Files
swift-mirror/lib/AST/NameLookup.cpp
Doug Gregor ce3fe3ae92 Implement Ruby-inspired closure syntax.
This commit implements closure syntax that places the (optional)
parameter list in pipes within the curly braces of a closure. This
syntax "slides" well from very simple closures with anonymous
arguments, e.g.,

  sort(array, {$1 > $0})

to naming the arguments

  sort(array, {|x, y| x > y})

to adding a return type and/or parameter types

  sort(array, {|x : String, y : String| -> Bool x > y})

and with multiple statements in the body:

  sort(array, {|x, y|
    print("Comparing \(x) and \(y)\n")
    return x > y
  })

When the body contains only a single expression, that expression
participates in type inference with its enclosing expression, which
allows one to type-check, e.g.,

  map(strings, {|x| x.toUpper()})

without context. If one has multiple statements, however, one will
need to provide additional type information either with context

  strings = map(strings, {
    return $0.toUpper()
  })

or via annotations

  map(strings, {|x| -> String 
    return x.toUpper()
  }

because we don't perform inter-statement type inference.

The new closure expressions are only available with the new type
checker, where they completely displace the existing { $0 + $1 }
anonymous closures. 'func' expressions remain unchanged.

The tiny test changes (in SIL output and the constraint-checker test)
are due to the PipeClosureExpr AST storing anonymous closure arguments
($0, $1, etc.) within a pattern in the AST. It's far cleaner to
implement this way.

The testing here is still fairly light. In particular, we need better
testing of parser recovery, name lookup for closures with local types,
more deduction scenarios, and multi-statement closures (which don't
get exercised beyond the unit tests).



