mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Things that have come up recently but are somewhat blocked on this: - Moving AccessMarkerElimination down in the pipeline - SemanticARCOpts correctness and improvements - AliasAnalysis improvements - LICM performance regressions - RLE/DSE improvements Begin to formalize the model for valid memory access in SIL. Ignoring ownership, every access is a def-use chain in three parts: object root -> formal access base -> memory operation address AccessPath abstracts over this path and standardizes the identity of a memory access throughout the optimizer. This abstraction is the basis for a new AccessPathVerification. With that verification, we now have all the properties we need for the type of analysis requires for exclusivity enforcement, but now generalized for any memory analysis. This is suitable for an extremely lightweight analysis with no side data structures. We currently have a massive amount of ad-hoc memory analysis throughout SIL, which is incredibly unmaintainable, bug-prone, and not performance-robust. We can begin taking advantage of this verifably complete model to solve that problem. The properties this gives us are: Access analysis must be complete over memory operations: every memory operation needs a recognizable valid access. An access can be unidentified only to the extent that it is rooted in some non-address type and we can prove that it is at least *not* part of an access to a nominal class or global property. Pointer provenance is also required for future IRGen-level bitfield optimizations. Access analysis must be complete over address users: for an identified object root all memory accesses including subobjects must be discoverable. Access analysis must be symmetric: use-def and def-use analysis must be consistent. AccessPath is merely a wrapper around the existing accessed-storage utilities and IndexTrieNode. Existing passes already very succesfully use this approach, but in an ad-hoc way. With a general utility we can: - update passes to use this approach to identify memory access, reducing the space and time complexity of those algorithms. - implement an inexpensive on-the-fly, debug mode address lifetime analysis - implement a lightweight debug mode alias analysis - ultimately improve the power, efficiency, and maintainability of full alias analysis - make our type-based alias analysis sensistive to the access path
545 lines
21 KiB
C++
545 lines
21 KiB
C++
//===--- MemoryBehavior.cpp -----------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-membehavior"
|
|
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/SILVisitor.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
// The MemoryBehavior Cache must not grow beyond this size.
|
|
// We limit the size of the MB cache to 2**14 because we want to limit the
|
|
// memory usage of this cache.
|
|
static const int MemoryBehaviorAnalysisMaxCacheSize = 16384;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Memory Behavior Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
using MemBehavior = SILInstruction::MemoryBehavior;
|
|
|
|
/// Visitor that determines the memory behavior of an instruction relative to a
|
|
/// specific SILValue (i.e. can the instruction cause the value to be read,
|
|
/// etc.).
|
|
///
|
|
/// TODO: Clarify what it means to return a MayHaveSideEffects result. Does this
|
|
/// mean that the instruction may release objects referenced by value 'V'?
|
|
/// Deallocate the an address contained in 'V'? Are any other code motion
|
|
/// barriers relevant here?
|
|
class MemoryBehaviorVisitor
|
|
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
|
|
|
|
AliasAnalysis *AA;
|
|
|
|
SideEffectAnalysis *SEA;
|
|
|
|
EscapeAnalysis *EA;
|
|
|
|
/// The value we are attempting to discover memory behavior relative to.
|
|
SILValue V;
|
|
|
|
/// Cache either the address of the access corresponding to memory at 'V', or
|
|
/// 'V' itself if it isn't recognized as part of an access. The cached value
|
|
/// is always a valid SILValue.
|
|
SILValue cachedValueAddress;
|
|
|
|
Optional<bool> cachedIsLetValue;
|
|
|
|
/// The SILType of the value.
|
|
Optional<SILType> TypedAccessTy;
|
|
|
|
public:
|
|
MemoryBehaviorVisitor(AliasAnalysis *AA, SideEffectAnalysis *SEA,
|
|
EscapeAnalysis *EA, SILValue V)
|
|
: AA(AA), SEA(SEA), EA(EA), V(V) {}
|
|
|
|
SILType getValueTBAAType() {
|
|
if (!TypedAccessTy)
|
|
TypedAccessTy = computeTBAAType(V);
|
|
return *TypedAccessTy;
|
|
}
|
|
|
|
/// If 'V' is an address projection within a formal access, return the
|
|
/// canonical address of the formal access if possible without looking past
|
|
/// any storage casts. Otherwise, a "best-effort" address
|
|
///
|
|
/// If 'V' is an address, then the returned value is also an address.
