Files
swift-mirror/lib/SILOptimizer/Transforms/AllocBoxToStack.cpp
Nate Chandler ceea4cf57a [AllocBoxToStack] See through borrows.
Now that alloc_boxes whose lifetimes are lexical are emitted with
begin_borrow [lexical]/end_borrow, AllocBoxToStack needs to be able to
see through those new borrow scopes in order to continue stack promoting
the same boxes that it was able to before those lexical scopes were
emitted.
2022-01-13 13:33:21 -08:00

1130 lines
42 KiB
C++

//===--- AllocBoxToStack.cpp - Promote alloc_box to alloc_stack -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "allocbox-to-stack"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Basic/BlotMapVector.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumStackPromoted, "Number of alloc_box's promoted to the stack");
// MaxLocalApplyRecurDepth limits the recursive analysis depth while
// checking if a box can be promoted to stack. This is currently set to 4, a
// limit assumed to be sufficient to handle typical call chain of local
// functions through which a box can be passed.
static llvm::cl::opt<unsigned> MaxLocalApplyRecurDepth(
"max-local-apply-recur-depth", llvm::cl::init(4),
llvm::cl::desc("Max recursive depth for analyzing local functions"));
static llvm::cl::opt<bool> AllocBoxToStackAnalyzeApply(
"allocbox-to-stack-analyze-apply", llvm::cl::init(true),
llvm::cl::desc("Analyze functions into while alloc_box is passed"));
//===-----------------------------------------------------------------------===//
// SIL Utilities for alloc_box Promotion
//===----------------------------------------------------------------------===//
static SILValue stripOffCopyValue(SILValue V) {
while (auto *CVI = dyn_cast<CopyValueInst>(V)) {
V = CVI->getOperand();
}
return V;
}
/// Returns True if the operand or one of its users is captured.
static bool useCaptured(Operand *UI) {
auto *User = UI->getUser();
// These instructions do not cause the address to escape.
if (isa<DebugValueInst>(User)
|| isa<StrongReleaseInst>(User) || isa<StrongRetainInst>(User)
|| isa<DestroyValueInst>(User))
return false;
if (auto *Store = dyn_cast<StoreInst>(User)) {
if (Store->getDest() == UI->get())
return false;
} else if (auto *Assign = dyn_cast<AssignInst>(User)) {
if (Assign->getDest() == UI->get())
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Liveness for alloc_box Promotion
//===----------------------------------------------------------------------===//
// Is any successor of BB in the LiveIn set?
static bool successorHasLiveIn(SILBasicBlock *BB,
BasicBlockSetVector &LiveIn) {
for (auto &Succ : BB->getSuccessors())
if (LiveIn.contains(Succ))
return true;
return false;
}
// Propagate liveness backwards from an initial set of blocks in our
// LiveIn set.
static void propagateLiveness(BasicBlockSetVector &LiveIn,
SILBasicBlock *DefBB) {
// First populate a worklist of predecessors.
SmallVector<SILBasicBlock *, 64> Worklist;
for (auto *BB : LiveIn)
for (auto Pred : BB->getPredecessorBlocks())
Worklist.push_back(Pred);
// Now propagate liveness backwards until we hit the alloc_box.
while (!Worklist.empty()) {
auto *BB = Worklist.pop_back_val();
// If it's already in the set, then we've already queued and/or
// processed the predecessors.
if (BB == DefBB || !LiveIn.insert(BB))
continue;
for (auto Pred : BB->getPredecessorBlocks())
Worklist.push_back(Pred);
}
}
// Walk backwards in BB looking for strong_release, destroy_value, or
// dealloc_box of the given value, and add it to releases.
static bool addLastRelease(SILValue V, SILBasicBlock *BB,
SmallVectorImpl<SILInstruction *> &Releases) {
for (auto I = BB->rbegin(); I != BB->rend(); ++I) {
if (isa<StrongReleaseInst>(*I) || isa<DeallocBoxInst>(*I) ||
isa<DestroyValueInst>(*I)) {
if (stripOffCopyValue(I->getOperand(0)) != V)
continue;
Releases.push_back(&*I);
return true;
}
}
return false;
}
// Find the final releases of the alloc_box along any given path.
// These can include paths from a release back to the alloc_box in a
// loop.
static bool getFinalReleases(SILValue Box,
SmallVectorImpl<SILInstruction *> &Releases) {
SILFunction *function = Box->getFunction();
BasicBlockSetVector LiveIn(function);
BasicBlockSetVector UseBlocks(function);
auto *DefBB = Box->getParentBlock();
auto seenRelease = false;
SILInstruction *OneRelease = nullptr;
// We'll treat this like a liveness problem where the alloc_box is
// the def. Each block that has a use of the owning pointer has the
// value live-in unless it is the block with the alloc_box.
SmallVector<Operand *, 32> Worklist(Box->use_begin(), Box->use_end());
while (!Worklist.empty()) {
auto *Op = Worklist.pop_back_val();
auto *User = Op->getUser();
auto *BB = User->getParent();
if (isa<ProjectBoxInst>(User))
continue;
if (BB != DefBB)
LiveIn.insert(BB);
// Also keep track of the blocks with uses.