Swift SVN r5169
2013-05-14 05:17:10 +00:00

779 lines
26 KiB
C++

//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements interfaces for performing name lookup.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTVisitor.h"
using namespace swift;
static void DoGlobalExtensionLookup(Type BaseType, Identifier Name,
ArrayRef<ValueDecl*> BaseMembers,
Module *CurModule,
Module *BaseModule,
bool IsTypeLookup,
SmallVectorImpl<ValueDecl*> &Result) {
bool CurModuleHasTypeDecl = false;
llvm::SmallPtrSet<CanType, 8> CurModuleTypes;
// FIXME: Hack to avoid searching Clang modules more than once.
bool searchedClangModule = isa<ClangModule>(CurModule);
// Find all extensions in this module.
for (ExtensionDecl *ED : CurModule->lookupExtensions(BaseType)) {
for (Decl *Member : ED->getMembers()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(Member)) {
if (VD->getName() == Name) {
Result.push_back(VD);
if (!IsTypeLookup)
CurModuleTypes.insert(VD->getType()->getCanonicalType());
CurModuleHasTypeDecl |= isa<TypeDecl>(VD);
}
}
}
}
if (BaseModule == CurModule) {
for (ValueDecl *VD : BaseMembers) {
if (VD->getName() == Name) {
Result.push_back(VD);
if (!IsTypeLookup)
CurModuleTypes.insert(VD->getType()->getCanonicalType());
CurModuleHasTypeDecl |= isa<TypeDecl>(VD);
}
}
}
// The builtin module has no imports.
if (isa<BuiltinModule>(CurModule)) return;
// The Clang module loader handles transitive lookups itself... but is that
// what we want?
if (isa<ClangModule>(CurModule)) return;
// If we find a type in the current module, don't look into any
// imported modules.
if (CurModuleHasTypeDecl) return;
TranslationUnit &TU = *cast<TranslationUnit>(CurModule);
// Otherwise, check our imported extensions as well.
// FIXME: Implement DAG-based shadowing rules.
llvm::SmallPtrSet<Module *, 16> Visited;
for (auto &ImpEntry : TU.getImportedModules()) {
if (!Visited.insert(ImpEntry.second))
continue;
// FIXME: Don't search Clang modules more than once.
if (isa<ClangModule>(ImpEntry.second)) {
if (searchedClangModule)
continue;
searchedClangModule = true;
}
for (ExtensionDecl *ED : ImpEntry.second->lookupExtensions(BaseType)) {
for (Decl *Member : ED->getMembers()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(Member)) {
if (VD->getName() == Name &&
(IsTypeLookup || isa<TypeDecl>(VD) ||
!CurModuleTypes.count(VD->getType()->getCanonicalType()))) {
Result.push_back(VD);
}
}
}
}
}
if (BaseModule != CurModule) {
for (ValueDecl *VD : BaseMembers) {
if (VD->getName() == Name &&
(IsTypeLookup || isa<TypeDecl>(VD) ||
!CurModuleTypes.count(VD->getType()->getCanonicalType()))) {
Result.push_back(VD);
}
}
}
}
MemberLookup::MemberLookup(Type BaseTy, Identifier Name, Module &M,
bool TypeLookup) {
MemberName = Name;
IsTypeLookup = TypeLookup;
VisitedSet Visited;
doIt(BaseTy, M, /*OnlyInstanceMembers=*/!TypeLookup, Visited);
}
/// doIt - Lookup a member 'Name' in 'BaseTy' within the context
/// of a given module 'M'. This operation corresponds to a standard "dot"
/// lookup operation like "a.b" where 'this' is the type of 'a'. This
/// operation is only valid after name binding.
///
/// \param OnlyInstanceMembers Only instance members should be found by
/// name lookup.
void MemberLookup::doIt(Type BaseTy, Module &M, bool OnlyInstanceMembers,
VisitedSet &Visited) {
typedef MemberLookupResult Result;
// Just look through l-valueness. It doesn't affect name lookup.
BaseTy = BaseTy->getRValueType();
// Type check metatype references, as in "some_type.some_member". These are
// special and can't have extensions.
if (MetaTypeType *MTT = BaseTy->getAs<MetaTypeType>()) {
