Files
swift-mirror/lib/AST/DiagnosticEngine.cpp
Doug Gregor 5ab6b72604 [Macros] Turn Macro into a declaration node.
Although the declaration of macros doesn't appear in Swift source code
that uses macros, they still operate as declarations within the
language. Rework `Macro` as `MacroDecl`, a generic value declaration,
which appropriate models its place in the language.

The vast majority of this change is in extending all of the various
switches on declaration kinds to account for macros.
2022-11-13 12:21:29 -08:00

1406 lines
50 KiB
C++

//===--- DiagnosticEngine.cpp - Diagnostic Display Engine -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the DiagnosticEngine class, which manages any diagnostics
// emitted by Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Config.h"
#include "swift/Localization/LocalizationFormat.h"
#include "swift/Parse/Lexer.h" // bad dependency
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
namespace {
enum class DiagnosticOptions {
/// No options.
none,
/// The location of this diagnostic points to the beginning of the first
/// token that the parser considers invalid. If this token is located at the
/// beginning of the line, then the location is adjusted to point to the end
/// of the previous token.
///
/// This behavior improves experience for "expected token X" diagnostics.
PointsToFirstBadToken,
/// After a fatal error subsequent diagnostics are suppressed.
Fatal,
/// An API or ABI breakage diagnostic emitted by the API digester.
APIDigesterBreakage,
/// A deprecation warning or error.
Deprecation,
/// A diagnostic warning about an unused element.
NoUsage,
};
struct StoredDiagnosticInfo {
DiagnosticKind kind : 2;
bool pointsToFirstBadToken : 1;
bool isFatal : 1;
bool isAPIDigesterBreakage : 1;
bool isDeprecation : 1;
bool isNoUsage : 1;
constexpr StoredDiagnosticInfo(DiagnosticKind k, bool firstBadToken,
bool fatal, bool isAPIDigesterBreakage,
bool deprecation, bool noUsage)
: kind(k), pointsToFirstBadToken(firstBadToken), isFatal(fatal),
isAPIDigesterBreakage(isAPIDigesterBreakage), isDeprecation(deprecation),
isNoUsage(noUsage) {}
constexpr StoredDiagnosticInfo(DiagnosticKind k, DiagnosticOptions opts)
: StoredDiagnosticInfo(k,
opts == DiagnosticOptions::PointsToFirstBadToken,
opts == DiagnosticOptions::Fatal,
opts == DiagnosticOptions::APIDigesterBreakage,
opts == DiagnosticOptions::Deprecation,
opts == DiagnosticOptions::NoUsage) {}
};
// Reproduce the DiagIDs, as we want both the size and access to the raw ids
// themselves.
enum LocalDiagID : uint32_t {
#define DIAG(KIND, ID, Options, Text, Signature) ID,
#include "swift/AST/DiagnosticsAll.def"
NumDiags
};
} // end anonymous namespace
// TODO: categorization
static const constexpr StoredDiagnosticInfo storedDiagnosticInfos[] = {
#define ERROR(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Error, DiagnosticOptions::Options),
#define WARNING(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Warning, DiagnosticOptions::Options),
#define NOTE(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Note, DiagnosticOptions::Options),
#define REMARK(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Remark, DiagnosticOptions::Options),
#include "swift/AST/DiagnosticsAll.def"
};
static_assert(sizeof(storedDiagnosticInfos) / sizeof(StoredDiagnosticInfo) ==
LocalDiagID::NumDiags,
"array size mismatch");
static constexpr const char * const diagnosticStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature) Text,
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const debugDiagnosticStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature) Text " [" #ID "]",
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const diagnosticIDStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature) #ID,
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const fixItStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature)
#define FIXIT(ID, Text, Signature) Text,
#include "swift/AST/DiagnosticsAll.def"
"<not a fix-it>",
};
#define EDUCATIONAL_NOTES(DIAG, ...) \
static constexpr const char *const DIAG##_educationalNotes[] = {__VA_ARGS__, \
nullptr};
#include "swift/AST/EducationalNotes.def"
// NOTE: sadly, while GCC and Clang support array designators in C++, they are
// not part of the standard at the moment, so Visual C++ doesn't support them.
// This construct allows us to provide a constexpr array initialized to empty
// values except in the cases that EducationalNotes.def are provided, similar to
// what the C array would have looked like.
template<int N>
struct EducationalNotes {
constexpr EducationalNotes() : value() {
for (auto i = 0; i < N; ++i) value[i] = {};
#define EDUCATIONAL_NOTES(DIAG, ...) \
value[LocalDiagID::DIAG] = DIAG##_educationalNotes;
#include "swift/AST/EducationalNotes.def"
}
const char *const *value[N];
};
static constexpr EducationalNotes<LocalDiagID::NumDiags> _EducationalNotes = EducationalNotes<LocalDiagID::NumDiags>();
static constexpr auto educationalNotes = _EducationalNotes.value;
DiagnosticState::DiagnosticState() {
// Initialize our ignored diagnostics to default
ignoredDiagnostics.resize(LocalDiagID::NumDiags);
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceRange SR) {
return CharSourceRange(SM, SR.Start, Lexer::getLocForEndOfToken(SM, SR.End));
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceLoc Start,
SourceLoc End) {
return CharSourceRange(SM, Start, End);
}
/// Extract a character at \p Loc. If \p Loc is the end of the buffer,
/// return '\f'.
static char extractCharAfter(SourceManager &SM, SourceLoc Loc) {
auto chars = SM.extractText({Loc, 1});
return chars.empty() ? '\f' : chars[0];
}
/// Extract a character immediately before \p Loc. If \p Loc is the
/// start of the buffer, return '\f'.