|
|
SILValue getValueAddress() {
|
|
if (!cachedValueAddress) {
|
|
cachedValueAddress = V->getType().isAddress() ? getAccessAddress(V) : V;
|
|
}
|
|
return cachedValueAddress;
|
|
}
|
|
|
|
/// Return true if 'V's accessed address is that of a let variables.
|
|
bool isLetValue() {
|
|
if (!cachedIsLetValue) {
|
|
cachedIsLetValue =
|
|
V->getType().isAddress() && isLetAddress(getValueAddress());
|
|
}
|
|
return cachedIsLetValue.getValue();
|
|
}
|
|
|
|
// Return true is the given address (or pointer) may alias with 'V'.
|
|
bool mayAlias(SILValue opAddress) {
|
|
if (AA->isNoAlias(opAddress, V, computeTBAAType(opAddress),
|
|
getValueTBAAType())) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "No alias: access " << opAddress << " value " << V);
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "May alias: access " << opAddress << " value " << V);
|
|
return true;
|
|
}
|
|
|
|
MemBehavior visitValueBase(ValueBase *V) {
|
|
llvm_unreachable("unimplemented");
|
|
}
|
|
|
|
MemBehavior visitSILInstruction(SILInstruction *Inst) {
|
|
// If we do not have any more information, just use the general memory
|
|
// behavior implementation.
|
|
auto Behavior = Inst->getMemoryBehavior();
|
|
|
|
// If this is a regular read-write access then return the computed memory
|
|
// behavior.
|
|
if (!isLetValue())
|
|
return Behavior;
|
|
|
|
// If this is a read-only access to 'let variable'. Other side effects, such
|
|
// as releases of the object containing a 'let' property are still relevant.
|
|
switch (Behavior) {
|
|
case MemBehavior::MayReadWrite: return MemBehavior::MayRead;
|
|
case MemBehavior::MayWrite: return MemBehavior::None;
|
|
default: return Behavior;
|
|
}
|
|
}
|
|
|
|
MemBehavior visitBeginAccessInst(BeginAccessInst *beginAccess) {
|
|
switch (beginAccess->getAccessKind()) {
|
|
case SILAccessKind::Deinit:
|
|
// A [deinit] only directly reads from the object. The fact that it frees
|
|
// memory is modeled more precisely by the release operations within the
|
|
// deinit scope. Therefore, handle it like a [read] here...
|
|
LLVM_FALLTHROUGH;
|
|
case SILAccessKind::Read:
|
|
if (!mayAlias(beginAccess->getSource()))
|
|
return MemBehavior::None;
|
|
|
|
return MemBehavior::MayRead;
|
|
|
|
case SILAccessKind::Modify:
|
|
if (isLetValue()) {
|
|
assert(getAccessBase(beginAccess) != getValueAddress()
|
|
&& "let modification not allowed");
|
|
return MemBehavior::None;
|
|
}
|
|
// [modify] has a special case for ignoring 'let's, but otherwise is
|
|
// identical to an [init]...
|
|
LLVM_FALLTHROUGH;
|
|
case SILAccessKind::Init:
|
|
if (!mayAlias(beginAccess->getSource()))
|
|
return MemBehavior::None;
|
|
|
|
return MemBehavior::MayWrite;
|
|
}
|
|
llvm_unreachable("invalid access kind");
|
|
}
|
|
|
|
MemBehavior visitEndAccessInst(EndAccessInst *endAccess) {
|
|
return visitBeginAccessInst(endAccess->getBeginAccess());
|
|
}
|
|
|
|
MemBehavior visitLoadInst(LoadInst *LI);
|
|
MemBehavior visitStoreInst(StoreInst *SI);
|
|
MemBehavior visitCopyAddrInst(CopyAddrInst *CAI);
|
|
MemBehavior visitApplyInst(ApplyInst *AI);
|
|
MemBehavior visitTryApplyInst(TryApplyInst *AI);
|
|
MemBehavior visitBeginApplyInst(BeginApplyInst *AI);
|
|
MemBehavior visitEndApplyInst(EndApplyInst *EAI);
|
|
MemBehavior visitAbortApplyInst(AbortApplyInst *AAI);
|
|
MemBehavior getApplyBehavior(FullApplySite AS);
|
|
MemBehavior visitBuiltinInst(BuiltinInst *BI);
|
|
MemBehavior visitStrongReleaseInst(StrongReleaseInst *BI);
|
|
MemBehavior visitReleaseValueInst(ReleaseValueInst *BI);
|
|
MemBehavior visitSetDeallocatingInst(SetDeallocatingInst *BI);
|
|
MemBehavior visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI);
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
MemBehavior visit##Name##ReleaseInst(Name##ReleaseInst *BI);
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
|
|
// Instructions which are none if our SILValue does not alias one of its
|
|
// arguments. If we cannot prove such a thing, return the relevant memory
|
|
// behavior.