// The metatype represents an arbitrary named type: dig through to the
// declared type to see what we're dealing with.
Type Ty = MTT->getInstanceType();
// Just perform normal dot lookup on the type with the specified
// member name to see if we find extensions or anything else. For example,
// type SomeTy.SomeMember can look up static functions, and can even look
// up non-static functions as well (thus getting the address of the member).
doIt(Ty, M, /*OnlyInstanceMembers=*/false, Visited);
return;
}
// Lookup module references, as on some_module.some_member. These are
// special and can't have extensions.
if (ModuleType *MT = BaseTy->getAs<ModuleType>()) {
SmallVector<ValueDecl*, 8> Decls;
MT->getModule()->lookupValue(Module::AccessPathTy(), MemberName,
NLKind::QualifiedLookup, Decls);
for (ValueDecl *VD : Decls) {
Results.push_back(Result::getMetatypeMember(VD));
}
return;
}
// If the base is a protocol, see if this is a reference to a declared
// protocol member.
if (ProtocolType *PT = BaseTy->getAs<ProtocolType>()) {
if (!Visited.insert(PT->getDecl()))
return;
for (auto Inherited : PT->getDecl()->getInherited())
doIt(Inherited.getType(), M, OnlyInstanceMembers, Visited);
for (auto Member : PT->getDecl()->getMembers()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(Member)) {
if (VD->getName() != MemberName) continue;
if (isa<VarDecl>(VD) || isa<SubscriptDecl>(VD) || isa<FuncDecl>(VD)) {
if (OnlyInstanceMembers && !VD->isInstanceMember())
continue;
Results.push_back(Result::getExistentialMember(VD));
} else {
assert(isa<TypeDecl>(VD) && "Unhandled protocol member");
Results.push_back(Result::getMetatypeMember(VD));
}
}
}
return;
}
// If the base is a protocol composition, see if this is a reference to a
// declared protocol member in any of the protocols.
if (auto PC = BaseTy->getAs<ProtocolCompositionType>()) {
for (auto Proto : PC->getProtocols())
doIt(Proto, M, OnlyInstanceMembers, Visited);
return;
}
// Check to see if any of an archetype's requirements have the member.
if (ArchetypeType *Archetype = BaseTy->getAs<ArchetypeType>()) {
for (auto Proto : Archetype->getConformsTo())
doIt(Proto->getDeclaredType(), M, OnlyInstanceMembers, Visited);
if (auto superclass = Archetype->getSuperclass())
doIt(superclass, M, OnlyInstanceMembers, Visited);
// Change existential and metatype members to archetype members, since
// we're in an archetype.
for (auto &Result : Results) {
switch (Result.Kind) {
case MemberLookupResult::ExistentialMember:
Result.Kind = MemberLookupResult::ArchetypeMember;
break;
case MemberLookupResult::MetatypeMember:
Result.Kind = MemberLookupResult::MetaArchetypeMember;
break;
case MemberLookupResult::MemberProperty:
case MemberLookupResult::MemberFunction:
case MemberLookupResult::GenericParameter:
break;
case MemberLookupResult::MetaArchetypeMember:
case MemberLookupResult::ArchetypeMember:
llvm_unreachable("wrong member lookup result in archetype");
break;
}
}
return;
}
do {
// Look in for members of a nominal type.
SmallVector<ValueDecl*, 8> ExtensionMethods;
lookupMembers(BaseTy, M, ExtensionMethods);
for (ValueDecl *VD : ExtensionMethods) {
if (TypeDecl *TD = dyn_cast<TypeDecl>(VD)) {
auto TAD = dyn_cast<TypeAliasDecl>(TD);
if (TAD && TAD->isGenericParameter())
Results.push_back(Result::getGenericParameter(TAD));
else
Results.push_back(Result::getMetatypeMember(TD));
continue;
}
if (OnlyInstanceMembers && !VD->isInstanceMember())
continue;
if (FuncDecl *FD = dyn_cast<FuncDecl>(VD)) {
if (FD->isStatic())
Results.push_back(Result::getMetatypeMember(FD));
else
Results.push_back(Result::getMemberFunction(FD));
continue;
}
