nominal, DeclNameRef(assocType->getName()),
nominal->getLoc(), options,
lookupResults);
for (auto member : lookupResults) {
auto typeDecl = cast<TypeDecl>(member);
if (isa<AssociatedTypeDecl>(typeDecl)) continue;
auto memberType = typeDecl->getDeclaredInterfaceType();
auto subMap = selfType->getContextSubstitutionMap(
typeDecl->getDeclContext());
memberType = memberType.subst(subMap);
conformance->setTypeWitness(assocType, memberType, typeDecl);
satisfied = true;
break;
}
if (!satisfied) {
llvm::errs() << ("Cannot look up associated type for "
"imported conformance:\n");
conformance->getType().dump(llvm::errs());
assocType->dump(llvm::errs());
abort();
}
}
}
/// Create witnesses for requirements not already met.
static void finishMissingOptionalWitnesses(
NormalProtocolConformance *conformance) {
auto *proto = conformance->getProtocol();
for (auto req : proto->getMembers()) {
auto valueReq = dyn_cast<ValueDecl>(req);
if (!valueReq)
continue;
if (!conformance->hasWitness(valueReq)) {
if (auto func = dyn_cast<AbstractFunctionDecl>(valueReq)){
// For an optional requirement, record an empty witness:
// we'll end up querying this at runtime.
auto Attrs = func->getAttrs();
if (Attrs.hasAttribute<OptionalAttr>()) {
conformance->setWitness(valueReq, Witness());
continue;
}
}
conformance->setWitness(valueReq, valueReq);
} else {
// An initializer that conforms to a requirement is required.
auto witness = conformance->getWitness(valueReq).getDecl();
if (auto ctor = dyn_cast_or_null<ConstructorDecl>(witness)) {
if (!ctor->getAttrs().hasAttribute<RequiredAttr>()) {
auto &ctx = proto->getASTContext();
ctor->getAttrs().add(new (ctx) RequiredAttr(/*IsImplicit=*/true));
}
}
}
}
}
void ClangImporter::Implementation::finishNormalConformance(
NormalProtocolConformance *conformance,
uint64_t unused) {
(void)unused;
auto *proto = conformance->getProtocol();
PrettyStackTraceConformance trace("completing import of", conformance);
finishTypeWitnesses(conformance);
// Imported conformances to @objc protocols also require additional
// initialization to complete the requirement to witness mapping.
if (!proto->isObjC())
return;
assert(conformance->isComplete());
conformance->setState(ProtocolConformanceState::Incomplete);
finishMissingOptionalWitnesses(conformance);
conformance->setState(ProtocolConformanceState::Complete);
}
Decl *ClangImporter::Implementation::importDeclAndCacheImpl(
const clang::NamedDecl *ClangDecl, ImportNameVersion version,
bool SuperfluousTypedefsAreTransparent, bool UseCanonicalDecl) {
if (!ClangDecl)
return nullptr;
FrontendStatsTracer StatsTracer(SwiftContext.Stats,
"import-clang-decl", ClangDecl);
clang::PrettyStackTraceDecl trace(ClangDecl, clang::SourceLocation(),
Instance->getSourceManager(), "importing");
auto Canon = cast<clang::NamedDecl>(UseCanonicalDecl? ClangDecl->getCanonicalDecl(): ClangDecl);
auto Known = importDeclCached(Canon, version, UseCanonicalDecl);
if (Known.has_value()) {
if (!SuperfluousTypedefsAreTransparent &&
SuperfluousTypedefs.count(Canon))
return nullptr;
return Known.value();
}
bool TypedefIsSuperfluous = false;
bool HadForwardDeclaration = false;
startedImportingEntity();
Decl *Result = importDeclImpl(ClangDecl, version, TypedefIsSuperfluous,
HadForwardDeclaration);
if (!Result) {
ImportedDecls[{Canon, version}] = nullptr;
return nullptr;
}
if (TypedefIsSuperfluous) {
SuperfluousTypedefs.insert(Canon);
if (auto tagDecl = dyn_cast_or_null<clang::TagDecl>(Result->getClangDecl()))
DeclsWithSuperfluousTypedefs.insert(tagDecl);
}
if (!HadForwardDeclaration)
ImportedDecls[{Canon, version}] = Result;
if (!SuperfluousTypedefsAreTransparent && TypedefIsSuperfluous)
return nullptr;
return Result;
}
Decl *
ClangImporter::Implementation::importMirroredDecl(const clang::NamedDecl *decl,
DeclContext *dc,
ImportNameVersion version,
ProtocolDecl *proto) {
assert(dc);
if (!decl)
return nullptr;
clang::PrettyStackTraceDecl trace(decl, clang::SourceLocation(),
Instance->getSourceManager(),
"importing (mirrored)");
auto canon = decl->getCanonicalDecl();
auto known = ImportedProtocolDecls.find(std::make_tuple(canon, dc, version));
if (known != ImportedProtocolDecls.end())
return known->second;
SwiftDeclConverter converter(*this, version);
Decl *result;
if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
result =
converter.importObjCMethodDecl(method, dc, /*accessor*/ std::nullopt);
} else if (auto prop = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
result = converter.importObjCPropertyDecl(prop, dc);
} else {
llvm_unreachable("unexpected mirrored decl");
}
if (result) {
assert(result->getClangDecl() && result->getClangDecl() == canon);
auto updateMirroredDecl = [&](Decl *result) {
result->setImplicit();
if (auto VD = dyn_cast<ValueDecl>(result)) {
VD->setSynthesized();
}
// Map the Clang attributes onto Swift attributes.
