mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Always use mangled type names to represent type metadata in keypath patterns. For generic types, use the generic environment to pull substituted types from the instantiation arguments. Finishes the type metadata part of rdar://problem/38038799.
1689 lines
56 KiB
C++
1689 lines
56 KiB
C++
//===--- MetadataLookup.cpp - Swift Language Type Name Lookup -------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementations of runtime functions for looking up a type by name.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Basic/LLVM.h"
|
|
#include "swift/Basic/Lazy.h"
|
|
#include "swift/Demangling/Demangler.h"
|
|
#include "swift/Demangling/TypeDecoder.h"
|
|
#include "swift/Reflection/Records.h"
|
|
#include "swift/ABI/TypeIdentity.h"
|
|
#include "swift/Runtime/Casting.h"
|
|
#include "swift/Runtime/Concurrent.h"
|
|
#include "swift/Runtime/Debug.h"
|
|
#include "swift/Runtime/HeapObject.h"
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "swift/Runtime/Mutex.h"
|
|
#include "swift/Strings.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "Private.h"
|
|
#include "CompatibilityOverride.h"
|
|
#include "ImageInspection.h"
|
|
#include <functional>
|
|
#include <vector>
|
|
#include <list>
|
|
|
|
using namespace swift;
|
|
using namespace Demangle;
|
|
using namespace reflection;
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
#include <objc/runtime.h>
|
|
#include <objc/message.h>
|
|
#include <objc/objc.h>
|
|
#endif
|
|
|
|
/// Produce a Demangler value suitable for resolving runtime type metadata
|
|
/// strings.
|
|
static Demangler getDemanglerForRuntimeTypeResolution() {
|
|
Demangler dem;
|
|
// Resolve symbolic references to type contexts into the absolute address of
|
|
// the type context descriptor, so that if we see a symbolic reference in the
|
|
// mangled name we can immediately find the associated metadata.
|
|
dem.setSymbolicReferenceResolver(ResolveAsSymbolicReference(dem));
|
|
return dem;
|
|
}
|
|
|
|
NodePointer
|
|
ResolveAsSymbolicReference::operator()(SymbolicReferenceKind kind,
|
|
Directness isIndirect,
|
|
int32_t offset,
|
|
const void *base) {
|
|
// Resolve the absolute pointer to the entity being referenced.
|
|
auto ptr = detail::applyRelativeOffset(base, offset);
|
|
if (isIndirect == Directness::Indirect) {
|
|
ptr = *(const uintptr_t *)ptr;
|
|
}
|
|
|
|
// Figure out this symbolic reference's grammatical role.
|
|
Node::Kind nodeKind;
|
|
bool isType;
|
|
switch (kind) {
|
|
case Demangle::SymbolicReferenceKind::Context: {
|
|
auto descriptor = (const ContextDescriptor *)ptr;
|
|
switch (descriptor->getKind()) {
|
|
case ContextDescriptorKind::Protocol:
|
|
nodeKind = Node::Kind::ProtocolSymbolicReference;
|
|
isType = false;
|
|
break;
|
|
|
|
default:
|
|
if (auto typeContext = dyn_cast<TypeContextDescriptor>(descriptor)) {
|
|
nodeKind = Node::Kind::TypeSymbolicReference;
|
|
isType = true;
|
|
break;
|
|
}
|
|
|
|
// References to other kinds of context aren't yet implemented.
|
|
return nullptr;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto node = Dem.createNode(nodeKind, ptr);
|
|
if (isType) {
|
|
auto typeNode = Dem.createNode(Node::Kind::Type);
|
|
typeNode->addChild(node, Dem);
|
|
node = typeNode;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
static NodePointer
|
|
_buildDemanglingForSymbolicReference(SymbolicReferenceKind kind,
|
|
const void *resolvedReference,
|
|
Demangler &Dem) {
|
|
switch (kind) {
|
|
case SymbolicReferenceKind::Context:
|
|
return _buildDemanglingForContext(
|
|
(const ContextDescriptor *)resolvedReference, {}, Dem);
|
|
}
|
|
|
|
swift_runtime_unreachable("invalid symbolic reference kind");
|
|
}
|
|
|
|
NodePointer
|
|
ResolveToDemanglingForContext::operator()(SymbolicReferenceKind kind,
|
|
Directness isIndirect,
|
|
int32_t offset,
|
|
const void *base) {
|
|
auto ptr = detail::applyRelativeOffset(base, offset);
|
|
if (isIndirect == Directness::Indirect) {
|
|
ptr = *(const uintptr_t *)ptr;
|
|
}
|
|
|
|
return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem);
|
|
}
|
|
|
|
NodePointer
|
|
ExpandResolvedSymbolicReferences::operator()(SymbolicReferenceKind kind,
|
|
const void *ptr) {
|
|
return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem);
|
|
}
|
|
|
|
#pragma mark Nominal type descriptor cache
|
|
// Type Metadata Cache.
|
|
|
|
namespace {
|
|
struct TypeMetadataSection {
|
|
const TypeMetadataRecord *Begin, *End;
|
|
const TypeMetadataRecord *begin() const {
|
|
return Begin;
|
|
}
|
|
const TypeMetadataRecord *end() const {
|
|
return End;
|
|
}
|
|
};
|
|
|
|
struct NominalTypeDescriptorCacheEntry {
|
|
private:
|
|
std::string Name;
|
|
const ContextDescriptor *Description;
|
|
|
|
public:
|
|
NominalTypeDescriptorCacheEntry(const llvm::StringRef name,
|
|
const ContextDescriptor *description)
|
|
: Name(name.str()), Description(description) {}
|
|
|
|
const ContextDescriptor *getDescription() {
|
|
return Description;
|
|
}
|
|
|
|
int compareWithKey(llvm::StringRef aName) const {
|
|
return aName.compare(Name);
|
|
}
|
|
|
|
template <class... T>
|
|
static size_t getExtraAllocationSize(T &&... ignored) {
|
|
return 0;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
struct TypeMetadataPrivateState {
|
|
ConcurrentMap<NominalTypeDescriptorCacheEntry> NominalCache;
|
|
ConcurrentReadableArray<TypeMetadataSection> SectionsToScan;
|
|
|
|
TypeMetadataPrivateState() {
|
|
initializeTypeMetadataRecordLookup();
|
|
}
|
|
|
|
};
|
|
|
|
static Lazy<TypeMetadataPrivateState> TypeMetadataRecords;
|
|
|
|
static void
|
|
_registerTypeMetadataRecords(TypeMetadataPrivateState &T,
|
|
const TypeMetadataRecord *begin,
|
|
const TypeMetadataRecord *end) {
|
|
T.SectionsToScan.push_back(TypeMetadataSection{begin, end});
|
|
}
|
|
|
|
void swift::addImageTypeMetadataRecordBlockCallback(const void *records,
|
|
uintptr_t recordsSize) {
|
|
assert(recordsSize % sizeof(TypeMetadataRecord) == 0
|
|
&& "weird-sized type metadata section?!");
|
|
|
|
// If we have a section, enqueue the type metadata for lookup.
|
|
auto recordBytes = reinterpret_cast<const char *>(records);
|
|
auto recordsBegin
|
|
= reinterpret_cast<const TypeMetadataRecord*>(records);
|
|
auto recordsEnd
|
|
= reinterpret_cast<const TypeMetadataRecord*>(recordBytes + recordsSize);
|
|
|
|
// Type metadata cache should always be sufficiently initialized by this
|
|
// point. Attempting to go through get() may also lead to an infinite loop,
|
|
// since we register records during the initialization of
|
|
// TypeMetadataRecords.
|
|
_registerTypeMetadataRecords(TypeMetadataRecords.unsafeGetAlreadyInitialized(),
|
|
recordsBegin, recordsEnd);
|
|
}
|
|
|
|
void
|
|
swift::swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin,
|
|
const TypeMetadataRecord *end) {
|
|
auto &T = TypeMetadataRecords.get();
|
|
_registerTypeMetadataRecords(T, begin, end);
|
|
}
|
|
|
|
static const ContextDescriptor *
|
|
_findNominalTypeDescriptor(Demangle::NodePointer node,
|
|
Demangle::Demangler &Dem);
|
|
|
|
/// Find the context descriptor for the type extended by the given extension.