static char extractCharBefore(SourceManager &SM, SourceLoc Loc) {
// We have to be careful not to go off the front of the buffer.
auto bufferID = SM.findBufferContainingLoc(Loc);
auto bufferRange = SM.getRangeForBuffer(bufferID);
if (bufferRange.getStart() == Loc)
return '\f';
auto chars = SM.extractText({Loc.getAdvancedLoc(-1), 1}, bufferID);
assert(!chars.empty() && "Couldn't extractText with valid range");
return chars[0];
}
InFlightDiagnostic &InFlightDiagnostic::highlight(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && R.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, R));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::highlightChars(SourceLoc Start,
SourceLoc End) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, Start, End));
return *this;
}
/// Add an insertion fix-it to the currently-active diagnostic. The
/// text is inserted immediately *after* the token specified.
///
InFlightDiagnostic &
InFlightDiagnostic::fixItInsertAfter(SourceLoc L, StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
L = Lexer::getLocForEndOfToken(Engine->SourceMgr, L);
return fixItInsert(L, FormatString, Args);
}
/// Add a token-based removal fix-it to the currently-active
/// diagnostic.
InFlightDiagnostic &InFlightDiagnostic::fixItRemove(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
// Convert from a token range to a CharSourceRange, which points to the end of
// the token we want to remove.
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're removing something (e.g. a keyword), do a bit of extra work to
// make sure that we leave the code in a good place, without extraneous white
// space around its hole. Specifically, check to see there is whitespace
// before and after the end of range. If so, nuke the space afterward to keep
// things consistent.
if (extractCharAfter(SM, charRange.getEnd()) == ' ' &&
isspace(extractCharBefore(SM, charRange.getStart()))) {
charRange = CharSourceRange(charRange.getStart(),
charRange.getByteLength()+1);
}
Engine->getActiveDiagnostic().addFixIt(Diagnostic::FixIt(charRange, {}, {}));
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::fixItReplace(SourceRange R, StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange, FormatString, Args));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItReplace(SourceRange R,
StringRef Str) {
if (Str.empty())
return fixItRemove(R);
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're replacing with something that wants spaces around it, do a bit of
// extra work so that we don't suggest extra spaces.
// FIXME: This could probably be applied to structured fix-its as well.
if (Str.back() == ' ') {
if (isspace(extractCharAfter(SM, charRange.getEnd())))
Str = Str.drop_back();
}
if (!Str.empty() && Str.front() == ' ') {
if (isspace(extractCharBefore(SM, charRange.getStart())))
Str = Str.drop_front();
}
return fixItReplace(R, "%0", {Str});
}
InFlightDiagnostic &
InFlightDiagnostic::fixItReplaceChars(SourceLoc Start, SourceLoc End,
StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(toCharSourceRange(Engine->SourceMgr, Start, End),
FormatString, Args));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItExchange(SourceRange R1,
SourceRange R2) {
assert(IsActive && "Cannot modify an inactive diagnostic");
auto &SM = Engine->SourceMgr;
// Convert from a token range to a CharSourceRange
auto charRange1 = toCharSourceRange(SM, R1);
auto charRange2 = toCharSourceRange(SM, R2);
// Extract source text.
auto text1 = SM.extractText(charRange1);
auto text2 = SM.extractText(charRange2);
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange1, "%0", {text2}));
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange2, "%0", {text1}));
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::limitBehavior(DiagnosticBehavior limit) {
Engine->getActiveDiagnostic().setBehaviorLimit(limit);
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::warnUntilSwiftVersion(unsigned majorVersion) {
if (!Engine->languageVersion.isVersionAtLeast(majorVersion)) {
limitBehavior(DiagnosticBehavior::Warning)
.wrapIn(diag::error_in_future_swift_version, majorVersion);
}
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::wrapIn(const Diagnostic &wrapper) {
// Save current active diagnostic into WrappedDiagnostics, ignoring state
// so we don't get a None return or influence future diagnostics.
DiagnosticState tempState;
Engine->state.swap(tempState);
llvm::SaveAndRestore<DiagnosticBehavior>
limit(Engine->getActiveDiagnostic().BehaviorLimit,
DiagnosticBehavior::Unspecified);
Engine->WrappedDiagnostics.push_back(
*Engine->diagnosticInfoForDiagnostic(Engine->getActiveDiagnostic()));
Engine->state.swap(tempState);
auto &wrapped = Engine->WrappedDiagnostics.back();
// Copy and update its arg list.
Engine->WrappedDiagnosticArgs.emplace_back(wrapped.FormatArgs);
wrapped.FormatArgs = Engine->WrappedDiagnosticArgs.back();
// Overwrite the ID and argument with those from the wrapper.
Engine->getActiveDiagnostic().ID = wrapper.ID;
Engine->getActiveDiagnostic().Args = wrapper.Args;
// Set the argument to the diagnostic being wrapped.
assert(wrapper.getArgs().front().getKind() == DiagnosticArgumentKind::Diagnostic);
Engine->getActiveDiagnostic().Args.front() = &wrapped;
return *this;
}
void InFlightDiagnostic::flush() {
if (!IsActive)
return;
IsActive = false;
if (Engine)
Engine->flushActiveDiagnostic();
}
void Diagnostic::addChildNote(Diagnostic &&D) {
assert(storedDiagnosticInfos[(unsigned)D.ID].kind == DiagnosticKind::Note &&
"Only notes can have a parent.");
assert(storedDiagnosticInfos[(unsigned)ID].kind != DiagnosticKind::Note &&
"Notes can't have children.");
ChildNotes.push_back(std::move(D));
}
bool DiagnosticEngine::isDiagnosticPointsToFirstBadToken(DiagID ID) const {
return storedDiagnosticInfos[(unsigned) ID].pointsToFirstBadToken;
}
bool DiagnosticEngine::isAPIDigesterBreakageDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isAPIDigesterBreakage;
}
bool DiagnosticEngine::isDeprecationDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isDeprecation;
}
bool DiagnosticEngine::isNoUsageDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isNoUsage;
}
bool DiagnosticEngine::finishProcessing() {
bool hadError = false;
for (auto &Consumer : Consumers) {
hadError |= Consumer->finishProcessing();
}
return hadError;
}
/// Skip forward to one of the given delimiters.
