Files
swift-mirror/lib/SIL/IR/SILModule.cpp
Meghana Gupta cf4832e4d4 Prespecialize standard library only if it is loaded
We currently load it for prespecialization when it wasn't loaded initially.

This causes an inadvertant issue for invertible protocols.

When we don’t have the stdlib loaded initially, we “synthesize” the
invertible protocol from the Builtin module by creating a new `ProtocolDecl*`
and stashing it on the `ASTContext`.
If the stdlib gets loaded later, deserialized stdlib types conform to the deserialized `Escapable` protocol
which has a different `ProtocolDecl *` pointer for `Escapable`.
So queries like `conformsToInvertible` fail because they are using the wrong `ProtocolDecl*`
for `Copyable`/`Escapable` while looking up the ConformanceTable.
2024-11-12 12:05:23 -08:00

1045 lines
34 KiB
C++

//===--- SILModule.cpp - SILModule implementation -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-module"
#include "swift/SIL/SILModule.h"
#include "Linker.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/Notifications.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILMoveOnlyDeinit.h"
#include "swift/SIL/SILRemarkStreamer.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/YAMLTraits.h"
#include <functional>
using namespace swift;
using namespace Lowering;
STATISTIC(NumSlabsAllocated, "number of slabs allocated in SILModule");
class SILModule::SerializationCallback final
: public DeserializationNotificationHandler {
void didDeserialize(ModuleDecl *M, SILFunction *fn) override {
updateLinkage(fn);
}
void didDeserialize(ModuleDecl *M, SILGlobalVariable *var) override {
updateLinkage(var);
// For globals we currently do not support available_externally.
// In the interpreter it would result in two instances for a single global:
// one in the imported module and one in the main module.
var->setDeclaration(true);
}
void didDeserialize(ModuleDecl *M, SILVTable *vtable) override {
// TODO: should vtables get linkage?
//updateLinkage(vtable);
}
void didDeserialize(ModuleDecl *M, SILWitnessTable *wt) override {
updateLinkage(wt);
}
template <class T> void updateLinkage(T *decl) {
switch (decl->getLinkage()) {
case SILLinkage::Public:
decl->setLinkage(SILLinkage::PublicExternal);
return;
case SILLinkage::PublicNonABI:
// PublicNonABI functions receive Shared linkage, so that
// they have "link once" semantics when deserialized by multiple
// translation units in the same Swift module.
decl->setLinkage(SILLinkage::Shared);
return;
case SILLinkage::Package:
decl->setLinkage(SILLinkage::PackageExternal);
return;
case SILLinkage::PackageNonABI: // Same as PublicNonABI
decl->setLinkage(SILLinkage::Shared);
return;
case SILLinkage::Hidden:
decl->setLinkage(SILLinkage::HiddenExternal);
return;
case SILLinkage::Private:
llvm_unreachable("cannot make a private external symbol");
case SILLinkage::PublicExternal:
case SILLinkage::PackageExternal:
case SILLinkage::HiddenExternal:
case SILLinkage::Shared:
return;
}
}
StringRef getName() const override {
return "SILModule::SerializationCallback";
}
};
SILModule::SILModule(llvm::PointerUnion<FileUnit *, ModuleDecl *> context,
Lowering::TypeConverter &TC, const SILOptions &Options,
const IRGenOptions *irgenOptions)
: Stage(SILStage::Raw), loweredAddresses(!Options.EnableSILOpaqueValues),
indexTrieRoot(new IndexTrieNode()), Options(Options),
irgenOptions(irgenOptions), serialized(false),
regDeserializationNotificationHandlerForNonTransparentFuncOME(false),
regDeserializationNotificationHandlerForAllFuncOME(false),
hasAccessMarkerHandler(false),
prespecializedFunctionDeclsImported(false), SerializeSILAction(),
Types(TC) {
assert(!context.isNull());
if (auto *file = context.dyn_cast<FileUnit *>()) {
AssociatedDeclContext = file;
} else {
AssociatedDeclContext = context.get<ModuleDecl *>();
}
TheSwiftModule = AssociatedDeclContext->getParentModule();
// We always add the base SILModule serialization callback.
std::unique_ptr<DeserializationNotificationHandler> callback(
new SILModule::SerializationCallback());
deserializationNotificationHandlers.add(std::move(callback));
}
SILModule::~SILModule() {
#ifndef NDEBUG
NumSlabsAllocated += numAllocatedSlabs;
assert(numAllocatedSlabs == freeSlabs.size() && "leaking slabs in SILModule");
#endif
assert(!hasUnresolvedLocalArchetypeDefinitions());
// Decrement ref count for each SILGlobalVariable with static initializers.
for (SILGlobalVariable &v : silGlobals) {
v.clear();
}
for (auto vt : vtables)
vt->~SILVTable();
for (auto deinit : moveOnlyDeinits)
deinit->~SILMoveOnlyDeinit();
// Drop everything functions in this module reference.