importAttributes(decl, result);
if (proto->getAttrs().hasAttribute<AvailableAttr>()) {
if (!result->getAttrs().hasAttribute<AvailableAttr>()) {
AvailabilityRange protoRange =
AvailabilityInference::availableRange(proto);
applyAvailableAttribute(result, protoRange, SwiftContext);
}
} else {
// Infer the same availability for the mirrored declaration as
// we would for the protocol member it is mirroring.
inferProtocolMemberAvailability(*this, dc, result);
}
};
updateMirroredDecl(result);
// Update the alternate declaration as well.
for (auto alternate : getAlternateDecls(result))
updateMirroredDecl(alternate);
}
if (result || !converter.hadForwardDeclaration())
ImportedProtocolDecls[std::make_tuple(canon, dc, version)] = result;
return result;
}
DeclContext *ClangImporter::Implementation::importDeclContextImpl(
const clang::Decl *ImportingDecl, const clang::DeclContext *dc) {
// Every declaration should come from a module, so we should not see the
// TranslationUnit DeclContext here.
assert(!dc->isTranslationUnit());
auto decl = dyn_cast<clang::NamedDecl>(dc);
if (!decl)
return nullptr;
// Category decls with same name can be merged and using canonical decl always
// leads to the first category of the given name. We'd like to keep these
// categories separated.
auto useCanonical =
!isa<clang::ObjCCategoryDecl>(decl) && !isa<clang::NamespaceDecl>(decl);
auto swiftDecl = importDeclForDeclContext(ImportingDecl, decl->getName(),
decl, CurrentVersion, useCanonical);
if (!swiftDecl)
return nullptr;
if (auto nominal = dynCastIgnoringCompatibilityAlias<NominalTypeDecl>(swiftDecl))
return nominal;
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
return extension;
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
return constructor;
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
return destructor;
return nullptr;
}
GenericSignature ClangImporter::Implementation::buildGenericSignature(
GenericParamList *genericParams, DeclContext *dc) {
SmallVector<GenericTypeParamType *, 2> genericParamTypes;
for (auto param : *genericParams) {
genericParamTypes.push_back(
param->getDeclaredInterfaceType()->castTo<GenericTypeParamType>());
}
SmallVector<Requirement, 2> requirements;
for (auto param : *genericParams) {
Type paramType = param->getDeclaredInterfaceType();
for (const auto &inherited : param->getInherited().getEntries()) {
Type inheritedType = inherited.getType();
if (inheritedType->isAnyObject()) {
requirements.push_back(
Requirement(
RequirementKind::Layout, paramType,
LayoutConstraint::getLayoutConstraint(LayoutConstraintKind::Class)));
continue;
}
if (inheritedType->getClassOrBoundGenericClass()) {
requirements.push_back(
Requirement(RequirementKind::Superclass, paramType, inheritedType));
continue;
}
assert(inheritedType->isExistentialType());
requirements.push_back(
Requirement(RequirementKind::Conformance, paramType, inheritedType));
}
}
return swift::buildGenericSignature(
SwiftContext, GenericSignature(),
std::move(genericParamTypes),
std::move(requirements),
/*allowInverses=*/true);
}
Decl *
ClangImporter::Implementation::importDeclForDeclContext(
const clang::Decl *importingDecl,
StringRef writtenName,
const clang::NamedDecl *contextDecl,
Version version,
bool useCanonicalDecl)
{
auto key = std::make_tuple(importingDecl, writtenName, contextDecl, version,
useCanonicalDecl);
auto iter = find(llvm::reverse(contextDeclsBeingImported), key);
// No cycle? Remember that we're importing this, then import normally.