///
/// \param Text The text to search through, which will be updated to point
/// just after the delimiter.
///
/// \param Delim The first character delimiter to search for.
///
/// \param FoundDelim On return, true if the delimiter was found, or false
/// if the end of the string was reached.
///
/// \returns The string leading up to the delimiter, or the empty string
/// if no delimiter is found.
static StringRef
skipToDelimiter(StringRef &Text, char Delim, bool *FoundDelim = nullptr) {
unsigned Depth = 0;
if (FoundDelim)
*FoundDelim = false;
unsigned I = 0;
for (unsigned N = Text.size(); I != N; ++I) {
if (Text[I] == '{') {
++Depth;
continue;
}
if (Depth > 0) {
if (Text[I] == '}')
--Depth;
continue;
}
if (Text[I] == Delim) {
if (FoundDelim)
*FoundDelim = true;
break;
}
}
assert(Depth == 0 && "Unbalanced {} set in diagnostic text");
StringRef Result = Text.substr(0, I);
Text = Text.substr(I + 1);
return Result;
}
/// Handle the integer 'select' modifier. This is used like this:
/// %select{foo|bar|baz}2. This means that the integer argument "%2" has a
/// value from 0-2. If the value is 0, the diagnostic prints 'foo'.
/// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'.
/// This is very useful for certain classes of variant diagnostics.
static void formatSelectionArgument(StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned SelectedIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
bool foundPipe = false;
do {
assert((!ModifierArguments.empty() || foundPipe) &&
"Index beyond bounds in %select modifier");
StringRef Text = skipToDelimiter(ModifierArguments, '|', &foundPipe);
if (SelectedIndex == 0) {
DiagnosticEngine::formatDiagnosticText(Out, Text, Args, FormatOpts);
break;
}
--SelectedIndex;
} while (true);
}
static bool isInterestingTypealias(Type type) {
// Dig out the typealias declaration, if there is one.
TypeAliasDecl *aliasDecl = nullptr;
if (auto aliasTy = dyn_cast<TypeAliasType>(type.getPointer()))
aliasDecl = aliasTy->getDecl();
else
return false;
if (type->isVoid())
return false;
// The 'Swift.AnyObject' typealias is not 'interesting'.
if (aliasDecl->getName() ==
aliasDecl->getASTContext().getIdentifier("AnyObject") &&
(aliasDecl->getParentModule()->isStdlibModule() ||
aliasDecl->getParentModule()->isBuiltinModule())) {
return false;
}
// Compatibility aliases are only interesting insofar as their underlying
// types are interesting.
if (aliasDecl->isCompatibilityAlias()) {
auto underlyingTy = aliasDecl->getUnderlyingType();
return isInterestingTypealias(underlyingTy);
}
// Builtin types are never interesting typealiases.
if (type->is<BuiltinType>()) return false;
return true;
}
/// Walks the type recursively desugaring types to display, but skipping
/// `GenericTypeParamType` because we would lose association with its original
/// declaration and end up presenting the parameter in τ_0_0 format on
/// diagnostic.
static Type getAkaTypeForDisplay(Type type) {
return type.transform([](Type visitTy) -> Type {
if (isa<SugarType>(visitTy.getPointer()) &&
!isa<GenericTypeParamType>(visitTy.getPointer()))
return getAkaTypeForDisplay(visitTy->getDesugaredType());
return visitTy;
});
}
/// Decide whether to show the desugared type or not. We filter out some
/// cases to avoid too much noise.
static bool shouldShowAKA(Type type, StringRef typeName) {
// Canonical types are already desugared.
if (type->isCanonical())
return false;
// Only show 'aka' if there's a typealias involved; other kinds of sugar
// are easy enough for people to read on their own.
if (!type.findIf(isInterestingTypealias))
return false;
// If they are textually the same, don't show them. This can happen when
// they are actually different types, because they exist in different scopes
// (e.g. everyone names their type parameters 'T').
if (typeName == getAkaTypeForDisplay(type).getString())
return false;
return true;
}
/// If a type is part of an argument list which includes another, distinct type
/// with the same string representation, it should be qualified during
/// formatting.
static bool typeSpellingIsAmbiguous(Type type,
ArrayRef<DiagnosticArgument> Args,
PrintOptions &PO) {
for (auto arg : Args) {
if (arg.getKind() == DiagnosticArgumentKind::Type) {
auto argType = arg.getAsType();
if (argType && argType->getWithoutParens().getPointer() != type.getPointer() &&
argType->getWithoutParens().getString(PO) == type.getString(PO)) {
// Currently, existential types are spelled the same way
// as protocols and compositions. We can remove this once
// existenials are printed with 'any'.
if (type->is<ExistentialType>() || argType->isExistentialType()) {
auto constraint = type;
if (auto existential = type->getAs<ExistentialType>())
constraint = existential->getConstraintType();
auto argConstraint = argType;
if (auto existential = argType->getAs<ExistentialType>())
argConstraint = existential->getConstraintType();
if (constraint.getPointer() != argConstraint.getPointer())
return true;
continue;
}
return true;
}
}
}
return false;
}
/// Determine whether this is the main actor type.