//
// This is necessary since the functions may reference each other. We don't
// need to worry about sil_witness_tables since witness tables reference each
// other via protocol conformances and sil_vtables don't reference each other
// at all.
for (SILFunction &F : *this) {
F.dropAllReferences();
F.dropDynamicallyReplacedFunction();
F.dropReferencedAdHocRequirementWitnessFunction();
F.clearSpecializeAttrs();
}
for (SILFunction &F : *this) {
F.eraseAllBlocks();
}
flushDeletedInsts();
}
std::unique_ptr<SILModule> SILModule::createEmptyModule(
llvm::PointerUnion<FileUnit *, ModuleDecl *> context,
Lowering::TypeConverter &TC, const SILOptions &Options,
const IRGenOptions *irgenOptions) {
return std::unique_ptr<SILModule>(new SILModule(context, TC, Options,
irgenOptions));
}
ASTContext &SILModule::getASTContext() const {
return TheSwiftModule->getASTContext();
}
void *SILModule::allocate(unsigned Size, unsigned Align) const {
if (getASTContext().LangOpts.UseMalloc)
return AlignedAlloc(Size, Align);
return BPA.Allocate(Size, Align);
}
FixedSizeSlab *SILModule::allocSlab() {
if (freeSlabs.empty()) {
numAllocatedSlabs++;
return new (*this) FixedSizeSlab();
}
FixedSizeSlab *slab = &*freeSlabs.rbegin();
freeSlabs.remove(*slab);
return slab;
}
void SILModule::freeSlab(FixedSizeSlab *slab) {
freeSlabs.push_back(*slab);
assert(slab->overflowGuard == FixedSizeSlab::magicNumber);
}
void SILModule::freeAllSlabs(SlabList &slabs) {
freeSlabs.splice(freeSlabs.end(), slabs);
}
void *SILModule::allocateInst(unsigned Size, unsigned Align) const {
return AlignedAlloc(Size, Align);
}
void SILModule::willDeleteInstruction(SILInstruction *I) {
// Update RootLocalArchetypeDefs.
I->forEachDefinedLocalEnvironment([&](GenericEnvironment *genericEnv,
SILValue dependency) {
LocalArchetypeKey key = {genericEnv, I->getFunction()};
// In case `willDeleteInstruction` is called twice for the
// same instruction, we need to check if the archetype is really
// still in the map for this instruction.
if (RootLocalArchetypeDefs.lookup(key) == dependency)
RootLocalArchetypeDefs.erase(key);
});
}
void SILModule::scheduleForDeletion(SILInstruction *I) {
I->dropAllReferences();
scheduledForDeletion.push_back(I);
}
void SILModule::flushDeletedInsts() {
for (SILInstruction *instToDelete : scheduledForDeletion) {
SILInstruction::destroy(instToDelete);
AlignedFree(instToDelete);
}
scheduledForDeletion.clear();
}
SILWitnessTable *
SILModule::lookUpWitnessTable(const ProtocolConformance *C) {
assert(C && "null conformance passed to lookUpWitnessTable");
// Attempt to lookup the witness table from the table.
auto found = WitnessTableMap.find(C);
if (found == WitnessTableMap.end())
return nullptr;
return found->second;
}
SILDefaultWitnessTable *
SILModule::lookUpDefaultWitnessTable(const ProtocolDecl *Protocol,
bool deserializeLazily) {
// Note: we only ever look up default witness tables in the translation unit
// that is currently being compiled, since they SILGen generates them when it
// visits the protocol declaration, and IRGen emits them when emitting the
// protocol descriptor metadata for the protocol.
