Files
swift-mirror/stdlib/core/Algorithm.swift
Jordan Rose cca27d02a0 Tag everything in the standard library with accessibility attributes.
Keep calm: remember that the standard library has many more public exports
than the average target, and that this contains ALL of them at once.
I also deliberately tried to tag nearly every top-level decl, even if that
was just to explicitly mark things @internal, to make sure I didn't miss
something.

This does export more than we might want to, mostly for protocol conformance
reasons, along with our simple-but-limiting typealias rule. I tried to also
mark things private where possible, but it's really going to be up to the
standard library owners to get this right. This is also only validated
against top-level access control; I haven't fully tested against member-level
access control yet, and none of our semantic restrictions are in place.

Along the way I also noticed bits of stdlib cruft; to keep this patch
understandable, I didn't change any of them.

Swift SVN r19145
2014-06-24 21:32:18 +00:00

666 lines
16 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
@public func minElement<
R : Sequence
where R.GeneratorType.Element : Comparable>(range: R)
-> R.GeneratorType.Element {
var g = range.generate()
var result = g.next()!
for e in GeneratorSequence(g) {
if e < result { result = e }
}
return result
}
@public func maxElement<
R : Sequence
where R.GeneratorType.Element : Comparable>(range: R)
-> R.GeneratorType.Element {
var g = range.generate()
var result = g.next()!
for e in GeneratorSequence(g) {
if e > result { result = e }
}
return result
}
// Returns the first index where value appears in domain or nil if
// domain doesn't contain the value. O(countElements(domain))
@public func find<
C: Collection where C.GeneratorType.Element : Equatable
>(domain: C, value: C.GeneratorType.Element) -> C.IndexType? {
for i in indices(domain) {
if domain[i] == value {
return i
}
}
return nil
}
@public func insertionSort<
C: MutableCollection where C.IndexType: BidirectionalIndex
>(
inout elements: C,
range: Range<C.IndexType>,
inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) {
if range {
let start = range.startIndex
// Keep track of the end of the initial sequence of sorted
// elements.
var sortedEnd = start
// One element is trivially already-sorted, thus pre-increment
// Continue until the sorted elements cover the whole sequence
while (++sortedEnd != range.endIndex) {
// get the first unsorted element
var x: C.GeneratorType.Element = elements[sortedEnd]
// Look backwards for x's position in the sorted sequence,
// moving elements forward to make room.
var i = sortedEnd
do {
let predecessor: C.GeneratorType.Element = elements[i.predecessor()]
// if x doesn't belong before y, we've found its position
if !less(x, predecessor) {
break
}
// Move y forward
elements[i] = predecessor
}
while --i != start
if i != sortedEnd {
// Plop x into position
elements[i] = x
}
}
}
}
/// Partition a non empty range into two partially sorted regions and return
/// the index of the pivot:
/// [start..idx), pivot ,[idx..end)
@public func partition<
C: MutableCollection where C.IndexType: RandomAccessIndex
>(
inout elements: C,
range: Range<C.IndexType>,
inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) -> C.IndexType {
_precondition(
range.startIndex != range.endIndex, "Can't partition an empty range")
// Variables i and j point to the next element to be visited.
var i = range.startIndex
var j = range.endIndex.predecessor()
// The first element is the pivot.
let pivot = elements[range.startIndex]
i++
// Continue to swap until all elements were visited and placed in one
// of the partitions.
while i.distanceTo(j) >= 0 {
while less(elements[i], pivot) {
i++
if (i.distanceTo(j) < 0) { break }
}
while less(pivot, elements[j]) {
j--
// We don't need to check if j is greater than zero because we placed
// our pivot at startIndex and comparing with pivot ends this loop.
