Files
swift-mirror/lib/Driver/ToolChain.cpp
David Ungar cc89dad526 Fine-grained and driver fixes.
Restructure fine-grained-dependencies to enable unit testing

Get frontend to emit correct swiftdeps file (fine-grained when needed) and only emit dot file for -emit-fine-grained-dependency-sourcefile-dot-files

Use deterministic order for more information outputs.

Set EnableFineGrainedDependencies consistently in frontend.

Tolerate errors that result in null getExtendedNominal()

Fix memory issue by removing node everywhere.

Break up print routine

Be more verbose so it will compile on Linux.

Sort batchable jobs, too.
2020-01-11 21:57:14 -08:00

343 lines
13 KiB
C++

//===--- ToolChain.cpp - Collections of tools for one platform ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines the base implementation of the ToolChain class.
/// The platform-specific subclasses are implemented in ToolChains.cpp.
/// For organizational purposes, the platform-independent logic for
/// constructing job invocations is also located in ToolChains.cpp.
//
//===----------------------------------------------------------------------===//
#include "swift/Driver/ToolChain.h"
#include "swift/Driver/Compilation.h"
#include "swift/Driver/Driver.h"
#include "swift/Driver/Job.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
using namespace swift;
using namespace swift::driver;
using namespace llvm::opt;
ToolChain::JobContext::JobContext(Compilation &C, ArrayRef<const Job *> Inputs,
ArrayRef<const Action *> InputActions,
const CommandOutput &Output,
const OutputInfo &OI)
: C(C), Inputs(Inputs), InputActions(InputActions), Output(Output), OI(OI),
Args(C.getArgs()) {}
ArrayRef<InputPair> ToolChain::JobContext::getTopLevelInputFiles() const {
return C.getInputFiles();
}
const char *ToolChain::JobContext::getAllSourcesPath() const {
return C.getAllSourcesPath();
}
const char *
ToolChain::JobContext::getTemporaryFilePath(const llvm::Twine &name,
StringRef suffix) const {
SmallString<128> buffer;
std::error_code EC = llvm::sys::fs::createTemporaryFile(name, suffix, buffer);
if (EC) {
// Use the constructor that prints both the error code and the description.
// FIXME: This should not take down the entire process.
auto error = llvm::make_error<llvm::StringError>(
EC,
"- unable to create temporary file for " + name + "." + suffix);
llvm::report_fatal_error(std::move(error));
}
C.addTemporaryFile(buffer.str(), PreserveOnSignal::Yes);
// We can't just reference the data in the TemporaryFiles vector because
// that could theoretically get copied to a new address.
return C.getArgs().MakeArgString(buffer.str());
}
Optional<Job::ResponseFileInfo>
ToolChain::getResponseFileInfo(const Compilation &C, const char *executablePath,
const ToolChain::InvocationInfo &invocationInfo,
const ToolChain::JobContext &context) const {
const bool forceResponseFiles =
C.getArgs().hasArg(options::OPT_driver_force_response_files);
assert((invocationInfo.allowsResponseFiles || !forceResponseFiles) &&
"Cannot force response file if platform does not allow it");
if (forceResponseFiles || (invocationInfo.allowsResponseFiles &&
!llvm::sys::commandLineFitsWithinSystemLimits(
executablePath, invocationInfo.Arguments))) {
const char *responseFilePath =
context.getTemporaryFilePath("arguments", "resp");
const char *responseFileArg =
C.getArgs().MakeArgString(Twine("@") + responseFilePath);
return {{responseFilePath, responseFileArg}};
}
return None;
}
std::unique_ptr<Job> ToolChain::constructJob(
const JobAction &JA, Compilation &C, SmallVectorImpl<const Job *> &&inputs,
ArrayRef<const Action *> inputActions,
std::unique_ptr<CommandOutput> output, const OutputInfo &OI) const {
JobContext context{C, inputs, inputActions, *output, OI};
auto invocationInfo = [&]() -> InvocationInfo {
switch (JA.getKind()) {
#define CASE(K) \
case Action::Kind::K: \
return constructInvocation(cast<K##Action>(JA), context);
CASE(CompileJob)
CASE(InterpretJob)
CASE(BackendJob)
CASE(MergeModuleJob)
CASE(ModuleWrapJob)
CASE(DynamicLinkJob)
CASE(StaticLinkJob)
CASE(GenerateDSYMJob)
CASE(VerifyDebugInfoJob)
CASE(GeneratePCHJob)
CASE(AutolinkExtractJob)