|
|
static const ContextDescriptor *
|
|
_findExtendedTypeContextDescriptor(const ExtensionContextDescriptor *extension,
|
|
Demangle::NodePointer *demangledNode
|
|
= nullptr) {
|
|
Demangle::NodePointer localNode;
|
|
Demangle::NodePointer &node = demangledNode ? *demangledNode : localNode;
|
|
|
|
auto mangledName = extension->getMangledExtendedContext();
|
|
auto demangler = getDemanglerForRuntimeTypeResolution();
|
|
node = demangler.demangleType(mangledName);
|
|
if (!node)
|
|
return nullptr;
|
|
if (node->getKind() == Node::Kind::Type) {
|
|
if (node->getNumChildren() < 1)
|
|
return nullptr;
|
|
node = node->getChild(0);
|
|
}
|
|
node = stripGenericArgsFromContextNode(node, demangler);
|
|
|
|
return _findNominalTypeDescriptor(node, demangler);
|
|
}
|
|
|
|
/// Recognize imported tag types, which have a special mangling rule.
|
|
///
|
|
/// This should be kept in sync with the AST mangler and with
|
|
/// buildContextDescriptorMangling in MetadataReader.
|
|
bool swift::_isCImportedTagType(const TypeContextDescriptor *type,
|
|
const ParsedTypeIdentity &identity) {
|
|
// Tag types are always imported as structs or enums.
|
|
if (type->getKind() != ContextDescriptorKind::Enum &&
|
|
type->getKind() != ContextDescriptorKind::Struct)
|
|
return false;
|
|
|
|
// Not a typedef imported as a nominal type.
|
|
if (identity.isCTypedef())
|
|
return false;
|
|
|
|
// Not a related entity.
|
|
if (identity.isAnyRelatedEntity())
|
|
return false;
|
|
|
|
// Imported from C.
|
|
return type->Parent->isCImportedContext();
|
|
}
|
|
|
|
ParsedTypeIdentity
|
|
ParsedTypeIdentity::parse(const TypeContextDescriptor *type) {
|
|
ParsedTypeIdentity result;
|
|
|
|
// The first component is the user-facing name and (unless overridden)
|
|
// the ABI name.
|
|
StringRef component = type->Name.get();
|
|
result.UserFacingName = component;
|
|
|
|
// If we don't have import info, we're done.
|
|
if (!type->getTypeContextDescriptorFlags().hasImportInfo()) {
|
|
result.FullIdentity = result.UserFacingName;
|
|
return result;
|
|
}
|
|
|
|
// Otherwise, start parsing the import information.
|
|
result.ImportInfo.emplace();
|
|
|
|
// The identity starts with the user-facing name.
|
|
const char *startOfIdentity = component.begin();
|
|
const char *endOfIdentity = component.end();
|
|
|
|
#ifndef NDEBUG
|
|
enum {
|
|
AfterName,
|
|
AfterABIName,
|
|
AfterSymbolNamespace,
|
|
AfterRelatedEntityName,
|
|
AfterIdentity,
|
|
} stage = AfterName;
|
|
#endif
|
|
|
|
while (true) {
|
|
// Parse the next component. If it's empty, we're done.
|
|
component = StringRef(component.end() + 1);
|
|
if (component.empty()) break;
|
|
|
|
// Update the identity bounds and assert that the identity
|
|
// components are in the right order.
|
|
auto kind = TypeImportComponent(component[0]);
|
|
if (kind == TypeImportComponent::ABIName) {
|
|
#ifndef NDEBUG
|
|
assert(stage < AfterABIName);
|
|
stage = AfterABIName;
|
|
assert(result.UserFacingName != component.drop_front(1) &&
|
|
"user-facing name was same as the ABI name");
|
|
#endif
|
|
startOfIdentity = component.begin() + 1;
|
|
endOfIdentity = component.end();
|
|
} else if (kind == TypeImportComponent::SymbolNamespace) {
|
|
#ifndef NDEBUG
|
|
assert(stage < AfterSymbolNamespace);
|
|
stage = AfterSymbolNamespace;
|
|
#endif
|
|
endOfIdentity = component.end();
|
|
} else if (kind == TypeImportComponent::RelatedEntityName) {
|
|
#ifndef NDEBUG
|
|
assert(stage < AfterRelatedEntityName);
|
|
stage = AfterRelatedEntityName;
|
|
#endif
|
|
endOfIdentity = component.end();
|
|
} else {
|
|
#ifndef NDEBUG
|
|
// Anything else is assumed to not be part of the identity.
|
|
stage = AfterIdentity;
|
|
#endif
|
|
}
|
|
|
|
// Collect the component, whatever it is.
|
|
result.ImportInfo->collect</*asserting*/true>(component);
|
|
}
|
|
|
|
assert(stage != AfterName && "no components?");
|
|
|
|
// Record the full identity.
|
|
result.FullIdentity =
|
|
StringRef(startOfIdentity, endOfIdentity - startOfIdentity);
|
|
|
|
return result;
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
/// Determine whether the two demangle trees both refer to the same
|
|
/// Objective-C class or protocol referenced by name.
|
|
static bool sameObjCTypeManglings(Demangle::NodePointer node1,
|
|
Demangle::NodePointer node2) {
|
|
// Entities need to be of the same kind.
|
|
if (node1->getKind() != node2->getKind())
|
|
return false;
|
|
|
|
auto name1 = Demangle::getObjCClassOrProtocolName(node1);
|
|
if (!name1) return false;
|
|
|
|
auto name2 = Demangle::getObjCClassOrProtocolName(node2);
|
|
if (!name2) return false;
|
|
|
|
return *name1 == *name2;
|
|
}
|
|
#endif
|
|
|
|
bool
|
|
swift::_contextDescriptorMatchesMangling(const ContextDescriptor *context,
|
|
Demangle::NodePointer node) {
|
|
while (context) {
|
|
if (node->getKind() == Demangle::Node::Kind::Type)
|
|
node = node->getChild(0);
|
|
|
|
// We can directly match symbolic references to the current context.
|
|
if (node) {
|
|
if (node->getKind() == Demangle::Node::Kind::TypeSymbolicReference
|
|
|| node->getKind() == Demangle::Node::Kind::ProtocolSymbolicReference){
|
|
if (equalContexts(context,
|
|
reinterpret_cast<const ContextDescriptor *>(node->getIndex()))) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (context->getKind()) {
|
|
case ContextDescriptorKind::Module: {
|
|
auto module = cast<ModuleContextDescriptor>(context);
|
|
// Match to a mangled module name.
|
|
if (node->getKind() != Demangle::Node::Kind::Module)
|
|
return false;
|
|
if (!node->getText().equals(module->Name.get()))
|
|
return false;
|
|
|
|
node = nullptr;
|
|
break;
|
|
}
|
|
|
|
case ContextDescriptorKind::Extension: {
|
|
auto extension = cast<ExtensionContextDescriptor>(context);
|
|
|
|
// Check whether the extension context matches the mangled context.
|
|
if (node->getKind() != Demangle::Node::Kind::Extension)
|
|
return false;
|
|
if (node->getNumChildren() < 2)
|
|
return false;
|
|
|
|
// Check that the context being extended matches as well.
|
|
auto extendedContextNode = node->getChild(1);
|
|
auto demangler = getDemanglerForRuntimeTypeResolution();
|
|
|
|
auto extendedDescriptorFromNode =
|
|
_findNominalTypeDescriptor(extendedContextNode, demangler);
|
|
|
|
Demangle::NodePointer extendedContextDemangled;
|
|
auto extendedDescriptorFromDemangled =
|
|
_findExtendedTypeContextDescriptor(extension,
|
|
&extendedContextDemangled);
|
|
|
|
// Determine whether the contexts match.
|
|
bool contextsMatch =
|
|
extendedDescriptorFromNode && extendedDescriptorFromDemangled &&
|
|
equalContexts(extendedDescriptorFromNode,
|
|
extendedDescriptorFromDemangled);
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
// If we have manglings of the same Objective-C type, the contexts match.
