Files
swift-mirror/lib/AST/SubstitutionMap.cpp
Doug Gregor cdff7427f8 [AST] Unique and ASTContext-allocate SubstitutionMaps.
Prepare for SubstitutionMaps to be stored in other AST nodes by making
them ASTContext-allocated and uniqued (via a FoldingSet). They are now
cheap to copy and have trivial destructors.
2018-04-30 10:42:03 -07:00

573 lines
20 KiB
C++

//===--- SubstitutionMap.cpp - Type substitution map ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SubstitutionMap class. A SubstitutionMap packages
// together a set of replacement types and protocol conformances for
// specializing generic types.
//
// SubstitutionMaps either have type parameters or archetypes as keys,
// based on whether they were built from a GenericSignature or a
// GenericEnvironment.
//
// To specialize a type, call Type::subst() with the right SubstitutionMap.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "llvm/Support/Debug.h"
using namespace swift;
SubstitutionMap::Storage::Storage(
GenericSignature *genericSig,
ArrayRef<Type> replacementTypes,
ArrayRef<ProtocolConformanceRef> conformances)
: genericSig(genericSig),
numConformanceRequirements(genericSig->getNumConformanceRequirements())
{
assert(replacementTypes.size() == getNumReplacementTypes());
assert(conformances.size() == numConformanceRequirements);
std::copy(replacementTypes.begin(), replacementTypes.end(),
getReplacementTypes().data());
std::copy(conformances.begin(), conformances.end(),
getConformances().data());
}
bool SubstitutionMap::hasArchetypes() const {
for (Type replacementTy : getReplacementTypes()) {
if (replacementTy && replacementTy->hasArchetype())
return true;
}
return false;
}
bool SubstitutionMap::hasOpenedExistential() const {
for (Type replacementTy : getReplacementTypes()) {
if (replacementTy && replacementTy->hasOpenedExistential())
return true;
}
return false;
}
bool SubstitutionMap::hasDynamicSelf() const {
for (Type replacementTy : getReplacementTypes()) {
if (replacementTy && replacementTy->hasDynamicSelfType())
return true;
}
return false;
}
SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig,
SubstitutionList substitutions) {
if (!genericSig) {
assert(substitutions.empty() && "Shouldn't have substitutions here");
return SubstitutionMap();
}
SmallVector<Type, 4> replacementTypes(genericSig->getGenericParams().size(),
Type());
SmallVector<ProtocolConformanceRef, 4> storedConformances;
genericSig->enumeratePairedRequirements(
[&](Type depTy, ArrayRef<Requirement> reqts) -> bool {
auto sub = substitutions.front();
substitutions = substitutions.slice(1);
auto canTy = depTy->getCanonicalType();
if (auto paramTy = dyn_cast<GenericTypeParamType>(canTy)) {
replacementTypes[genericSig->getGenericParamOrdinal(paramTy)] =
sub.getReplacement();
}
auto conformances = sub.getConformances();
assert(reqts.size() == conformances.size());
for (auto i : indices(conformances)) {
assert(reqts[i].getSecondType()->getAnyNominal() ==
conformances[i].getRequirement());
storedConformances.push_back(conformances[i]);
}
return false;
});
assert(substitutions.empty() && "did not use all substitutions?!");
return SubstitutionMap(genericSig, replacementTypes, storedConformances);
}
/// Build an interface type substitution map for the given generic signature
/// from a type substitution function and conformance lookup function.
SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig,
TypeSubstitutionFn subs,
LookupConformanceFn lookupConformance) {
if (!genericSig) {
return SubstitutionMap();
}
SmallVector<Type, 4> replacementTypes(genericSig->getGenericParams().size(),
Type());
SmallVector<ProtocolConformanceRef, 4> storedConformances;
// Enumerate all of the requirements that require substitution.
genericSig->enumeratePairedRequirements(
[&](Type depTy, ArrayRef<Requirement> reqs) {
auto canTy = depTy->getCanonicalType();
// Compute the replacement type.
