Files
swift-mirror/lib/IRGen/GenIntegerLiteral.cpp
Evan Wilde 8ce6ee8dd1 Updating API usages
LLVM deprecated, renamed, and removed a bunch of APIs. This patch
contains a lot of the changes needed to deal with that.

The SetVector type changed the template parameters.

APInt updated multiple names, countPopulation became popcount,
getAllOnesValue became getAllOnes, getNullValue became getZero, etc...

Clang type nullability check stopped taking a clang AST context.

The LLVM IRGen Function type stopped exposing basic block list directly,
but gained enough API surface that the translation isn't too bad.
(GenControl.cpp, LLVMMergeFunctions.cpp)

llvm::Optional had a transform function. That was being used in a couple
of places, so I've added a new implementation under STLExtras that
transforms valid optionals, otherwise it returns nullopt.
2023-07-17 10:53:42 -07:00

448 lines
17 KiB
C++

//===--- GenIntegerLiteral.cpp - IRGen for Builtin.IntegerLiteral ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for Builtin.IntegerLiteral.
//
//===----------------------------------------------------------------------===//
#include "GenIntegerLiteral.h"
#include "swift/ABI/MetadataValues.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/GlobalVariable.h"
#include "BitPatternBuilder.h"
#include "Explosion.h"
#include "ExtraInhabitants.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "ScalarPairTypeInfo.h"
using namespace swift;
using namespace irgen;
namespace {
/// A TypeInfo implementation for Builtin.IntegerLiteral.
class IntegerLiteralTypeInfo :
public TrivialScalarPairTypeInfo<IntegerLiteralTypeInfo, LoadableTypeInfo> {
public:
IntegerLiteralTypeInfo(llvm::StructType *storageType,
Size size, Alignment align, SpareBitVector &&spareBits)
: TrivialScalarPairTypeInfo(storageType, size, std::move(spareBits), align,
IsTriviallyDestroyable, IsCopyable, IsFixedSize) {}
static Size getFirstElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getFirstElementLabel() {
return ".data";
}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
return IGM.typeLayoutCache.getOrCreateScalarEntry(*this, T,
ScalarKind::TriviallyDestroyable);
}
static Size getSecondElementOffset(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static Size getSecondElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getSecondElementLabel() {
return ".flags";
}
// The data pointer isn't a heap object, but it is an aligned pointer.
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getHeapObjectExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getHeapObjectFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T,
bool isOutlined) const override {
src = projectFirstElement(IGF, src);
return getHeapObjectExtraInhabitantIndex(IGF, src);
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
auto pointerSize = IGM.getPointerSize();
auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
mask.appendSetBits(pointerSize.getValueInBits());
mask.appendClearBits(pointerSize.getValueInBits());
return mask.build().value();
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T,
bool isOutlined) const override {
dest = projectFirstElement(IGF, dest);
storeHeapObjectExtraInhabitant(IGF, index, dest);
}
};
}
llvm::StructType *IRGenModule::getIntegerLiteralTy() {
if (!IntegerLiteralTy) {
IntegerLiteralTy =
llvm::StructType::create(getLLVMContext(), {
SizeTy->getPointerTo(),
SizeTy
}, "swift.int_literal");
}
return IntegerLiteralTy;
}
const LoadableTypeInfo &
TypeConverter::getIntegerLiteralTypeInfo() {
if (!IntegerLiteralTI) {
auto ty = IGM.getIntegerLiteralTy();