if (iter == contextDeclsBeingImported.rend()) {
contextDeclsBeingImported.push_back(key);
auto imported = importDecl(contextDecl, version, useCanonicalDecl);
contextDeclsBeingImported.pop_back();
return imported;
}
// There's a cycle. Is the declaration imported enough to break the cycle
// gracefully? If so, we'll have it in the decl cache.
auto cached = importDeclCached(contextDecl, version, useCanonicalDecl);
if (cached.has_value())
return cached.value();
// Can't break it? Warn and return nullptr, which is at least better than
// stack overflow by recursion.
// Avoid emitting warnings repeatedly.
if (!contextDeclsWarnedAbout.insert(contextDecl).second)
return nullptr;
auto getDeclName = [](const clang::Decl *D) -> std::string {
if (auto ND = dyn_cast<clang::NamedDecl>(D)) {
std::string name;
llvm::raw_string_ostream os(name);
ND->printName(os);
return name;
}
return "<anonymous>";
};
HeaderLoc loc(importingDecl->getLocation());
diagnose(loc, diag::swift_name_circular_context_import,
writtenName, getDeclName(importingDecl));
// Diagnose other decls involved in the cycle.
for (auto entry : make_range(contextDeclsBeingImported.rbegin(), iter)) {
auto otherDecl = std::get<0>(entry);
auto otherWrittenName = std::get<1>(entry);
diagnose(HeaderLoc(otherDecl->getLocation()),
diag::swift_name_circular_context_import_other,
otherWrittenName, getDeclName(otherDecl));
}
if (auto *parentModule = contextDecl->getOwningModule()) {
diagnose(loc, diag::unresolvable_clang_decl_is_a_framework_bug,
parentModule->getFullModuleName());
}
return nullptr;
}
DeclContext *
ClangImporter::Implementation::importDeclContextOf(
const clang::Decl *decl,
EffectiveClangContext context)
{
DeclContext *importedDC = nullptr;
switch (context.getKind()) {
case EffectiveClangContext::DeclContext: {
auto dc = context.getAsDeclContext();
// For C++-Interop in cases where #ifdef __cplusplus surround an extern "C"
// you want to first check if the TU decl is the parent of this extern "C"
// decl (aka LinkageSpecDecl) and then proceed.
if (dc->getDeclKind() == clang::Decl::LinkageSpec)
dc = dc->getParent();
if (auto functionDecl = dyn_cast<clang::FunctionDecl>(decl)) {
// Treat friend decls like top-level decls.
if (functionDecl->getFriendObjectKind()) {
// Find the top-level decl context.
while (isa<clang::NamedDecl>(dc))
dc = dc->getParent();
}
// If this is a non-member operator, import it as a top-level function.
if (functionDecl->isOverloadedOperator()) {
while (dc->isNamespace())
dc = dc->getParent();
}
}
if (dc->isTranslationUnit()) {
if (auto *module = getClangModuleForDecl(decl))
return module;
else
return nullptr;
}
// Import the DeclContext.
importedDC = importDeclContextImpl(decl, dc);
break;
}
case EffectiveClangContext::TypedefContext: {
// Import the typedef-name as a declaration.
auto importedDecl = importDeclForDeclContext(
decl, context.getTypedefName()->getName(), context.getTypedefName(),
CurrentVersion);
if (!importedDecl) return nullptr;
// Dig out the imported DeclContext.
importedDC = dynCastIgnoringCompatibilityAlias<NominalTypeDecl>(importedDecl);
break;
}
case EffectiveClangContext::UnresolvedContext: {
// FIXME: Resolve through name lookup. This is brittle.
auto submodule =
getClangSubmoduleForDecl(decl, /*allowForwardDeclaration=*/false);
if (!submodule) return nullptr;
if (auto lookupTable = findLookupTable(*submodule)) {
if (auto clangDecl
= lookupTable->resolveContext(context.getUnresolvedName())) {
// Import the Clang declaration.