auto found = DefaultWitnessTableMap.find(Protocol);
if (found == DefaultWitnessTableMap.end()) {
if (deserializeLazily) {
SILLinkage linkage =
getSILLinkage(getDeclLinkage(Protocol), ForDefinition);
SILDefaultWitnessTable *wtable =
SILDefaultWitnessTable::create(*this, linkage, Protocol);
wtable = getSILLoader()->lookupDefaultWitnessTable(wtable);
if (wtable)
DefaultWitnessTableMap[Protocol] = wtable;
return wtable;
}
return nullptr;
}
return found->second;
}
SILDefaultWitnessTable *
SILModule::createDefaultWitnessTableDeclaration(const ProtocolDecl *Protocol,
SILLinkage Linkage) {
return SILDefaultWitnessTable::create(*this, Linkage, Protocol);
}
void SILModule::deleteWitnessTable(SILWitnessTable *Wt) {
auto Conf = Wt->getConformance();
assert(lookUpWitnessTable(Conf) == Wt);
getSILLoader()->invalidateWitnessTable(Wt);
WitnessTableMap.erase(Conf);
witnessTables.erase(Wt);
}
const IntrinsicInfo &SILModule::getIntrinsicInfo(Identifier ID) {
unsigned OldSize = IntrinsicIDCache.size();
IntrinsicInfo &Info = IntrinsicIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == IntrinsicIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
StringRef NameRef = getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
Info.ID = getLLVMIntrinsicID(NameRef);
return Info;
}
const BuiltinInfo &SILModule::getBuiltinInfo(Identifier ID) {
unsigned OldSize = BuiltinIDCache.size();
BuiltinInfo &Info = BuiltinIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == BuiltinIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
// Find the matching ID.
StringRef OperationName =
getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
// Several operation names have suffixes and don't match the name from
// Builtins.def, so handle those first.
if (OperationName.starts_with("fence_"))
Info.ID = BuiltinValueKind::Fence;
else if (OperationName.starts_with("ifdef_"))
Info.ID = BuiltinValueKind::Ifdef;
else if (OperationName.starts_with("cmpxchg_"))
Info.ID = BuiltinValueKind::CmpXChg;
else if (OperationName.starts_with("atomicrmw_"))
Info.ID = BuiltinValueKind::AtomicRMW;
else if (OperationName.starts_with("atomicload_"))
Info.ID = BuiltinValueKind::AtomicLoad;
else if (OperationName.starts_with("atomicstore_"))
Info.ID = BuiltinValueKind::AtomicStore;
else if (OperationName.starts_with("allocWithTailElems_"))
Info.ID = BuiltinValueKind::AllocWithTailElems;
else if (OperationName.starts_with("applyDerivative_"))
Info.ID = BuiltinValueKind::ApplyDerivative;
else if (OperationName.starts_with("applyTranspose_"))
Info.ID = BuiltinValueKind::ApplyTranspose;
else
Info.ID = llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(id, name, attrs) .Case(name, BuiltinValueKind::id)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
return Info;
}
SILFunction *SILModule::lookUpFunction(SILDeclRef fnRef) {
auto name = fnRef.mangle();
return lookUpFunction(name);
}
bool SILModule::loadFunction(SILFunction *F, LinkingMode LinkMode) {
SILFunction *NewF =
getSILLoader()->lookupSILFunction(F, /*onlyUpdateLinkage*/ false);
if (!NewF)
return false;
linkFunction(NewF, LinkMode);
assert(F == NewF);
return true;
}
SILFunction *SILModule::loadFunction(StringRef name, LinkingMode LinkMode,
std::optional<SILLinkage> linkage) {
SILFunction *func = lookUpFunction(name);
if (!func)
func = getSILLoader()->lookupSILFunction(name, linkage);
if (!func)
return nullptr;
linkFunction(func, LinkMode);
return func;
}
void SILModule::updateFunctionLinkage(SILFunction *F) {
getSILLoader()->lookupSILFunction(F, /*onlyUpdateLinkage*/ true);
}
bool SILModule::linkFunction(SILFunction *F, SILModule::LinkingMode Mode) {
return SILLinkerVisitor(*this, Mode).processFunction(F);
}
bool SILModule::hasFunction(StringRef Name) {
if (lookUpFunction(Name))
return true;
return getSILLoader()->hasSILFunction(Name);
}
void SILModule::invalidateSILLoaderCaches() {
getSILLoader()->invalidateAllCaches();
}
SILFunction *SILModule::removeFromZombieList(StringRef Name) {
if (auto *Zombie = ZombieFunctionTable.lookup(Name)) {
assert(Zombie->snapshotID == 0 && "zombie cannot be a snapthot function");
ZombieFunctionTable.erase(Name);
zombieFunctions.remove(Zombie);
// The owner of the function's Name is the ZombieFunctionTable key, which is
// freed by erase().