UseBlocks.insert(BB);
// If we have a copy value or a mark_uninitialized, add its uses to the work
// list and continue.
if (isa<MarkUninitializedInst>(User) || isa<CopyValueInst>(User) ||
isa<BeginBorrowInst>(User)) {
llvm::copy(cast<SingleValueInstruction>(User)->getUses(),
std::back_inserter(Worklist));
continue;
}
// Try to speed up the trivial case of single release/dealloc.
if (isa<StrongReleaseInst>(User) || isa<DeallocBoxInst>(User) ||
isa<DestroyValueInst>(User)) {
if (!seenRelease)
OneRelease = User;
else
OneRelease = nullptr;
seenRelease = true;
}
}
// Only a single release/dealloc? We're done!
if (OneRelease) {
Releases.push_back(OneRelease);
return true;
}
propagateLiveness(LiveIn, DefBB);
// Now examine each block we saw a use in. If it has no successors
// that are in LiveIn, then the last use in the block is the final
// release/dealloc.
for (auto *BB : UseBlocks)
if (!successorHasLiveIn(BB, LiveIn))
if (!addLastRelease(Box, BB, Releases))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// alloc_box Escape Analysis
//===----------------------------------------------------------------------===//
/// This is a list we use to store a set of indices. We create the set by
/// sorting, uniquing at the appropriate time. The reason why it makes sense to
/// just use a sorted vector with std::count is because generally functions do
/// not have that many arguments and even fewer promoted arguments.
using ArgIndexList = SmallVector<unsigned, 8>;
static bool partialApplyEscapes(SILValue V, bool examineApply);
/// Could this operand to an apply escape that function by being
/// stored or returned?
static bool applyArgumentEscapes(FullApplySite Apply, Operand *O) {
SILFunction *F = Apply.getReferencedFunctionOrNull();
// If we cannot examine the function body, assume the worst.
if (!F || F->empty())
return true;
// Check the uses of the operand, but do not recurse down into other
// apply instructions.
auto calleeArg = F->getArgument(Apply.getCalleeArgIndex(*O));
return partialApplyEscapes(calleeArg, /* examineApply = */ false);
}
static bool partialApplyEscapes(SILValue V, bool examineApply) {
SILModuleConventions ModConv(*V->getModule());
SmallVector<Operand *, 32> Worklist(V->use_begin(), V->use_end());
while (!Worklist.empty()) {
Operand *Op = Worklist.pop_back_val();
// These instructions do not cause the address to escape.
if (!useCaptured(Op))
continue;
auto *User = Op->getUser();
// If we have a copy_value, the copy value does not cause an escape, but its
// uses might do so... so add the copy_value's uses to the worklist and
// continue.
if (auto CVI = dyn_cast<CopyValueInst>(User)) {
llvm::copy(CVI->getUses(), std::back_inserter(Worklist));
continue;
}
if (auto Apply = FullApplySite::isa(User)) {
// Applying a function does not cause the function to escape.
if (!Apply.isArgumentOperand(*Op))
continue;
// apply instructions do not capture the pointer when it is passed
// indirectly
if (Apply.getArgumentConvention(*Op).isIndirectConvention())
continue;
// Optionally drill down into an apply to see if the operand is
// captured in or returned from the apply.
if (examineApply && !applyArgumentEscapes(Apply, Op))
continue;
}
// partial_apply instructions do not allow the pointer to escape
// when it is passed indirectly, unless the partial_apply itself
// escapes
if (auto *PartialApply = dyn_cast<PartialApplyInst>(User)) {
auto Args = PartialApply->getArguments();
auto Params = PartialApply->getSubstCalleeType()->getParameters();
Params = Params.slice(Params.size() - Args.size(), Args.size());
if (ModConv.isSILIndirect(Params[Op->getOperandNumber() - 1])) {
if (partialApplyEscapes(PartialApply, /*examineApply = */ true))
return true;
continue;
}
}
return true;
}
return false;
}
static SILInstruction *recursivelyFindBoxOperandsPromotableToAddress(
SILValue Box, bool inAppliedFunction, SmallVectorImpl<Operand *> &,
SmallPtrSetImpl<SILFunction *> &, unsigned CurrentRecurDepth);
/// checkLocalApplyBody - Check the body of an apply's callee to see
/// if the box pointer argument passed to it has uses that would
/// disqualify it from being promoted to a stack location. Return
/// true if this apply will not block our promoting the box.
static bool checkLocalApplyBody(Operand *O,
SmallVectorImpl<Operand *> &PromotedOperands,
SmallPtrSetImpl<SILFunction *> &VisitedCallees,
unsigned CurrentRecurDepth) {
SILFunction *F = ApplySite(O->getUser()).getReferencedFunctionOrNull();
// If we cannot examine the function body, assume the worst.
if (!F || F->empty())
return false;
// Since this function can be called recursively while analyzing the same box,
// mark the callee as visited, so that we don't end up in a recursive cycle.
auto iter = VisitedCallees.insert(F);
if (!iter.second)
return false;
auto calleeArg = F->getArgument(ApplySite(O->getUser()).getCalleeArgIndex(*O));
auto res = !recursivelyFindBoxOperandsPromotableToAddress(
calleeArg,
/* inAppliedFunction = */ true, PromotedOperands, VisitedCallees,
CurrentRecurDepth + 1);
return res;
}
// Returns true if a callee is eligible to be cloned and rewritten for
// AllocBoxToStack opt. We don't want to increase code size, so this is
// restricted only for private local functions currently.
static bool isOptimizableApplySite(ApplySite Apply) {
if (!AllocBoxToStackAnalyzeApply) {
// turned off explicitly
return false;
}
auto callee = Apply.getReferencedFunctionOrNull();
if (!callee) {
return false;
}
// Callee should be optimizable.
if (!callee->shouldOptimize())
return false;
// External function definitions.
if (!callee->isDefinition())
return false;
// Do not optimize always_inlinable functions.
if (callee->getInlineStrategy() == Inline_t::AlwaysInline)
return false;
if (callee->getLinkage() != SILLinkage::Private)
return false;
return true;
}
/// Validate that the uses of a pointer to a box do not eliminate it from
/// consideration for promotion to a stack element. Return the instruction with
/// the unexpected use if we find one.