auto swiftDecl = importDeclForDeclContext(decl,
context.getUnresolvedName(),
clangDecl, CurrentVersion);
if (!swiftDecl) return nullptr;
// Look through typealiases.
if (auto typealias = dyn_cast<TypeAliasDecl>(swiftDecl))
importedDC = typealias->getDeclaredInterfaceType()->getAnyNominal();
else // Map to a nominal type declaration.
importedDC = dyn_cast<NominalTypeDecl>(swiftDecl);
}
}
break;
}
}
// If we didn't manage to import the declaration context, we're done.
if (!importedDC) return nullptr;
// If the declaration was not global to start with, we're done.
bool isGlobal =
decl->getDeclContext()->getRedeclContext()->isTranslationUnit();
if (!isGlobal) return importedDC;
// If the resulting declaration context is not a nominal type,
// we're done.
auto nominal = dyn_cast<NominalTypeDecl>(importedDC);
if (!nominal) return importedDC;
// Look for the extension for the given nominal type within the
// Clang submodule of the declaration.
const clang::Module *declSubmodule = *getClangSubmoduleForDecl(decl);
auto extensionKey = std::make_pair(nominal, declSubmodule);
auto [it, inserted] = extensionPoints.try_emplace(extensionKey, nullptr);
if (!inserted)
return it->getSecond();
// Create a new extension for this nominal type/Clang submodule pair.
auto ext = ExtensionDecl::create(SwiftContext, SourceLoc(), nullptr, {},
getClangModuleForDecl(decl), nullptr);
SwiftContext.evaluator.cacheOutput(ExtendedTypeRequest{ext},
nominal->getDeclaredType());
SwiftContext.evaluator.cacheOutput(ExtendedNominalRequest{ext},
std::move(nominal));
// Record this extension so we can find it later. We do this early because
// once we've set the member loader, we don't know when the compiler will use
// it and end up back in this method.
it->getSecond() = ext;
ext->setMemberLoader(this, reinterpret_cast<uintptr_t>(declSubmodule));
if (auto protoDecl = ext->getExtendedProtocolDecl()) {
ext->setGenericSignature(protoDecl->getGenericSignature());
}
// Add the extension to the nominal type.
nominal->addExtension(ext);
return ext;
}
/// Create a decl with error type and an "unavailable" attribute on it
/// with the specified message.
void ClangImporter::Implementation::
markUnavailable(ValueDecl *decl, StringRef unavailabilityMsgRef) {
unavailabilityMsgRef = SwiftContext.AllocateCopy(unavailabilityMsgRef);
auto ua = AvailableAttr::createUniversallyUnavailable(SwiftContext,
unavailabilityMsgRef);
decl->getAttrs().add(ua);
}
/// Create a decl with error type and an "unavailable" attribute on it
/// with the specified message.
ValueDecl *ClangImporter::Implementation::createUnavailableDecl(
Identifier name, DeclContext *dc, Type type, StringRef UnavailableMessage,
bool isStatic, ClangNode ClangN, AccessLevel access) {
// Create a new VarDecl with dummy type.
auto var = createDeclWithClangNode<VarDecl>(
ClangN, access,
/*IsStatic*/ isStatic, VarDecl::Introducer::Var, SourceLoc(), name, dc);
var->setIsObjC(false);
var->setIsDynamic(false);
var->setInterfaceType(type);
markUnavailable(var, UnavailableMessage);
return var;
}
// Force the members of the entire inheritance hierarchy to be loaded and
// deserialized before loading the members of this class. This allows the
// decl members table to be warmed up and enables the correct identification of
// overrides.
static void loadAllMembersOfSuperclassIfNeeded(ClassDecl *CD) {
if (!CD)
return;
CD = CD->getSuperclassDecl();
if (!CD || !CD->hasClangNode())
return;
CD->loadAllMembers();
for (auto E : CD->getExtensions())
E->loadAllMembers();
}
void ClangImporter::Implementation::loadAllMembersOfRecordDecl(
NominalTypeDecl *swiftDecl, const clang::RecordDecl *clangRecord,
ClangInheritanceInfo inheritance) {
// Whether to skip non-public members. Feature::ImportNonPublicCxxMembers says
// to import all non-public members by default; if that is disabled, we only
// import non-public members annotated with SWIFT_PRIVATE_FILEID (since those
// are the only classes that need non-public members.)