if (OneOfElementDecl *OOED = dyn_cast<OneOfElementDecl>(VD)) {
Results.push_back(Result::getMetatypeMember(OOED));
continue;
}
assert((isa<VarDecl>(VD) || isa<SubscriptDecl>(VD)) &&
"Unexpected extension member");
Results.push_back(Result::getMemberProperty(VD));
}
// If we have a class type, look into its base class.
ClassDecl *CurClass = nullptr;
if (auto CT = BaseTy->getAs<ClassType>())
CurClass = CT->getDecl();
else if (auto BGT = BaseTy->getAs<BoundGenericType>())
CurClass = dyn_cast<ClassDecl>(BGT->getDecl());
else if (UnboundGenericType *UGT = BaseTy->getAs<UnboundGenericType>())
CurClass = dyn_cast<ClassDecl>(UGT->getDecl());
if (CurClass && CurClass->hasBaseClass()) {
BaseTy = CurClass->getBaseClass();
} else {
break;
}
} while (1);
// Find any overridden methods.
llvm::SmallPtrSet<ValueDecl*, 8> Overridden;
for (const auto &Result : Results) {
if (auto FD = dyn_cast<FuncDecl>(Result.D)) {
if (FD->getOverriddenDecl())
Overridden.insert(FD->getOverriddenDecl());
} else if (auto VarD = dyn_cast<VarDecl>(Result.D)) {
if (VarD->getOverriddenDecl())
Overridden.insert(VarD->getOverriddenDecl());
} else if (auto SD = dyn_cast<SubscriptDecl>(Result.D)) {
if (SD->getOverriddenDecl())
Overridden.insert(SD->getOverriddenDecl());
}
}
// If any methods were overridden, remove them from the results.
if (!Overridden.empty()) {
Results.erase(std::remove_if(Results.begin(), Results.end(),
[&](MemberLookupResult &Res) -> bool {
return Overridden.count(Res.D);
}),
Results.end());
}
}
void MemberLookup::lookupMembers(Type BaseType, Module &M,
SmallVectorImpl<ValueDecl*> &Result) {
NominalTypeDecl *D;
ArrayRef<ValueDecl*> BaseMembers;
SmallVector<ValueDecl*, 2> BaseMembersStorage;
if (BoundGenericType *BGT = BaseType->getAs<BoundGenericType>()) {
BaseType = BGT->getDecl()->getDeclaredType();
D = BGT->getDecl();
} else if (UnboundGenericType *UGT = BaseType->getAs<UnboundGenericType>()) {
D = UGT->getDecl();
} else if (NominalType *NT = BaseType->getAs<NominalType>()) {
D = NT->getDecl();
} else {
return;
}
for (Decl* Member : D->getMembers()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(Member)) {
BaseMembersStorage.push_back(VD);
}
}
if (D->getGenericParams())
for (auto param : *D->getGenericParams())
BaseMembersStorage.push_back(param.getDecl());
BaseMembers = BaseMembersStorage;
DeclContext *DC = D->getDeclContext();
while (!DC->isModuleContext())
DC = DC->getParent();
DoGlobalExtensionLookup(BaseType, MemberName, BaseMembers, &M,
cast<Module>(DC), IsTypeLookup, Result);
}
ConstructorLookup::ConstructorLookup(Type BaseType, Module &M) {
NominalTypeDecl *D;
if (NominalType *NT = BaseType->getAs<NominalType>())
D = NT->getDecl();
else if (BoundGenericType *BGT = BaseType->getAs<BoundGenericType>())
D = BGT->getDecl();
else
return;
SmallVector<ValueDecl*, 16> BaseMembers;
if (StructDecl *SD = dyn_cast<StructDecl>(D)) {
for (Decl* Member : SD->getMembers()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(Member))
BaseMembers.push_back(VD);
}
} else if (OneOfDecl *OOD = dyn_cast<OneOfDecl>(D)) {
for (Decl* Member : OOD->getMembers()) {
// FIXME: We shouldn't be injecting OneOfElementDecls into the results
// like this.
if (OneOfElementDecl *OOED = dyn_cast<OneOfElementDecl>(Member))
Results.push_back(OOED);
else if (ValueDecl *VD = dyn_cast<ValueDecl>(Member))
BaseMembers.push_back(VD);
}
} else if (ClassDecl *CD = dyn_cast<ClassDecl>(D)) {
for (Decl* Member : CD->getMembers()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(Member))
BaseMembers.push_back(VD);
}
} else {
return;
}
Identifier Constructor = M.Ctx.getIdentifier("constructor");
DeclContext *DC = D->getDeclContext();