|
|
if (!contextsMatch &&
|
|
(!extendedDescriptorFromNode || !extendedDescriptorFromDemangled) &&
|
|
sameObjCTypeManglings(extendedContextNode,
|
|
extendedContextDemangled)) {
|
|
contextsMatch = true;
|
|
}
|
|
#endif
|
|
|
|
if (!contextsMatch)
|
|
return false;
|
|
|
|
// Check whether the generic signature of the extension matches the
|
|
// mangled constraints, if any.
|
|
|
|
if (node->getNumChildren() >= 3) {
|
|
// NB: If we ever support extensions with independent generic arguments
|
|
// like `extension <T> Array where Element == Optional<T>`, we'd need
|
|
// to look at the mangled context name to match up generic arguments.
|
|
// That would probably need a new extension mangling form, though.
|
|
|
|
// TODO
|
|
}
|
|
|
|
// The parent context of the extension should match in the mangling and
|
|
// context descriptor.
|
|
node = node->getChild(0);
|
|
break;
|
|
}
|
|
|
|
case ContextDescriptorKind::Protocol:
|
|
// Match a protocol context.
|
|
if (node->getKind() == Demangle::Node::Kind::Protocol) {
|
|
auto proto = llvm::cast<ProtocolDescriptor>(context);
|
|
auto nameNode = node->getChild(1);
|
|
if (nameNode->getKind() != Demangle::Node::Kind::Identifier)
|
|
return false;
|
|
if (nameNode->getText() == proto->Name.get()) {
|
|
node = node->getChild(0);
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
|
|
default:
|
|
if (auto type = llvm::dyn_cast<TypeContextDescriptor>(context)) {
|
|
Optional<ParsedTypeIdentity> _identity;
|
|
auto getIdentity = [&]() -> const ParsedTypeIdentity & {
|
|
if (_identity) return *_identity;
|
|
_identity = ParsedTypeIdentity::parse(type);
|
|
return *_identity;
|
|
};
|
|
|
|
switch (node->getKind()) {
|
|
// If the mangled name doesn't indicate a type kind, accept anything.
|
|
// Otherwise, try to match them up.
|
|
case Demangle::Node::Kind::OtherNominalType:
|
|
break;
|
|
case Demangle::Node::Kind::Structure:
|
|
// We allow non-structs to match Kind::Structure if they are
|
|
// imported C tag types. This is necessary because we artificially
|
|
// make imported C tag types Kind::Structure.
|
|
if (type->getKind() != ContextDescriptorKind::Struct &&
|
|
!_isCImportedTagType(type, getIdentity()))
|
|
return false;
|
|
break;
|
|
case Demangle::Node::Kind::Class:
|
|
if (type->getKind() != ContextDescriptorKind::Class)
|
|
return false;
|
|
break;
|
|
case Demangle::Node::Kind::Enum:
|
|
if (type->getKind() != ContextDescriptorKind::Enum)
|
|
return false;
|
|
break;
|
|
case Demangle::Node::Kind::TypeAlias:
|
|
if (!getIdentity().isCTypedef())
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
auto nameNode = node->getChild(1);
|
|
|
|
// Declarations synthesized by the Clang importer get a small tag
|
|
// string in addition to their name.
|
|
if (nameNode->getKind() == Demangle::Node::Kind::RelatedEntityDeclName){
|
|
if (!getIdentity().isRelatedEntity(nameNode->getText()))
|
|
return false;
|
|
|
|
nameNode = nameNode->getChild(0);
|
|
} else if (getIdentity().isAnyRelatedEntity()) {
|
|
return false;
|
|
}
|
|
|
|
// We should only match public or internal declarations with stable
|
|
// names. The runtime metadata for private declarations would be
|
|
// anonymized.
|
|
if (nameNode->getKind() == Demangle::Node::Kind::Identifier) {
|
|
if (nameNode->getText() != getIdentity().getABIName())
|
|
return false;
|
|
|
|
node = node->getChild(0);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// We don't know about this kind of context, or it doesn't have a stable
|
|
// name we can match to.
|
|
return false;
|
|
}
|
|
|
|
context = context->Parent;
|
|
}
|
|
|
|
// We should have reached the top of the node tree at the same time we reached
|
|
// the top of the context tree.
|
|
if (node)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// returns the nominal type descriptor for the type named by typeName
|
|
static const TypeContextDescriptor *
|
|
_searchTypeMetadataRecords(TypeMetadataPrivateState &T,
|
|
Demangle::NodePointer node) {
|
|
for (auto §ion : T.SectionsToScan.snapshot()) {
|
|
for (const auto &record : section) {
|
|
if (auto ntd = record.getTypeContextDescriptor()) {
|
|
if (_contextDescriptorMatchesMangling(ntd, node)) {
|
|
return ntd;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static const ContextDescriptor *
|
|
_findNominalTypeDescriptor(Demangle::NodePointer node,
|
|
Demangle::Demangler &Dem) {
|
|
const ContextDescriptor *foundNominal = nullptr;
|
|
auto &T = TypeMetadataRecords.get();
|
|
|
|
// If we have a symbolic reference to a context, resolve it immediately.
|
|
NodePointer symbolicNode = node;
|
|
if (symbolicNode->getKind() == Node::Kind::Type)
|
|
symbolicNode = symbolicNode->getChild(0);
|
|
if (symbolicNode->getKind() == Node::Kind::TypeSymbolicReference)
|
|
return cast<TypeContextDescriptor>(
|
|
(const ContextDescriptor *)symbolicNode->getIndex());
|
|
|
|
auto mangledName =
|
|
Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem));
|
|
|
|
// Look for an existing entry.
|
|
// Find the bucket for the metadata entry.
|
|
if (auto Value = T.NominalCache.find(mangledName))
|
|
return Value->getDescription();
|
|
|
|
// Check type metadata records
|
|
foundNominal = _searchTypeMetadataRecords(T, node);
|
|
|
|
// Check protocol conformances table. Note that this has no support for
|
|
// resolving generic types yet.
|
|
if (!foundNominal)
|
|
foundNominal = _searchConformancesByMangledTypeName(node);
|
|
|
|
if (foundNominal) {
|
|
T.NominalCache.getOrInsert(mangledName, foundNominal);
|
|
}
|
|
|
|
return foundNominal;
|
|
}
|
|
|
|
#pragma mark Protocol descriptor cache
|
|
namespace {
|
|
struct ProtocolSection {
|
|
const ProtocolRecord *Begin, *End;
|
|
|
|
const ProtocolRecord *begin() const {
|
|
return Begin;
|
|
}
|
|
const ProtocolRecord *end() const {
|
|
return End;
|
|
}
|
|
};
|
|
|
|
struct ProtocolDescriptorCacheEntry {
|
|
private:
|
|
std::string Name;
|
|
const ProtocolDescriptor *Description;
|
|
|
|
public:
|
|
ProtocolDescriptorCacheEntry(const llvm::StringRef name,
|
|
const ProtocolDescriptor *description)
|
|
: Name(name.str()), Description(description) {}
|
|
|
|
const ProtocolDescriptor *getDescription() { return Description; }
|
|
|
|
int compareWithKey(llvm::StringRef aName) const {
|
|
return aName.compare(Name);
|
|
}
|
|
|
|
template <class... T>
|
|
static size_t getExtraAllocationSize(T &&... ignored) {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
struct ProtocolMetadataPrivateState {
|
|
ConcurrentMap<ProtocolDescriptorCacheEntry> ProtocolCache;
|
|
ConcurrentReadableArray<ProtocolSection> SectionsToScan;
|
|
|
|
ProtocolMetadataPrivateState() {
|
|
initializeProtocolLookup();
|
|
}
|
|
};
|
|
|
|
static Lazy<ProtocolMetadataPrivateState> Protocols;
|
|
}
|
|
|
|
static void
|
|
_registerProtocols(ProtocolMetadataPrivateState &C,
|
|
const ProtocolRecord *begin,
|
|
const ProtocolRecord *end) {
|
|
C.SectionsToScan.push_back(ProtocolSection{begin, end});
|
|
}
|
|
|
|
void swift::addImageProtocolsBlockCallback(const void *protocols,
|
|
uintptr_t protocolsSize) {
|
|
assert(protocolsSize % sizeof(ProtocolRecord) == 0 &&
|
|
"protocols section not a multiple of ProtocolRecord");
|
|
|
|
// If we have a section, enqueue the protocols for lookup.