SpareBitVector spareBits;
spareBits.append(IGM.getHeapObjectSpareBits());
spareBits.appendClearBits(IGM.getPointerSize().getValueInBits());
IntegerLiteralTI =
new IntegerLiteralTypeInfo(ty, IGM.getPointerSize() * 2,
IGM.getPointerAlignment(),
std::move(spareBits));
}
return *IntegerLiteralTI;
}
ConstantIntegerLiteral
irgen::emitConstantIntegerLiteral(IRGenModule &IGM, IntegerLiteralInst *ILI) {
return IGM.getConstantIntegerLiteral(ILI->getValue());
}
ConstantIntegerLiteral
IRGenModule::getConstantIntegerLiteral(APInt value) {
if (!ConstantIntegerLiterals)
ConstantIntegerLiterals.reset(new ConstantIntegerLiteralMap());
return ConstantIntegerLiterals->get(*this, std::move(value));
}
ConstantIntegerLiteral
ConstantIntegerLiteralMap::get(IRGenModule &IGM, APInt &&value) {
auto &entry = map[value];
if (entry.Data) return entry;
assert(value.getSignificantBits() == value.getBitWidth() &&
"expected IntegerLiteral value to be maximally compact");
// We're going to break the value down into pointer-sized chunks.
uint64_t chunkSizeInBits = IGM.getPointerSize().getValueInBits();
// Count how many bits are needed to store the value, including the sign bit.
uint64_t minWidthInBits = value.getBitWidth();
// Round up to the nearest multiple of the chunk size.
uint64_t storageWidthInBits = (minWidthInBits + chunkSizeInBits - 1)
& ~(chunkSizeInBits - 1);
// Extend the value to that width. We guarantee that extra bits in the
// chunks will be appropriately sign-extended.
value = value.sextOrTrunc(storageWidthInBits);
// Extract the individual chunks from the extended value.
uint64_t numChunks = storageWidthInBits / chunkSizeInBits;
SmallVector<llvm::Constant *, 4> chunks;
chunks.reserve(numChunks);
for (uint64_t i = 0; i != numChunks; ++i) {
auto chunk = value.extractBits(chunkSizeInBits, i * chunkSizeInBits);
chunks.push_back(llvm::ConstantInt::get(IGM.SizeTy, std::move(chunk)));
}
// Build a global to hold the chunks.
// TODO: make this shared within the image
auto arrayTy = llvm::ArrayType::get(IGM.SizeTy, numChunks);
auto initV = llvm::ConstantArray::get(arrayTy, chunks);
auto globalArray = new llvm::GlobalVariable(
*IGM.getModule(), arrayTy, /*constant*/ true,
llvm::GlobalVariable::PrivateLinkage, initV,
IGM.EnableValueNames
? Twine("intliteral.") + llvm::toString(value, 10, true)
: "");
globalArray->setUnnamedAddr(llvm::GlobalVariable::UnnamedAddr::Global);
// Various clients expect this to be a i64*, not an [N x i64]*, so cast down.
auto zero = llvm::ConstantInt::get(IGM.Int32Ty, 0);
llvm::Constant *indices[] = { zero, zero };
auto data = llvm::ConstantExpr::getInBoundsGetElementPtr(arrayTy, globalArray,
indices);
// Build the flags word.
auto flags = IntegerLiteralFlags(minWidthInBits, value.isNegative());
auto flagsV = llvm::ConstantInt::get(IGM.SizeTy, flags.getOpaqueValue());
// Cache the global.
entry.Data = data;
entry.Flags = flagsV;
return entry;
}
void irgen::emitIntegerLiteralCheckedTrunc(IRGenFunction &IGF, Explosion &in,
llvm::Type *FromTy,
llvm::IntegerType *resultTy,
bool resultIsSigned,
Explosion &out) {
Address data(in.claimNext(), FromTy, IGF.IGM.getPointerAlignment());
auto flags = in.claimNext();
size_t chunkWidth = IGF.IGM.getPointerSize().getValueInBits();
size_t resultWidth = resultTy->getBitWidth();
// The number of bits required to express the value, including the sign bit.
auto valueWidth = IGF.Builder.CreateLShr(flags,
IGF.IGM.getSize(Size(IntegerLiteralFlags::BitWidthShift)));
// The maximum number of chunks that we need to read in order to fill the
// result type: ceil(resultWidth / chunkWidth).