static bool isMainActor(Type type) {
if (auto nominal = type->getAnyNominal()) {
if (nominal->getName().is("MainActor") &&
nominal->getParentModule()->getName() ==
nominal->getASTContext().Id_Concurrency)
return true;
}
return false;
}
void swift::printClangDeclName(const clang::NamedDecl *ND,
llvm::raw_ostream &os) {
ND->getNameForDiagnostic(os, ND->getASTContext().getPrintingPolicy(), false);
}
/// Format a single diagnostic argument and write it to the given
/// stream.
static void formatDiagnosticArgument(StringRef Modifier,
StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned ArgIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
const DiagnosticArgument &Arg = Args[ArgIndex];
switch (Arg.getKind()) {
case DiagnosticArgumentKind::Integer:
if (Modifier == "select") {
assert(Arg.getAsInteger() >= 0 && "Negative selection index");
formatSelectionArgument(ModifierArguments, Args, Arg.getAsInteger(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsInteger() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for integer argument");
Out << Arg.getAsInteger();
}
break;
case DiagnosticArgumentKind::Unsigned:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args, Arg.getAsUnsigned(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsUnsigned() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for unsigned argument");
Out << Arg.getAsUnsigned();
}
break;
case DiagnosticArgumentKind::String:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
Arg.getAsString().empty() ? 0 : 1, FormatOpts,
Out);
} else {
assert(Modifier.empty() && "Improper modifier for string argument");
Out << Arg.getAsString();
}
break;
case DiagnosticArgumentKind::Identifier:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
Arg.getAsIdentifier() ? 1 : 0, FormatOpts,
Out);
} else {
assert(Modifier.empty() && "Improper modifier for identifier argument");
Out << FormatOpts.OpeningQuotationMark;
Arg.getAsIdentifier().printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
}
break;
case DiagnosticArgumentKind::ObjCSelector:
assert(Modifier.empty() && "Improper modifier for selector argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsObjCSelector()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ValueDecl:
Out << FormatOpts.OpeningQuotationMark;
Arg.getAsValueDecl()->getName().printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::FullyQualifiedType:
case DiagnosticArgumentKind::Type: {
assert(Modifier.empty() && "Improper modifier for Type argument");
// Strip extraneous parentheses; they add no value.
Type type;
bool needsQualification = false;
// Compute the appropriate print options for this argument.
auto printOptions = PrintOptions::forDiagnosticArguments();
if (Arg.getKind() == DiagnosticArgumentKind::Type) {
type = Arg.getAsType()->getWithoutParens();
if (type.isNull()) {
// FIXME: We should never receive a nullptr here, but this is causing
// crashes (rdar://75740683). Remove once ParenType never contains
// nullptr as the underlying type.
Out << "<null>";
break;
}
if (type->getASTContext().TypeCheckerOpts.PrintFullConvention)
printOptions.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::Full;
needsQualification = typeSpellingIsAmbiguous(type, Args, printOptions);
} else {
assert(Arg.getKind() == DiagnosticArgumentKind::FullyQualifiedType);
type = Arg.getAsFullyQualifiedType().getType()->getWithoutParens();
if (type.isNull()) {
// FIXME: We should never receive a nullptr here, but this is causing
// crashes (rdar://75740683). Remove once ParenType never contains
// nullptr as the underlying type.
Out << "<null>";
break;
}
if (type->getASTContext().TypeCheckerOpts.PrintFullConvention)
printOptions.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::Full;
needsQualification = true;
}
// If a type has an unresolved type, print it with syntax sugar removed for
// clarity. For example, print `Array<_>` instead of `[_]`.
if (type->hasUnresolvedType()) {
type = type->getWithoutSyntaxSugar();
}
if (needsQualification &&
isa<OpaqueTypeArchetypeType>(type.getPointer()) &&
cast<ArchetypeType>(type.getPointer())->isRoot()) {
auto opaqueTypeDecl = type->castTo<OpaqueTypeArchetypeType>()->getDecl();
llvm::SmallString<256> NamingDeclText;
llvm::raw_svector_ostream OutNaming(NamingDeclText);
auto namingDecl = opaqueTypeDecl->getNamingDecl();
if (namingDecl->getDeclContext()->isTypeContext()) {
auto selfTy = namingDecl->getDeclContext()->getSelfInterfaceType();
selfTy->print(OutNaming);
OutNaming << '.';
}
namingDecl->getName().printPretty(OutNaming);
auto descriptiveKind = opaqueTypeDecl->getDescriptiveKind();
Out << llvm::format(FormatOpts.OpaqueResultFormatString.c_str(),
type->getString(printOptions).c_str(),
Decl::getDescriptiveKindName(descriptiveKind).data(),
NamingDeclText.c_str());
} else {
printOptions.FullyQualifiedTypes = needsQualification;
std::string typeName = type->getString(printOptions);
if (shouldShowAKA(type, typeName)) {
llvm::SmallString<256> AkaText;
llvm::raw_svector_ostream OutAka(AkaText);
getAkaTypeForDisplay(type)->print(OutAka, printOptions);
Out << llvm::format(FormatOpts.AKAFormatString.c_str(),