Type currentReplacement = depTy.subst(subs, lookupConformance,
SubstFlags::UseErrorType);
if (auto paramTy = dyn_cast<GenericTypeParamType>(canTy)) {
replacementTypes[genericSig->getGenericParamOrdinal(paramTy)] =
currentReplacement;
}
// Collect the conformances.
for (auto req: reqs) {
assert(req.getKind() == RequirementKind::Conformance);
auto protoType = req.getSecondType()->castTo<ProtocolType>();
auto conformance =
lookupConformance(canTy, currentReplacement, protoType)
.getValueOr(ProtocolConformanceRef(protoType->getDecl()));
storedConformances.push_back(conformance);
}
return false;
});
return SubstitutionMap(genericSig, replacementTypes, storedConformances);
}
Type SubstitutionMap::lookupSubstitution(CanSubstitutableType type) const {
// If we have an archetype, map out of the context so we can compute a
// conformance access path.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
if (archetype->isOpenedExistential() ||
archetype->getParent() != nullptr)
return Type();
type = cast<GenericTypeParamType>(
archetype->getInterfaceType()->getCanonicalType());
}
// Find the index of the replacement type based on the generic parameter we
// have.
auto genericParam = cast<GenericTypeParamType>(type);
auto mutableThis = const_cast<SubstitutionMap *>(this);
auto replacementTypes = mutableThis->getReplacementTypes();
auto genericSig = getGenericSignature();
assert(genericSig);
auto genericParams = genericSig->getGenericParams();
auto replacementIndex =
GenericParamKey(genericParam).findIndexIn(genericParams);
// If this generic parameter isn't represented, we don't have a replacement
// type for it.
if (replacementIndex == genericParams.size())
return Type();
// If we already have a replacement type, return it.
Type &replacementType = replacementTypes[replacementIndex];
if (replacementType)
return replacementType;
// The generic parameter may have been made concrete by the generic signature,
// substitute into the concrete type.
if (auto concreteType = genericSig->getConcreteType(genericParam)){
// Set the replacement type to an error, to block infinite recursion.
replacementType = ErrorType::get(concreteType);
// Substitute into the replacement type.
replacementType = concreteType.subst(*this);
return replacementType;
}
// Not known.
return Type();
}
Optional<ProtocolConformanceRef>
SubstitutionMap::lookupConformance(CanType type, ProtocolDecl *proto) const {
if (empty()) return None;
// If we have an archetype, map out of the context so we can compute a
// conformance access path.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
type = archetype->getInterfaceType()->getCanonicalType();
}
// Error path: if we don't have a type parameter, there is no conformance.
// FIXME: Query concrete conformances in the generic signature?
if (!type->isTypeParameter())
return None;
// Retrieve the starting conformance from the conformance map.
auto getInitialConformance =
[&](Type type, ProtocolDecl *proto) -> Optional<ProtocolConformanceRef> {
unsigned conformanceIndex = 0;
for (const auto &req : getGenericSignature()->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
// Is this the conformance we're looking for?
if (req.getFirstType()->isEqual(type) &&
req.getSecondType()->castTo<ProtocolType>()->getDecl() == proto) {
return getConformances()[conformanceIndex];
}
++conformanceIndex;
}
return None;
};
auto genericSig = getGenericSignature();
// If the type doesn't conform to this protocol, the result isn't formed
// from these requirements.
if (!genericSig->conformsToProtocol(type, proto)) {
// Check whether the superclass conforms.
if (auto superclass = genericSig->getSuperclassBound(type)) {
return LookUpConformanceInSignature(*getGenericSignature())(
type->getCanonicalType(),
superclass,
proto->getDeclaredType());
}
return None;
}
auto accessPath =
genericSig->getConformanceAccessPath(type, proto);
// Fall through because we cannot yet evaluate an access path.
Optional<ProtocolConformanceRef> conformance;
for (const auto &step : accessPath) {
// For the first step, grab the initial conformance.
if (!conformance) {
conformance = getInitialConformance(step.first, step.second);
if (!conformance)
return None;
continue;
}
// If we've hit an abstract conformance, everything from here on out is
// abstract.
// FIXME: This may not always be true, but it holds for now.
if (conformance->isAbstract()) {
// FIXME: Rip this out once we can get a concrete conformance from
// an archetype.
auto *M = proto->getParentModule();
auto substType = type.subst(*this);
if (substType &&
(!substType->is<ArchetypeType>() ||
substType->castTo<ArchetypeType>()->getSuperclass()) &&
!substType->isTypeParameter() &&
!substType->isExistentialType()) {
return M->lookupConformance(substType, proto);
}
return ProtocolConformanceRef(proto);
}
// For the second step, we're looking into the requirement signature for
// this protocol.
auto concrete = conformance->getConcrete();
auto normal = concrete->getRootNormalConformance();
// If we haven't set the signature conformances yet, force the issue now.
if (normal->getSignatureConformances().empty()) {
// If we're in the process of checking the type witnesses, fail
// gracefully.