// Make sure nobody accesses the name string after it is freed.
Zombie->setName(StringRef());
return Zombie;
}
return nullptr;
}
/// Erase a function from the module.
void SILModule::eraseFunction(SILFunction *F) {
assert(!F->isZombie() && "zombie function is in list of alive functions");
assert(F->snapshotID == 0 && "cannot erase a snapshot function");
llvm::StringMapEntry<SILFunction*> *entry =
&*ZombieFunctionTable.insert(std::make_pair(F->getName(), nullptr)).first;
assert(!entry->getValue() && "Zombie function already exists");
StringRef zombieName = entry->getKey();
// The owner of the function's Name is the FunctionTable key. As we remove
// the function from the table we need to use the allocated name string from
// the ZombieFunctionTable.
FunctionTable.erase(F->getName());
F->setName(zombieName);
// The function is dead, but we need it later (at IRGen) for debug info
// or vtable stub generation. So we move it into the zombie list.
getFunctionList().remove(F);
zombieFunctions.push_back(F);
entry->setValue(F);
F->setZombie();
// This opens dead-function-removal opportunities for called functions.
// (References are not needed anymore.)
F->clear();
F->dropDynamicallyReplacedFunction();
F->dropReferencedAdHocRequirementWitnessFunction();
// Drop references for any _specialize(target:) functions.
F->clearSpecializeAttrs();
}
void SILModule::invalidateFunctionInSILCache(SILFunction *F) {
getSILLoader()->invalidateFunction(F);
}
/// Erase a global SIL variable from the module.
void SILModule::eraseGlobalVariable(SILGlobalVariable *gv) {
getSILLoader()->invalidateGlobalVariable(gv);
GlobalVariableMap.erase(gv->getName());
getSILGlobalList().erase(gv);
}
SILVTable *SILModule::lookUpVTable(const ClassDecl *C,
bool deserializeLazily) {
if (!C)
return nullptr;
// First try to look up R from the lookup table.
auto R = VTableMap.find(C);
if (R != VTableMap.end())
return R->second;
if (!deserializeLazily)
return nullptr;
// If that fails, try to deserialize it. If that fails, return nullptr.
SILVTable *Vtbl = getSILLoader()->lookupVTable(C);
if (!Vtbl)
return nullptr;
if (C->walkSuperclasses([&](ClassDecl *S) {
auto R = VTableMap.find(S);
if (R != VTableMap.end())
return TypeWalker::Action::Continue;
SILVTable *Vtbl = getSILLoader()->lookupVTable(S);
if (!Vtbl) {
return TypeWalker::Action::Stop;
}
VTableMap[S] = Vtbl;
return TypeWalker::Action::Continue;
})) {
return nullptr;
}
// If we succeeded, map C -> VTbl in the table and return VTbl.
VTableMap[C] = Vtbl;
return Vtbl;
}
SILMoveOnlyDeinit *SILModule::lookUpMoveOnlyDeinit(const NominalTypeDecl *C,
bool deserializeLazily) {
if (!C)
return nullptr;
// First try to look up R from the lookup table.
auto iter = MoveOnlyDeinitMap.find(C);
if (iter != MoveOnlyDeinitMap.end())
return iter->second;
if (!deserializeLazily)
return nullptr;
// If that fails, try to deserialize it. If that fails, return nullptr.
auto *tbl = getSILLoader()->lookupMoveOnlyDeinit(C);
if (!tbl)
return nullptr;
// If we succeeded, map C -> VTbl in the table and return VTbl.