auto *baseRecord = dyn_cast<clang::CXXRecordDecl>(swiftDecl->getClangDecl());
auto skipIfNonPublic = !swiftDecl->getASTContext().LangOpts.hasFeature(
Feature::ImportNonPublicCxxMembers) &&
baseRecord &&
importer::getPrivateFileIDAttrs(baseRecord).empty();
// Import all of the members.
llvm::SmallVector<Decl *, 16> members;
for (const clang::Decl *m : clangRecord->decls()) {
auto nd = dyn_cast<clang::NamedDecl>(m);
if (!nd)
continue;
// We should not import 'found' if the following are all true:
//
// - Feature::ImportNonPublicCxxMembers is not enabled
// - 'found' is not a member of a SWIFT_PRIVATE_FILEID-annotated class
// - 'found' is a non-public member.
// - 'found' is not a non-inherited FieldDecl; we must import private
// fields because they may affect implicit conformances that iterate
// through all of a struct's fields, e.g., Sendable (#76892).
//
// Note that we can skip inherited FieldDecls because implicit conformances
// handle those separately.
//
// The first two conditions are captured by skipIfNonPublic. The next two
// are conveyed by the following:
auto nonPublic = nd->getAccess() == clang::AS_private ||
nd->getAccess() == clang::AS_protected;
auto noninheritedField = !inheritance && isa<clang::FieldDecl>(nd);
if (skipIfNonPublic && nonPublic && !noninheritedField)
continue;
// Currently, we don't import unnamed bitfields.
if (isa<clang::FieldDecl>(m) &&
cast<clang::FieldDecl>(m)->isUnnamedBitField())
continue;
// Make sure we always pull in record fields. Everything else had better
// be canonical. Note that this check mostly catches nested C++ types since
// we import nested C struct types by C's usual convention of chucking them
// into the global namespace.
const bool isCanonicalInContext =
(isa<clang::FieldDecl>(nd) || nd == nd->getCanonicalDecl());
if (isCanonicalInContext && nd->getDeclContext() == clangRecord &&
isVisibleClangEntry(nd))
// We don't pass `swiftDecl` as `expectedDC` because we might be in a
// recursive call that adds base class members to a derived class.
insertMembersAndAlternates(nd, members);
}
// Add the members here.
for (auto member : members) {
if (inheritance) {
// This means we found a member in a C++ record's base class.
assert(swiftDecl->getClangDecl() != clangRecord);
auto baseMember = cast<ValueDecl>(member);
// Do not clone the base member into the derived class
// when the derived class already has a member of such
// name and arity.
auto memberArity = getImportedBaseMemberDeclArity(baseMember);
bool shouldAddBaseMember = true;
for (const auto *currentMember : swiftDecl->getMembers()) {
auto vd = dyn_cast<ValueDecl>(currentMember);
if (vd->getName() == baseMember->getName()) {
if (memberArity == getImportedBaseMemberDeclArity(vd)) {
shouldAddBaseMember = false;
break;
}
}
}
if (!shouldAddBaseMember)
continue;
// So we need to clone the member into the derived class.
if (auto cloned =
importBaseMemberDecl(baseMember, swiftDecl, inheritance))
swiftDecl->addMember(cloned);
continue;
}
// A friend C++ decl is not a member of the Swift type.
if (member->getClangDecl() &&
member->getClangDecl()->getFriendObjectKind() != clang::Decl::FOK_None)
continue;
// FIXME: constructors are added eagerly, but shouldn't be
// FIXME: subscripts are added eagerly, but shouldn't be
if (!isa<AccessorDecl>(member) &&
!isa<SubscriptDecl>(member) &&
!isa<ConstructorDecl>(member)) {
swiftDecl->addMember(member);
}
}
// If this is a C++ record, look through the base classes too.
if (auto cxxRecord = dyn_cast<clang::CXXRecordDecl>(clangRecord)) {
for (auto base : cxxRecord->bases()) {
if (skipIfNonPublic && base.getAccessSpecifier() != clang::AS_public)
continue;
clang::QualType baseType = base.getType();
if (auto spectType = dyn_cast<clang::TemplateSpecializationType>(baseType))
baseType = spectType->desugar();
if (auto elaborated = dyn_cast<clang::ElaboratedType>(baseType))
baseType = elaborated->desugar();
if (!isa<clang::RecordType>(baseType))
continue;
auto *baseRecord = cast<clang::RecordType>(baseType)->getDecl();
auto baseInheritance = ClangInheritanceInfo(inheritance, base);
loadAllMembersOfRecordDecl(swiftDecl, baseRecord, baseInheritance);
}
}
}
void
ClangImporter::Implementation::loadAllMembers(Decl *D, uint64_t extra) {
FrontendStatsTracer tracer(D->getASTContext().Stats,
"load-all-members", D);
assert(D);
// If a Clang decl has no owning module, then it needs to be added to the
// bridging header lookup table. This has most likely already been done, but
// in some cases, such as when processing DWARF imported AST nodes from LLDB,
// it has not. Do it here just to be safe.