|
|
auto protocolsBytes = reinterpret_cast<const char *>(protocols);
|
|
auto recordsBegin
|
|
= reinterpret_cast<const ProtocolRecord *>(protocols);
|
|
auto recordsEnd
|
|
= reinterpret_cast<const ProtocolRecord *>(protocolsBytes + protocolsSize);
|
|
|
|
// Conformance cache should always be sufficiently initialized by this point.
|
|
_registerProtocols(Protocols.unsafeGetAlreadyInitialized(),
|
|
recordsBegin, recordsEnd);
|
|
}
|
|
|
|
void swift::swift_registerProtocols(const ProtocolRecord *begin,
|
|
const ProtocolRecord *end) {
|
|
auto &C = Protocols.get();
|
|
_registerProtocols(C, begin, end);
|
|
}
|
|
|
|
static const ProtocolDescriptor *
|
|
_searchProtocolRecords(ProtocolMetadataPrivateState &C,
|
|
const Demangle::NodePointer &node) {
|
|
for (auto §ion : C.SectionsToScan.snapshot()) {
|
|
for (const auto &record : section) {
|
|
if (auto protocol = record.Protocol.getPointer()) {
|
|
if (_contextDescriptorMatchesMangling(protocol, node))
|
|
return protocol;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static const ProtocolDescriptor *
|
|
_findProtocolDescriptor(const Demangle::NodePointer &node,
|
|
Demangle::Demangler &Dem,
|
|
std::string &mangledName) {
|
|
const ProtocolDescriptor *foundProtocol = nullptr;
|
|
auto &T = Protocols.get();
|
|
|
|
// If we have a symbolic reference to a context, resolve it immediately.
|
|
NodePointer symbolicNode = node;
|
|
if (symbolicNode->getKind() == Node::Kind::Type)
|
|
symbolicNode = symbolicNode->getChild(0);
|
|
if (symbolicNode->getKind() == Node::Kind::ProtocolSymbolicReference)
|
|
return cast<ProtocolDescriptor>(
|
|
(const ContextDescriptor *)symbolicNode->getIndex());
|
|
|
|
mangledName =
|
|
Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem));
|
|
|
|
// Look for an existing entry.
|
|
// Find the bucket for the metadata entry.
|
|
if (auto Value = T.ProtocolCache.find(mangledName))
|
|
return Value->getDescription();
|
|
|
|
// Check type metadata records
|
|
foundProtocol = _searchProtocolRecords(T, node);
|
|
|
|
if (foundProtocol) {
|
|
T.ProtocolCache.getOrInsert(mangledName, foundProtocol);
|
|
}
|
|
|
|
return foundProtocol;
|
|
}
|
|
|
|
#pragma mark Type field descriptor cache
|
|
namespace {
|
|
struct FieldDescriptorCacheEntry {
|
|
private:
|
|
const Metadata *Type;
|
|
const FieldDescriptor *Description;
|
|
|
|
public:
|
|
FieldDescriptorCacheEntry(const Metadata *type,
|
|
const FieldDescriptor *description)
|
|
: Type(type), Description(description) {}
|
|
|
|
const FieldDescriptor *getDescription() { return Description; }
|
|
|
|
int compareWithKey(const Metadata *other) const {
|
|
auto a = (uintptr_t)Type;
|
|
auto b = (uintptr_t)other;
|
|
return a == b ? 0 : (a < b ? -1 : 1);
|
|
}
|
|
|
|
template <class... Args>
|
|
static size_t getExtraAllocationSize(Args &&... ignored) {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
class StaticFieldSection {
|
|
const void *Begin;
|
|
const void *End;
|
|
|
|
public:
|
|
StaticFieldSection(const void *begin, const void *end)
|
|
: Begin(begin), End(end) {}
|
|
|
|
FieldDescriptorIterator begin() const {
|
|
return FieldDescriptorIterator(Begin, End);
|
|
}
|
|
|
|
FieldDescriptorIterator end() const {
|
|
return FieldDescriptorIterator(End, End);
|
|
}
|
|
};
|
|
|
|
class DynamicFieldSection {
|
|
const FieldDescriptor **Begin;
|
|
const FieldDescriptor **End;
|
|
|
|
public:
|
|
DynamicFieldSection(const FieldDescriptor **fields, size_t size)
|
|
: Begin(fields), End(fields + size) {}
|
|
|
|
const FieldDescriptor **begin() const { return Begin; }
|
|
|
|
const FieldDescriptor **end() const { return End; }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
#pragma mark Metadata lookup via mangled name
|
|
|
|
Optional<unsigned> swift::_depthIndexToFlatIndex(
|
|
unsigned depth, unsigned index,
|
|
ArrayRef<unsigned> paramCounts) {
|
|
// Out-of-bounds depth.
|
|
if (depth >= paramCounts.size()) return None;
|
|
|
|
// Compute the flat index.
|
|
unsigned flatIndex = index + (depth == 0 ? 0 : paramCounts[depth - 1]);
|
|
|
|
// Out-of-bounds index.
|
|
if (flatIndex >= paramCounts[depth]) return None;
|
|
|
|
return flatIndex;
|
|
}
|
|
|
|
/// Gather generic parameter counts from a context descriptor.
|
|
///
|
|
/// \returns true if the innermost descriptor is generic.
|
|
bool swift::_gatherGenericParameterCounts(
|
|
const ContextDescriptor *descriptor,
|
|
std::vector<unsigned> &genericParamCounts) {
|
|
// If we have an extension descriptor, extract the extended type and use
|
|
// that.
|
|
if (auto extension = dyn_cast<ExtensionContextDescriptor>(descriptor)) {
|
|
if (auto extendedType = _findExtendedTypeContextDescriptor(extension))
|
|
descriptor = extendedType;
|
|
}
|
|
|
|
// Once we hit a non-generic descriptor, we're done.
|
|
if (!descriptor->isGeneric()) return false;
|
|
|
|
// Recurse to record the parent context's generic parameters.
|
|
if (auto parent = descriptor->Parent.get())
|
|
(void)_gatherGenericParameterCounts(parent, genericParamCounts);
|
|
|
|
// Record a new level of generic parameters if the count exceeds the
|
|
// previous count.
|
|
auto myCount =
|
|
descriptor->getGenericContext()->getGenericContextHeader().NumParams;
|
|
if (genericParamCounts.empty() || myCount > genericParamCounts.back()) {
|
|
genericParamCounts.push_back(myCount);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Find the offset of the protocol requirement for an associated type with
|
|
/// the given name in the given protocol descriptor.
|
|
Optional<const ProtocolRequirement *> findAssociatedTypeByName(
|
|
const ProtocolDescriptor *protocol,
|
|
StringRef name) {
|
|
// If we don't have associated type names, there's nothing to do.
|
|
const char *associatedTypeNamesPtr = protocol->AssociatedTypeNames.get();
|
|
if (!associatedTypeNamesPtr) return None;
|
|
|
|
// Look through the list of associated type names.
|
|
StringRef associatedTypeNames(associatedTypeNamesPtr);
|
|
unsigned matchingAssocTypeIdx = 0;
|
|
bool found = false;
|
|
while (!associatedTypeNames.empty()) {
|
|
// Avoid using StringRef::split because its definition is not
|
|
// provided in the header so that it requires linking with libSupport.a.
|
|
auto splitIdx = associatedTypeNames.find(' ');
|
|
if (associatedTypeNames.substr(0, splitIdx) == name) {
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
++matchingAssocTypeIdx;
|
|
associatedTypeNames = associatedTypeNames.substr(splitIdx).substr(1);
|
|
}
|
|
|
|
if (!found) return None;
|
|
|
|
// We have a match on the Nth associated type; go find the Nth associated
|
|
// type requirement.