/// If a box has ApplySite users, we recursively examine the callees to check
/// for unexpected use of the box argument. If all the callees through which the
/// box is passed don't have any unexpected uses, `PromotedOperands` will be
/// populated with the box arguments in DFS order.
static SILInstruction *recursivelyFindBoxOperandsPromotableToAddress(
SILValue Box, bool inAppliedFunction,
SmallVectorImpl<Operand *> &PromotedOperands,
SmallPtrSetImpl<SILFunction *> &VisitedCallees,
unsigned CurrentRecurDepth = 0) {
assert((Box->getType().is<SILBoxType>()
|| Box->getType()
== SILType::getNativeObjectType(Box->getType().getASTContext()))
&& "Expected an object pointer!");
SmallVector<Operand *, 4> LocalPromotedOperands;
// Scan all of the uses of the retain count value, collecting all
// the releases and validating that we don't have an unexpected
// user.
SmallVector<Operand *, 32> Worklist(Box->use_begin(), Box->use_end());
while (!Worklist.empty()) {
auto *Op = Worklist.pop_back_val();
auto *User = Op->getUser();
// Retains and releases are fine. Deallocs are fine if we're not
// examining a function that the alloc_box was passed into.
// Projections are fine as well.
if (isa<StrongRetainInst>(User) || isa<StrongReleaseInst>(User) ||
isa<ProjectBoxInst>(User) || isa<DestroyValueInst>(User) ||
(!inAppliedFunction && isa<DeallocBoxInst>(User)) ||
isa<EndBorrowInst>(User))
continue;
// If our user instruction is a copy_value or a mark_uninitialized, visit
// the users recursively.
if (isa<MarkUninitializedInst>(User) || isa<CopyValueInst>(User) ||
isa<BeginBorrowInst>(User)) {
llvm::copy(cast<SingleValueInstruction>(User)->getUses(),
std::back_inserter(Worklist));
continue;
}
if (auto Apply = ApplySite::isa(User)) {
if (CurrentRecurDepth > MaxLocalApplyRecurDepth) {
return User;
}
switch (Apply.getKind()) {
case ApplySiteKind::PartialApplyInst: {
if (checkLocalApplyBody(Op, LocalPromotedOperands, VisitedCallees,
CurrentRecurDepth) &&
!partialApplyEscapes(cast<PartialApplyInst>(User),
/* examineApply = */ true)) {
LocalPromotedOperands.push_back(Op);
continue;
}
break;
}
case ApplySiteKind::ApplyInst:
case ApplySiteKind::BeginApplyInst:
case ApplySiteKind::TryApplyInst:
if (isOptimizableApplySite(Apply) &&
checkLocalApplyBody(Op, LocalPromotedOperands, VisitedCallees,
CurrentRecurDepth)) {
LocalPromotedOperands.push_back(Op);
continue;
}
}
}
return User;
}
PromotedOperands.append(LocalPromotedOperands.begin(),
LocalPromotedOperands.end());
return nullptr;
}
template <typename... T, typename... U>
static InFlightDiagnostic diagnose(ASTContext &Context, SourceLoc loc,
Diag<T...> diag, U &&... args) {
return Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
/// canPromoteAllocBox - Can we promote this alloc_box to an alloc_stack?
static bool canPromoteAllocBox(AllocBoxInst *ABI,
SmallVectorImpl<Operand *> &PromotedOperands) {
SmallPtrSet<SILFunction *, 8> VisitedCallees;
// Scan all of the uses of the address of the box to see if any
// disqualifies the box from being promoted to the stack.
if (auto *User = recursivelyFindBoxOperandsPromotableToAddress(
ABI,
/* inAppliedFunction = */ false, PromotedOperands, VisitedCallees,
/* CurrentRecurDepth = */ 0)) {
(void)User;
// Otherwise, we have an unexpected use.
LLVM_DEBUG(llvm::dbgs() << "*** Failed to promote alloc_box in @"
<< ABI->getFunction()->getName() << ": " << *ABI
<< " Due to user: " << *User << "\n");
// Check if the vardecl has a "boxtostack.mustbeonstack" attribute. If so,
// emit a diagnostic.
if (auto *decl = ABI->getDecl()) {
if (decl->hasSemanticsAttr("boxtostack.mustbeonstack")) {
auto allocDiag =
diag::box_to_stack_cannot_promote_box_to_stack_due_to_escape_alloc;
diagnose(ABI->getModule().getASTContext(), ABI->getLoc().getSourceLoc(),
allocDiag);
auto escapeNote = diag::
box_to_stack_cannot_promote_box_to_stack_due_to_escape_location;
diagnose(ABI->getModule().getASTContext(),
User->getLoc().getSourceLoc(), escapeNote);
}
}
return false;
}
// Okay, it looks like this value doesn't escape.