MoveOnlyDeinitMap[C] = tbl;
return tbl;
}
SILVTable *SILModule::lookUpSpecializedVTable(SILType classTy) {
// First try to look up R from the lookup table.
auto R = SpecializedVTableMap.find(classTy);
if (R != SpecializedVTableMap.end())
return R->second;
return nullptr;
}
SerializedSILLoader *SILModule::getSILLoader() {
// If the SILLoader is null, create it.
if (!SILLoader)
SILLoader = SerializedSILLoader::create(
getASTContext(), this, &deserializationNotificationHandlers);
// Return the SerializedSILLoader.
return SILLoader.get();
}
/// Given a conformance \p C and a protocol requirement \p Requirement,
/// search the witness table for the conformance and return the witness thunk
/// for the requirement.
std::pair<SILFunction *, SILWitnessTable *>
SILModule::lookUpFunctionInWitnessTable(ProtocolConformanceRef C,
SILDeclRef Requirement,
bool lookupInSpecializedWitnessTable,
SILModule::LinkingMode linkingMode) {
if (!C.isConcrete())
return {nullptr, nullptr};
if (getStage() != SILStage::Lowered) {
SILLinkerVisitor linker(*this, linkingMode);
linker.processConformance(C);
}
ProtocolConformance *conf = C.getConcrete();
if (auto *inheritedC = dyn_cast<InheritedProtocolConformance>(conf))
conf = inheritedC->getInheritedConformance();
if (!isa<SpecializedProtocolConformance>(conf) || !lookupInSpecializedWitnessTable) {
conf = conf->getRootConformance();
}
SILWitnessTable *wt = lookUpWitnessTable(conf);
if (!wt) {
LLVM_DEBUG(llvm::dbgs() << " Failed speculative lookup of "
"witness for: ";
C.dump(llvm::dbgs()); Requirement.dump());
return {nullptr, nullptr};
}
// Okay, we found the correct witness table. Now look for the method.
for (auto &Entry : wt->getEntries()) {
// Look at method entries only.
if (Entry.getKind() != SILWitnessTable::WitnessKind::Method)
continue;
SILWitnessTable::MethodWitness MethodEntry = Entry.getMethodWitness();
// Check if this is the member we were looking for.
if (MethodEntry.Requirement != Requirement)
continue;
return {MethodEntry.Witness, wt};
}
return {nullptr, nullptr};
}
/// Given a protocol \p Protocol and a requirement \p Requirement,
/// search the protocol's default witness table and return the default
/// witness thunk for the requirement.
std::pair<SILFunction *, SILDefaultWitnessTable *>
SILModule::lookUpFunctionInDefaultWitnessTable(const ProtocolDecl *Protocol,
SILDeclRef Requirement,
bool deserializeLazily) {
// Look up the default witness table associated with our protocol from the
// SILModule.
auto Ret = lookUpDefaultWitnessTable(Protocol, deserializeLazily);
// If no default witness table was found, bail.
//
// FIXME: Could be an assert if we fix non-single-frontend mode to link
// together serialized SIL emitted by each translation unit.
if (!Ret) {
LLVM_DEBUG(llvm::dbgs() << " Failed speculative lookup of default "
"witness for " << Protocol->getName() << " ";
Requirement.dump());
return std::make_pair(nullptr, nullptr);
}
// Okay, we found the correct default witness table. Now look for the method.
for (auto &Entry : Ret->getEntries()) {
// Ignore dummy entries emitted for non-method requirements, as well as
// requirements without default implementations.
if (!Entry.isValid() || Entry.getKind() != SILWitnessTable::Method)
continue;
// Check if this is the member we were looking for.
if (Entry.getMethodWitness().Requirement != Requirement)
continue;
return std::make_pair(Entry.getMethodWitness().Witness, Ret);
}
// This requirement doesn't have a default implementation.
return std::make_pair(nullptr, nullptr);
}
SILFunction *
SILModule::
lookUpFunctionInVTable(ClassDecl *Class, SILDeclRef Member) {
// Try to lookup a VTable for Class from the module...
auto *Vtbl = lookUpVTable(Class);
// Bail, if the lookup of VTable fails.
if (!Vtbl) {
return nullptr;
}
// Ok, we have a VTable. Try to lookup the SILFunction implementation from
// the VTable.
if (auto E = Vtbl->getEntry(*this, Member))
return E->getImplementation();
return nullptr;
}
SILFunction *
SILModule::lookUpMoveOnlyDeinitFunction(const NominalTypeDecl *nomDecl) {
assert(!nomDecl->canBeCopyable());
auto *tbl = lookUpMoveOnlyDeinit(nomDecl);
// Bail, if the lookup of VTable fails.