if (!DC->isModuleContext()) {
for (ValueDecl *VD : BaseMembers) {
if (VD->getName() == Constructor)
Results.push_back(VD);
}
return;
}
DoGlobalExtensionLookup(BaseType, Constructor, BaseMembers, &M,
cast<Module>(DC), /*IsTypeLookup*/false, Results);
}
struct FindLocalVal : public StmtVisitor<FindLocalVal> {
SourceLoc Loc;
Identifier Name;
ValueDecl *MatchingValue;
FindLocalVal(SourceLoc Loc, Identifier Name)
: Loc(Loc), Name(Name), MatchingValue(nullptr) {}
bool IntersectsRange(SourceRange R) {
return R.Start.Value.getPointer() <= Loc.Value.getPointer() &&
R.End.Value.getPointer() >= Loc.Value.getPointer();
}
void checkValueDecl(ValueDecl *D) {
if (D->getName() == Name) {
assert(!MatchingValue);
MatchingValue = D;
}
}
void checkPattern(Pattern *Pat) {
switch (Pat->getKind()) {
case PatternKind::Tuple:
for (auto &field : cast<TuplePattern>(Pat)->getFields())
checkPattern(field.getPattern());
return;
case PatternKind::Paren:
return checkPattern(cast<ParenPattern>(Pat)->getSubPattern());
case PatternKind::Typed:
return checkPattern(cast<TypedPattern>(Pat)->getSubPattern());
case PatternKind::Named:
return checkValueDecl(cast<NamedPattern>(Pat)->getDecl());
// Handle non-vars.
case PatternKind::Any:
return;
}
}
void checkGenericParams(GenericParamList *Params) {
if (!Params)
return;
for (auto P : *Params)
checkValueDecl(P.getDecl());
}
void checkTranslationUnit(TranslationUnit *TU) {
for (Decl *D : TU->Decls) {
if (TopLevelCodeDecl *TLCD = dyn_cast<TopLevelCodeDecl>(D))
visit(TLCD->getBody());
}
}
void visitBreakStmt(BreakStmt *) {}
void visitContinueStmt(ContinueStmt *) {}
void visitFallthroughStmt(FallthroughStmt *) {}
void visitAssignStmt(AssignStmt *) {}
void visitReturnStmt(ReturnStmt *) {}
void visitIfStmt(IfStmt * S) {
visit(S->getThenStmt());
if (S->getElseStmt())
visit(S->getElseStmt());
}
void visitWhileStmt(WhileStmt *S) {
visit(S->getBody());
}
void visitDoWhileStmt(DoWhileStmt *S) {
visit(S->getBody());
}
void visitForStmt(ForStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
visit(S->getBody());
if (MatchingValue)
return;
for (Decl *D : S->getInitializerVarDecls()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
checkValueDecl(VD);
}
}
void visitForEachStmt(ForEachStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
visit(S->getBody());
if (MatchingValue)
return;
checkPattern(S->getPattern());
}
void visitBraceStmt(BraceStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
for (auto elem : S->getElements()) {
if (Stmt *S = elem.dyn_cast<Stmt*>())
visit(S);
}
if (MatchingValue)
return;
for (auto elem : S->getElements()) {
if (Decl *D = elem.dyn_cast<Decl*>()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
checkValueDecl(VD);
}
}
}
void visitSwitchStmt(SwitchStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
for (CaseStmt *C : S->getCases()) {
visit(C);
}
}
void visitCaseStmt(CaseStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
// TODO: Check patterns in pattern-matching case.
visit(S->getBody());
}
};
UnqualifiedLookup::UnqualifiedLookup(Identifier Name, DeclContext *DC,
SourceLoc Loc, bool IsTypeLookup) {
typedef UnqualifiedLookupResult Result;
DeclContext *ModuleDC = DC;
while (!ModuleDC->isModuleContext())
ModuleDC = ModuleDC->getParent();
Module &M = *cast<Module>(ModuleDC);
// Never perform local lookup for operators.
if (Name.isOperator())
DC = ModuleDC;
// If we are inside of a method, check to see if there are any ivars in scope,
// and if so, whether this is a reference to one of them.
while (!DC->isModuleContext()) {
ValueDecl *BaseDecl = 0;
ValueDecl *MetaBaseDecl = 0;