if (auto namedDecl = dyn_cast_or_null<clang::NamedDecl>(D->getClangDecl())) {
if (!namedDecl->hasOwningModule()) {
auto mutableNamedDecl = const_cast<clang::NamedDecl *>(namedDecl);
addBridgeHeaderTopLevelDecls(mutableNamedDecl);
addEntryToLookupTable(*BridgingHeaderLookupTable,
mutableNamedDecl, *nameImporter);
}
}
// Check whether we're importing an Objective-C container of some sort.
auto objcContainer =
dyn_cast_or_null<clang::ObjCContainerDecl>(D->getClangDecl());
auto *IDC = dyn_cast<IterableDeclContext>(D);
// If not, we're importing globals-as-members into an extension.
if (objcContainer) {
loadAllMembersOfSuperclassIfNeeded(dyn_cast<ClassDecl>(D));
loadAllMembersOfObjcContainer(D, objcContainer);
if (IDC) // Set member deserialization status
IDC->setDeserializedMembers(true);
return;
}
if (isa_and_nonnull<clang::RecordDecl>(D->getClangDecl())) {
loadAllMembersOfRecordDecl(cast<NominalTypeDecl>(D),
cast<clang::RecordDecl>(D->getClangDecl()),
ClangInheritanceInfo());
if (IDC) // Set member deserialization status
IDC->setDeserializedMembers(true);
return;
}
if (isa_and_nonnull<clang::NamespaceDecl>(D->getClangDecl())) {
// Namespace members will only be loaded lazily.
cast<EnumDecl>(D)->setHasLazyMembers(true);
return;
}
loadAllMembersIntoExtension(D, extra);
if (IDC) // Set member deserialization status
IDC->setDeserializedMembers(true);
}
void ClangImporter::Implementation::loadAllMembersIntoExtension(
Decl *D, uint64_t extra) {
// We have extension.
auto ext = cast<ExtensionDecl>(D);
auto nominal = ext->getExtendedNominal();
// The submodule of the extension is encoded in the extra data.
clang::Module *submodule =
reinterpret_cast<clang::Module *>(static_cast<uintptr_t>(extra));
// Find the lookup table.
auto topLevelModule = submodule;
if (topLevelModule)
topLevelModule = topLevelModule->getTopLevelModule();
auto table = findLookupTable(topLevelModule);
if (!table)
return;
PrettyStackTraceStringAction trace(
"loading import-as-members from",
topLevelModule ? topLevelModule->getTopLevelModuleName()
: "(bridging header)");
PrettyStackTraceDecl trace2("...for", nominal);
// Dig out the effective Clang context for this nominal type.
auto effectiveClangContext = getEffectiveClangContext(nominal);
if (!effectiveClangContext)
return;
// Get ready to actually load the members.
startedImportingEntity();
// Load the members.
for (auto entry : table->allGlobalsAsMembersInContext(effectiveClangContext)) {
auto decl = entry.get<clang::NamedDecl *>();
// Only include members in the same submodule as this extension.
if (getClangSubmoduleForDecl(decl) != submodule)
continue;
forEachDistinctName(
decl, [&](ImportedName newName, ImportNameVersion nameVersion) -> bool {
return addMemberAndAlternatesToExtension(decl, newName, nameVersion, ext);
});
}
}
static Decl *findMemberThatWillLandInAnExtensionContext(Decl *member) {
Decl *result = member;
while (!isa<ExtensionDecl>(result->getDeclContext())) {
auto nominal = dyn_cast<NominalTypeDecl>(result->getDeclContext());
if (!nominal)
return nullptr;
result = nominal;
if (result->hasClangNode())
return nullptr;
}
return result;
}
bool ClangImporter::Implementation::addMemberAndAlternatesToExtension(
clang::NamedDecl *decl, ImportedName newName, ImportNameVersion nameVersion,
ExtensionDecl *ext) {
// Quickly check the context and bail out if it obviously doesn't
// belong here.
if (auto *importDC = newName.getEffectiveContext().getAsDeclContext())
if (importDC->isFileContext())
return true;
// Then try to import the decl under the specified name.