}
if i.distanceTo(j) >= 0 {
swap(&elements[i], &elements[j])
i++
j--
}
}
// Swap the pivot in between the two partitions.
swap(&elements[i.predecessor()], &elements[range.startIndex])
return i.predecessor()
}
@public func quickSort<
C: MutableCollection where C.IndexType: RandomAccessIndex
>(
inout elements: C,
range: Range<C.IndexType>,
less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) {
var comp = less
_quickSort(&elements, range, &comp)
}
func _quickSort<
C: MutableCollection where C.IndexType: RandomAccessIndex
>(
inout elements: C,
range: Range<C.IndexType>,
inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) {
// Insertion sort is better at handling smaller regions.
let cnt = count(range)
if cnt < 20 {
insertionSort(&elements, range, &less)
return
}
// Partition and sort.
let part_idx : C.IndexType = partition(&elements, range, &less)
_quickSort(&elements, range.startIndex..<part_idx, &less);
_quickSort(&elements, (part_idx.successor())..<range.endIndex, &less);
}
struct Less<T: Comparable> {
static func compare(x: T, _ y: T) -> Bool {
return x < y
}
}
@public func sort<
C: MutableCollection where C.IndexType: RandomAccessIndex
>(
inout collection: C,
predecessor: (C.GeneratorType.Element, C.GeneratorType.Element) -> Bool
) {
quickSort(&collection, indices(collection), predecessor)
}
@public func sort<
C: MutableCollection
where C.IndexType: RandomAccessIndex, C.GeneratorType.Element: Comparable
>(
inout collection: C
) {
quickSort(&collection, indices(collection))
}
@public func sort<T>(inout array: T[], predecessor: (T, T) -> Bool) {
return array.withMutableStorage {
a in sort(&a, predecessor)
return
}
}
/// The functions below are a copy of the functions above except that
/// they don't accept a predicate and they are hardcoded to use the less-than
/// comparator.
@public func sort<T : Comparable>(inout array: T[]) {
return array.withMutableStorage {
a in sort(&a)
return
}
}
@public func sorted<
C: MutableCollection where C.IndexType: RandomAccessIndex
>(
source: C,
predecessor: (C.GeneratorType.Element, C.GeneratorType.Element) -> Bool
) -> C {
var result = source
sort(&result, predecessor)
return result
}
@public func sorted<
C: MutableCollection
where C.GeneratorType.Element: Comparable, C.IndexType: RandomAccessIndex
>(source: C) -> C {
var result = source
sort(&result)
return result
}
@public func sorted<
S: Sequence
>(
source: S,
predecessor: (S.GeneratorType.Element, S.GeneratorType.Element) -> Bool
) -> S.GeneratorType.Element[] {
var result = Array(source)
sort(&result, predecessor)
return result
}
@public func sorted<
S: Sequence
where S.GeneratorType.Element: Comparable
>(
source: S
) -> S.GeneratorType.Element[] {
var result = Array(source)
sort(&result)
return result
}
@public func insertionSort<
C: MutableCollection where C.IndexType: RandomAccessIndex,
C.GeneratorType.Element: Comparable>(
inout elements: C,
range: Range<C.IndexType>) {
if range {
let start = range.startIndex
// Keep track of the end of the initial sequence of sorted
// elements.
var sortedEnd = start
// One element is trivially already-sorted, thus pre-increment
// Continue until the sorted elements cover the whole sequence
while (++sortedEnd != range.endIndex) {
// get the first unsorted element
var x: C.GeneratorType.Element = elements[sortedEnd]
// Look backwards for x's position in the sorted sequence,
// moving elements forward to make room.
var i = sortedEnd
do {
let predecessor: C.GeneratorType.Element = elements[i.predecessor()]
// if x doesn't belong before y, we've found its position
if !Less.compare(x, predecessor) {
break
}
// Move y forward
elements[i] = predecessor
}
while --i != start
if i != sortedEnd {
// Plop x into position
elements[i] = x
}
}
}
}
/// Partition a non empty range into two partially sorted regions and return
/// the index of the pivot:
/// [start..idx), pivot ,[idx..end)
@public func partition<
C: MutableCollection where C.GeneratorType.Element: Comparable
, C.IndexType: RandomAccessIndex
>(
inout elements: C,
range: Range<C.IndexType>) -> C.IndexType {
// Variables i and j point to the next element to be visited.