if (!tbl) {
return nullptr;
}
return tbl->getImplementation();
}
SILDifferentiabilityWitness *
SILModule::lookUpDifferentiabilityWitness(StringRef name) {
auto it = DifferentiabilityWitnessMap.find(name);
if (it != DifferentiabilityWitnessMap.end())
return it->second;
return nullptr;
}
SILDifferentiabilityWitness *
SILModule::lookUpDifferentiabilityWitness(SILDifferentiabilityWitnessKey key) {
Mangle::ASTMangler mangler;
return lookUpDifferentiabilityWitness(
mangler.mangleSILDifferentiabilityWitness(
key.originalFunctionName, key.kind, key.config));
}
/// Look up the differentiability witness corresponding to the given indices.
llvm::ArrayRef<SILDifferentiabilityWitness *>
SILModule::lookUpDifferentiabilityWitnessesForFunction(StringRef name) {
return DifferentiabilityWitnessesByFunction[name];
}
bool SILModule::loadDifferentiabilityWitness(SILDifferentiabilityWitness *dw) {
auto *newDW = getSILLoader()->lookupDifferentiabilityWitness(dw->getKey());
if (!newDW)
return false;
assert(dw == newDW);
return true;
}
void SILModule::registerDeserializationNotificationHandler(
std::unique_ptr<DeserializationNotificationHandler> &&handler) {
deserializationNotificationHandlers.add(std::move(handler));
}
SILValue SILModule::getLocalGenericEnvironmentDef(GenericEnvironment *genericEnv,
SILFunction *inFunction) {
SILValue &def = RootLocalArchetypeDefs[{genericEnv, inFunction}];
if (!def) {
numUnresolvedLocalArchetypes++;
def = ::new PlaceholderValue(inFunction,
SILType::getPrimitiveAddressType(
inFunction->getASTContext().TheEmptyTupleType));
}
return def;
}
SILValue SILModule::getRootLocalArchetypeDef(CanLocalArchetypeType archetype,
SILFunction *inFunction) {
return getLocalGenericEnvironmentDef(archetype->getGenericEnvironment(),
inFunction);
}
void SILModule::reclaimUnresolvedLocalArchetypeDefinitions() {
llvm::DenseMap<LocalArchetypeKey, SILValue> newLocalArchetypeDefs;
for (auto pair : RootLocalArchetypeDefs) {
if (auto *placeholder = dyn_cast<PlaceholderValue>(pair.second)) {
// If a placeholder has no uses, the instruction that introduced it
// was deleted before the local archetype was resolved. Reclaim the
// placeholder so that we don't complain.
if (placeholder->use_empty()) {
assert(numUnresolvedLocalArchetypes > 0);
--numUnresolvedLocalArchetypes;
::delete placeholder;
continue;
}
}
newLocalArchetypeDefs.insert(pair);
}
std::swap(newLocalArchetypeDefs, RootLocalArchetypeDefs);
}
bool SILModule::hasUnresolvedLocalArchetypeDefinitions() {
return numUnresolvedLocalArchetypes != 0;
}
/// Get a unique index for a struct or class field in layout order.
unsigned SILModule::getFieldIndex(NominalTypeDecl *decl, VarDecl *field) {
auto iter = fieldIndices.find({decl, field});
if (iter != fieldIndices.end())
return iter->second;
unsigned index = 0;
if (auto *classDecl = dyn_cast<ClassDecl>(decl)) {
for (auto *superDecl = classDecl->getSuperclassDecl(); superDecl != nullptr;
superDecl = superDecl->getSuperclassDecl()) {
index += superDecl->getStoredProperties().size();
}
}
for (VarDecl *property : decl->getStoredProperties()) {
if (field == property) {
fieldIndices[{decl, field}] = index;
return index;
}
++index;
}
llvm_unreachable("The field decl for a struct_extract, struct_element_addr, "
"or ref_element_addr must be an accessible stored "
"property of the operand type");
}
unsigned SILModule::getCaseIndex(EnumElementDecl *enumElement) {
auto iter = enumCaseIndices.find(enumElement);
if (iter != enumCaseIndices.end())
return iter->second;
unsigned idx = 0;
for (EnumElementDecl *e : enumElement->getParentEnum()->getAllElements()) {
if (e == enumElement) {
enumCaseIndices[enumElement] = idx;
return idx;
}
++idx;
}
llvm_unreachable("enum element not found in enum decl");
}
void SILModule::notifyAddedInstruction(SILInstruction *inst) {
inst->forEachDefinedLocalEnvironment([&](GenericEnvironment *genericEnv,
SILValue dependency) {
SILValue &val = RootLocalArchetypeDefs[{genericEnv, inst->getFunction()}];
if (val) {
if (!isa<PlaceholderValue>(val)) {
// Print a useful error message (and not just abort with an assert).