GenericParamList *GenericParams = nullptr;
Type ExtendedType;
if (FuncExpr *FE = dyn_cast<FuncExpr>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
if (Loc.isValid()) {
FindLocalVal localVal(Loc, Name);
localVal.visit(FE->getBody());
if (!localVal.MatchingValue) {
for (Pattern *P : FE->getBodyParamPatterns())
localVal.checkPattern(P);
}
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
FuncDecl *FD = FE->getDecl();
if (FD && FD->getExtensionType()) {
ExtendedType = FD->getExtensionType();
BaseDecl = FD->getImplicitThisDecl();
if (NominalType *NT = ExtendedType->getAs<NominalType>())
MetaBaseDecl = NT->getDecl();
else if (auto UGT = ExtendedType->getAs<UnboundGenericType>())
MetaBaseDecl = UGT->getDecl();
DC = DC->getParent();
if (FD->isStatic())
ExtendedType = MetaTypeType::get(ExtendedType, M.getASTContext());
}
// Look in the generic parameters after checking our local declaration.
if (FD)
GenericParams = FD->getGenericParams();
} else if (PipeClosureExpr *CE = dyn_cast<PipeClosureExpr>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
if (Loc.isValid()) {
FindLocalVal localVal(Loc, Name);
localVal.visit(CE->getBody());
if (!localVal.MatchingValue) {
localVal.checkPattern(CE->getParams());
}
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
} else if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(DC)) {
ExtendedType = ED->getExtendedType();
if (NominalType *NT = ExtendedType->getAs<NominalType>())
BaseDecl = NT->getDecl();
else if (auto UGT = ExtendedType->getAs<UnboundGenericType>())
BaseDecl = UGT->getDecl();
MetaBaseDecl = BaseDecl;
} else if (NominalTypeDecl *ND = dyn_cast<NominalTypeDecl>(DC)) {
ExtendedType = ND->getDeclaredType();
BaseDecl = ND;
MetaBaseDecl = BaseDecl;
} else if (ConstructorDecl *CD = dyn_cast<ConstructorDecl>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
if (Loc.isValid()) {
FindLocalVal localVal(Loc, Name);
localVal.visit(CD->getBody());
if (!localVal.MatchingValue)
localVal.checkPattern(CD->getArguments());
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
BaseDecl = CD->getImplicitThisDecl();
ExtendedType = CD->getDeclContext()->getDeclaredTypeOfContext();
if (NominalType *NT = ExtendedType->getAs<NominalType>())
MetaBaseDecl = NT->getDecl();
else if (auto UGT = ExtendedType->getAs<UnboundGenericType>())
MetaBaseDecl = UGT->getDecl();
DC = DC->getParent();
} else if (DestructorDecl *DD = dyn_cast<DestructorDecl>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
if (Loc.isValid()) {
FindLocalVal localVal(Loc, Name);
localVal.visit(CD->getBody());
if (!localVal.MatchingValue)
localVal.checkPattern(CD->getArguments());
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
BaseDecl = DD->getImplicitThisDecl();
ExtendedType = DD->getDeclContext()->getDeclaredTypeOfContext();
if (NominalType *NT = ExtendedType->getAs<NominalType>())
MetaBaseDecl = NT->getDecl();
else if (auto UGT = ExtendedType->getAs<UnboundGenericType>())
MetaBaseDecl = UGT->getDecl();
DC = DC->getParent();
}
if (BaseDecl) {
MemberLookup Lookup(ExtendedType, Name, M, IsTypeLookup);
for (auto Result : Lookup.Results) {
switch (Result.Kind) {
case MemberLookupResult::MemberProperty:
Results.push_back(Result::getMemberProperty(BaseDecl, Result.D));
break;
case MemberLookupResult::MemberFunction:
Results.push_back(Result::getMemberFunction(BaseDecl, Result.D));
break;
case MemberLookupResult::MetatypeMember:
// For results that can only be accessed via the metatype (e.g.,
// type aliases), we need to use the metatype declaration as the
// base.
Results.push_back(Result::getMetatypeMember(isa<FuncDecl>(Result.D)?
BaseDecl : MetaBaseDecl,