return true;
}
//===----------------------------------------------------------------------===//
// alloc_box Promotion
//===----------------------------------------------------------------------===//
namespace {
// Pass context and per-function analysis results.
struct AllocBoxToStackState {
SILFunctionTransform *T;
bool CFGChanged = false;
SmallVector<AllocBoxInst *, 8> Promotable;
SmallVector<Operand *, 8> PromotedOperands;
AllocBoxToStackState(SILFunctionTransform *T) : T(T) {}
};
} // anonymous namespace
static void replaceProjectBoxUsers(SILValue HeapBox, SILValue StackBox) {
SmallVector<Operand *, 8> Worklist(HeapBox->use_begin(), HeapBox->use_end());
while (!Worklist.empty()) {
auto *Op = Worklist.pop_back_val();
if (auto *PBI = dyn_cast<ProjectBoxInst>(Op->getUser())) {
// This may result in an alloc_stack being used by begin_access [dynamic].
PBI->replaceAllUsesWith(StackBox);
continue;
}
auto *User = Op->getUser();
if (isa<MarkUninitializedInst>(User) || isa<CopyValueInst>(User) ||
isa<BeginBorrowInst>(User)) {
llvm::copy(cast<SingleValueInstruction>(User)->getUses(),
std::back_inserter(Worklist));
}
}
}
/// rewriteAllocBoxAsAllocStack - Replace uses of the alloc_box with a
/// new alloc_stack, but do not delete the alloc_box yet.
static bool rewriteAllocBoxAsAllocStack(AllocBoxInst *ABI) {
LLVM_DEBUG(llvm::dbgs() << "*** Promoting alloc_box to stack: " << *ABI);
SILValue HeapBox = ABI;
Optional<MarkUninitializedInst::Kind> Kind;
if (HeapBox->hasOneUse()) {
auto *User = HeapBox->getSingleUse()->getUser();
if (auto *MUI = dyn_cast<MarkUninitializedInst>(User)) {
HeapBox = MUI;
Kind = MUI->getMarkUninitializedKind();
}
}
SmallVector<SILInstruction *, 4> FinalReleases;
if (!getFinalReleases(HeapBox, FinalReleases))
return false;
// Promote this alloc_box to an alloc_stack. Insert the alloc_stack
// at the beginning of the function.
SILBuilderWithScope Builder(ABI);
assert(ABI->getBoxType()->getLayout()->getFields().size() == 1
&& "rewriting multi-field box not implemented");
auto &mod = ABI->getFunction()->getModule();
bool isLexical = mod.getASTContext().SILOpts.supportsLexicalLifetimes(mod);
auto *ASI = Builder.createAllocStack(
ABI->getLoc(),
getSILBoxFieldType(TypeExpansionContext(*ABI->getFunction()),
ABI->getBoxType(), ABI->getModule().Types, 0),
ABI->getVarInfo(), ABI->hasDynamicLifetime(), isLexical);
// Transfer a mark_uninitialized if we have one.
SILValue StackBox = ASI;
if (Kind) {
StackBox =
Builder.createMarkUninitialized(ASI->getLoc(), ASI, Kind.getValue());
}
// Replace all uses of the address of the box's contained value with
// the address of the stack location.
replaceProjectBoxUsers(HeapBox, StackBox);
assert(ABI->getBoxType()->getLayout()->getFields().size() == 1
&& "promoting multi-field box not implemented");
auto &Lowering = ABI->getFunction()->getTypeLowering(
getSILBoxFieldType(TypeExpansionContext(*ABI->getFunction()),
ABI->getBoxType(), ABI->getModule().Types, 0));
auto Loc = CleanupLocation(ABI->getLoc());
for (auto LastRelease : FinalReleases) {
SILBuilderWithScope Builder(LastRelease);
if (!isa<DeallocBoxInst>(LastRelease)&& !Lowering.isTrivial()) {
// For non-trivial types, insert destroys for each final release-like
// instruction we found that isn't an explicit dealloc_box.
Builder.emitDestroyAddrAndFold(Loc, StackBox);
}
Builder.createDeallocStack(Loc, ASI);
}
// Remove any retain and release instructions. Since all uses of project_box
// are gone, this only walks through uses of the box itself (the retain count
// pointer).
SmallVector<SILInstruction *, 8> Worklist;
std::transform(ABI->use_begin(), ABI->use_end(), std::back_inserter(Worklist),
[](Operand *Op) -> SILInstruction * { return Op->getUser(); });
while (!Worklist.empty()) {
auto *User = Worklist.pop_back_val();
// Look through any mark_uninitialized, copy_values, begin_borrow.
if (isa<MarkUninitializedInst>(User) || isa<CopyValueInst>(User) ||
isa<BeginBorrowInst>(User)) {
auto Inst = cast<SingleValueInstruction>(User);
llvm::transform(Inst->getUses(), std::back_inserter(Worklist),
[](Operand *Op) -> SILInstruction * {
return Op->getUser();
});
Inst->replaceAllUsesWithUndef();
Inst->eraseFromParent();
continue;
}
assert(isa<StrongReleaseInst>(User) || isa<StrongRetainInst>(User) ||
isa<DeallocBoxInst>(User) || isa<ProjectBoxInst>(User) ||
isa<DestroyValueInst>(User) || isa<EndBorrowInst>(User));
User->eraseFromParent();
}
return true;
}
namespace {
/// A SILCloner subclass which clones a closure function while
/// promoting some of its box parameters to stack addresses.
class PromotedParamCloner : public SILClonerWithScopes<PromotedParamCloner> {
friend class SILInstructionVisitor<PromotedParamCloner>;
friend class SILCloner<PromotedParamCloner>;
SILFunction *Orig;
ArgIndexList &PromotedArgIndices;
SmallVector<SILValue, 4> NewPromotedArgs;
// The values in the original function that are promoted to stack
// references.