llvm::errs() << "re-definition of local environment in function "
<< inst->getFunction()->getName() << ":\n";
inst->print(llvm::errs());
llvm::errs() << "previously defined in function "
<< val->getFunction()->getName() << ":\n";
val->print(llvm::errs());
abort();
}
// The local environment was unresolved so far. Replace the placeholder
// by inst.
auto *placeholder = cast<PlaceholderValue>(val);
placeholder->replaceAllUsesWith(dependency);
::delete placeholder;
assert(numUnresolvedLocalArchetypes > 0);
numUnresolvedLocalArchetypes--;
}
val = dependency;
});
}
void SILModule::notifyMovedInstruction(SILInstruction *inst,
SILFunction *fromFunction) {
for (auto &op : inst->getAllOperands()) {
if (auto *undef = dyn_cast<SILUndef>(op.get())) {
op.set(SILUndef::get(inst->getFunction(), undef->getType()));
}
}
inst->forEachDefinedLocalEnvironment([&](GenericEnvironment *genericEnv,
SILValue dependency) {
LocalArchetypeKey key = {genericEnv, fromFunction};
assert(RootLocalArchetypeDefs.lookup(key) == dependency &&
"archetype def was not registered");
RootLocalArchetypeDefs.erase(key);
RootLocalArchetypeDefs[{genericEnv, inst->getFunction()}] = dependency;
});
}
// TODO: We should have an "isNoReturn" bit on Swift's BuiltinInfo, but for
// now, let's recognize noreturn intrinsics and builtins specially here.
bool SILModule::isNoReturnBuiltinOrIntrinsic(Identifier Name) {
const auto &IntrinsicInfo = getIntrinsicInfo(Name);
if (IntrinsicInfo.ID != llvm::Intrinsic::not_intrinsic) {
return IntrinsicInfo.getOrCreateAttributes(getASTContext())
.hasFnAttr(llvm::Attribute::NoReturn);
}
const auto &BuiltinInfo = getBuiltinInfo(Name);
switch (BuiltinInfo.ID) {
default:
return false;
case BuiltinValueKind::Unreachable:
case BuiltinValueKind::CondUnreachable:
case BuiltinValueKind::UnexpectedError:
case BuiltinValueKind::ErrorInMain:
return true;
}
}
bool SILModule::
shouldSerializeEntitiesAssociatedWithDeclContext(const DeclContext *DC) const {
// Serialize entities associated with this module's associated context.
if (DC->isChildContextOf(getAssociatedContext())) {
return true;
}
// Serialize entities associated with clang modules, since other entities
// may depend on them, and someone who deserializes those entities may not
// have their own copy.
if (isa<ClangModuleUnit>(DC->getModuleScopeContext())) {
return true;
}
return false;
}
/// Returns true if it is the optimized OnoneSupport module.
bool SILModule::isOptimizedOnoneSupportModule() const {
return getOptions().shouldOptimize() &&
getSwiftModule()->isOnoneSupportModule();
}
void SILModule::setSerializeSILAction(SILModule::ActionCallback Action) {
assert(!SerializeSILAction && "Serialization action can be set only once");
SerializeSILAction = Action;
}
SILModule::ActionCallback SILModule::getSerializeSILAction() const {
return SerializeSILAction;
}
void SILModule::serialize() {
assert(SerializeSILAction && "Serialization action should be set");
assert(!isSerialized() && "The module was serialized already");
SerializeSILAction();
setSerialized();
}
void SILModule::installSILRemarkStreamer() {
assert(!silRemarkStreamer && "SIL Remark Streamer is already installed!");
silRemarkStreamer = SILRemarkStreamer::create(*this);
}
void SILModule::promoteLinkages() {
for (auto &Fn : functions) {
// Ignore functions with shared linkage
if (Fn.getLinkage() == SILLinkage::Shared)
continue;
if (Fn.isDefinition())
Fn.setLinkage(SILLinkage::Public);
else
Fn.setLinkage(SILLinkage::PublicExternal);
}
for (auto &Global : silGlobals) {
// Ignore globals with shared linkage
if (Global.getLinkage() == SILLinkage::Shared)
continue;
if (Global.isDefinition())
Global.setLinkage(SILLinkage::Public);
else
Global.setLinkage(SILLinkage::PublicExternal);
}
// TODO: Promote linkage of other SIL entities
}
bool SILModule::isStdlibModule() const {
return TheSwiftModule->isStdlibModule();
}
void SILModule::performOnceForPrespecializedImportedExtensions(
llvm::function_ref<void(AbstractFunctionDecl *)> action) {
if (prespecializedFunctionDeclsImported)
return;
// No prespecitalizations in embedded Swift
if (getASTContext().LangOpts.hasFeature(Feature::Embedded))
return;
SmallVector<ModuleDecl *, 8> importedModules;
// Add the Swift module.