Result.D));
break;
case MemberLookupResult::ExistentialMember:
Results.push_back(Result::getExistentialMember(BaseDecl, Result.D));
break;
case MemberLookupResult::ArchetypeMember:
Results.push_back(Result::getArchetypeMember(BaseDecl, Result.D));
break;
case MemberLookupResult::MetaArchetypeMember:
// For results that can only be accessed via the metatype (e.g.,
// type aliases), we need to use the metatype declaration as the
// base.
Results.push_back(Result::getMetaArchetypeMember(
isa<FuncDecl>(Result.D)? BaseDecl : MetaBaseDecl,
Result.D));
break;
case MemberLookupResult::GenericParameter:
// All generic parameters are 'local'.
Results.push_back(Result::getLocalDecl(Result.D));
break;
}
}
if (Lookup.isSuccess())
return;
}
// Check the generic parameters for something with the given name.
if (GenericParams) {
FindLocalVal localVal(Loc, Name);
localVal.checkGenericParams(GenericParams);
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
DC = DC->getParent();
}
if (Loc.isValid()) {
if (TranslationUnit *TU = dyn_cast<TranslationUnit>(&M)) {
// Look for local variables in top-level code; normally, the parser
// resolves these for us, but it can't do the right thing for
// local types.
FindLocalVal localVal(Loc, Name);
localVal.checkTranslationUnit(TU);
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
}
// Track whether we've already searched the Clang modules.
// FIXME: This is a weird hack. We either need to filter within the
// Clang module importer, or we need to change how this works.
bool searchedClangModule = false;
// Do a local lookup within the current module.
llvm::SmallVector<ValueDecl*, 4> CurModuleResults;
M.lookupValue(Module::AccessPathTy(), Name, NLKind::UnqualifiedLookup,
CurModuleResults);
searchedClangModule = isa<ClangModule>(&M);
for (ValueDecl *VD : CurModuleResults)
Results.push_back(Result::getModuleMember(VD));
// The builtin module has no imports.
if (isa<BuiltinModule>(M)) return;
TranslationUnit &TU = cast<TranslationUnit>(M);
llvm::SmallPtrSet<CanType, 8> CurModuleTypes;
for (ValueDecl *VD : CurModuleResults) {
// If we find a type in the current module, don't look into any
// imported modules.
if (isa<TypeDecl>(VD))
return;
if (!IsTypeLookup)
CurModuleTypes.insert(VD->getType()->getCanonicalType());
}
// Scrape through all of the imports looking for additional results.
// FIXME: Implement DAG-based shadowing rules.
llvm::SmallPtrSet<Module *, 16> Visited;
for (auto &ImpEntry : TU.getImportedModules()) {
if (!Visited.insert(ImpEntry.second))
continue;
// FIXME: Only searching Clang modules once.
if (isa<ClangModule>(ImpEntry.second)) {
if (searchedClangModule)
continue;
searchedClangModule = true;
}
SmallVector<ValueDecl*, 8> ImportedModuleResults;
ImpEntry.second->lookupValue(ImpEntry.first, Name, NLKind::UnqualifiedLookup,
ImportedModuleResults);
for (ValueDecl *VD : ImportedModuleResults) {
if (IsTypeLookup || isa<TypeDecl>(VD) ||
!CurModuleTypes.count(VD->getType()->getCanonicalType())) {
Results.push_back(Result::getModuleMember(VD));
}
}
}
// If we've found something, we're done.
if (!Results.empty())
return;
// Look for a module with the given name.
if (Name == M.Name) {
Results.push_back(Result::getModuleName(&M));
} else {
for (const auto &ImpEntry : TU.getImportedModules())
if (ImpEntry.second->Name == Name) {
Results.push_back(Result::getModuleName(ImpEntry.second));
break;
}
}
}
TypeDecl* UnqualifiedLookup::getSingleTypeResult() {
if (Results.size() != 1 || !Results.back().hasValueDecl() ||
!isa<TypeDecl>(Results.back().getValueDecl()))
return nullptr;
return cast<TypeDecl>(Results.back().getValueDecl());
}