|
|
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
for (Operand & Op : I->getAllOperands()) { \
|
|
if (mayAlias(Op.get())) \
|
|
return I->getMemoryBehavior(); \
|
|
} \
|
|
return MemBehavior::None; \
|
|
}
|
|
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(ClassifyBridgeObjectInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(ValueToBridgeObjectInst)
|
|
#undef OPERANDALIAS_MEMBEHAVIOR_INST
|
|
|
|
// Override simple behaviors where MayHaveSideEffects is too general and
|
|
// encompasses other behavior that is not read/write/ref count decrement
|
|
// behavior we care about.
|
|
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
|
|
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
|
|
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
|
|
#undef SIMPLE_MEMBEHAVIOR_INST
|
|
|
|
// Incrementing reference counts doesn't have an observable memory effect.
|
|
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
return MemBehavior::None; \
|
|
}
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
|
|
#define UNCHECKED_REF_STORAGE(Name, ...) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainValueInst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainInst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetain##Name##Inst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
#undef REFCOUNTINC_MEMBEHAVIOR_INST
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitLoadInst(LoadInst *LI) {
|
|
if (!mayAlias(LI->getOperand()))
|
|
return MemBehavior::None;
|
|
|
|
// A take is modelled as a write. See MemoryBehavior::MayWrite.
|
|
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take)
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Could not prove that load inst does not alias "
|
|
"pointer. Returning may read.\n");
|
|
return MemBehavior::MayRead;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
|
|
// No store besides the initialization of a "let"-variable
|
|
// can have any effect on the value of this "let" variable.
|
|
if (isLetValue() && (getAccessBase(SI->getDest()) != getValueAddress())) {
|
|
return MemBehavior::None;
|
|
}
|
|
// If the store dest cannot alias the pointer in question, then the
|
|
// specified value cannot be modified by the store.
|
|
if (!mayAlias(SI->getDest()))
|
|
return MemBehavior::None;
|
|
|
|
// Otherwise, a store just writes.
|
|
LLVM_DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
|
|
"Returning MayWrite.\n");
|
|
return MemBehavior::MayWrite;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitCopyAddrInst(CopyAddrInst *CAI) {
|
|
// If it's an assign to the destination, a destructor might be called on the
|
|
// old value. This can have any side effects.
|
|
// We could also check if it's a trivial type (which cannot have any side
|
|
// effect on destruction), but such copy_addr instructions are optimized to
|
|
// load/stores anyway, so it's probably not worth it.
|
|
if (!CAI->isInitializationOfDest())
|
|
return MemBehavior::MayHaveSideEffects;
|
|
|
|
bool mayWrite = mayAlias(CAI->getDest());
|
|
bool mayRead = mayAlias(CAI->getSrc());
|
|
|
|
if (mayRead) {
|
|
if (mayWrite)
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
// A take is modelled as a write. See MemoryBehavior::MayWrite.
|
|
if (CAI->isTakeOfSrc())
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
return MemBehavior::MayRead;
|
|
}
|
|
if (mayWrite)
|
|
return MemBehavior::MayWrite;
|
|
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitBuiltinInst(BuiltinInst *BI) {
|
|
// If our callee is not a builtin, be conservative and return may have side
|
|
// effects.
|
|
if (!BI) {
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
// If the builtin is read none, it does not read or write memory.
|
|
if (!BI->mayReadOrWriteMemory()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
|
|
" None.\n");
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
// If the builtin is side effect free, then it can only read memory.
|
|
if (!BI->mayHaveSideEffects()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
|
|
"Returning MayRead.\n");
|
|
return MemBehavior::MayRead;
|
|
}
|
|
|
|
// FIXME: If the value (or any other values from the instruction that the
|
|
// value comes from) that we are tracking does not escape and we don't alias
|
|
// any of the arguments of the apply inst, we should be ok.
|
|
|
|
// Otherwise be conservative and return that we may have side effects.