CASE(REPLJob)
#undef CASE
case Action::Kind::Input:
llvm_unreachable("not a JobAction");
}
// Work around MSVC warning: not all control paths return a value
llvm_unreachable("All switch cases are covered");
}();
// Special-case the Swift frontend.
const char *executablePath = nullptr;
if (StringRef(SWIFT_EXECUTABLE_NAME) == invocationInfo.ExecutableName) {
executablePath = getDriver().getSwiftProgramPath().c_str();
} else {
std::string relativePath =
findProgramRelativeToSwift(invocationInfo.ExecutableName);
if (!relativePath.empty()) {
executablePath = C.getArgs().MakeArgString(relativePath);
} else {
auto systemPath =
llvm::sys::findProgramByName(invocationInfo.ExecutableName);
if (systemPath) {
executablePath = C.getArgs().MakeArgString(systemPath.get());
} else {
// For debugging purposes.
executablePath = invocationInfo.ExecutableName;
}
}
}
// Determine if the argument list is so long that it needs to be written into
// a response file.
auto responseFileInfo =
getResponseFileInfo(C, executablePath, invocationInfo, context);
return llvm::make_unique<Job>(
JA, std::move(inputs), std::move(output), executablePath,
std::move(invocationInfo.Arguments),
std::move(invocationInfo.ExtraEnvironment),
std::move(invocationInfo.FilelistInfos), responseFileInfo);
}
std::string
ToolChain::findProgramRelativeToSwift(StringRef executableName) const {
auto insertionResult =
ProgramLookupCache.insert(std::make_pair(executableName, ""));
if (insertionResult.second) {
std::string path = findProgramRelativeToSwiftImpl(executableName);
insertionResult.first->setValue(std::move(path));
}
return insertionResult.first->getValue();
}
std::string
ToolChain::findProgramRelativeToSwiftImpl(StringRef executableName) const {
StringRef swiftPath = getDriver().getSwiftProgramPath();
StringRef swiftBinDir = llvm::sys::path::parent_path(swiftPath);
auto result = llvm::sys::findProgramByName(executableName, {swiftBinDir});
if (result)
return result.get();
return {};
}
file_types::ID ToolChain::lookupTypeForExtension(StringRef Ext) const {
return file_types::lookupTypeForExtension(Ext);
}
static bool jobsHaveSameExecutableNames(const Job *A, const Job *B) {
// Jobs that get here (that are derived from CompileJobActions) should always
// have the same executable name -- it should always be SWIFT_EXECUTABLE_NAME
// -- but we check here just to be sure / fail gracefully in non-assert
// builds.
assert(strcmp(A->getExecutable(), B->getExecutable()) == 0);
if (strcmp(A->getExecutable(), B->getExecutable()) != 0) {
return false;
}
return true;
}
static bool jobsHaveSameOutputTypes(const Job *A, const Job *B) {
if (A->getOutput().getPrimaryOutputType() !=
B->getOutput().getPrimaryOutputType())
return false;
return A->getOutput().hasSameAdditionalOutputTypes(B->getOutput());
}
static bool jobsHaveSameEnvironment(const Job *A, const Job *B) {
auto AEnv = A->getExtraEnvironment();
auto BEnv = B->getExtraEnvironment();
if (AEnv.size() != BEnv.size())
return false;
for (size_t i = 0; i < AEnv.size(); ++i) {
if (strcmp(AEnv[i].first, BEnv[i].first) != 0)
return false;
if (strcmp(AEnv[i].second, BEnv[i].second) != 0)
return false;
}
return true;
}
bool ToolChain::jobIsBatchable(const Compilation &C, const Job *A) const {
// FIXME: There might be a tighter criterion to use here?
if (C.getOutputInfo().CompilerMode != OutputInfo::Mode::StandardCompile)
return false;
auto const *CJActA = dyn_cast<const CompileJobAction>(&A->getSource());
if (!CJActA)
return false;
// When having only one job output a dependency file, that job is not
// batchable since it has an oddball set of additional output types.
if (C.OnlyOneDependencyFile &&
A->getOutput().hasAdditionalOutputForType(file_types::TY_Dependencies))
return false;
return CJActA->findSingleSwiftInput() != nullptr;
}
bool ToolChain::jobsAreBatchCombinable(const Compilation &C, const Job *A,
const Job *B) const {
assert(jobIsBatchable(C, A));
assert(jobIsBatchable(C, B));
return (jobsHaveSameExecutableNames(A, B) && jobsHaveSameOutputTypes(A, B) &&
jobsHaveSameEnvironment(A, B));
}
/// Form a synthetic \c CommandOutput for a \c BatchJob by merging together the