SmallPtrSet<SILValue, 4> OrigPromotedParameters;
public:
PromotedParamCloner(SILOptFunctionBuilder &FuncBuilder, SILFunction *Orig,
IsSerialized_t Serialized,
ArgIndexList &PromotedArgIndices, StringRef ClonedName);
void populateCloned();
SILFunction *getCloned() { return &getBuilder().getFunction(); }
private:
static SILFunction *initCloned(SILOptFunctionBuilder &FuncBuilder,
SILFunction *Orig, IsSerialized_t Serialized,
ArgIndexList &PromotedArgIndices,
StringRef ClonedName);
void visitStrongReleaseInst(StrongReleaseInst *Inst);
void visitDestroyValueInst(DestroyValueInst *Inst);
void visitStrongRetainInst(StrongRetainInst *Inst);
void visitCopyValueInst(CopyValueInst *Inst);
void visitProjectBoxInst(ProjectBoxInst *Inst);
void checkNoPromotedBoxInApply(ApplySite Apply);
#define APPLYSITE_INST(Name, Parent) void visit##Name(Name *Inst);
#include "swift/SIL/SILNodes.def"
};
} // end anonymous namespace
PromotedParamCloner::PromotedParamCloner(SILOptFunctionBuilder &FuncBuilder,
SILFunction *Orig,
IsSerialized_t Serialized,
ArgIndexList &PromotedArgIndices,
StringRef ClonedName)
: SILClonerWithScopes<PromotedParamCloner>(*initCloned(
FuncBuilder, Orig, Serialized, PromotedArgIndices, ClonedName)),
Orig(Orig), PromotedArgIndices(PromotedArgIndices) {
NewPromotedArgs.reserve(PromotedArgIndices.size());
assert(Orig->getDebugScope()->getParentFunction() !=
getCloned()->getDebugScope()->getParentFunction());
}
static std::string getClonedName(SILFunction *F, IsSerialized_t Serialized,
ArgIndexList &PromotedArgIndices) {
auto P = Demangle::SpecializationPass::AllocBoxToStack;
Mangle::FunctionSignatureSpecializationMangler Mangler(P, Serialized, F);
for (unsigned i : PromotedArgIndices) {
Mangler.setArgumentBoxToStack(i);
}
return Mangler.mangle();
}
/// Create the function corresponding to the clone of the
/// original closure with the signature modified to reflect promoted
/// parameters (which are specified by PromotedArgIndices).
SILFunction *PromotedParamCloner::initCloned(SILOptFunctionBuilder &FuncBuilder,
SILFunction *Orig,
IsSerialized_t Serialized,
ArgIndexList &PromotedArgIndices,
StringRef ClonedName) {
SILModule &M = Orig->getModule();
SmallVector<SILParameterInfo, 4> ClonedInterfaceArgTys;
// Generate a new parameter list with deleted parameters removed.
SILFunctionType *OrigFTI = Orig->getLoweredFunctionType();
unsigned Index = Orig->getConventions().getSILArgIndexOfFirstParam();
for (auto &param : OrigFTI->getParameters()) {
if (count(PromotedArgIndices, Index)) {
auto boxTy = param.getSILStorageInterfaceType().castTo<SILBoxType>();
assert(boxTy->getLayout()->getFields().size() == 1
&& "promoting compound box not implemented");
SILType paramTy;
{
auto &TC = Orig->getModule().Types;
paramTy = getSILBoxFieldType(TypeExpansionContext(*Orig), boxTy, TC, 0);
}
auto promotedParam = SILParameterInfo(paramTy.getASTType(),
ParameterConvention::Indirect_InoutAliasable);
ClonedInterfaceArgTys.push_back(promotedParam);
} else {
ClonedInterfaceArgTys.push_back(param);
}
++Index;
}
// Create the new function type for the cloned function with some of
// the parameters promoted.
auto ClonedTy = SILFunctionType::get(
OrigFTI->getInvocationGenericSignature(), OrigFTI->getExtInfo(),
OrigFTI->getCoroutineKind(), OrigFTI->getCalleeConvention(),
ClonedInterfaceArgTys, OrigFTI->getYields(), OrigFTI->getResults(),
OrigFTI->getOptionalErrorResult(), OrigFTI->getPatternSubstitutions(),
OrigFTI->getInvocationSubstitutions(), M.getASTContext(),
OrigFTI->getWitnessMethodConformanceOrInvalid());
assert((Orig->isTransparent() || Orig->isBare() || Orig->getLocation())
&& "SILFunction missing location");
assert((Orig->isTransparent() || Orig->isBare() || Orig->getDebugScope())
&& "SILFunction missing DebugScope");
assert(!Orig->isGlobalInit() && "Global initializer cannot be cloned");
auto *Fn = FuncBuilder.createFunction(
swift::getSpecializedLinkage(Orig, Orig->getLinkage()), ClonedName,
ClonedTy, Orig->getGenericEnvironment(), Orig->getLocation(),
Orig->isBare(), Orig->isTransparent(), Serialized, IsNotDynamic,
IsNotDistributed, Orig->getEntryCount(), Orig->isThunk(),
Orig->getClassSubclassScope(),
Orig->getInlineStrategy(), Orig->getEffectsKind(), Orig,
Orig->getDebugScope());
for (auto &Attr : Orig->getSemanticsAttrs()) {
Fn->addSemanticsAttr(Attr);
}
if (!Orig->hasOwnership()) {
Fn->setOwnershipEliminated();
}
return Fn;
}
/// Populate the body of the cloned closure, modifying instructions as
/// necessary to take into consideration the removed parameters.