// Note that we won't actually end up reading the final chunk if we're
// building an unsigned value that requires e.g. 65 bits to express:
// there's only one meaningful bit there, and we know it's zero from the
// isNegative check.
size_t maxNumChunks = (resultWidth + chunkWidth - 1) / chunkWidth;
// One branch from invalidBB, one branch at each intermediate point in the
// do-we-have-more-chunks chain, and one branch at the end.
auto numPHIEntries = maxNumChunks + /*overflow*/ 1;
auto boolTy = IGF.IGM.Int1Ty;
auto doneBB = IGF.createBasicBlock("intliteral.trunc.done");
auto resultPHI = llvm::PHINode::Create(resultTy, numPHIEntries, "", doneBB);
auto overflowPHI = llvm::PHINode::Create(boolTy, numPHIEntries, "", doneBB);
out.add(resultPHI);
out.add(overflowPHI);
auto validBB = IGF.createBasicBlock("intliteral.trunc.valid");
auto invalidBB = IGF.createBasicBlock("intliteral.trunc.invalid");
// Check whether the value fits in the result type.
// If the result is signed, then we need valueWidth <= resultWidth.
// Otherwise we need valueWidth <= resultWidth + 1 && !isNegative.
{
llvm::Value *hasOverflow;
if (resultIsSigned) {
hasOverflow = IGF.Builder.CreateICmpUGT(valueWidth,
IGF.IGM.getSize(Size(resultWidth)));
} else {
static_assert(IntegerLiteralFlags::IsNegativeFlag == 1,
"hardcoded in this truncation");
auto isNegative = IGF.Builder.CreateTrunc(flags, boolTy);
auto tooBig = IGF.Builder.CreateICmpUGT(valueWidth,
IGF.IGM.getSize(Size(resultWidth + 1)));
hasOverflow = IGF.Builder.CreateOr(isNegative, tooBig);
}
IGF.Builder.CreateCondBr(hasOverflow, invalidBB, validBB);
}
// In the invalid block, we just need to construct the result. This block
// only exists to split the otherwise-critical edge.
IGF.Builder.emitBlock(invalidBB);
{
resultPHI->addIncoming(llvm::ConstantInt::get(resultTy, 0), invalidBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 1), invalidBB);
IGF.Builder.CreateBr(doneBB);
}
// Okay, the value fits in the result type, so overflow is off the table
// and we just need to assemble a value of resultTy. But we might not have
// the full complement of chunks.
IGF.Builder.emitBlock(validBB);
{
auto firstChunk = IGF.Builder.CreateLoad(data);
// The easy case is if resultWidth <= chunkWidth, in which case knowing
// that we haven't overflowed is sufficient to say that we can just
// use the first chunk.
if (resultWidth <= chunkWidth) {
auto result = IGF.Builder.CreateTrunc(firstChunk, resultTy);
resultPHI->addIncoming(result, validBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 0), validBB);
IGF.Builder.CreateBr(doneBB);
// Otherwise, we're going to have to test dynamically how many chunks
// we need to read.
} else {
assert(maxNumChunks >= 2);
llvm::Value *cur = firstChunk;
for (size_t i = 1; i != maxNumChunks; ++i) {
auto extendBB = IGF.createBasicBlock("intliteral.trunc.finish");
auto nextBB = IGF.createBasicBlock("intliteral.trunc.next");
// If the result is signed, then we're done if:
// valueWidth <= bitsInChunksReadSoFar
// If the result is unsigned, then we're done if:
// valueWidth <= bitsInChunksReadSoFar + 1
// (because we know the next bit will be zero)
auto limit = i * chunkWidth + size_t(!resultIsSigned);
auto isComplete =
IGF.Builder.CreateICmpULE(valueWidth, IGF.IGM.getSize(Size(limit)));
IGF.Builder.CreateCondBr(isComplete, extendBB, nextBB);
// If we're done, extend the current value to the result type and
// then branch out.
IGF.Builder.emitBlock(extendBB);
{
auto extendedResult =
resultIsSigned ? IGF.Builder.CreateSExt(cur, resultTy)
: IGF.Builder.CreateZExt(cur, resultTy);