typeName.c_str(), AkaText.c_str());
} else {
Out << FormatOpts.OpeningQuotationMark << typeName
<< FormatOpts.ClosingQuotationMark;
}
}
break;
}
case DiagnosticArgumentKind::TypeRepr:
assert(Modifier.empty() && "Improper modifier for TypeRepr argument");
assert(Arg.getAsTypeRepr() && "TypeRepr argument is null");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsTypeRepr()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::PatternKind:
assert(Modifier.empty() && "Improper modifier for PatternKind argument");
Out << Arg.getAsPatternKind();
break;
case DiagnosticArgumentKind::SelfAccessKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsSelfAccessKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for SelfAccessKind argument");
Out << Arg.getAsSelfAccessKind();
}
break;
case DiagnosticArgumentKind::ReferenceOwnership:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsReferenceOwnership()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for ReferenceOwnership argument");
Out << Arg.getAsReferenceOwnership();
}
break;
case DiagnosticArgumentKind::StaticSpellingKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsStaticSpellingKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for StaticSpellingKind argument");
Out << Arg.getAsStaticSpellingKind();
}
break;
case DiagnosticArgumentKind::DescriptiveDeclKind:
assert(Modifier.empty() &&
"Improper modifier for DescriptiveDeclKind argument");
Out << Decl::getDescriptiveKindName(Arg.getAsDescriptiveDeclKind());
break;
case DiagnosticArgumentKind::DeclAttribute:
assert(Modifier.empty() &&
"Improper modifier for DeclAttribute argument");
if (Arg.getAsDeclAttribute()->isDeclModifier())
Out << FormatOpts.OpeningQuotationMark
<< Arg.getAsDeclAttribute()->getAttrName()
<< FormatOpts.ClosingQuotationMark;
else
Out << '@' << Arg.getAsDeclAttribute()->getAttrName();
break;
case DiagnosticArgumentKind::VersionTuple:
assert(Modifier.empty() &&
"Improper modifier for VersionTuple argument");
Out << Arg.getAsVersionTuple().getAsString();
break;
case DiagnosticArgumentKind::LayoutConstraint:
assert(Modifier.empty() && "Improper modifier for LayoutConstraint argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsLayoutConstraint()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ActorIsolation:
assert(Modifier.empty() && "Improper modifier for ActorIsolation argument");
switch (auto isolation = Arg.getAsActorIsolation()) {
case ActorIsolation::ActorInstance:
Out << "actor-isolated";
break;
case ActorIsolation::GlobalActor:
case ActorIsolation::GlobalActorUnsafe: {
Type globalActor = isolation.getGlobalActor();
if (isMainActor(globalActor)) {
Out << "main actor-isolated";
} else {
Out << "global actor " << FormatOpts.OpeningQuotationMark
<< globalActor.getString()
<< FormatOpts.ClosingQuotationMark << "-isolated";
}
break;
}
case ActorIsolation::Independent:
case ActorIsolation::Unspecified:
Out << "nonisolated";
break;
}
break;
case DiagnosticArgumentKind::Diagnostic: {
assert(Modifier.empty() && "Improper modifier for Diagnostic argument");
auto diagArg = Arg.getAsDiagnostic();
DiagnosticEngine::formatDiagnosticText(Out, diagArg->FormatString,
diagArg->FormatArgs);
break;
}
case DiagnosticArgumentKind::ClangDecl:
assert(Modifier.empty() && "Improper modifier for ClangDecl argument");
Out << FormatOpts.OpeningQuotationMark;
printClangDeclName(Arg.getAsClangDecl(), Out);
Out << FormatOpts.ClosingQuotationMark;
break;
}
}
/// Format the given diagnostic text and place the result in the given
/// buffer.
void DiagnosticEngine::formatDiagnosticText(
llvm::raw_ostream &Out, StringRef InText, ArrayRef<DiagnosticArgument> Args,
DiagnosticFormatOptions FormatOpts) {
while (!InText.empty()) {
size_t Percent = InText.find('%');
if (Percent == StringRef::npos) {
// Write the rest of the string; we're done.
Out.write(InText.data(), InText.size());
break;
}
// Write the string up to (but not including) the %, then drop that text
// (including the %).
Out.write(InText.data(), Percent);
InText = InText.substr(Percent + 1);
// '%%' -> '%'.
if (InText[0] == '%') {
Out.write('%');
InText = InText.substr(1);
continue;
}
// Parse an optional modifier.
StringRef Modifier;
{
size_t Length = InText.find_if_not(isalpha);
Modifier = InText.substr(0, Length);
InText = InText.substr(Length);
}
if (Modifier == "error") {
Out << StringRef("<<INTERNAL ERROR: encountered %error in diagnostic text>>");
continue;
}
// Parse the optional argument list for a modifier, which is brace-enclosed.
StringRef ModifierArguments;
if (InText[0] == '{') {
InText = InText.substr(1);
ModifierArguments = skipToDelimiter(InText, '}');
}
// Find the digit sequence, and parse it into an argument index.
size_t Length = InText.find_if_not(isdigit);
unsigned ArgIndex;
bool IndexParseFailed = InText.substr(0, Length).getAsInteger(10, ArgIndex);
if (IndexParseFailed) {
Out << StringRef("<<INTERNAL ERROR: unparseable argument index in diagnostic text>>");
continue;
}
InText = InText.substr(Length);
if (ArgIndex >= Args.size()) {
Out << StringRef("<<INTERNAL ERROR: out-of-range argument index in diagnostic text>>");
continue;
}
// Convert the argument to a string.