/// \c CommandOutputs of all the jobs passed.
static std::unique_ptr<CommandOutput>
makeBatchCommandOutput(ArrayRef<const Job *> jobs, Compilation &C,
file_types::ID outputType) {
auto output =
llvm::make_unique<CommandOutput>(outputType, C.getDerivedOutputFileMap());
for (auto const *J : jobs) {
output->addOutputs(J->getOutput());
}
return output;
}
/// Set-union the \c Inputs and \c InputActions from each \c Job in \p jobs into
/// the provided \p inputJobs and \p inputActions vectors, further adding all \c
/// Actions in the \p jobs -- InputActions or otherwise -- to \p batchCJA. Do
/// set-union rather than concatenation here to avoid mentioning the same input
/// multiple times.
static bool
mergeBatchInputs(ArrayRef<const Job *> jobs,
llvm::SmallSetVector<const Job *, 16> &inputJobs,
llvm::SmallSetVector<const Action *, 16> &inputActions,
CompileJobAction *batchCJA) {
llvm::SmallSetVector<const Action *, 16> allActions;
for (auto const *J : jobs) {
for (auto const *I : J->getInputs()) {
inputJobs.insert(I);
}
auto const *CJA = dyn_cast<CompileJobAction>(&J->getSource());
if (!CJA)
return true;
for (auto const *I : CJA->getInputs()) {
// Capture _all_ input actions -- whether or not they are InputActions --
// in allActions, to set as the inputs for batchCJA below.
allActions.insert(I);
// Only collect input actions that _are InputActions_ in the inputActions
// array, to load into the JobContext in our caller.
if (auto const *IA = dyn_cast<InputAction>(I)) {
inputActions.insert(IA);
}
}
}
for (auto const *I : allActions) {
batchCJA->addInput(I);
}
return false;
}
/// Construct a \c BatchJob by merging the constituent \p jobs' CommandOutput,
/// input \c Job and \c Action members. Call through to \c constructInvocation
/// on \p BatchJob, to build the \c InvocationInfo.
std::unique_ptr<Job>
ToolChain::constructBatchJob(ArrayRef<const Job *> unsortedJobs,
Job::PID &NextQuasiPID,
Compilation &C) const {
if (unsortedJobs.empty())
return nullptr;
llvm::SmallVector<const Job *, 16> sortedJobs;
C.sortJobsToMatchCompilationInputs(unsortedJobs, sortedJobs);
// Synthetic OutputInfo is a slightly-modified version of the initial
// compilation's OI.
auto OI = C.getOutputInfo();
OI.CompilerMode = OutputInfo::Mode::BatchModeCompile;
auto const *executablePath = sortedJobs[0]->getExecutable();
auto outputType = sortedJobs[0]->getOutput().getPrimaryOutputType();
auto output = makeBatchCommandOutput(sortedJobs, C, outputType);
llvm::SmallSetVector<const Job *, 16> inputJobs;
llvm::SmallSetVector<const Action *, 16> inputActions;
auto *batchCJA = C.createAction<CompileJobAction>(outputType);
if (mergeBatchInputs(sortedJobs, inputJobs, inputActions, batchCJA))
return nullptr;
JobContext context{C, inputJobs.getArrayRef(), inputActions.getArrayRef(),
*output, OI};
auto invocationInfo = constructInvocation(*batchCJA, context);
// Batch mode can produce quite long command lines; in almost every case these
// will trigger use of supplementary output file maps. However, if the driver
// command line is long for reasons unrelated to the number of input files,
// such as passing a large number of flags, then the individual batch jobs are
// also likely to overflow. We have to check for that explicitly here, because
// the BatchJob created here does not go through the same code path in
// constructJob above.
//
// The `allowsResponseFiles` flag on the `invocationInfo` we have here exists
// only to model external tools that don't know about response files, such as
// platform linkers; when talking to the frontend (which we control!) it
// should always be true. But double check with an assert here in case someone
// failed to set it in `constructInvocation`.
assert(invocationInfo.allowsResponseFiles);
auto responseFileInfo =
getResponseFileInfo(C, executablePath, invocationInfo, context);
return llvm::make_unique<BatchJob>(
*batchCJA, inputJobs.takeVector(), std::move(output), executablePath,
std::move(invocationInfo.Arguments),
std::move(invocationInfo.ExtraEnvironment),
std::move(invocationInfo.FilelistInfos), sortedJobs, NextQuasiPID,
responseFileInfo);
}