if (!isStdlibModule()) {
auto *SwiftStdlib = getASTContext().getStdlibModule();
if (SwiftStdlib)
importedModules.push_back(SwiftStdlib);
}
// Add explicitly imported modules.
SmallVector<Decl *, 32> topLevelDecls;
getSwiftModule()->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
if (auto importDecl = dyn_cast<ImportDecl>(D)) {
if (!importDecl->getModule() ||
importDecl->getModule()->isNonSwiftModule())
continue;
importedModules.push_back(importDecl->getModule());
}
}
for (auto *module : importedModules) {
SmallVector<Decl *, 16> prespecializations;
module->getExportedPrespecializations(prespecializations);
for (auto *p : prespecializations) {
if (auto *vd = dyn_cast<AbstractFunctionDecl>(p)) {
action(vd);
}
}
}
prespecializedFunctionDeclsImported = true;
}
void SILModule::moveBefore(SILModule::iterator moveAfter, SILFunction *fn) {
assert(&fn->getModule() == this);
assert(&moveAfter->getModule() == this);
assert(moveAfter != end() &&
"We assume that moveAfter must not be end since nothing is after end");
getFunctionList().remove(fn->getIterator());
getFunctionList().insert(moveAfter, fn);
}
void SILModule::moveAfter(SILModule::iterator moveAfter, SILFunction *fn) {
assert(&fn->getModule() == this);
assert(&moveAfter->getModule() == this);
assert(moveAfter != end() &&
"We assume that moveAfter must not be end since nothing is after end");
getFunctionList().remove(fn->getIterator());
getFunctionList().insertAfter(moveAfter, fn);
}
SILProperty *
SILProperty::create(SILModule &M, unsigned Serialized, AbstractStorageDecl *Decl,
std::optional<KeyPathPatternComponent> Component) {
auto prop = new (M) SILProperty(Serialized, Decl, Component);
M.properties.push_back(prop);
return prop;
}
// Definition from SILLinkage.h.
SILLinkage swift::getDeclSILLinkage(const ValueDecl *decl) {
AccessLevel access = decl->getEffectiveAccess();
SILLinkage linkage;
switch (access) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
linkage = SILLinkage::Private;
break;
case AccessLevel::Internal:
linkage = SILLinkage::Hidden;
break;
case AccessLevel::Package:
linkage = SILLinkage::Package;
break;
case AccessLevel::Public:
case AccessLevel::Open:
linkage = SILLinkage::Public;
break;
}
return linkage;
}
void swift::simple_display(llvm::raw_ostream &out, const SILModule *M) {
if (!M) {
out << "(null)";
return;
}
out << "SIL for ";
simple_display(out, M->getSwiftModule());
}
SourceLoc swift::extractNearestSourceLoc(const SILModule *M) {
if (!M)
return SourceLoc();
return extractNearestSourceLoc(M->getSwiftModule());
}
bool Lowering::usesObjCAllocator(ClassDecl *theClass) {
// If the root class was implemented in Objective-C, use Objective-C's
// allocation methods because they may have been overridden.
return theClass->getObjectModel() == ReferenceCounting::ObjC;
}
bool Lowering::needsIsolatingDestructor(DestructorDecl *dd) {
auto ai = swift::getActorIsolation(dd);
if (!ai.isActorIsolated()) {
return false;
}
DestructorDecl *firstIsolated = dd;
while (true) {
DestructorDecl *next = firstIsolated->getSuperDeinit();
if (!next)
break;
auto ai = swift::getActorIsolation(next);
if (!ai.isActorIsolated())
break;
firstIsolated = next;
}
// If isolation was introduced in ObjC code, then we assume that ObjC code
// also overrides retain/release to make sure that dealloc is called on the
// correct executor in the first place.
return firstIsolated->getClangNode().isNull();
}