void
PromotedParamCloner::populateCloned() {
SILFunction *Cloned = getCloned();
// Create arguments for the entry block
SILBasicBlock *OrigEntryBB = &*Orig->begin();
SILBasicBlock *ClonedEntryBB = Cloned->createBasicBlock();
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(OrigEntryBB->getArguments().size());
// Initialize all NewPromotedArgs slots to an invalid value.
NewPromotedArgs.resize(OrigEntryBB->getArguments().size());
unsigned ArgNo = 0;
auto I = OrigEntryBB->args_begin(), E = OrigEntryBB->args_end();
while (I != E) {
if (count(PromotedArgIndices, ArgNo)) {
// Create a new argument with the promoted type.
auto boxTy = (*I)->getType().castTo<SILBoxType>();
assert(boxTy->getLayout()->getFields().size() == 1
&& "promoting multi-field boxes not implemented yet");
auto promotedTy = getSILBoxFieldType(TypeExpansionContext(*Cloned), boxTy,
Cloned->getModule().Types, 0);
auto *promotedArg =
ClonedEntryBB->createFunctionArgument(promotedTy, (*I)->getDecl());
OrigPromotedParameters.insert(*I);
NewPromotedArgs[ArgNo] = promotedArg;
// We only promote boxes used in apply or projections or copy/destroy
// value operations.
// We should never see an apply user of the box, because we rewrite the
// applies and specialize the callees in dfs order.
// Projection users are folded when visited and copy/destroy operations
// are ignored.
entryArgs.push_back(SILValue());
} else {
// Create a new argument which copies the original argument.
entryArgs.push_back(ClonedEntryBB->createFunctionArgument(
(*I)->getType(), (*I)->getDecl()));
}
++ArgNo;
++I;
}
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
cloneFunctionBody(Orig, ClonedEntryBB, entryArgs);
}
/// Handle a strong_release instruction during cloning of a closure; if
/// it is a strong release of a promoted box argument, then it is replaced with
/// a ReleaseValue of the new object type argument, otherwise it is handled
/// normally.
void
PromotedParamCloner::visitStrongReleaseInst(StrongReleaseInst *Inst) {
// If it's a release of a promoted parameter, just drop the instruction.
if (OrigPromotedParameters.count(Inst->getOperand()))
return;
SILCloner<PromotedParamCloner>::visitStrongReleaseInst(Inst);
}
/// Handle a strong_release instruction during cloning of a closure; if
/// it is a strong release of a promoted box argument, then it is replaced with
/// a ReleaseValue of the new object type argument, otherwise it is handled
/// normally.
void PromotedParamCloner::visitDestroyValueInst(DestroyValueInst *Inst) {
// If we are a destroy of a promoted parameter, just drop the instruction. We
// look through copy_value to preserve current behavior.
SILInstruction *Tmp = Inst;
while (auto *CopyOp = dyn_cast<CopyValueInst>(Tmp->getOperand(0))) {
Tmp = CopyOp;
}
if (OrigPromotedParameters.count(Tmp->getOperand(0)))
return;
SILCloner<PromotedParamCloner>::visitDestroyValueInst(Inst);
}
void
PromotedParamCloner::visitStrongRetainInst(StrongRetainInst *Inst) {
// If it's a retain of a promoted parameter, just drop the instruction.
if (OrigPromotedParameters.count(Inst->getOperand()))
return;
SILCloner<PromotedParamCloner>::visitStrongRetainInst(Inst);
}
void PromotedParamCloner::visitCopyValueInst(CopyValueInst *cvi) {
// If it's a copy of a promoted parameter, just drop the instruction.
auto *tmp = cvi;
while (auto *copyOp = dyn_cast<CopyValueInst>(tmp->getOperand())) {
tmp = copyOp;
}
if (OrigPromotedParameters.count(tmp->getOperand()))
return;
SILCloner<PromotedParamCloner>::visitCopyValueInst(cvi);
}
void PromotedParamCloner::visitProjectBoxInst(ProjectBoxInst *pbi) {
// If it's a projection of a promoted parameter (or a copy_value of a promoted
// parameter), drop the instruction. Its uses will be replaced by the
// promoted address.
SILValue box = pbi->getOperand();
while (auto *copyOp = dyn_cast<CopyValueInst>(box)) {
box = copyOp->getOperand();
}
if (OrigPromotedParameters.count(box)) {
auto *origArg = cast<SILFunctionArgument>(box);
recordFoldedValue(pbi, NewPromotedArgs[origArg->getIndex()]);
return;
}
SILCloner<PromotedParamCloner>::visitProjectBoxInst(pbi);
}
// While cloning during specialization, make sure apply instructions do not have
// box arguments that need to be promoted.