Decl *member = importDecl(decl, nameVersion);
if (!member)
return false;
member = findMemberThatWillLandInAnExtensionContext(member);
if (!member || member->getDeclContext() != ext)
return true;
if (!isa<AccessorDecl>(member))
ext->addMember(member);
for (auto alternate : getAlternateDecls(member)) {
if (alternate->getDeclContext() == ext)
if (!isa<AccessorDecl>(alternate))
ext->addMember(alternate);
}
member->visitAuxiliaryDecls([&](Decl *aux) {
if (auto auxValue = dyn_cast<ValueDecl>(aux)) {
ext->addMember(auxValue);
}
});
return true;
}
static void loadMembersOfBaseImportedFromClang(ExtensionDecl *ext) {
const NominalTypeDecl *base = ext->getExtendedNominal();
auto *clangBase = base->getClangDecl();
if (!clangBase)
return;
base->loadAllMembers();
// Soundness check: make sure we don't jump over to a category /while/
// loading the original class's members. Right now we only check if this
// happens on the first member.
if (auto *clangContainer = dyn_cast<clang::ObjCContainerDecl>(clangBase))
assert((clangContainer->decls_empty() || !base->getMembers().empty()) &&
"can't load extension members before base has finished");
}
void ClangImporter::Implementation::loadAllMembersOfObjcContainer(
Decl *D, const clang::ObjCContainerDecl *objcContainer) {
clang::PrettyStackTraceDecl trace(objcContainer, clang::SourceLocation(),
Instance->getSourceManager(),
"loading members for");
assert(isa<ExtensionDecl>(D) || isa<NominalTypeDecl>(D));
if (auto *ext = dyn_cast<ExtensionDecl>(D)) {
// If the extended type is also imported from Clang, load its members first.
loadMembersOfBaseImportedFromClang(ext);
}
startedImportingEntity();
SmallVector<Decl *, 16> members;
collectMembersToAdd(objcContainer, D, cast<DeclContext>(D), members);
auto *IDC = cast<IterableDeclContext>(D);
for (auto member : members) {
if (!isa<AccessorDecl>(member))
IDC->addMember(member);
}
}
void ClangImporter::Implementation::insertMembersAndAlternates(
const clang::NamedDecl *nd,
SmallVectorImpl<Decl *> &members,
DeclContext *expectedDC) {
size_t start = members.size();
llvm::SmallPtrSet<Decl *, 4> knownAlternateMembers;
Decl *asyncImport = nullptr;
forEachDistinctName(
nd, [&](ImportedName name, ImportNameVersion nameVersion) -> bool {
auto member = importDecl(nd, nameVersion);
if (!member) {
if (SwiftContext.LangOpts.EnableExperimentalEagerClangModuleDiagnostics) {
diagnoseTargetDirectly(nd);
}
return false;
}
// If no DC was provided, use wherever the primary decl was imported into.
if (!expectedDC)
expectedDC = member->getDeclContext();
// If there are alternate declarations for this member, add them.
for (auto alternate : getAlternateDecls(member)) {
if (alternate->getDeclContext() == expectedDC &&
knownAlternateMembers.insert(alternate).second) {
members.push_back(alternate);
}
}
// If there are auxiliary declarations (e.g., produced by macros), load
// those.
member->visitAuxiliaryDecls([&](Decl *aux) {
if (auto auxValue = dyn_cast<ValueDecl>(aux)) {
if (auxValue->getDeclContext() == expectedDC &&
knownAlternateMembers.insert(auxValue).second)
members.push_back(auxValue);
}
});
// If this declaration shouldn't be visible, don't add it to
// the list.