var i = range.startIndex
var j = range.endIndex.predecessor()
// The first element is the pivot.
let pivot = elements[range.startIndex]
i++
// Continue to swap until all elements were visited and placed in one
// of the partitions.
while i.distanceTo(j) >= 0 {
while Less.compare(elements[i], pivot) {
i++
if (i.distanceTo(j) < 0) { break }
}
while Less.compare(pivot, elements[j]) {
// We don't need to check if j is greater than zero because we placed
// our pivot at startIndex and comparing with pivot ends this loop.
j--
}
if i.distanceTo(j) >= 0 {
swap(&elements[i], &elements[j])
i++
j--
}
}
// Swap the pivot in between the two partitions.
swap(&elements[i.predecessor()], &elements[range.startIndex])
return i.predecessor()
}
@public func quickSort<
C: MutableCollection
where C.GeneratorType.Element: Comparable, C.IndexType: RandomAccessIndex
>(
inout elements: C,
range: Range<C.IndexType>) {
_quickSort(&elements, range)
}
func _quickSort<
C: MutableCollection
where C.GeneratorType.Element: Comparable, C.IndexType: RandomAccessIndex
>(
inout elements: C, range: Range<C.IndexType>
) {
// Insertion sort is better at handling smaller regions.
let cnt = count(range)
if cnt < 20 {
insertionSort(&elements, range)
return
}
// Partition and sort.
let part_idx : C.IndexType = partition(&elements, range)
_quickSort(&elements, range.startIndex..<part_idx);
_quickSort(&elements, (part_idx.successor())..<range.endIndex);
}
//// End of non-predicate sort functions.
@public func swap<T>(inout a : T, inout b : T) {
// Semantically equivalent to (a, b) = (b, a).
// Microoptimized to avoid retain/release traffic.
let p1 = Builtin.addressof(&a)
let p2 = Builtin.addressof(&b)
// Take from P1.
let tmp : T = Builtin.take(p1)
// Transfer P2 into P1.
Builtin.initialize(Builtin.take(p2) as T, p1)
// Initialize P2.
Builtin.initialize(tmp, p2)
}
@public func min<T : Comparable>(x: T, y: T) -> T {
var r = x
if y < x {
r = y
}
return r
}
@public func min<T : Comparable>(x: T, y: T, z: T, rest: T...) -> T {
var r = x
if y < x {
r = y
}
if z < r {
r = z
}
for t in rest {
if t < r {
r = t
}
}
return r
}
@public func max<T : Comparable>(x: T, y: T) -> T {
var r = y
if y < x {
r = x
}
return r
}
@public func max<T : Comparable>(x: T, y: T, z: T, rest: T...) -> T {
var r = y
if y < x {
r = x
}
if r < z {
r = z
}
for t in rest {
if t >= r {
r = t
}
}
return r
}
@public func split<Seq: Sliceable, R:LogicValue>(
seq: Seq,
isSeparator: (Seq.GeneratorType.Element)->R,
maxSplit: Int = Int.max,
allowEmptySlices: Bool = false
) -> Seq.SliceType[] {
var result = Array<Seq.SliceType>()
// FIXME: could be simplified pending <rdar://problem/15032945>
// (ternary operator not resolving some/none)
var startIndex: Optional<Seq.IndexType>
= allowEmptySlices ? .Some(seq.startIndex) : .None
var splits = 0
for j in indices(seq) {
if isSeparator(seq[j]) {
if startIndex {
var i = startIndex!
result.append(seq[i..<j])
startIndex = .Some(j.successor())
if ++splits >= maxSplit {
break
}
if !allowEmptySlices {
startIndex = .None
}
}
}
else {
if !startIndex {
startIndex = .Some(j)
}
}
}
switch startIndex {
case .Some(var i):
result.append(seq[i..<seq.endIndex])
default:
()
}
return result
}
/// Return true iff the elements of `e1` are equal to the initial
/// elements of `e2`.