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
|
|
"Returning MayHaveSideEffects.\n");
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitTryApplyInst(TryApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitBeginApplyInst(BeginApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitEndApplyInst(EndApplyInst *EAI) {
|
|
return getApplyBehavior(EAI->getBeginApply());
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitAbortApplyInst(AbortApplyInst *AAI) {
|
|
return getApplyBehavior(AAI->getBeginApply());
|
|
}
|
|
|
|
/// Returns true if the \p address may have any users which let the address
|
|
/// escape in an unusual way, e.g. with an address_to_pointer instruction.
|
|
static bool hasEscapingUses(SILValue address, int &numChecks) {
|
|
for (Operand *use : address->getUses()) {
|
|
SILInstruction *user = use->getUser();
|
|
|
|
// Avoid quadratic complexity in corner cases. A limit of 24 is more than
|
|
// enough in most cases.
|
|
if (++numChecks > 24)
|
|
return true;
|
|
|
|
switch (user->getKind()) {
|
|
case SILInstructionKind::DebugValueAddrInst:
|
|
case SILInstructionKind::FixLifetimeInst:
|
|
case SILInstructionKind::LoadInst:
|
|
case SILInstructionKind::StoreInst:
|
|
case SILInstructionKind::CopyAddrInst:
|
|
case SILInstructionKind::DestroyAddrInst:
|
|
case SILInstructionKind::DeallocStackInst:
|
|
// Those instructions have no result and cannot escape the address.
|
|
break;
|
|
case SILInstructionKind::ApplyInst:
|
|
case SILInstructionKind::TryApplyInst:
|
|
case SILInstructionKind::BeginApplyInst:
|
|
// Apply instructions can not let an address escape either. It's not
|
|
// possible that an address, passed as an indirect parameter, escapes
|
|
// the function in any way (which is not unsafe and undefined behavior).
|
|
break;
|
|
case SILInstructionKind::OpenExistentialAddrInst:
|
|
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::UncheckedAddrCastInst:
|
|
// Check the uses of address projections.
|
|
if (hasEscapingUses(cast<SingleValueInstruction>(user), numChecks))
|
|
return true;
|
|
break;
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
// This is _the_ instruction which can let an address escape.
|
|
return true;
|
|
default:
|
|
// To be conservative, also bail for anything we don't handle here.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::getApplyBehavior(FullApplySite AS) {
|
|
|
|
// Do a quick check first: if V is directly passed to an in_guaranteed
|
|
// argument, we know that the function cannot write to it.
|
|
for (Operand &argOp : AS.getArgumentOperands()) {
|
|
if (argOp.get() == V &&
|
|
AS.getArgumentConvention(argOp) ==
|
|
swift::SILArgumentConvention::Indirect_In_Guaranteed) {
|
|
return MemBehavior::MayRead;
|
|
}
|
|
}
|
|
|
|
SILValue object = getUnderlyingObject(V);
|
|
int numUsesChecked = 0;
|
|
|
|
// For exclusive/local addresses we can do a quick and good check with alias
|
|
// analysis. For everything else we use escape analysis (see below).
|
|
// TODO: The check for not-escaping can probably done easier with the upcoming
|
|
// API of AccessStorage.
|
|
bool nonEscapingAddress =
|
|
(isa<AllocStackInst>(object) || isExclusiveArgument(object)) &&
|
|
!hasEscapingUses(object, numUsesChecked);
|
|
|
|
FunctionSideEffects applyEffects;
|
|
SEA->getCalleeEffects(applyEffects, AS);
|
|
|
|
MemBehavior behavior = MemBehavior::None;
|
|
MemBehavior globalBehavior = applyEffects.getGlobalEffects().getMemBehavior(
|
|
RetainObserveKind::IgnoreRetains);
|
|
|
|
// If it's a non-escaping address, we don't care about the "global" effects
|
|
// of the called function.
|
|
if (!nonEscapingAddress)
|
|
behavior = globalBehavior;
|
|
|
|
// Check all parameter effects.
|
|
for (unsigned argIdx = 0, end = AS.getNumArguments();
|
|
argIdx < end && behavior < MemBehavior::MayHaveSideEffects;
|
|
++argIdx) {
|
|
SILValue arg = AS.getArgument(argIdx);
|
|
|
|
// In case the argument is not an address, alias analysis will always report
|
|
// a no-alias. Therefore we have to treat non-address arguments
|
|
// conservatively here. For example V could be a ref_element_addr of a
|
|
// reference argument. In this case V clearly "aliases" the argument, but
|
|
// this is not reported by alias analysis.