|
|
unsigned currentAssocTypeIdx = 0;
|
|
unsigned numRequirements = protocol->NumRequirements;
|
|
auto requirements = protocol->getRequirements();
|
|
for (unsigned reqIdx = 0; reqIdx != numRequirements; ++reqIdx) {
|
|
if (requirements[reqIdx].Flags.getKind() !=
|
|
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction)
|
|
continue;
|
|
|
|
if (currentAssocTypeIdx == matchingAssocTypeIdx)
|
|
return requirements.begin() + reqIdx;
|
|
|
|
++currentAssocTypeIdx;
|
|
}
|
|
|
|
swift_runtime_unreachable("associated type names don't line up");
|
|
}
|
|
|
|
/// Retrieve the generic parameters introduced in this context.
|
|
static ArrayRef<GenericParamDescriptor> getLocalGenericParams(
|
|
const ContextDescriptor *context) {
|
|
if (!context->isGeneric())
|
|
return { };
|
|
|
|
// Determine where to start looking at generic parameters.
|
|
unsigned startParamIndex;
|
|
if (auto parent = context->Parent.get())
|
|
startParamIndex = parent->getNumGenericParams();
|
|
else
|
|
startParamIndex = 0;
|
|
|
|
auto genericContext = context->getGenericContext();
|
|
return genericContext->getGenericParams().slice(startParamIndex);
|
|
}
|
|
|
|
/// Constructs metadata by decoding a mangled type name, for use with
|
|
/// \c TypeDecoder.
|
|
class DecodedMetadataBuilder {
|
|
private:
|
|
/// The demangler we'll use when building new nodes.
|
|
Demangler &demangler;
|
|
|
|
/// Substitute generic parameters.
|
|
SubstGenericParameterFn substGenericParameter;
|
|
|
|
/// Substitute dependent witness tables.
|
|
SubstDependentWitnessTableFn substWitnessTable;
|
|
|
|
/// Ownership information related to the metadata we are trying to lookup.
|
|
TypeReferenceOwnership ReferenceOwnership;
|
|
|
|
public:
|
|
DecodedMetadataBuilder(Demangler &demangler,
|
|
SubstGenericParameterFn substGenericParameter,
|
|
SubstDependentWitnessTableFn substWitnessTable)
|
|
: demangler(demangler),
|
|
substGenericParameter(substGenericParameter),
|
|
substWitnessTable(substWitnessTable) { }
|
|
|
|
using BuiltType = const Metadata *;
|
|
using BuiltNominalTypeDecl = const ContextDescriptor *;
|
|
using BuiltProtocolDecl = ProtocolDescriptorRef;
|
|
|
|
Demangle::NodeFactory &getNodeFactory() { return demangler; }
|
|
|
|
BuiltNominalTypeDecl createNominalTypeDecl(
|
|
const Demangle::NodePointer &node) const {
|
|
// Look for a nominal type descriptor based on its mangled name.
|
|
return _findNominalTypeDescriptor(node, demangler);
|
|
}
|
|
|
|
BuiltProtocolDecl createProtocolDecl(
|
|
const Demangle::NodePointer &node) const {
|
|
// Look for a protocol descriptor based on its mangled name.
|
|
std::string mangledName;
|
|
if (auto protocol = _findProtocolDescriptor(node, demangler, mangledName))
|
|
return ProtocolDescriptorRef::forSwift(protocol);;
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
// Look for a Swift-defined @objc protocol with the Swift 3 mangling that
|
|
// is used for Objective-C entities.
|
|
std::string objcMangledName = "_Tt" + mangleNodeOld(node) + "_";
|
|
if (auto protocol = objc_getProtocol(objcMangledName.c_str()))
|
|
return ProtocolDescriptorRef::forObjC(protocol);
|
|
#endif
|
|
|
|
return ProtocolDescriptorRef();
|
|
}
|
|
|
|
BuiltProtocolDecl createObjCProtocolDecl(
|
|
const std::string &mangledName) const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
return ProtocolDescriptorRef::forObjC(
|
|
objc_getProtocol(mangledName.c_str()));
|
|
#else
|
|
return ProtocolDescriptorRef();
|
|
#endif
|
|
}
|
|
|
|
BuiltType createObjCClassType(const std::string &mangledName) const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
auto objcClass = objc_getClass(mangledName.c_str());
|
|
return swift_getObjCClassMetadata((const ClassMetadata *)objcClass);
|
|
#else
|
|
return BuiltType();
|
|
#endif
|
|
}
|
|
|
|
BuiltType createNominalType(BuiltNominalTypeDecl metadataOrTypeDecl,
|
|
BuiltType parent) const {
|
|
// Treat nominal type creation the same way as generic type creation,
|
|
// but with no generic arguments at this level.
|
|
return createBoundGenericType(metadataOrTypeDecl, { }, parent);
|
|
}
|
|
|
|
BuiltType createBoundGenericType(BuiltNominalTypeDecl anyTypeDecl,
|
|
const ArrayRef<BuiltType> genericArgs,
|
|
const BuiltType parent) const {
|
|
auto typeDecl = dyn_cast<TypeContextDescriptor>(anyTypeDecl);
|
|
if (!typeDecl) {
|
|
if (auto protocol = dyn_cast<ProtocolDescriptor>(anyTypeDecl))
|
|
return _getSimpleProtocolTypeMetadata(protocol);
|
|
|
|
return BuiltType();
|
|
}
|
|
|
|
// Figure out the various levels of generic parameters we have in
|
|
// this type.
|
|
std::vector<unsigned> genericParamCounts;
|
|
(void)_gatherGenericParameterCounts(typeDecl, genericParamCounts);
|
|
unsigned numTotalGenericParams =
|
|
genericParamCounts.empty() ? 0 : genericParamCounts.back();
|
|
|
|
// Check whether we have the right number of generic arguments.
|
|
if (genericArgs.size() == getLocalGenericParams(typeDecl).size()) {
|
|
// Okay: genericArgs is the innermost set of generic arguments.
|
|
} else if (genericArgs.size() == numTotalGenericParams && !parent) {
|
|
// Okay: genericArgs is the complete set of generic arguments.
|
|
} else {
|
|
return BuiltType();
|
|
}
|
|
|
|
std::vector<const void *> allGenericArgsVec;
|
|
|
|
// If there are generic parameters at any level, check the generic
|
|
// requirements and fill in the generic arguments vector.
|
|
if (!genericParamCounts.empty()) {
|
|
// Compute the set of generic arguments "as written".
|
|
std::vector<const Metadata *> allGenericArgs;
|
|
|
|
// If we have a parent, gather it's generic arguments "as written".
|
|
if (parent) {
|
|
gatherWrittenGenericArgs(parent, parent->getTypeContextDescriptor(),
|
|
allGenericArgs);
|
|
}
|
|
|
|
// Add the generic arguments we were given.
|
|
allGenericArgs.insert(allGenericArgs.end(),
|
|
genericArgs.begin(), genericArgs.end());
|
|
|
|
// Copy the generic arguments needed for metadata from the generic
|
|
// arguments "as written".
|
|
auto genericContext = typeDecl->getGenericContext();
|
|
{
|
|
auto genericParams = genericContext->getGenericParams();
|
|
for (unsigned i = 0, n = genericParams.size(); i != n; ++i) {
|
|
const auto ¶m = genericParams[i];
|
|
if (param.getKind() != GenericParamKind::Type)
|
|
return BuiltType();
|
|
if (param.hasExtraArgument())
|
|
return BuiltType();
|
|
|
|
if (param.hasKeyArgument())
|
|
allGenericArgsVec.push_back(allGenericArgs[i]);
|
|
}
|
|
}
|
|
|
|
// If we have the wrong number of generic arguments, fail.
|
|
|
|
// Check whether the generic requirements are satisfied, collecting
|
|
// any extra arguments we need for the instantiation function.
|
|
SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs,
|
|
genericParamCounts);
|
|
bool failed =
|
|
_checkGenericRequirements(genericContext->getGenericRequirements(),
|
|
allGenericArgsVec, substitutions,
|
|
substitutions);
|
|
if (failed)
|
|
return BuiltType();
|
|
|
|
// If we still have the wrong number of generic arguments, this is
|
|
// some kind of metadata mismatch.
|
|
if (typeDecl->getGenericContextHeader().getNumArguments() !=
|
|
allGenericArgsVec.size())
|
|
return BuiltType();
|
|
}
|
|
|
|
// Call the access function.