@public func startsWith<
S0: Sequence, S1: Sequence
where
S0.GeneratorType.Element == S1.GeneratorType.Element,
S0.GeneratorType.Element : Equatable
>(s0: S0, s1: S1) -> Bool
{
var g1 = s1.generate()
for e0 in s0 {
var e1 = g1.next()
if !e1 { return true }
if e0 != e1! {
return false
}
}
return g1.next() ? false : true
}
@public struct EnumerateGenerator<Base: Generator> : Generator, Sequence {
@public typealias Element = (index: Int, element: Base.Element)
var base: Base
var count: Int
init(_ base: Base) {
self.base = base
count = 0
}
@public mutating func next() -> Element? {
var b = base.next()
if !b { return .None }
return .Some((index: count++, element: b!))
}
// Every Generator is also a single-pass Sequence
@public typealias GeneratorType = EnumerateGenerator<Base>
@public func generate() -> GeneratorType {
return self
}
}
@public func enumerate<Seq : Sequence>(
seq: Seq
) -> EnumerateGenerator<Seq.GeneratorType> {
return EnumerateGenerator(seq.generate())
}
/// Return true iff `a1` and `a2` contain the same elements.
@public func equal<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element,
S1.GeneratorType.Element : Equatable
>(a1: S1, a2: S2) -> Bool
{
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1 = g1.next()
var e2 = g2.next()
if e1 && e2 {
if e1! != e2! {
return false
}
}
else {
return !e1 == !e2
}
}
}
/// Return true iff `a1` and `a2` contain the same elements, using
/// `pred` as equality `==` comparison.
@public func equal<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element
>(a1: S1, a2: S2,
predecessor: (S1.GeneratorType.Element, S1.GeneratorType.Element) -> Bool) -> Bool
{
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1 = g1.next()
var e2 = g2.next()
if e1 && e2 {
if !predecessor(e1!, e2!) {
return false
}
}
else {
return !e1 == !e2
}
}
}
/// Return true iff a1 precedes a2 in a lexicographical ("dictionary")
/// ordering, using "<" as the comparison between elements.
@public func lexicographicalCompare<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element,
S1.GeneratorType.Element : Comparable>(
a1: S1, a2: S2) -> Bool {
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1_ = g1.next()
var e2_ = g2.next()
if let e1 = e1_ {
if let e2 = e2_ {
if e1 < e2 {
return true
}
if e2 < e1 {
return false
}
continue // equivalent
}
return false
}
return e2_.getLogicValue()
}
}
/// Return true iff `a1` precedes `a2` in a lexicographical ("dictionary")
/// ordering, using `less` as the comparison between elements.
@public func lexicographicalCompare<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element
>(
a1: S1, a2: S2,
less: (S1.GeneratorType.Element,S1.GeneratorType.Element)->Bool
) -> Bool {
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1_ = g1.next()
var e2_ = g2.next()
if let e1 = e1_ {
if let e2 = e2_ {
if less(e1, e2) {
return true
}
if less(e2, e1) {
return false
}
continue // equivalent
}
return false
}
return e2_.getLogicValue()
}
}
/// Return `true` iff an element in `seq` satisfies `predicate`.
@public func contains<
S: Sequence, L: LogicValue
>(seq: S, predicate: (S.GeneratorType.Element)->L) -> Bool {
for a in seq {
if predicate(a) {
return true
}
}
return false
}
/// Return `true` iff `x` is in `seq`.
@public func contains<
S: Sequence where S.GeneratorType.Element: Equatable
>(seq: S, x: S.GeneratorType.Element) -> Bool {
return contains(seq, { $0 == x })
}
@public func reduce<S: Sequence, U>(
sequence: S, initial: U, combine: (U, S.GeneratorType.Element)->U
) -> U {
var result = initial
for element in sequence {
result = combine(result, element)
}
return result
}