|
|
if ((!nonEscapingAddress && !arg->getType().isAddress()) ||
|
|
mayAlias(arg)) {
|
|
MemBehavior argBehavior = applyEffects.getArgumentBehavior(AS, argIdx);
|
|
behavior = combineMemoryBehavior(behavior, argBehavior);
|
|
}
|
|
}
|
|
|
|
if (behavior > MemBehavior::None) {
|
|
if (behavior > MemBehavior::MayRead && isLetValue())
|
|
behavior = MemBehavior::MayRead;
|
|
|
|
// Ask escape analysis.
|
|
if (!EA->canEscapeTo(V, AS))
|
|
behavior = MemBehavior::None;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply, returning " << behavior << '\n');
|
|
|
|
return behavior;
|
|
}
|
|
|
|
MemBehavior
|
|
MemoryBehaviorVisitor::visitStrongReleaseInst(StrongReleaseInst *SI) {
|
|
if (!EA->canEscapeTo(V, SI))
|
|
return MemBehavior::None;
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
MemBehavior \
|
|
MemoryBehaviorVisitor::visit##Name##ReleaseInst(Name##ReleaseInst *SI) { \
|
|
if (!EA->canEscapeTo(V, SI)) \
|
|
return MemBehavior::None; \
|
|
return MemBehavior::MayHaveSideEffects; \
|
|
}
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitReleaseValueInst(ReleaseValueInst *SI) {
|
|
if (!EA->canEscapeTo(V, SI))
|
|
return MemBehavior::None;
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitSetDeallocatingInst(SetDeallocatingInst *SDI) {
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::
|
|
visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI) {
|
|
// begin_cow_mutation is defined to have side effects, because it has
|
|
// dependencies with instructions which retain the buffer operand.
|
|
// But it never interferes with any memory address.
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entrypoint
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MemBehavior
|
|
AliasAnalysis::computeMemoryBehavior(SILInstruction *Inst, SILValue V) {
|
|
MemBehaviorKeyTy Key = toMemoryBehaviorKey(Inst, V);
|
|
// Check if we've already computed this result.
|
|
auto It = MemoryBehaviorCache.find(Key);
|
|
if (It != MemoryBehaviorCache.end()) {
|
|
return It->second;
|
|
}
|
|
|
|
// Flush the cache if the size of the cache is too large.
|
|
if (MemoryBehaviorCache.size() > MemoryBehaviorAnalysisMaxCacheSize) {
|
|
MemoryBehaviorCache.clear();
|
|
MemoryBehaviorNodeToIndex.clear();
|
|
|
|
// Key is no longer valid as we cleared the MemoryBehaviorNodeToIndex.
|
|
Key = toMemoryBehaviorKey(Inst, V);
|
|
}
|
|
|
|
// Calculate the aliasing result and store it in the cache.
|
|
auto Result = computeMemoryBehaviorInner(Inst, V);
|
|
MemoryBehaviorCache[Key] = Result;
|
|
return Result;
|
|
}
|
|
|
|
MemBehavior
|
|
AliasAnalysis::computeMemoryBehaviorInner(SILInstruction *Inst, SILValue V) {
|
|
LLVM_DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
|
|
<< *V);
|
|
assert(SEA && "SideEffectsAnalysis must be initialized!");
|
|
return MemoryBehaviorVisitor(this, SEA, EA, V).visit(Inst);
|
|
}
|
|
|
|
MemBehaviorKeyTy AliasAnalysis::toMemoryBehaviorKey(SILInstruction *V1,
|
|
SILValue V2) {
|
|
size_t idx1 =
|
|
MemoryBehaviorNodeToIndex.getIndex(V1->getRepresentativeSILNodeInObject());
|
|
assert(idx1 != std::numeric_limits<size_t>::max() &&
|
|
"~0 index reserved for empty/tombstone keys");
|
|
size_t idx2 = MemoryBehaviorNodeToIndex.getIndex(
|
|
V2->getRepresentativeSILNodeInObject());
|
|
assert(idx2 != std::numeric_limits<size_t>::max() &&
|
|
"~0 index reserved for empty/tombstone keys");
|
|
return {idx1, idx2};
|
|
}
|