Files
swift-mirror/lib/SILPasses/CSE.cpp
Michael Gottesman c99958d013 [cse] Small cleanup.
Swift SVN r10802
2013-12-04 22:46:37 +00:00

468 lines
17 KiB
C++

//===- CSE.cpp - Simple and fast CSE pass ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass performs a simple dominator tree walk that eliminates trivially
// redundant instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-cse"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/Subsystems.h"
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE, "Number of instructions CSE'd");
STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
STATISTIC(NumDSE, "Number of trivial dead stores removed");
using namespace swift;
//===----------------------------------------------------------------------===//
// Simple Value
//===----------------------------------------------------------------------===//
namespace {
/// SimpleValue - Instances of this struct represent available values in the
/// scoped hash table.
struct SimpleValue {
SILInstruction *Inst;
SimpleValue(SILInstruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == llvm::DenseMapInfo<SILInstruction*>::getEmptyKey() ||
Inst == llvm::DenseMapInfo<SILInstruction*>::getTombstoneKey();
}
static bool canHandle(SILInstruction *Inst) {
switch(Inst->getKind()) {
case ValueKind::FunctionRefInst:
case ValueKind::BuiltinFunctionRefInst:
case ValueKind::GlobalAddrInst:
case ValueKind::IntegerLiteralInst:
return true;
default:
return false;
}
}
};
} // end anonymous namespace
namespace llvm {
template<> struct DenseMapInfo<SimpleValue> {
static inline SimpleValue getEmptyKey() {
return DenseMapInfo<SILInstruction*>::getEmptyKey();
}
static inline SimpleValue getTombstoneKey() {
return DenseMapInfo<SILInstruction*>::getTombstoneKey();
}
static unsigned getHashValue(SimpleValue Val);
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
};
} // end namespace llvm
unsigned llvm::DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
SILInstruction *Inst = Val.Inst;
switch (Inst->getKind()) {
case ValueKind::FunctionRefInst: {
auto *X = cast<FunctionRefInst>(Inst);
return llvm::hash_combine(unsigned(ValueKind::FunctionRefInst),
X->getReferencedFunction());
}
case ValueKind::BuiltinFunctionRefInst: {
auto *X = cast<BuiltinFunctionRefInst>(Inst);
return llvm::hash_combine(unsigned(ValueKind::BuiltinFunctionRefInst),
X->getName().get());
}
case ValueKind::GlobalAddrInst: {
auto *X = cast<GlobalAddrInst>(Inst);
return llvm::hash_combine(unsigned(ValueKind::GlobalAddrInst),
X->getGlobal());
}
case ValueKind::IntegerLiteralInst: {
auto *X = cast<IntegerLiteralInst>(Inst);
return llvm::hash_combine(unsigned(ValueKind::IntegerLiteralInst),
X->getType(),
X->getValue());
}
default:
llvm_unreachable("Unhandled ValueKind.");
}
}
bool llvm::DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS,
SimpleValue RHS) {
SILInstruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
if (LHSI->getKind() != RHSI->getKind()) return false;
if (LHSI->isIdenticalTo(RHSI)) return true;
return false;
}
//===----------------------------------------------------------------------===//
// CSE Interface
//===----------------------------------------------------------------------===//
namespace {
/// CSE - This pass does a simple depth-first walk over the dominator tree,
/// eliminating trivially redundant instructions and using simplifyInstruction
/// to canonicalize things as it goes. It is intended to be fast and catch
/// obvious cases so that SILCombine and other passes are more effective.
class CSE {
public:
SILModule &Module;
DominanceInfo *DT;
typedef llvm::ScopedHashTableVal<SimpleValue, ValueBase*> SimpleValueHTType;
typedef llvm::RecyclingAllocator<llvm::BumpPtrAllocator,
SimpleValueHTType> AllocatorTy;
typedef llvm::ScopedHashTable<SimpleValue, ValueBase*,
llvm::DenseMapInfo<SimpleValue>,
AllocatorTy> ScopedHTType;
/// AvailableValues - This scoped hash table contains the current values of
/// all of our simple scalar expressions. As we walk down the domtree, we
/// look to see if instructions are in this: if so, we replace them with what
/// we find, otherwise we insert them so that dominated values can succeed in
/// their lookup.