|
|
auto accessFunction = typeDecl->getAccessFunction();
|
|
if (!accessFunction) return BuiltType();
|
|
|
|
return accessFunction(MetadataState::Abstract, allGenericArgsVec).Value;
|
|
}
|
|
|
|
BuiltType createBuiltinType(StringRef mangledName) const {
|
|
#define BUILTIN_TYPE(Symbol, _) \
|
|
if (mangledName.equals(#Symbol)) \
|
|
return &METADATA_SYM(Symbol).base;
|
|
#include "swift/Runtime/BuiltinTypes.def"
|
|
return BuiltType();
|
|
}
|
|
|
|
BuiltType createMetatypeType(BuiltType instance, bool wasAbstract) const {
|
|
return swift_getMetatypeMetadata(instance);
|
|
}
|
|
|
|
BuiltType createExistentialMetatypeType(BuiltType instance) const {
|
|
return swift_getExistentialMetatypeMetadata(instance);
|
|
}
|
|
|
|
BuiltType createProtocolCompositionType(ArrayRef<BuiltProtocolDecl> protocols,
|
|
BuiltType superclass,
|
|
bool isClassBound) const {
|
|
// Determine whether we have a class bound.
|
|
ProtocolClassConstraint classConstraint = ProtocolClassConstraint::Any;
|
|
if (isClassBound || superclass) {
|
|
classConstraint = ProtocolClassConstraint::Class;
|
|
} else {
|
|
for (auto protocol : protocols) {
|
|
if (protocol.getClassConstraint() == ProtocolClassConstraint::Class) {
|
|
classConstraint = ProtocolClassConstraint::Class;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return swift_getExistentialTypeMetadata(classConstraint, superclass,
|
|
protocols.size(), protocols.data());
|
|
}
|
|
|
|
BuiltType createGenericTypeParameterType(unsigned depth,
|
|
unsigned index) const {
|
|
// Use the callback, when provided.
|
|
if (substGenericParameter)
|
|
return substGenericParameter(depth, index);
|
|
|
|
return BuiltType();
|
|
}
|
|
|
|
BuiltType createFunctionType(
|
|
ArrayRef<Demangle::FunctionParam<BuiltType>> params,
|
|
BuiltType result, FunctionTypeFlags flags) const {
|
|
std::vector<BuiltType> paramTypes;
|
|
std::vector<uint32_t> paramFlags;
|
|
|
|
// Fill in the parameters.
|
|
paramTypes.reserve(params.size());
|
|
if (flags.hasParameterFlags())
|
|
paramFlags.reserve(params.size());
|
|
for (const auto ¶m : params) {
|
|
paramTypes.push_back(param.getType());
|
|
if (flags.hasParameterFlags())
|
|
paramFlags.push_back(param.getFlags().getIntValue());
|
|
}
|
|
|
|
return swift_getFunctionTypeMetadata(flags, paramTypes.data(),
|
|
flags.hasParameterFlags()
|
|
? paramFlags.data()
|
|
: nullptr,
|
|
result);
|
|
}
|
|
|
|
BuiltType createTupleType(ArrayRef<BuiltType> elements,
|
|
std::string labels,
|
|
bool variadic) const {
|
|
// TODO: 'variadic' should no longer exist
|
|
auto flags = TupleTypeFlags().withNumElements(elements.size());
|
|
if (!labels.empty())
|
|
flags = flags.withNonConstantLabels(true);
|
|
return swift_getTupleTypeMetadata(MetadataState::Abstract,
|
|
flags, elements.data(),
|
|
labels.empty() ? nullptr : labels.c_str(),
|
|
/*proposedWitnesses=*/nullptr).Value;
|
|
}
|
|
|
|
BuiltType createDependentMemberType(StringRef name, BuiltType base,
|
|
BuiltProtocolDecl protocol) const {
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (protocol.isObjC())
|
|
return BuiltType();
|
|
#endif
|
|
|
|
auto swiftProtocol = protocol.getSwiftProtocol();
|
|
auto witnessTable = swift_conformsToProtocol(base, swiftProtocol);
|
|
if (!witnessTable)
|
|
return BuiltType();
|
|
|
|
// Look for the named associated type within the protocol.
|
|
auto assocType = findAssociatedTypeByName(swiftProtocol, name);
|
|
if (!assocType) return nullptr;
|
|
|
|
// Call the associated type access function.
|
|
return swift_getAssociatedTypeWitness(
|
|
MetadataState::Abstract,
|
|
const_cast<WitnessTable *>(witnessTable),
|
|
base,
|
|
swiftProtocol->getRequirementBaseDescriptor(),
|
|
*assocType).Value;
|
|
}
|
|
|
|
#define REF_STORAGE(Name, ...) \
|
|
BuiltType create##Name##StorageType(BuiltType base) { \
|
|
ReferenceOwnership.set##Name(); \
|
|
return base; \
|
|
}
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
|
|
BuiltType createSILBoxType(BuiltType base) const {
|
|
// FIXME: Implement.
|
|
return BuiltType();
|
|
}
|
|
|
|
TypeReferenceOwnership getReferenceOwnership() const {
|
|
return ReferenceOwnership;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
static TypeInfo swift_getTypeByMangledNodeImpl(
|
|
Demangler &demangler,
|
|
Demangle::NodePointer node,
|
|
SubstGenericParameterFn substGenericParam,
|
|
SubstDependentWitnessTableFn substWitnessTable) {
|
|
DecodedMetadataBuilder builder(demangler, substGenericParam,
|
|
substWitnessTable);
|
|
auto type = Demangle::decodeMangledType(builder, node);
|
|
return {type, builder.getReferenceOwnership()};
|
|
}
|
|
|
|
TypeInfo swift_getTypeByMangledNameImpl(
|
|
StringRef typeName,
|
|
SubstGenericParameterFn substGenericParam,
|
|
SubstDependentWitnessTableFn substWitnessTable) {
|
|
auto demangler = getDemanglerForRuntimeTypeResolution();
|
|
NodePointer node;
|
|
|
|
// Check whether this is the convenience syntax "ModuleName.ClassName".
|
|
auto getDotPosForConvenienceSyntax = [&]() -> size_t {
|
|
size_t dotPos = llvm::StringRef::npos;
|
|
for (unsigned i = 0; i < typeName.size(); ++i) {
|
|
// Should only contain one dot.
|
|
if (typeName[i] == '.') {
|
|
if (dotPos == llvm::StringRef::npos) {
|
|
dotPos = i;
|
|
continue;
|
|
} else {
|
|
return llvm::StringRef::npos;
|
|
}
|
|
}
|
|
|
|
// Should not contain symbolic references.
|
|
if ((unsigned char)typeName[i] <= '\x1F') {
|
|
return llvm::StringRef::npos;
|
|
}
|
|
}
|
|
return dotPos;
|
|
};
|
|
|
|
auto dotPos = getDotPosForConvenienceSyntax();
|
|
if (dotPos != llvm::StringRef::npos) {
|
|
// Form a demangle tree for this class.
|
|
NodePointer classNode = demangler.createNode(Node::Kind::Class);
|
|
NodePointer moduleNode = demangler.createNode(Node::Kind::Module,
|
|
typeName.substr(0, dotPos));
|
|
NodePointer nameNode = demangler.createNode(Node::Kind::Identifier,
|
|
typeName.substr(dotPos + 1));
|
|
classNode->addChild(moduleNode, demangler);
|
|
classNode->addChild(nameNode, demangler);
|
|
|
|
node = classNode;
|
|
} else {
|
|
// Demangle the type name.
|
|
node = demangler.demangleType(typeName);
|
|
if (!node)
|
|
return TypeInfo();
|
|
}
|
|
|
|
return swift_getTypeByMangledNode(demangler, node, substGenericParam,
|
|
substWitnessTable);
|
|
}
|
|
|
|
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
|
|
const Metadata * _Nullable
|
|
swift_stdlib_getTypeByMangledName(
|
|
const char *typeNameStart,
|
|
size_t typeNameLength,
|
|
const TargetGenericEnvironment<InProcess> *environment,
|
|
const void * const *genericArgs) {
|
|
llvm::StringRef typeName(typeNameStart, typeNameLength);
|
|
SubstGenericParametersFromMetadata substitutions(environment, genericArgs);
|
|
auto metadata = swift_getTypeByMangledName(typeName, substitutions,
|
|
substitutions);
|
|
if (!metadata) return nullptr;
|
|
|
|
return swift_checkMetadataState(MetadataState::Complete, metadata).Value;
|
|
}
|
|
|
|
unsigned SubstGenericParametersFromMetadata::
|
|
buildDescriptorPath(const ContextDescriptor *context) const {
|
|
// Terminating condition: we don't have a context.