formatDiagnosticArgument(Modifier, ModifierArguments, Args, ArgIndex,
FormatOpts, Out);
}
}
static DiagnosticKind toDiagnosticKind(DiagnosticBehavior behavior) {
switch (behavior) {
case DiagnosticBehavior::Unspecified:
llvm_unreachable("unspecified behavior");
case DiagnosticBehavior::Ignore:
llvm_unreachable("trying to map an ignored diagnostic");
case DiagnosticBehavior::Error:
case DiagnosticBehavior::Fatal:
return DiagnosticKind::Error;
case DiagnosticBehavior::Note:
return DiagnosticKind::Note;
case DiagnosticBehavior::Warning:
return DiagnosticKind::Warning;
case DiagnosticBehavior::Remark:
return DiagnosticKind::Remark;
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
static
DiagnosticBehavior toDiagnosticBehavior(DiagnosticKind kind, bool isFatal) {
switch (kind) {
case DiagnosticKind::Note:
return DiagnosticBehavior::Note;
case DiagnosticKind::Error:
return isFatal ? DiagnosticBehavior::Fatal : DiagnosticBehavior::Error;
case DiagnosticKind::Warning:
return DiagnosticBehavior::Warning;
case DiagnosticKind::Remark:
return DiagnosticBehavior::Remark;
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
// A special option only for compiler writers that causes Diagnostics to assert
// when a failure diagnostic is emitted. Intended for use in the debugger.
llvm::cl::opt<bool> AssertOnError("swift-diagnostics-assert-on-error",
llvm::cl::init(false));
// A special option only for compiler writers that causes Diagnostics to assert
// when a warning diagnostic is emitted. Intended for use in the debugger.
llvm::cl::opt<bool> AssertOnWarning("swift-diagnostics-assert-on-warning",
llvm::cl::init(false));
DiagnosticBehavior DiagnosticState::determineBehavior(const Diagnostic &diag) {
// We determine how to handle a diagnostic based on the following rules
// 1) Map the diagnostic to its "intended" behavior, applying the behavior
// limit for this particular emission
// 2) If current state dictates a certain behavior, follow that
// 3) If the user ignored this specific diagnostic, follow that
// 4) If the user substituted a different behavior for this behavior, apply
// that change
// 5) Update current state for use during the next diagnostic
// 1) Map the diagnostic to its "intended" behavior, applying the behavior
// limit for this particular emission
auto diagInfo = storedDiagnosticInfos[(unsigned)diag.getID()];
DiagnosticBehavior lvl =
std::max(toDiagnosticBehavior(diagInfo.kind, diagInfo.isFatal),
diag.getBehaviorLimit());
assert(lvl != DiagnosticBehavior::Unspecified);
// 2) If current state dictates a certain behavior, follow that
// Notes relating to ignored diagnostics should also be ignored
if (previousBehavior == DiagnosticBehavior::Ignore
&& lvl == DiagnosticBehavior::Note)
lvl = DiagnosticBehavior::Ignore;
// Suppress diagnostics when in a fatal state, except for follow-on notes
if (fatalErrorOccurred)
if (!showDiagnosticsAfterFatalError && lvl != DiagnosticBehavior::Note)
lvl = DiagnosticBehavior::Ignore;
// 3) If the user ignored this specific diagnostic, follow that
if (ignoredDiagnostics[(unsigned)diag.getID()])
lvl = DiagnosticBehavior::Ignore;
// 4) If the user substituted a different behavior for this behavior, apply
// that change
if (lvl == DiagnosticBehavior::Warning) {
if (warningsAsErrors)
lvl = DiagnosticBehavior::Error;
if (suppressWarnings)
lvl = DiagnosticBehavior::Ignore;
}
if (lvl == DiagnosticBehavior::Remark) {
if (suppressRemarks)
lvl = DiagnosticBehavior::Ignore;
}
// 5) Update current state for use during the next diagnostic
if (lvl == DiagnosticBehavior::Fatal) {
fatalErrorOccurred = true;
anyErrorOccurred = true;
} else if (lvl == DiagnosticBehavior::Error) {
anyErrorOccurred = true;
}
assert((!AssertOnError || !anyErrorOccurred) && "We emitted an error?!");
assert((!AssertOnWarning || (lvl != DiagnosticBehavior::Warning)) &&
"We emitted a warning?!");
previousBehavior = lvl;
return lvl;
}
void DiagnosticEngine::flushActiveDiagnostic() {
assert(ActiveDiagnostic && "No active diagnostic to flush");
handleDiagnostic(std::move(*ActiveDiagnostic));
ActiveDiagnostic.reset();
}
void DiagnosticEngine::handleDiagnostic(Diagnostic &&diag) {
if (TransactionCount == 0) {
emitDiagnostic(diag);
WrappedDiagnostics.clear();
WrappedDiagnosticArgs.clear();
} else {
onTentativeDiagnosticFlush(diag);
TentativeDiagnostics.emplace_back(std::move(diag));
}
}
void DiagnosticEngine::clearTentativeDiagnostics() {
TentativeDiagnostics.clear();
WrappedDiagnostics.clear();
WrappedDiagnosticArgs.clear();
}
void DiagnosticEngine::emitTentativeDiagnostics() {
for (auto &diag : TentativeDiagnostics) {
emitDiagnostic(diag);
}
clearTentativeDiagnostics();
}
void DiagnosticEngine::forwardTentativeDiagnosticsTo(
DiagnosticEngine &targetEngine) {
for (auto &diag : TentativeDiagnostics) {
targetEngine.handleDiagnostic(std::move(diag));
}
clearTentativeDiagnostics();
}
/// Returns the access level of the least accessible PrettyPrintedDeclarations
/// buffer that \p decl should appear in.