ScopedHTType *AvailableValues;
/// AvailableLoads - This scoped hash table contains the current values
/// of loads. This allows us to get efficient access to dominating loads when
/// we have a fully redundant load. In addition to the most recent load, we
/// keep track of a generation count of the read, which is compared against
/// the current generation count. The current generation count is
/// incremented after every possibly writing memory operation, which ensures
/// that we only CSE loads with other loads that have no intervening store.
typedef llvm::ScopedHashTableVal<ValueBase*,
std::pair<ValueBase*, unsigned>> ValueHTType;
typedef llvm::RecyclingAllocator<llvm::BumpPtrAllocator,
ValueHTType> LoadMapAllocator;
typedef llvm::ScopedHashTable<ValueBase*, std::pair<ValueBase*, unsigned>,
llvm::DenseMapInfo<ValueBase*>,
LoadMapAllocator> LoadHTType;
LoadHTType *AvailableLoads;
/// CurrentGeneration - This is the current generation of the memory value.
unsigned CurrentGeneration;
explicit CSE(SILModule &M) : Module(M) { }
bool runOnFunction(SILFunction &F);
private:
// NodeScope - almost a POD, but needs to call the constructors for the
// scoped hash tables so that a new scope gets pushed on. These are RAII so
// that the scope gets popped when the NodeScope is destroyed.
class NodeScope {
public:
NodeScope(ScopedHTType *availableValues,
LoadHTType *availableLoads) :
Scope(*availableValues),
LoadScope(*availableLoads) { }
private:
NodeScope(const NodeScope&) = delete;
void operator=(const NodeScope&) = delete;
ScopedHTType::ScopeTy Scope;
LoadHTType::ScopeTy LoadScope;
};
// StackNode - contains all the needed information to create a stack for doing
// a depth first traversal of the tree. This includes scopes for values and
// loads as well as the generation. There is a child iterator so that the
// children do not need to be store spearately.
class StackNode {
public:
StackNode(ScopedHTType *availableValues,
LoadHTType *availableLoads,
unsigned cg, DominanceInfoNode *n,
DominanceInfoNode::iterator child,
DominanceInfoNode::iterator end) :
CurrentGeneration(cg), ChildGeneration(cg), Node(n),
ChildIter(child), EndIter(end),
Scopes(availableValues, availableLoads),
Processed(false) {}
// Accessors.
unsigned currentGeneration() { return CurrentGeneration; }
unsigned childGeneration() { return ChildGeneration; }
void childGeneration(unsigned generation) { ChildGeneration = generation; }
DominanceInfoNode *node() { return Node; }
DominanceInfoNode::iterator childIter() { return ChildIter; }
DominanceInfoNode *nextChild() {
DominanceInfoNode *child = *ChildIter;
++ChildIter;
return child;
}
DominanceInfoNode::iterator end() { return EndIter; }
bool isProcessed() { return Processed; }
void process() { Processed = true; }
private:
StackNode(const StackNode&) = delete;
void operator=(const StackNode&) = delete;
// Members.
unsigned CurrentGeneration;
unsigned ChildGeneration;
DominanceInfoNode *Node;
DominanceInfoNode::iterator ChildIter;
DominanceInfoNode::iterator EndIter;
NodeScope Scopes;
bool Processed;
};
bool processNode(DominanceInfoNode *Node);
};
}
//===----------------------------------------------------------------------===//
// CSE Implementation
//===----------------------------------------------------------------------===//
bool CSE::runOnFunction(SILFunction &F) {
std::deque<StackNode *> nodesToProcess;
DominanceInfo DT(&F);
// Tables that the pass uses when walking the domtree.
ScopedHTType AVTable;
AvailableValues = &AVTable;
LoadHTType LoadTable;
AvailableLoads = &LoadTable;
CurrentGeneration = 0;
bool Changed = false;
// Process the root node.
nodesToProcess.push_front(
new StackNode(AvailableValues, AvailableLoads,
CurrentGeneration, DT.getRootNode(),
DT.getRootNode()->begin(),
DT.getRootNode()->end()));
// Save the current generation.
unsigned LiveOutGeneration = CurrentGeneration;
// Process the stack.
while (!nodesToProcess.empty()) {
// Grab the first item off the stack. Set the current generation, remove
// the node from the stack, and process it.
StackNode *NodeToProcess = nodesToProcess.front();
// Initialize class members.
CurrentGeneration = NodeToProcess->currentGeneration();
// Check if the node needs to be processed.
if (!NodeToProcess->isProcessed()) {
// Process the node.
Changed |= processNode(NodeToProcess->node());
NodeToProcess->childGeneration(CurrentGeneration);
NodeToProcess->process();
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
// Push the next child onto the stack.
DominanceInfoNode *child = NodeToProcess->nextChild();
nodesToProcess.push_front(
new StackNode(AvailableValues,
AvailableLoads,
NodeToProcess->childGeneration(), child,
child->begin(), child->end()));
} else {
// It has been processed, and there are no more children to process,
// so delete it and pop it off the stack.
delete NodeToProcess;
nodesToProcess.pop_front();
}
} // while (!nodes...)