|
|
if (!context)
|
|
return 0;
|
|
|
|
// Add the parent's contribution to the descriptor path.
|
|
unsigned numKeyGenericParamsInParent =
|
|
buildDescriptorPath(context->Parent.get());
|
|
|
|
// If this context is non-generic, we're done.
|
|
if (!context->isGeneric())
|
|
return numKeyGenericParamsInParent;
|
|
|
|
// Count the number of key generic params at this level.
|
|
unsigned numKeyGenericParamsHere = 0;
|
|
bool hasNonKeyGenericParams = false;
|
|
auto localGenericParams = getLocalGenericParams(context);
|
|
for (const auto &genericParam : localGenericParams) {
|
|
if (genericParam.hasKeyArgument())
|
|
++numKeyGenericParamsHere;
|
|
else
|
|
hasNonKeyGenericParams = true;
|
|
}
|
|
|
|
// Form the path element.
|
|
descriptorPath.push_back(PathElement{localGenericParams,
|
|
context->getNumGenericParams(),
|
|
numKeyGenericParamsInParent,
|
|
numKeyGenericParamsHere,
|
|
hasNonKeyGenericParams});
|
|
return numKeyGenericParamsInParent + numKeyGenericParamsHere;
|
|
}
|
|
|
|
/// Builds a path from the generic environment.
|
|
unsigned SubstGenericParametersFromMetadata::
|
|
buildEnvironmentPath(
|
|
const TargetGenericEnvironment<InProcess> *environment) const {
|
|
unsigned totalParamCount = 0;
|
|
unsigned totalKeyParamCount = 0;
|
|
auto genericParams = environment->getGenericParameters();
|
|
for (unsigned numLocalParams : environment->getGenericParameterCounts()) {
|
|
// Get the local generic parameters.
|
|
auto localGenericParams = genericParams.slice(0, numLocalParams);
|
|
genericParams = genericParams.slice(numLocalParams);
|
|
|
|
// Count the parameters.
|
|
unsigned numKeyGenericParamsInParent = totalKeyParamCount;
|
|
unsigned numKeyGenericParamsHere = 0;
|
|
bool hasNonKeyGenericParams = false;
|
|
for (const auto &genericParam : localGenericParams) {
|
|
if (genericParam.hasKeyArgument())
|
|
++numKeyGenericParamsHere;
|
|
else
|
|
hasNonKeyGenericParams = true;
|
|
}
|
|
|
|
// Update totals.
|
|
totalParamCount += numLocalParams;
|
|
totalKeyParamCount += numKeyGenericParamsHere;
|
|
|
|
// Add to the descriptor path.
|
|
descriptorPath.push_back(PathElement{localGenericParams,
|
|
totalParamCount,
|
|
numKeyGenericParamsInParent,
|
|
numKeyGenericParamsHere,
|
|
hasNonKeyGenericParams});
|
|
}
|
|
|
|
return totalKeyParamCount;
|
|
}
|
|
|
|
void SubstGenericParametersFromMetadata::setup() const {
|
|
if (!descriptorPath.empty())
|
|
return;
|
|
|
|
if (sourceIsMetadata && base) {
|
|
auto descriptor = base->getTypeContextDescriptor();
|
|
numKeyGenericParameters = buildDescriptorPath(descriptor);
|
|
return;
|
|
}
|
|
|
|
if (!sourceIsMetadata && environment) {
|
|
numKeyGenericParameters = buildEnvironmentPath(environment);
|
|
return;
|
|
}
|
|
}
|
|
|
|
const Metadata *
|
|
SubstGenericParametersFromMetadata::operator()(
|
|
unsigned depth, unsigned index) const {
|
|
// On first access, compute the descriptor path.
|
|
setup();
|
|
|
|
// If the depth is too great, there is nothing to do.
|
|
if (depth >= descriptorPath.size())
|
|
return nullptr;
|
|
|
|
/// Retrieve the descriptor path element at this depth.
|
|
auto &pathElement = descriptorPath[depth];
|
|
|
|
// Check whether the index is clearly out of bounds.
|
|
if (index >= pathElement.numTotalGenericParams)
|
|
return nullptr;
|
|
|
|
// Compute the flat index.
|
|
unsigned flatIndex = pathElement.numKeyGenericParamsInParent;
|
|
if (pathElement.hasNonKeyGenericParams > 0) {
|
|
// We have non-key generic parameters at this level, so the index needs to
|
|
// be checked more carefully.
|
|
auto genericParams = pathElement.localGenericParams;
|
|
|
|
// Make sure that the requested parameter itself has a key argument.
|
|
if (!genericParams[index].hasKeyArgument())
|
|
return nullptr;
|
|
|
|
// Increase the flat index for each parameter with a key argument, up to
|
|
// the given index.
|
|
for (const auto &genericParam : genericParams.slice(0, index)) {
|
|
if (genericParam.hasKeyArgument())
|
|
++flatIndex;
|
|
}
|
|
} else {
|
|
flatIndex += index;
|
|
}
|
|
|
|
return (const Metadata *)genericArgs[flatIndex];
|
|
}
|
|
|
|
const WitnessTable *
|
|
SubstGenericParametersFromMetadata::operator()(const Metadata *type,
|
|
unsigned index) const {
|
|
// On first access, compute the descriptor path.
|
|
setup();
|
|
|
|
return (const WitnessTable *)genericArgs[index + numKeyGenericParameters];
|
|
}
|
|
|
|
const Metadata *SubstGenericParametersFromWrittenArgs::operator()(
|
|
unsigned depth,
|
|
unsigned index) const {
|
|
if (auto flatIndex =
|
|
_depthIndexToFlatIndex(depth, index, genericParamCounts)) {
|
|
if (*flatIndex < allGenericArgs.size())
|
|
return allGenericArgs[*flatIndex];
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const WitnessTable *
|
|
SubstGenericParametersFromWrittenArgs::operator()(const Metadata *type,
|
|
unsigned index) const {
|
|
return nullptr;
|
|
}
|
|
|
|
/// Demangle the given type name to a generic parameter reference, which
|
|
/// will be returned as (depth, index).
|
|
static Optional<std::pair<unsigned, unsigned>>
|
|
demangleToGenericParamRef(StringRef typeName) {
|
|
Demangler demangler;
|
|
NodePointer node = demangler.demangleType(typeName);
|
|
if (!node)
|
|
return None;
|
|
|
|
// Find the flat index that the right-hand side refers to.
|
|
if (node->getKind() == Demangle::Node::Kind::Type)
|
|
node = node->getChild(0);
|
|
if (node->getKind() != Demangle::Node::Kind::DependentGenericParamType)
|
|
return None;
|
|
|
|
return std::pair<unsigned, unsigned>(node->getChild(0)->getIndex(),
|
|
node->getChild(1)->getIndex());
|
|
}
|
|
|
|
void swift::gatherWrittenGenericArgs(
|
|
const Metadata *metadata,
|
|
const TypeContextDescriptor *description,
|
|
std::vector<const Metadata *> &allGenericArgs) {
|
|
auto generics = description->getGenericContext();
|
|
if (!generics)
|
|
return;
|
|
|
|
bool missingWrittenArguments = false;
|
|
auto genericArgs = description->getGenericArguments(metadata);
|
|
for (auto param : generics->getGenericParams()) {
|
|
switch (param.getKind()) {
|
|
case GenericParamKind::Type:
|
|
// The type should have a key argument unless it's been same-typed to
|
|
// another type.
|
|
if (param.hasKeyArgument()) {
|
|
auto genericArg = *genericArgs++;
|
|
allGenericArgs.push_back(genericArg);
|
|
} else {
|
|
// Leave a gap for us to fill in by looking at same type info.