// FIXME: Seems like we should be able to get at the intermediate state
// to use that.
if (normal->getState() == ProtocolConformanceState::CheckingTypeWitnesses)
return None;
auto lazyResolver = type->getASTContext().getLazyResolver();
if (lazyResolver == nullptr)
return None;
lazyResolver->resolveTypeWitness(normal, nullptr);
// Error case: the conformance is broken, so we cannot handle this
// substitution.
if (normal->getSignatureConformances().empty())
return None;
}
// Get the associated conformance.
conformance = concrete->getAssociatedConformance(step.first, step.second);
}
return conformance;
}
SubstitutionMap SubstitutionMap::mapReplacementTypesOutOfContext() const {
return subst(MapTypeOutOfContext(), MakeAbstractConformanceForGenericType());
}
SubstitutionMap SubstitutionMap::subst(const SubstitutionMap &subMap) const {
return subst(QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap));
}
SubstitutionMap SubstitutionMap::subst(TypeSubstitutionFn subs,
LookupConformanceFn conformances) const {
if (empty()) return SubstitutionMap();
return getGenericSignature()->getSubstitutionMap(
[&](SubstitutableType *type) {
return Type(type).subst(*this, SubstFlags::UseErrorType)
.subst(subs, conformances, SubstFlags::UseErrorType);
},
[&](CanType dependentType, Type replacementType,
ProtocolType *conformedProtocol) ->Optional<ProtocolConformanceRef> {
auto proto = conformedProtocol->getDecl();
auto conformance =
lookupConformance(dependentType, proto)
.getValueOr(ProtocolConformanceRef(proto));
auto substType = dependentType.subst(*this, SubstFlags::UseErrorType);
return conformance.subst(substType, subs, conformances);
});
}
SubstitutionMap
SubstitutionMap::getProtocolSubstitutions(ProtocolDecl *protocol,
Type selfType,
ProtocolConformanceRef conformance) {
auto protocolSelfType = protocol->getSelfInterfaceType();
return protocol->getGenericSignature()->getSubstitutionMap(
[&](SubstitutableType *type) -> Type {
if (type->isEqual(protocolSelfType))
return selfType;
// This will need to change if we ever support protocols
// inside generic types.
return Type();
},
[&](CanType origType, Type replacementType, ProtocolType *protoType)
-> Optional<ProtocolConformanceRef> {
if (origType->isEqual(protocolSelfType) &&
protoType->getDecl() == protocol)
return conformance;
// This will need to change if we ever support protocols
// inside generic types.
return None;
});
}
SubstitutionMap
SubstitutionMap::getOverrideSubstitutions(const ValueDecl *baseDecl,
const ValueDecl *derivedDecl,
Optional<SubstitutionMap> derivedSubs) {
auto *baseClass = baseDecl->getDeclContext()
->getAsClassOrClassExtensionContext();
auto *derivedClass = derivedDecl->getDeclContext()
->getAsClassOrClassExtensionContext();
auto *baseSig = baseDecl->getInnermostDeclContext()
->getGenericSignatureOfContext();
auto *derivedSig = derivedDecl->getInnermostDeclContext()
->getGenericSignatureOfContext();
return getOverrideSubstitutions(baseClass, derivedClass,
baseSig, derivedSig,
derivedSubs);
}
SubstitutionMap
SubstitutionMap::getOverrideSubstitutions(const ClassDecl *baseClass,
const ClassDecl *derivedClass,
GenericSignature *baseSig,
GenericSignature *derivedSig,
Optional<SubstitutionMap> derivedSubs) {
if (baseSig == nullptr)
return SubstitutionMap();
auto *M = baseClass->getParentModule();
unsigned baseDepth = 0;
SubstitutionMap baseSubMap;
if (auto *baseClassSig = baseClass->getGenericSignature()) {
baseDepth = baseClassSig->getGenericParams().back()->getDepth() + 1;
auto derivedClassTy = derivedClass->getDeclaredInterfaceType();
if (derivedSubs)
derivedClassTy = derivedClassTy.subst(*derivedSubs);
auto baseClassTy = derivedClassTy->getSuperclassForDecl(baseClass);
baseSubMap = baseClassTy->getContextSubstitutionMap(M, baseClass);
}
unsigned origDepth = 0;
if (auto *derivedClassSig = derivedClass->getGenericSignature())
origDepth = derivedClassSig->getGenericParams().back()->getDepth() + 1;
SubstitutionMap origSubMap;
if (derivedSubs)
origSubMap = *derivedSubs;
else if (derivedSig) {