// Reset the current generation.
CurrentGeneration = LiveOutGeneration;
return Changed;
}
bool CSE::processNode(DominanceInfoNode *Node) {
SILBasicBlock *BB = Node->getBlock();
// If this block has a single predecessor, then the predecessor is the parent
// of the domtree node and all of the live out memory values are still current
// in this block. If this block has multiple predecessors, then they could
// have invalidated the live-out memory values of our parent value. For now,
// just be conservative and invalidate memory if this block has multiple
// predecessors.
if (!BB->getSinglePredecessor())
++CurrentGeneration;
/// LastStore - Keep track of the last store that we saw... for as long as
/// there in no instruction that reads memory. If we see a store to the same
/// location, we delete the dead store. This zaps trivial dead stores which
/// can occur in bitfield code among other things.
StoreInst *LastStore = 0;
bool Changed = false;
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
for (SILBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
SILInstruction *Inst = I++;
DEBUG(llvm::dbgs() << "SILCSE VISITING: " << *Inst << "\n");
// Dead instructions should just be removed.
if (isInstructionTriviallyDead(Inst)) {
DEBUG(llvm::dbgs() << "SILCSE DCE: " << *Inst << '\n');
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
// its simpler value.
if (SILValue V = simplifyInstruction(Inst)) {
DEBUG(llvm::dbgs() << "SILCSE SIMPLIFY: " << *Inst << " to: " << *V
<< '\n');
// All operands of SimplifyInstruction currently have only one result.
Inst->replaceAllUsesWith(V.getDef());
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If this is a simple instruction that we can value number, process it.
if (SimpleValue::canHandle(Inst)) {
// See if the instruction has an available value. If so, use it.
if (ValueBase *V = AvailableValues->lookup(Inst)) {
DEBUG(llvm::dbgs() << "SILCSE CSE: " << *Inst << " to: " << *V
<< '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumCSE;
continue;
}
// Otherwise, just remember that this value is available.
AvailableValues->insert(Inst, Inst);
DEBUG(llvm::dbgs() << "SILCSE Adding to value table: " << *Inst
<< " -> " << *Inst << "\n");
continue;
}
// If this is a load, process it.
if (isa<LoadInst>(Inst)) {
// If we have an available version of this load, and if it is the right
// generation, replace this instruction.
std::pair<ValueBase*, unsigned> InVal =
AvailableLoads->lookup(&*Inst->getOperand(0));
if (InVal.first != 0 && InVal.second == CurrentGeneration) {
DEBUG(llvm::dbgs() << "SILCSE CSE LOAD: " << *Inst << " to: "
<< *InVal.first << '\n');
if (!Inst->use_empty()) {
Inst->replaceAllUsesWith(InVal.first);
}
Inst->eraseFromParent();
Changed = true;
++NumCSELoad;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableLoads->insert(&*Inst->getOperand(0),
std::make_pair(Inst, CurrentGeneration));
DEBUG(llvm::dbgs() << "SILCSE Adding to load table: " <<
*Inst->getOperand(0) << " -> " << *Inst << "\n");
LastStore = 0;
continue;
}
// If this instruction may read from memory, forget LastStore.
if (Inst->mayReadFromMemory())
LastStore = 0;
// Okay, this isn't something we can CSE at all. Check to see if it is
// something that could modify memory. If so, our available memory values
// cannot be used so bump the generation count.
if (Inst->mayWriteToMemory()) {
++CurrentGeneration;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// We do a trivial form of DSE if there are two stores to the same
// location with no intervening loads. Delete the earlier store.
if (LastStore &&
LastStore->getDest().getDef() == SI->getDest().getDef()) {
DEBUG(llvm::dbgs() << "SILCSE DEAD STORE: " << *LastStore <<
" due to: " << *Inst << '\n');
LastStore->eraseFromParent();
Changed = true;
++NumDSE;
LastStore = 0;
continue;
}
// Okay, we just invalidated anything we knew about loaded values. Try
// to salvage *something* by remembering that the stored value is a live
// version of the pointer.
AvailableLoads->insert(&*SI->getDest(),
std::make_pair(&*SI->getSrc(),
CurrentGeneration));
DEBUG(llvm::dbgs() << "SILCSE: Adding stored value to table: "
<< *SI->getDest() << " -> " << *SI->getSrc() << "\n");
LastStore = SI;
}
}
}
return Changed;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
void swift::performSILCSE(SILModule *M) {
CSE C(*M);
for (SILFunction &F : *M) {
// If F is just a declaration and not a definition, skip it since it has no
// BB's to process.
if (F.empty())
continue;
C.runOnFunction(F);
}
}