|
|
allGenericArgs.push_back(nullptr);
|
|
missingWrittenArguments = true;
|
|
}
|
|
|
|
// We don't know about type parameters with extra arguments. Leave
|
|
// a hole for it.
|
|
if (param.hasExtraArgument()) {
|
|
allGenericArgs.push_back(nullptr);
|
|
++genericArgs;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// We don't know about this kind of parameter. Create placeholders where
|
|
// needed.
|
|
if (param.hasKeyArgument()) {
|
|
allGenericArgs.push_back(nullptr);
|
|
++genericArgs;
|
|
}
|
|
|
|
if (param.hasExtraArgument()) {
|
|
allGenericArgs.push_back(nullptr);
|
|
++genericArgs;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there is no follow-up work to do, we're done.
|
|
if (!missingWrittenArguments)
|
|
return;
|
|
|
|
// We have generic arguments that would be written, but have been
|
|
// canonicalized away. Use same-type requirements to reconstitute them.
|
|
|
|
// Retrieve the mapping information needed for depth/index -> flat index.
|
|
std::vector<unsigned> genericParamCounts;
|
|
(void)_gatherGenericParameterCounts(description, genericParamCounts);
|
|
|
|
// Walk through the generic requirements to evaluate same-type
|
|
// constraints that are needed to fill in missing generic arguments.
|
|
for (const auto &req : generics->getGenericRequirements()) {
|
|
// We only care about same-type constraints.
|
|
if (req.Flags.getKind() != GenericRequirementKind::SameType)
|
|
continue;
|
|
|
|
auto lhsParam = demangleToGenericParamRef(req.getParam());
|
|
if (!lhsParam)
|
|
continue;
|
|
|
|
// If we don't yet have an argument for this parameter, it's a
|
|
// same-type-to-concrete constraint.
|
|
auto lhsFlatIndex =
|
|
_depthIndexToFlatIndex(lhsParam->first, lhsParam->second,
|
|
genericParamCounts);
|
|
if (!lhsFlatIndex || *lhsFlatIndex >= allGenericArgs.size())
|
|
continue;
|
|
|
|
if (!allGenericArgs[*lhsFlatIndex]) {
|
|
// Substitute into the right-hand side.
|
|
SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs,
|
|
genericParamCounts);
|
|
allGenericArgs[*lhsFlatIndex] =
|
|
swift_getTypeByMangledName(req.getMangledTypeName(), substitutions,
|
|
substitutions);
|
|
continue;
|
|
}
|
|
|
|
// If we do have an argument for this parameter, it might be that
|
|
// the right-hand side is itself a generic parameter, which means
|
|
// we have a same-type constraint A == B where A is already filled in.
|
|
auto rhsParam = demangleToGenericParamRef(req.getMangledTypeName());
|
|
if (!rhsParam)
|
|
continue;
|
|
|
|
auto rhsFlatIndex =
|
|
_depthIndexToFlatIndex(rhsParam->first, rhsParam->second,
|
|
genericParamCounts);
|
|
if (!rhsFlatIndex || *rhsFlatIndex >= allGenericArgs.size())
|
|
continue;
|
|
|
|
if (allGenericArgs[*rhsFlatIndex] || !allGenericArgs[*lhsFlatIndex])
|
|
continue;
|
|
|
|
allGenericArgs[*rhsFlatIndex] = allGenericArgs[*lhsFlatIndex];
|
|
}
|
|
}
|
|
|
|
struct InitializeDynamicReplacementLookup {
|
|
InitializeDynamicReplacementLookup() {
|
|
initializeDynamicReplacementLookup();
|
|
}
|
|
};
|
|
|
|
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
|
|
static InitializeDynamicReplacementLookup initDynamicReplacements;
|
|
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
|
|
|
|
void DynamicReplacementDescriptor::enableReplacement() const {
|
|
auto *chainRoot = const_cast<DynamicReplacementChainEntry *>(
|
|
replacedFunctionKey->root.get());
|
|
|
|
// Make sure this entry is not already enabled.
|
|
for (auto *curr = chainRoot; curr != nullptr; curr = curr->next) {
|
|
if (curr == chainEntry.get()) {
|
|
swift::swift_abortDynamicReplacementEnabling();
|
|
}
|
|
}
|
|
|
|
// Unlink the previous entry if we are not chaining.
|
|
if (!shouldChain() && chainRoot->next) {
|
|
auto *previous = chainRoot->next;
|
|
chainRoot->next = previous->next;
|
|
chainRoot->implementationFunction = previous->implementationFunction;
|
|
}
|
|
|
|
// First populate the current replacement's chain entry.
|
|
auto *currentEntry =
|
|
const_cast<DynamicReplacementChainEntry *>(chainEntry.get());
|
|
currentEntry->implementationFunction = chainRoot->implementationFunction;
|
|
currentEntry->next = chainRoot->next;
|
|
|
|
// Link the replacement entry.
|
|
chainRoot->next = chainEntry.get();
|
|
chainRoot->implementationFunction = replacementFunction.get();
|
|
}
|
|
|
|
void DynamicReplacementDescriptor::disableReplacement() const {
|
|
const auto *chainRoot = replacedFunctionKey->root.get();
|
|
auto *thisEntry =
|
|
const_cast<DynamicReplacementChainEntry *>(chainEntry.get());
|
|
|
|
// Find the entry previous to this one.
|
|
auto *prev = chainRoot;
|
|
while (prev && prev->next != thisEntry)
|
|
prev = prev->next;
|
|
if (!prev) {
|
|
swift::swift_abortDynamicReplacementDisabling();
|
|
return;
|
|
}
|
|
|
|
// Unlink this entry.
|
|
auto *previous = const_cast<DynamicReplacementChainEntry *>(prev);
|
|
previous->next = thisEntry->next;
|
|
previous->implementationFunction = thisEntry->implementationFunction;
|
|
}
|
|
|
|
/// An automatic dymamic replacement entry.
|
|
class AutomaticDynamicReplacementEntry {
|
|
RelativeDirectPointer<DynamicReplacementScope, false> replacementScope;
|
|
uint32_t flags;
|
|
|
|
public:
|
|
void enable() const { replacementScope->enable(); }
|
|
|
|
uint32_t getFlags() { return flags; }
|
|
};
|
|
|
|
/// A list of automatic dynamic replacement scopes.
|
|
class AutomaticDynamicReplacements
|
|
: private swift::ABI::TrailingObjects<AutomaticDynamicReplacements,
|
|
AutomaticDynamicReplacementEntry> {
|
|
uint32_t flags;
|
|
uint32_t numScopes;
|
|
|
|
using TrailingObjects =
|
|
swift::ABI::TrailingObjects<AutomaticDynamicReplacements,
|
|
AutomaticDynamicReplacementEntry>;
|
|
friend TrailingObjects;
|
|
|
|
|
|
ArrayRef<AutomaticDynamicReplacementEntry> getReplacementEntries() const {
|
|
return {
|
|
this->template getTrailingObjects<AutomaticDynamicReplacementEntry>(),
|
|
numScopes};
|
|
}
|
|
|
|
public:
|
|
void enableReplacements() const {
|
|
for (auto &replacementEntry : getReplacementEntries())
|
|
replacementEntry.enable();
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
static Lazy<Mutex> DynamicReplacementLock;
|
|
}
|
|
|
|
void swift::addImageDynamicReplacementBlockCallback(
|
|
const void *replacements, uintptr_t replacementsSize) {
|
|
auto *automaticReplacements =
|
|
reinterpret_cast<const AutomaticDynamicReplacements *>(replacements);
|
|
DynamicReplacementLock.get().withLock(
|
|
[&] { automaticReplacements->enableReplacements(); });
|
|
}
|
|
|
|
void swift::swift_enableDynamicReplacementScope(
|
|
const DynamicReplacementScope *scope) {
|
|
DynamicReplacementLock.get().withLock([=] { scope->enable(); });
|
|
}
|
|
|
|
void swift::swift_disableDynamicReplacementScope(
|
|
const DynamicReplacementScope *scope) {
|
|
DynamicReplacementLock.get().withLock([=] { scope->disable(); });
|
|
}
|
|
#define OVERRIDE_METADATALOOKUP COMPATIBILITY_OVERRIDE
|
|
#include "CompatibilityOverride.def"
|