origSubMap = derivedSig->getSubstitutionMap(
[](SubstitutableType *type) -> Type { return type; },
MakeAbstractConformanceForGenericType());
}
return combineSubstitutionMaps(baseSubMap, origSubMap,
CombineSubstitutionMaps::AtDepth,
baseDepth, origDepth,
baseSig);
}
SubstitutionMap
SubstitutionMap::combineSubstitutionMaps(const SubstitutionMap &firstSubMap,
const SubstitutionMap &secondSubMap,
CombineSubstitutionMaps how,
unsigned firstDepthOrIndex,
unsigned secondDepthOrIndex,
GenericSignature *genericSig) {
auto &ctx = genericSig->getASTContext();
auto replaceGenericParameter = [&](Type type) -> Type {
if (auto gp = type->getAs<GenericTypeParamType>()) {
if (how == CombineSubstitutionMaps::AtDepth) {
if (gp->getDepth() < firstDepthOrIndex)
return Type();
return GenericTypeParamType::get(
gp->getDepth() + secondDepthOrIndex - firstDepthOrIndex,
gp->getIndex(),
ctx);
}
assert(how == CombineSubstitutionMaps::AtIndex);
if (gp->getIndex() < firstDepthOrIndex)
return Type();
return GenericTypeParamType::get(
gp->getDepth(),
gp->getIndex() + secondDepthOrIndex - firstDepthOrIndex,
ctx);
}
return type;
};
return genericSig->getSubstitutionMap(
[&](SubstitutableType *type) {
auto replacement = replaceGenericParameter(type);
if (replacement)
return Type(replacement).subst(secondSubMap);
return Type(type).subst(firstSubMap);
},
[&](CanType type, Type substType, ProtocolType *conformedProtocol) {
auto replacement = type.transform(replaceGenericParameter);
if (replacement)
return secondSubMap.lookupConformance(replacement->getCanonicalType(),
conformedProtocol->getDecl());
return firstSubMap.lookupConformance(type,
conformedProtocol->getDecl());
});
}
void SubstitutionMap::verify() const {
// FIXME: Remove the conditional compilation once the substitutions
// machinery and GenericSignatureBuilder always generate correct
// SubstitutionMaps.
#if 0 && !defined(NDEBUG)
for (auto iter = conformanceMap.begin(), end = conformanceMap.end();
iter != end; ++iter) {
auto replacement = Type(iter->first).subst(*this, SubstFlags::UseErrorType);
if (replacement->isTypeParameter() || replacement->is<ArchetypeType>() ||
replacement->isTypeVariableOrMember() ||
replacement->is<UnresolvedType>() || replacement->hasError())
continue;
// Check conformances of a concrete replacement type.
for (auto citer = iter->second.begin(), cend = iter->second.end();
citer != cend; ++citer) {
// An existential type can have an abstract conformance to
// AnyObject or an @objc protocol.
if (citer->isAbstract() && replacement->isExistentialType()) {
auto *proto = citer->getRequirement();
assert(proto->isObjC() &&
"an existential type can conform only to an "
"@objc-protocol");
continue;
}
// All of the conformances should be concrete.
if (!citer->isConcrete()) {
llvm::dbgs() << "Concrete replacement type:\n";
replacement->dump(llvm::dbgs());
llvm::dbgs() << "SubstitutionMap:\n";
dump(llvm::dbgs());
}
assert(citer->isConcrete() && "Conformance should be concrete");
}
}
#endif
}
void SubstitutionMap::dump(llvm::raw_ostream &out) const {
auto *genericSig = getGenericSignature();
if (genericSig == nullptr) {
out << "Empty substitution map\n";
return;
}
out << "Generic signature: ";
genericSig->print(out);
out << "\n";
out << "Substitutions:\n";
auto genericParams = genericSig->getGenericParams();
auto replacementTypes = getReplacementTypes();
for (unsigned i : indices(genericParams)) {
out.indent(2);
genericParams[i]->print(out);
out << " -> ";
if (replacementTypes[i])
replacementTypes[i]->print(out);
else
out << "<<unresolved concrete type>>";
out << "\n";
}
out << "\nConformance map:\n";
auto conformances = getConformances();
for (const auto &req : genericSig->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance) continue;
out.indent(2);
req.getFirstType()->print(out);
out << " -> ";
conformances.front().dump(out);
out << "\n";
conformances = conformances.slice(1);
}
}
void SubstitutionMap::dump() const {
return dump(llvm::errs());
}
void SubstitutionMap::profile(llvm::FoldingSetNodeID &id) const {
id.AddPointer(storage);
}