// This is an assertion in debug builds only. The reason why this should never
// be true is that we have cloned our callees in DFS order meaning that any of
// our callees that had a promotable box will have already have been promoted
// away by the time this runs.
void PromotedParamCloner::checkNoPromotedBoxInApply(ApplySite Apply) {
#ifndef NDEBUG
for (auto &O : Apply.getArgumentOperands()) {
assert(OrigPromotedParameters.count(O.get()) == 0);
}
#endif
}
void PromotedParamCloner::visitApplyInst(ApplyInst *Inst) {
checkNoPromotedBoxInApply(Inst);
SILCloner<PromotedParamCloner>::visitApplyInst(Inst);
}
void PromotedParamCloner::visitBeginApplyInst(BeginApplyInst *Inst) {
checkNoPromotedBoxInApply(Inst);
SILCloner<PromotedParamCloner>::visitBeginApplyInst(Inst);
}
void PromotedParamCloner::visitPartialApplyInst(PartialApplyInst *Inst) {
checkNoPromotedBoxInApply(Inst);
SILCloner<PromotedParamCloner>::visitPartialApplyInst(Inst);
}
void PromotedParamCloner::visitTryApplyInst(TryApplyInst *Inst) {
checkNoPromotedBoxInApply(Inst);
SILCloner<PromotedParamCloner>::visitTryApplyInst(Inst);
}
/// Specialize ApplySite by promoting the parameters indicated by
/// indices. We expect these parameters to be replaced by stack address
/// references.
static SILInstruction *
specializeApplySite(SILOptFunctionBuilder &FuncBuilder, ApplySite Apply,
ArgIndexList &PromotedCalleeArgIndices,
AllocBoxToStackState &pass) {
auto *FRI = cast<FunctionRefInst>(Apply.getCallee());
assert(FRI && "Expected a direct ApplySite");
auto *F = FRI->getReferencedFunction();
assert(F && "Expected a referenced function!");
IsSerialized_t Serialized = IsNotSerialized;
if (Apply.getFunction()->isSerialized())
Serialized = IsSerializable;
std::string ClonedName =
getClonedName(F, Serialized, PromotedCalleeArgIndices);
auto &M = Apply.getModule();
SILFunction *ClonedFn;
if (auto *PrevFn = M.lookUpFunction(ClonedName)) {
assert(PrevFn->isSerialized() == Serialized);
ClonedFn = PrevFn;
} else {
// Clone the function the existing ApplySite references.
PromotedParamCloner Cloner(FuncBuilder, F, Serialized,
PromotedCalleeArgIndices,
ClonedName);
Cloner.populateCloned();
ClonedFn = Cloner.getCloned();
pass.T->addFunctionToPassManagerWorklist(ClonedFn, F);
}
// Now create the new ApplySite using the cloned function.
SmallVector<SILValue, 16> Args;
ValueLifetimeAnalysis::Frontier PAFrontier;
// Promote the arguments that need promotion.
for (auto &O : Apply.getArgumentOperands()) {
auto CalleeArgIndex = ApplySite(O.getUser()).getCalleeArgIndex(O);
if (!count(PromotedCalleeArgIndices, CalleeArgIndex)) {
Args.push_back(O.get());
continue;
}
SILValue Box = O.get();
assert((isa<SingleValueInstruction>(Box) && isa<AllocBoxInst>(Box) ||
isa<CopyValueInst>(Box) ||
isa<MarkUninitializedInst>(Box) ||
isa<BeginBorrowInst>(Box) ||
isa<SILFunctionArgument>(Box)) &&
"Expected either an alloc box or a copy of an alloc box or a "
"function argument");
SILBuilderWithScope::insertAfter(Box, [&](SILBuilder &B) {
Args.push_back(B.createProjectBox(Box.getLoc(), Box, 0));
});
// For a partial_apply, if this argument is promoted, it is a box that we're
// turning into an address because we've proven we can keep this value on
// the stack. The partial_apply had ownership of this box so we must now
// release it explicitly when the partial_apply is released.
if (Apply.getKind() == ApplySiteKind::PartialApplyInst) {
if (PAFrontier.empty()) {
auto *PAI = cast<PartialApplyInst>(Apply);
ValueLifetimeAnalysis VLA(PAI, PAI->getUses());
pass.CFGChanged |= !VLA.computeFrontier(
PAFrontier, ValueLifetimeAnalysis::AllowToModifyCFG);
assert(!PAFrontier.empty() &&
"partial_apply must have at least one use "
"to release the returned function");
}
// Insert destroys of the box at each point where the partial_apply
// becomes dead.
for (SILInstruction *FrontierInst : PAFrontier) {
SILBuilderWithScope Builder(FrontierInst);
Builder.emitDestroyValueOperation(Apply.getLoc(), Box);
}
}
}
auto ApplyInst = Apply.getInstruction();
SILBuilderWithScope Builder(ApplyInst);
// Build the function_ref and ApplySite.