///
/// This is always \c Public unless \p decl is a \c ValueDecl and its
/// access level is below \c Public. (That can happen with @testable and
/// @_private imports.)
static AccessLevel getBufferAccessLevel(const Decl *decl) {
AccessLevel level = AccessLevel::Public;
if (auto *VD = dyn_cast<ValueDecl>(decl))
level = VD->getFormalAccessScope().accessLevelForDiagnostics();
if (level > AccessLevel::Public) level = AccessLevel::Public;
return level;
}
Optional<DiagnosticInfo>
DiagnosticEngine::diagnosticInfoForDiagnostic(const Diagnostic &diagnostic) {
auto behavior = state.determineBehavior(diagnostic);
if (behavior == DiagnosticBehavior::Ignore)
return None;
// Figure out the source location.
SourceLoc loc = diagnostic.getLoc();
if (loc.isInvalid() && diagnostic.getDecl()) {
const Decl *decl = diagnostic.getDecl();
// If a declaration was provided instead of a location, and that declaration
// has a location we can point to, use that location.
loc = decl->getLoc();
if (loc.isInvalid()) {
// There is no location we can point to. Pretty-print the declaration
// so we can point to it.
SourceLoc ppLoc = PrettyPrintedDeclarations[decl];
if (ppLoc.isInvalid()) {
class TrackingPrinter : public StreamPrinter {
SmallVectorImpl<std::pair<const Decl *, uint64_t>> &Entries;
AccessLevel bufferAccessLevel;
public:
TrackingPrinter(
SmallVectorImpl<std::pair<const Decl *, uint64_t>> &Entries,
raw_ostream &OS, AccessLevel bufferAccessLevel) :
StreamPrinter(OS), Entries(Entries),
bufferAccessLevel(bufferAccessLevel) {}
void printDeclLoc(const Decl *D) override {
if (getBufferAccessLevel(D) == bufferAccessLevel)
Entries.push_back({ D, OS.tell() });
}
};
SmallVector<std::pair<const Decl *, uint64_t>, 8> entries;
llvm::SmallString<128> buffer;
llvm::SmallString<128> bufferName;
{
// The access level of the buffer we want to print. Declarations below
// this access level will be omitted from the buffer; declarations
// above it will be printed, but (except for Open declarations in the
// Public buffer) will not be recorded in PrettyPrintedDeclarations as
// the "true" SourceLoc for the declaration.
AccessLevel bufferAccessLevel = getBufferAccessLevel(decl);
// Figure out which declaration to print. It's the top-most
// declaration (not a module).
const Decl *ppDecl = decl;
auto dc = decl->getDeclContext();
// FIXME: Horrible, horrible hackaround. We're not getting a
// DeclContext everywhere we should.
if (!dc) {
return None;
}
while (!dc->isModuleContext()) {
switch (dc->getContextKind()) {
case DeclContextKind::Module:
llvm_unreachable("Not in a module context!");
break;
case DeclContextKind::FileUnit:
case DeclContextKind::TopLevelCodeDecl:
break;
case DeclContextKind::ExtensionDecl:
ppDecl = cast<ExtensionDecl>(dc);
break;
case DeclContextKind::GenericTypeDecl:
ppDecl = cast<GenericTypeDecl>(dc);
break;
case DeclContextKind::SerializedLocal:
case DeclContextKind::Initializer:
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::EnumElementDecl:
case DeclContextKind::MacroDecl:
break;
}
dc = dc->getParent();
}
// Build the module name path (in reverse), which we use to
// build the name of the buffer.
SmallVector<StringRef, 4> nameComponents;
while (dc) {
nameComponents.push_back(cast<ModuleDecl>(dc)->getName().str());
dc = dc->getParent();
}
for (unsigned i = nameComponents.size(); i; --i) {
bufferName += nameComponents[i-1];
bufferName += '.';
}
if (auto value = dyn_cast<ValueDecl>(ppDecl)) {
bufferName += value->getBaseName().userFacingName();
} else if (auto ext = dyn_cast<ExtensionDecl>(ppDecl)) {
bufferName += ext->getExtendedType().getString();
}
// If we're using a lowered access level, give the buffer a distinct
// name.
if (bufferAccessLevel != AccessLevel::Public) {
assert(bufferAccessLevel < AccessLevel::Public
&& "Above-public access levels should use public buffer");
bufferName += " (";
bufferName += getAccessLevelSpelling(bufferAccessLevel);
bufferName += ")";
}
// Pretty-print the declaration we've picked.
llvm::raw_svector_ostream out(buffer);
TrackingPrinter printer(entries, out, bufferAccessLevel);
llvm::SaveAndRestore<bool> isPrettyPrinting(
IsPrettyPrintingDecl, true);
ppDecl->print(
printer,
PrintOptions::printForDiagnostics(
bufferAccessLevel,
decl->getASTContext().TypeCheckerOpts.PrintFullConvention));
}
// Build a buffer with the pretty-printed declaration.
auto bufferID = SourceMgr.addMemBufferCopy(buffer, bufferName);
auto memBufferStartLoc = SourceMgr.getLocForBufferStart(bufferID);
// Go through all of the pretty-printed entries and record their
// locations.
for (auto entry : entries) {
PrettyPrintedDeclarations[entry.first] =
memBufferStartLoc.getAdvancedLoc(entry.second);
}
// Grab the pretty-printed location.