if (shouldSuppressDeclImport(nd))
return true;
if (member->getDeclContext() == expectedDC)
members.push_back(member);
if (nameVersion.supportsConcurrency()) {
assert(!asyncImport &&
"Should only have a single version with concurrency enabled");
asyncImport = member;
}
return true;
});
addCompletionHandlerAttribute(
asyncImport, llvm::ArrayRef(members).drop_front(start), SwiftContext);
}
void ClangImporter::Implementation::importInheritedConstructors(
const clang::ObjCInterfaceDecl *curObjCClass,
const ClassDecl *classDecl, SmallVectorImpl<Decl *> &newMembers) {
if (curObjCClass->getName() != "Protocol") {
SwiftDeclConverter converter(*this, CurrentVersion);
converter.importInheritedConstructors(classDecl, newMembers);
}
}
void ClangImporter::Implementation::collectMembersToAdd(
const clang::ObjCContainerDecl *objcContainer, Decl *D, DeclContext *DC,
SmallVectorImpl<Decl *> &members) {
for (const clang::Decl *m : objcContainer->decls()) {
auto nd = dyn_cast<clang::NamedDecl>(m);
if (nd && nd == nd->getCanonicalDecl() &&
nd->getDeclContext() == objcContainer &&
isVisibleClangEntry(nd))
insertMembersAndAlternates(nd, members, DC);
}
// Objective-C protocols don't require any special handling.
if (isa<clang::ObjCProtocolDecl>(objcContainer))
return;
// Objective-C interfaces can inherit constructors from their superclass,
// which we must model explicitly.
if (auto clangClass = dyn_cast<clang::ObjCInterfaceDecl>(objcContainer)) {
objcContainer = clangClass = clangClass->getDefinition();
importInheritedConstructors(clangClass, cast<ClassDecl>(D), members);
} else if (auto clangProto
= dyn_cast<clang::ObjCProtocolDecl>(objcContainer)) {
objcContainer = clangProto->getDefinition();
}
// Interfaces and categories can declare protocol conformances, and
// members of those protocols are mirrored into the interface or
// category.
// FIXME: This is supposed to be a short-term hack.
importMirroredProtocolMembers(objcContainer, DC, std::nullopt, members);
}
void ClangImporter::Implementation::loadAllConformances(
const Decl *decl, uint64_t contextData,
SmallVectorImpl<ProtocolConformance *> &Conformances) {
auto dc = decl->getInnermostDeclContext();
// Synthesize trivial conformances for each of the protocols.
for (auto *protocol : getImportedProtocols(decl)) {
// FIXME: Build a superclass conformance if the superclass
// conforms.
ProtocolConformanceOptions options;
if (protocol->isSpecificProtocol(KnownProtocolKind::Sendable))
options |= ProtocolConformanceFlags::Unchecked;
auto conformance = SwiftContext.getNormalConformance(
dc->getDeclaredInterfaceType(),
protocol, SourceLoc(), dc,
ProtocolConformanceState::Incomplete,
options);
conformance->setLazyLoader(this, /*context*/0);
conformance->setState(ProtocolConformanceState::Complete);
Conformances.push_back(conformance);
}
}
std::optional<MappedTypeNameKind>
ClangImporter::Implementation::getSpecialTypedefKind(
clang::TypedefNameDecl *decl) {
auto iter = SpecialTypedefNames.find(decl->getCanonicalDecl());
if (iter == SpecialTypedefNames.end())
return std::nullopt;
return iter->second;
}
Identifier
ClangImporter::getEnumConstantName(const clang::EnumConstantDecl *enumConstant){
return Impl.importFullName(enumConstant, Impl.CurrentVersion)
.getBaseIdentifier(Impl.SwiftContext);
}
// See swift/Basic/Statistic.h for declaration: this enables tracing
// clang::Decls, is defined here to avoid too much layering violation / circular
// linkage dependency.
struct ClangDeclTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const override {
if (!Entity)
return;
const clang::Decl *CD = static_cast<const clang::Decl *>(Entity);
if (auto const *ND = dyn_cast<const clang::NamedDecl>(CD)) {
ND->printName(OS);
} else {
OS << "<unnamed-clang-decl>";
}
}
static inline bool printClangShortLoc(raw_ostream &OS,
clang::SourceManager *CSM,
clang::SourceLocation L) {
if (!L.isValid() || !L.isFileID())
return false;
auto PLoc = CSM->getPresumedLoc(L);
OS << llvm::sys::path::filename(PLoc.getFilename()) << ':' << PLoc.getLine()
<< ':' << PLoc.getColumn();
return true;
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const override {
if (!Entity)
return;
if (CSM) {
const clang::Decl *CD = static_cast<const clang::Decl *>(Entity);
auto Range = CD->getSourceRange();
if (printClangShortLoc(OS, CSM, Range.getBegin()))
OS << '-';
printClangShortLoc(OS, CSM, Range.getEnd());
}
}
};
static ClangDeclTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const clang::Decl *>() {
return &TF;
}