SILValue FunctionRef = Builder.createFunctionRef(Apply.getLoc(), ClonedFn);
switch (Apply.getKind()) {
case ApplySiteKind::PartialApplyInst: {
auto *PAI = cast<PartialApplyInst>(ApplyInst);
return Builder.createPartialApply(
Apply.getLoc(), FunctionRef, Apply.getSubstitutionMap(), Args,
PAI->getType().getAs<SILFunctionType>()->getCalleeConvention(),
PAI->isOnStack(),
GenericSpecializationInformation::create(ApplyInst, Builder));
}
case ApplySiteKind::ApplyInst:
return Builder.createApply(
Apply.getLoc(), FunctionRef, Apply.getSubstitutionMap(), Args,
Apply.getApplyOptions(),
GenericSpecializationInformation::create(ApplyInst, Builder));
case ApplySiteKind::BeginApplyInst:
return Builder.createBeginApply(
Apply.getLoc(), FunctionRef, Apply.getSubstitutionMap(), Args,
Apply.getApplyOptions(),
GenericSpecializationInformation::create(ApplyInst, Builder));
case ApplySiteKind::TryApplyInst: {
auto TAI = cast<TryApplyInst>(Apply);
return Builder.createTryApply(
Apply.getLoc(), FunctionRef, Apply.getSubstitutionMap(), Args,
TAI->getNormalBB(), TAI->getErrorBB(),
TAI->getApplyOptions(),
GenericSpecializationInformation::create(ApplyInst, Builder));
}
}
llvm_unreachable("unhandled apply inst kind!");
}
static void rewriteApplySites(AllocBoxToStackState &pass) {
swift::SmallBlotMapVector<ApplySite, ArgIndexList, 8> AppliesToSpecialize;
ArgIndexList Indices;
// Build a map from the ApplySite to the indices of the operands
// that will be promoted in our rewritten version.
for (auto *O : pass.PromotedOperands) {
auto User = O->getUser();
auto Apply = ApplySite(User);
auto CalleeArgIndexNumber = Apply.getCalleeArgIndex(*O);
Indices.clear();
Indices.push_back(CalleeArgIndexNumber);
// AllocBoxStack opt promotes boxes passed to a chain of applies when it is
// safe to do so. All such applies have to be specialized to take pointer
// arguments instead of box arguments. This has to be done in dfs order.
// PromotedOperands is already populated in dfs order by
// `recursivelyFindBoxOperandsPromotableToAddress` w.r.t a single alloc_box.
// AppliesToSpecialize is then populated in the order of PromotedOperands.
// If multiple alloc_boxes are passed to the same apply instruction, then
// the apply instruction can appear multiple times in AppliesToSpecialize.
// Only its last appearance is maintained and previous appearances are
// blotted.
auto iterAndSuccess =
AppliesToSpecialize.insert(std::make_pair(Apply, Indices));
if (!iterAndSuccess.second) {
// Blot the previously inserted apply and insert at the end with updated
// indices
auto OldIndices = iterAndSuccess.first->getValue().second;
OldIndices.push_back(CalleeArgIndexNumber);
AppliesToSpecialize.erase(iterAndSuccess.first);
AppliesToSpecialize.insert(std::make_pair(Apply, OldIndices));
}
}
// Clone the referenced function of each ApplySite, removing the
// operands that we will not need, and remove the existing
// ApplySite.
SILOptFunctionBuilder FuncBuilder(*pass.T);
for (auto &It : AppliesToSpecialize) {
if (!It.hasValue()) {
continue;
}
auto Apply = It.getValue().first;
auto Indices = It.getValue().second;
// Sort the indices and unique them.
sortUnique(Indices);
auto *Replacement = specializeApplySite(FuncBuilder, Apply, Indices, pass);
assert(Apply.getKind() == ApplySite(Replacement).getKind());
Apply.getInstruction()->replaceAllUsesPairwiseWith(Replacement);
auto *FRI = cast<FunctionRefInst>(Apply.getCallee());
Apply.getInstruction()->eraseFromParent();
// TODO: Erase from module if there are no more uses.
if (FRI->use_empty())
FRI->eraseFromParent();
}
}
/// Clone closure bodies and rewrite partial applies. Returns the number of
/// alloc_box allocations promoted.
static unsigned rewritePromotedBoxes(AllocBoxToStackState &pass) {
// First we'll rewrite any ApplySite that we can to remove
// the box container pointer from the operands.
rewriteApplySites(pass);
unsigned Count = 0;
auto rend = pass.Promotable.rend();
for (auto I = pass.Promotable.rbegin(); I != rend; ++I) {
auto *ABI = *I;
if (rewriteAllocBoxAsAllocStack(ABI)) {
++Count;
ABI->eraseFromParent();
}
}
return Count;
}
namespace {
class AllocBoxToStack : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
// Don't rerun on deserialized functions. Nothing should have changed.
if (getFunction()->wasDeserializedCanonical())
return;
AllocBoxToStackState pass(this);
for (auto &BB : *getFunction()) {
for (auto &I : BB)
if (auto *ABI = dyn_cast<AllocBoxInst>(&I))
if (canPromoteAllocBox(ABI, pass.PromotedOperands))
pass.Promotable.push_back(ABI);
}
if (!pass.Promotable.empty()) {
auto Count = rewritePromotedBoxes(pass);
NumStackPromoted += Count;
if (Count) {
if (StackNesting::fixNesting(getFunction()) == StackNesting::Changes::CFG)
pass.CFGChanged = true;
}
invalidateAnalysis(
pass.CFGChanged
? SILAnalysis::InvalidationKind::FunctionBody
: SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
};
} // end anonymous namespace
SILTransform *swift::createAllocBoxToStack() {
return new AllocBoxToStack();
}