ppLoc = PrettyPrintedDeclarations[decl];
}
loc = ppLoc;
}
}
StringRef Category;
if (isAPIDigesterBreakageDiagnostic(diagnostic.getID()))
Category = "api-digester-breaking-change";
else if (isDeprecationDiagnostic(diagnostic.getID()))
Category = "deprecation";
else if (isNoUsageDiagnostic(diagnostic.getID()))
Category = "no-usage";
return DiagnosticInfo(
diagnostic.getID(), loc, toDiagnosticKind(behavior),
diagnosticStringFor(diagnostic.getID(), getPrintDiagnosticNames()),
diagnostic.getArgs(), Category, getDefaultDiagnosticLoc(),
/*child note info*/ {}, diagnostic.getRanges(), diagnostic.getFixIts(),
diagnostic.isChildNote());
}
void DiagnosticEngine::emitDiagnostic(const Diagnostic &diagnostic) {
if (auto info = diagnosticInfoForDiagnostic(diagnostic)) {
SmallVector<DiagnosticInfo, 1> childInfo;
auto childNotes = diagnostic.getChildNotes();
for (unsigned i : indices(childNotes)) {
auto child = diagnosticInfoForDiagnostic(childNotes[i]);
assert(child);
assert(child->Kind == DiagnosticKind::Note &&
"Expected child diagnostics to all be notes?!");
childInfo.push_back(*child);
}
TinyPtrVector<DiagnosticInfo *> childInfoPtrs;
for (unsigned i : indices(childInfo)) {
childInfoPtrs.push_back(&childInfo[i]);
}
info->ChildDiagnosticInfo = childInfoPtrs;
SmallVector<std::string, 1> educationalNotePaths;
auto associatedNotes = educationalNotes[(uint32_t)diagnostic.getID()];
while (associatedNotes && *associatedNotes) {
SmallString<128> notePath(getDiagnosticDocumentationPath());
llvm::sys::path::append(notePath, *associatedNotes);
educationalNotePaths.push_back(notePath.str().str());
++associatedNotes;
}
info->EducationalNotePaths = educationalNotePaths;
for (auto &consumer : Consumers) {
consumer->handleDiagnostic(SourceMgr, *info);
}
}
// For compatibility with DiagnosticConsumers which don't know about child
// notes. These can be ignored by consumers which do take advantage of the
// grouping.
for (auto &childNote : diagnostic.getChildNotes())
emitDiagnostic(childNote);
}
DiagnosticKind DiagnosticEngine::declaredDiagnosticKindFor(const DiagID id) {
return storedDiagnosticInfos[(unsigned)id].kind;
}
llvm::StringRef
DiagnosticEngine::diagnosticStringFor(const DiagID id,
bool printDiagnosticNames) {
auto defaultMessage = printDiagnosticNames
? debugDiagnosticStrings[(unsigned)id]
: diagnosticStrings[(unsigned)id];
if (auto producer = localization.get()) {
auto localizedMessage = producer->getMessageOr(id, defaultMessage);
return localizedMessage;
}
return defaultMessage;
}
llvm::StringRef
DiagnosticEngine::diagnosticIDStringFor(const DiagID id) {
return diagnosticIDStrings[(unsigned)id];
}
const char *InFlightDiagnostic::fixItStringFor(const FixItID id) {
return fixItStrings[(unsigned)id];
}
void DiagnosticEngine::setBufferIndirectlyCausingDiagnosticToInput(
SourceLoc loc) {
// If in the future, nested BufferIndirectlyCausingDiagnosticRAII need be
// supported, the compiler will need a stack for
// bufferIndirectlyCausingDiagnostic.
assert(bufferIndirectlyCausingDiagnostic.isInvalid() &&
"Buffer should not already be set.");
bufferIndirectlyCausingDiagnostic = loc;
assert(bufferIndirectlyCausingDiagnostic.isValid() &&
"Buffer must be valid for previous assertion to work.");
}
void DiagnosticEngine::resetBufferIndirectlyCausingDiagnostic() {
bufferIndirectlyCausingDiagnostic = SourceLoc();
}
DiagnosticSuppression::DiagnosticSuppression(DiagnosticEngine &diags)
: diags(diags)
{
consumers = diags.takeConsumers();
}
DiagnosticSuppression::~DiagnosticSuppression() {
for (auto consumer : consumers)
diags.addConsumer(*consumer);
}
bool DiagnosticSuppression::isEnabled(const DiagnosticEngine &diags) {
return diags.getConsumers().empty();
}
BufferIndirectlyCausingDiagnosticRAII::BufferIndirectlyCausingDiagnosticRAII(
const SourceFile &SF)
: Diags(SF.getASTContext().Diags) {
auto id = SF.getBufferID();
if (!id)
return;
auto loc = SF.getASTContext().SourceMgr.getLocForBufferStart(*id);
if (loc.isValid())
Diags.setBufferIndirectlyCausingDiagnosticToInput(loc);
}
void DiagnosticEngine::onTentativeDiagnosticFlush(Diagnostic &diagnostic) {
for (auto &argument : diagnostic.Args) {
if (argument.getKind() != DiagnosticArgumentKind::String)
continue;
auto content = argument.getAsString();
if (content.empty())
continue;
auto I = TransactionStrings.insert(content).first;
argument = DiagnosticArgument(StringRef(I->getKeyData()));
}
}
EncodedDiagnosticMessage::EncodedDiagnosticMessage(StringRef S)
: Message(Lexer::getEncodedStringSegment(S, Buf, /*IsFirstSegment=*/true,
/*IsLastSegment=*/true,
/*IndentToStrip=*/~0U)) {}
std::pair<unsigned, DeclName>
swift::getAccessorKindAndNameForDiagnostics(const ValueDecl *D) {
// This should always be one more than the last AccessorKind supported in
// the diagnostics. If you need to change it, change the assertion below as
// well.
static const unsigned NOT_ACCESSOR_INDEX = 2;
if (auto *accessor = dyn_cast<AccessorDecl>(D)) {
DeclName Name = accessor->getStorage()->getName();
assert(accessor->isGetterOrSetter());
return {static_cast<unsigned>(accessor->getAccessorKind()), Name};
}
return {NOT_ACCESSOR_INDEX, D->getName()};
}