resultPHI->addIncoming(extendedResult, extendBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 0), extendBB);
IGF.Builder.CreateBr(doneBB);
}
// Otherwise, load the next chunk.
IGF.Builder.emitBlock(nextBB);
auto nextChunkAddr =
IGF.Builder.CreateConstArrayGEP(data, i, IGF.IGM.getPointerSize());
auto nextChunk = IGF.Builder.CreateLoad(nextChunkAddr);
// Zero-extend the current value and the chunk and then shift the
// chunk into place. If this is the last iteration, we should use
// the final result type; the shift might then drop bits, but they
// should just be sign-extension bits.
auto nextTy = (i + 1 == maxNumChunks
? resultTy
: llvm::IntegerType::get(IGF.IGM.getLLVMContext(),
(i + 1) * chunkWidth));
cur = IGF.Builder.CreateZExt(cur, nextTy);
auto shiftedNextChunk =
IGF.Builder.CreateShl(IGF.Builder.CreateZExt(nextChunk, nextTy),
i * chunkWidth);
cur = IGF.Builder.CreateAdd(cur, shiftedNextChunk);
}
// Given the overflow check before, we know we don't need to look at
// any more chunks.
assert(cur->getType() == resultTy);
auto curBB = IGF.Builder.GetInsertBlock();
resultPHI->addIncoming(cur, curBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 0), curBB);
IGF.Builder.CreateBr(doneBB);
}
}
// Emit the continuation block. We've already set up the PHIs here and
// add them to `out`, so there's nothing else to do.
IGF.Builder.emitBlock(doneBB);
}
static llvm::Value *emitIntegerLiteralToFloatCall(IRGenFunction &IGF,
llvm::Value *data,
llvm::Value *flags,
unsigned bitWidth) {
assert(bitWidth == 32 || bitWidth == 64);
auto fn = bitWidth == 32 ? IGF.IGM.getIntToFloat32FunctionPointer()
: IGF.IGM.getIntToFloat64FunctionPointer();
auto call = IGF.Builder.CreateCall(fn, {data, flags});
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
call->setOnlyReadsMemory();
call->setOnlyAccessesArgMemory();
return call;
}
llvm::Value *irgen::emitIntegerLiteralToFP(IRGenFunction &IGF,
Explosion &in,
llvm::Type *toType) {
auto data = in.claimNext();
auto flags = in.claimNext();
assert(toType->isFloatingPointTy());
switch (toType->getTypeID()) {
case llvm::Type::HalfTyID: {
auto flt = emitIntegerLiteralToFloatCall(IGF, data, flags, 32);
return IGF.Builder.CreateFPTrunc(flt, toType);
}
case llvm::Type::FloatTyID:
return emitIntegerLiteralToFloatCall(IGF, data, flags, 32);
case llvm::Type::DoubleTyID:
return emitIntegerLiteralToFloatCall(IGF, data, flags, 64);
// TODO: add runtime functions for some of these?
case llvm::Type::X86_FP80TyID:
case llvm::Type::FP128TyID:
case llvm::Type::PPC_FP128TyID: {
auto dbl = emitIntegerLiteralToFloatCall(IGF, data, flags, 64);
return IGF.Builder.CreateFPExt(dbl, toType);
}
default:
llvm_unreachable("not a floating-point type");
}
}
llvm::Value *irgen::emitIntLiteralBitWidth(
IRGenFunction &IGF,
Explosion &in
) {
auto data = in.claimNext();
auto flags = in.claimNext();
(void)data; // [[maybe_unused]]
return IGF.Builder.CreateLShr(
flags,
IGF.IGM.getSize(Size(IntegerLiteralFlags::BitWidthShift))
);
}
llvm::Value *irgen::emitIntLiteralIsNegative(
IRGenFunction &IGF,
Explosion &in
) {
auto data = in.claimNext();
auto flags = in.claimNext();
(void)data; // [[maybe_unused]]
static_assert(
IntegerLiteralFlags::IsNegativeFlag == 1,
"hardcoded in this truncation"
);
return IGF.Builder.CreateTrunc(flags, IGF.IGM.Int1Ty);
}
llvm::Value *irgen::emitIntLiteralWordAtIndex(
IRGenFunction &IGF,
Explosion &in
) {
auto data = in.claimNext();
auto flags = in.claimNext();
auto index = in.claimNext();
(void)flags; // [[maybe_unused]]
return IGF.Builder.CreateLoad(
IGF.Builder.CreateInBoundsGEP(IGF.IGM.SizeTy, data, index),
IGF.IGM.SizeTy,
IGF.IGM.getPointerAlignment()
);
}